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Abstract 

Identifying the biological diversity of a microbial population is of fundamental importance due to its               

implications in industrial processes, environmental studies and clinical applications. Today, there is still an              

outstanding need to develop new, easy-to-use bioinformatics tools to analyze both amplicon and shotgun              

metagenomics, including both prokaryotic and eukaryotic organisms, with the highest accuracy and the             

lowest running time. With the aim of overcoming this need, we introduce GAIA, an online software solution                 

that has been designed to provide users with the maximum information whether it be 16S, 18S, ITS, or                  

shotgun analysis. GAIA is able to obtain a comprehensive and detailed overview at any taxonomic level of                 

microbiomes of different origins: human (e.g. stomach or skin), agricultural and environmental (e.g. land,              

water or organic waste). By using recently published benchmark datasets from shotgun and 16S              

experiments we compared GAIA against several available pipelines. Our results show that for shotgun              

metagenomics, GAIA obtained the highest F-measures at species level above all tested pipelines (CLARK,              

Kraken, LMAT, BlastMegan, DiamondMegan and NBC). For 16S metagenomics, GAIA also obtained excellent             

F-measures comparable to QIIME at family level. The overall objective of GAIA is to provide both the                 

academic and industrial sectors with an integrated metagenomics suite that will allow to perform              

metagenomics data analysis easily, quickly and affordably with the highest accuracy. 

Introduction 

The study of the different microbiomes present in either the environment or inside the human body is of                  

fundamental importance as it is highly relevant for industrial processes as well as environmental and clinical                

applications. For instance, dysbiosis in distinct communities has been related to diseases or have been               

established as an early sign of environmental pollution [1-3]. 

Traditionally, studying bacterial communities required the isolation and culture of each individual            

microorganism, which is a significant limitation considering that less than 1% of the prokaryotes known are                

culturable [4]. Nowadays using high-throughput sequencing technologies is a standard for metagenomics            

analysis. These technologies are essential for the development of metagenomics, which is defined as the               

culture-independent genomic analysis of all the microorganisms in a particular environmental niche [5]. The              

data analysis can be either taxonomical, which aims to identify the origin of all the genomic material in the                   
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sample, or functional, where the goal is to identify the genes within a sample and their function in terms of                    

Gene Ontology (GO) and metabolic pathways. 

There are two main approaches in metagenomics: amplicon and shotgun analysis. Amplicon metagenomics             

is based on the PCR amplification of a genetic marker: the 16S rRNA in bacteria and archaea, ITS regions in                    

fungi or the 18S rRNA in other eukaryotes. Even though it is a cheap and well-established technology, these                  

markers lacks resolution as they cannot differentiate between closely related species [6]. Shotgun analysis              

is defined as the unrestricted sequencing of the genomes (Whole Genome Sequencing -WGS-             

metagenomics) or transcriptomes (metatranscriptomics) inside a sample. Shotgun analyses allow          

taxonomic identification down to strain level and also functional annotation by identifying genes present in               

the samples. In addition, the expression of these genes can be quantified by means of metatranscriptomics,                

thus allowing the identification of key roles of microorganisms in the samples. On the other hand, shotgun                 

analyses are more computationally expensive then amplicon sequencing as they require higher sequencing             

coverage of the genomes in the sample. Additionally, the data analysis is more complex due to the large                  

amount of data generated [7]. 

Dozens of pipelines have been developed so far for the analysis of metagenomics samples for taxonomic                

identification. Some of these pipelines have been compared in recent publications: Siegwald et al . (2017)               

[8] benchmarked commonly-used 16S pipelines, McIntyre et al . (2017) [9] benchmarked commonly-used            

shotgun metagenomics pipelines, and Brown, et al . (2017) [10] benchmarked pipelines that are able to               

process Nanopore data. 

All things considered, there are still limitations to be overcome in the field of metagenomics: 1) there is still                   

room for improvement in terms of accuracy, 2) some of the pipelines work on amplicon but not on shotgun                   

analyses and vice versa, 3) lack of true user-friendly interfaces for the vast majority of the pipelines, 4) lack                   

of pipelines that have eukaryotic databases, 5) high computational and data storage demand, especially in               

terms of shotgun metagenomics, and 6) high processing time. To overcome these limitations, we introduce               

GAIA: a new online metagenomics integrated suite which aims to become the reference method in               

metagenomics analysis for amplicon and WGS metagenomics as well as metatranscriptomics. With the aim              

of validating GAIA, we have gathered the results and datasets available from the different benchmarks,               

which include the following pipelines: BMP [11], mothur [12], QIIME [13], LMAT [14], BlastMegan [15],               

DiamondMegan [15], NBC [16], CLARK [17] and Kraken [18]. 

2 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 15, 2019. ; https://doi.org/10.1101/804690doi: bioRxiv preprint 

https://doi.org/10.1101/804690
http://creativecommons.org/licenses/by-nc-nd/4.0/


Materials and methods 

Benchmark 

Whole genome sequencing 

The datasets (FASTA and FASTQ files) from Segata et al . (2013) and Ounit and Lonardi (2016) used in                  

McIntyre, et al . (2017) for benchmarking were downloaded from         

http://ftp-private.ncbi.nlm.nih.gov/nist-immsa/IMMSA/ . FASTA files were converted to FASTQ files using an          

in-house script and the quality assigned to the bases was 40 (Phred+33). The datasets were then mapped                 

against the GAIA’s Prokaryotes database v1.0. Precision, recall and F-measure values at read-level for the               

benchmarked tools were extracted directly from the paper. Precision, recall and F-measures for GAIA were               

calculated as: 

Precision = # reads classified correctly / # reads classified 

Recall = # reads classified correctly / # total reads 

F-measure = harmonic mean of the precision and recall 

The datasets in FASTQ format from Brown, et al . (2017) were downloaded from the European Nucleotide                

Archive (ENA) as using the accessions PRJEB8672 and PRJEB8716. Accuracy values at read-level for the               

benchmarked tools were extracted directly from the paper. Accuracy for GAIA was calculated as: 

Accuracy = # reads classified correctly / # reads classified 

Amplicon sequencing 

The datasets from Siegwald, et al . (2017) were downloaded from          

http://pegase-biosciences.com/metagenetics/ . These datasets were then mapped against GAIA’s Amplicon         

NCBI 16s database v1.0. Precision, recall and F-measures at read-level for the benchmarked tools were               

extracted directly from the paper. Precision, recall and F-measure values for GAIA were calculated as: 

Precision = # reads classified correctly / # reads classified 

Recall = # reads classified correctly / # (reads classified correctly + reads unclassified) 

F-measure = harmonic mean of the precision and recall 
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Results 

Pipeline 

GAIA consists of different Python, Java, Bash and R scripts that perform the following 5 different steps: i)                  

the first step is the quality check and trimming, in that GAIA calls BBDuk [19] in order to remove both                    

adapter sequences and bad quality portions from the reads for Illumina and Ion Torrent data and, for                 

Oxford Nanopore data, it uses Porechop [20] for adapter removal; ii) BWA [21] is used to map the high                   

quality reads from any platform (Illumina, Ion Torrent and Oxford Nanopore) against custom-made             

databases created from NCBI sequences [22]; iii) reads are classified into the most specific taxonomic level                

using an in-house Lowest Common Ancestor (LCA) algorithm; iv) minimum identity thresholds are applied              

to classify reads into strains, species, genus, family, order, class, phylum and domain levels; v) alpha and                 

beta diversities are finally calculated using phyloseq [23]. Additionally, should any of the input datasets               

come from different conditions, GAIA includes an additional step to perform a differential abundance              

analysis using DESeq2 [24] (Figure 1). 

 

Figure 1. Overview of GAIA pipeline with the distinct steps it follows. 

Benchmark 

In order to assess the performance of GAIA and to compare it with other metagenomics pipelines, we                 

conducted a benchmark using both whole genome and amplicon sequencing data as described in the               

following paragraphs. For each dataset, GAIA’s precision, recall and F-score were calculated and compared              

with the others pipelines. 
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Whole genome sequencing 

The datasets used from McIntyre, et al . (2017) were generated in silico and can be divided into two groups.                   

The first group of datasets are created taking into account their complexity: high complexity datasets               

contain more species (100 different species) with more variable abundances than the low complexity              

datasets (25 different species). The second group of datasets were created including the species that are                

commonly found in mouth, city parks, gut or indoors. By comparing the results of GAIA with the expected                  

ones, precision, recall and F-scores for each dataset were calculated (Supplementary Table 1). On average,               

GAIA obtained a precision of 0.982, a recall of 0.902 and the highest average F-score (0.94) at the species                   

level, followed by CLARK-S and CLARK with F-scores of 0.936 and 0.921, respectively. 

The Oxford Nanopore datasets used from Brown, et al . (2017) were real data generated from four separate                 

cultures of Escherichia coli, Pseudomonas fluorescens, Microcystis aeruginosa and Synechococcus          

elongatus, and three mixed cultures of these four species. By comparing the results of GAIA with the                 

expected ones, the accuracy for each dataset was calculated (Supplementary Table 2). On average, GAIA               

obtained the highest accuracy of 0.967, followed by Kraken with an accuracy of 0.946. 

Amplicon sequencing 

The datasets used from Siegwald, et al . (2017) were generated in silico with and without simulating                

sequencing errors on different rRNA subunits (V3, V4-V5) and can be divided into three groups: 

● High Complexity (HC): all taxa equally distributed with no dominant organisms. 

● Medium Complexity (MC): four dominant species of different genera accounting for 20% of reads              

and the remaining taxa are equally distributed. 

● Low Complexity (LC): 1 dominant species accounting for 30% of reads and the remaining taxa are                

equally distributed. 

At family level, using the Siegwald, et al . (2017) benchmark, GAIA obtained equal or slightly higher                

F-measures relative to QIIME: GAIA (0.957), QIIME UCLUST with SILVA database (0.956), QIIME SortMeRna              

SUMACLUST with Greengenes database (0.955) (Supplementary Table 3). At genus level, GAIA (0.83)             

showed the third best F-measure after CLARK (0.878) and Kraken (0.859), which was followed by QIIME                

UCLUST with SILVA database (0.776) and QIIME SortMeRna SUMACLUST with Greengenes database (0.665)             

(Supplementary Table 4). 

Online platform 

In order to provide a comfortable user experience, the GAIA pipeline was integrated into an online software                 

solution, which delivers the software in a way that can be accessed from any device with an Internet                  

connection and a web browser without any bioinformatics skills required. The analysis is performed              
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interactively online and it includes dynamic charts and tables using Google Charts and DataTables              

(JavaScript-based) (Figure 2). 

 

Figure 2. Screenshot of the upload page (A), in which the user uploads sequencing data, and screenshot of                  

the taxonomy barplot at genus level once the analysis has been completed (B). 

Conclusions 

We propose GAIA as a new software able to obtain a comprehensive and detailed overview at any                 

taxonomic level (including strains) of microbiomes of different origins such as human (e.g. stomach or skin),                

agricultural and environmental (e.g. land, water or organic waste) in an accurate and easy way. The                

presented high benchmark scores validate the algorithm. In fact, on average GAIA obtained the highest               

scores at species level for WGS metagenomics and it also obtained excellent scores for amplicon               

sequencing. Indeed, GAIA was the most performing software at genus level and within the top-three most                

performing softwares at family level for 16S rRNA data. In addition, at both family and genus level for                  

amplicon sequencing, GAIA obtained higher F-scores than QIIME, the most cited software for this kind of                

analysis. As metagenomics is shifting towards shotgun analyses which are able to sequence any organisms               

within a sample, GAIA’s database also includes eukaryotes to perform the so-called true metagenomics: a               

complete view in terms of existing life within the samples. GAIA has been created so the user can spend                   

more time interacting with their results and less time setting up the analysis. The overall objective of GAIA                  

is to provide academia and industries with an integrated metagenomics suite that will allow to perform                

metagenomics data analysis easily and quickly. GAIA is available at http://gaia.sequentiabiotech.com. 
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