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Abstract  

 
We trained a convolutional neural network (CNN) to classify H.E. stained microscopic images of focal 

cortical dysplasia type IIb (FCD IIb) and cortical tuber of tuberous sclerosis complex (TSC). Both 

entities are distinct subtypes of human malformations of cortical development that share 

histopathological features consisting of neuronal dyslamination with dysmorphic neurons and balloon 

cells. The microscopic review of routine stainings of such surgical specimens remains challenging. A 

digital processing pipeline was developed for a series of 56 FCD IIb and TSC cases to obtain 4000 

regions of interest and 200.000 sub-samples with different zoom and rotation angles to train a CNN. 

Our best performing network achieved 91% accuracy and 0.88 AUCROC (area under the receiver 

operating characteristic curve) on a hold-out test-set. Guided gradient-weighted class activation maps 

visualized morphological features used by the CNN to distinguish both entities. We then developed a 

web application, which combined the visualization of whole slide images (WSI) with the possibility 

for classification between FCD IIb and TSC on demand by our pretrained and build-in CNN classifier. 

This approach might help to introduce deep learning applications for the histopathologic diagnosis of 

rare and difficult-to-classify brain lesions. 
 

Introduction 

Deep learning showed remarkable success in medical and non-medical image-classification tasks in 

the past 5 years [1-3], finding its way into applications for digital-pathology such as classification, 

cell detection and segmentation. Based on these tasks more abstract functions like disease grading, 

prognosis prediction and imaging biomarkers for genetic subtype identification have been 

established [4, 5]. Successful examples range from utilization in different types of cancer 

detection/classification/grading [6, 7], classification of liver cirrhosis [8], heart failure detection [9] 

and classification of Alzheimer plaques [10]. 

The most commonly used deep learning architectures are convolutional neural networks (CNN) 

(Figure 1c). CNN's are assembled as a sequence of levels consisting of convolutional layers and 

pooling layers, followed by fully connected layers with a problem specific activation function in the 

end [11, 12]. Each convolutional layer consists of feature maps connected with an area of the 
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previous layer and a set of specific weights for each feature map. The convolutional layer is followed 

by pooling layers, which compute the maximum or average of a group of feature maps. This pooling-

operation merges related values into features and reduces the dimension by taking input from 

multiple overlapping feature maps. This combination enables the CNN to correlate groups of local 

values to detect patterns as well as making motifs invariant to the exact location in the images [11]. 

In other words, CNN will learn features in images without explicitly showing, segmenting or 

marking important features in a given motif.  

 

 

 

 

 

 

Malformations of Cortical Development (MCD) represent common brain lesions in patients with 

drug-resistant focal epilepsy and surgical resection is a beneficial treatment option [13, 14]. Amongst 

the many MCD conditions described in the literature, focal cortical dysplasia (FCD) and cortical 

Figure 1 | Workflow overview. a | Workflow beginning with digitized WSI then extracting the tiles 
of a ROI and 10 random-rotate-zoom example subtiles visualized on a single 2041x2041 pixel tile. 
b | Example tiles obtained through random-rotate-zoom and resizing then further augmenting one 
tile to show a range of augmentation techniques used. c | The unchanged VGG16 architecture 
merges into a custom top layer consisting of BatchNormalization, DropOut and Dense Layers 
merging into a fully connected output layer. The predictions on single tiles are averaged to obtain 
the prediction of a WSI and the WSI-predictions will be averaged to obtain the prediction of a 
case.  
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tuber of tuberous sclerosis complex (TSC) share histopathological communalities difficult to 

distinguish at the microscopic level. TSC is a variable neurocutaneous disorder involving benign 

tumors and hamartomatous lesions in different organ systems, most commonly in the brain, skin and 

kidneys. TSC is caused by autosomal dominant mutations in the TSC 1 (hamartin) and TSC 2 

(tuberin) gene. As a complex, TSC 1 and TSC 2 inhibit the mammalian target of rapamycin complex 

(mTORC1) [15, 16]. Also, TSC can be diagnosed clinically if two major features or one major and 

two minor features are present, following the international TSC diagnostic criteria [17].  

FCDs are a heterogenous subgroup of MCD, which can be located throughout the cortex. FCDs can 

be classified using the three-tiered ILAE classification system, subdividing the FCDs based on 

histopathological findings including abnormal radial and tangential cortical lamination, dysmorphic  

neurons, balloon cells and adjacent to other principal lesions [18]. The subtype FCD IIb is 

histomorphologically characterized by dysmorphic neurons and balloon cells, disrupted cortical 

lamination as well as blurred boundaries between gray and white matter [18].  
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In routine histopathology work-up, TSC can hardly be distinguished from FCD IIb, in particular, 

balloon cells are not discernible from giant cells in TSC patients. Cortical tubers are also defined by 

disrupted cortical lamination, thus making a definite diagnosis based on the histomorphological 

findings difficult to obtain (Figure 2).  

In this study, we present a proof-of-concept deep learning approach to classify FCD IIb and TSC and 

to visualize the underlying distinguishing features which at the moment are not reliably discernible 

by pathologists in hematoxylin and eosin-stained (H&E) slides. This process is possible by 

computing guided gradient weighted class activation maps (Guided Grad CAMs) which represent the 

weighted pixel-level classification results which in turn mark the important histomorphological 

features the CNN uses to distinguish these entities. In addition, we implemented a custom slide 

review platform for whole slide image visualization and on demand classification. 

Figure 2 | High power fields of FCD IIb and TSC.  a | Three example cases with 2 high power 
fields (40x magnification) of FCD IIb. b | Three example cases with 2 high power fields of TSC in 
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Our approach might be a powerful concept for classifying and analyzing difficult to diagnose 

pathologic entities.  

 

Materials & Methods 

Dataset and Region of Interest 

To train and evaluate our CNN, H&E tissue slides of 56 patients, who had undergone epilepsy 

surgery and were diagnosed at the European Neuropathology Reference Center for Epilepsy Surgery, 

were collected. The samples were subsequently digitized using a Hamamatsu S60 scanner.  

Overall the dataset consisted of 141 WSI from 56 patients, 28 patients with FCD IIb and 28 patients 

with genetically confirmed TSC. The whole dataset was divided into 50 cases used for training and 

validation along with 6 cases as an independent test-set to evaluate the model’s performance. We 

ensured that a patient was either in the training- and validation-set or the unseen test-set.  

The WSIs of our dataset were reviewed by two expert neuropathologists of the European reference 

center for epilepsy in Erlangen using the 2011 ILAE classification of focal cortical dysplasia [18].  

The region of interest (ROI) on an individual slide was defined as areas with high balloon cell or 

giant cell counts along with the surrounding white matter and deep cortical layers. These ROIs were 

extracted at 20x magnification and cropped into smaller tiles of 2041x2041 pixels, using QuPath 

[19], to further preprocess and feed into our model.  

 

Convolutional Neural Network Architecture 

A VGG16 CNN architecture pre-trained on ImageNet was implemented [3], using the open-source 

Python packages Keras [20] with TensorFlow backend [21]. VGG16 was chosen, as it yielded the 

best results with the least overfitting on a small training- and validation-subset out of a couple of 

state-of-the-art network architectures including NasNetMobile, Xception, DenseNet121 and 

ResNet50 [22-25]. The basic network architecture was not changed and consisted of 1 Input-Layer, 5 
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Convolutional Blocks each ending in a MaxPooling2D-Layer merging into a custom top layer 

beginning with a GlobalMaxPooling2D-Layer followed by 2 Blocks of Batch Normalization [26], 

Dropout (0.5, 0.5) and Dense-Layers merging into the fully-connected output layer (SoftMax-

activation to produce individual output probabilities); (Figure 1.c).  

 

Preprocessing and Data Augmentation 

Image preprocessing is an important step in every computer vision task to augment the number of 

samples, to prevent overfitting, and to support the model against invariant aspects that are not 

correlating with the label [27, 28]. In our approach, we mixed our novel random-rotate-zoom 

technique with classical image augmentation techniques. The initial 2041x2041 ROIs were cropped 

in 20x magnification. From these ROIs new sub-samples with random zoom and rotation were 

generated, resulting in 0.1 to 2x scaled sub-samples of the initial tile as shown in (Figure 2.a: Tile 

extraction and random-rotate-zoom Example). These sub-samples were then normalized and resized 

to obtain 300x300 pixel images. The 300x300 images were additionally augmented using the open-

source, python-based library, imgaug [29] with a random composition of shear, blur, sharpen, 

emboss, edge detect, dropout, elastic transformations and color distortion including contrast 

adjustments, brightness changes, permutation of hue (all augmentations applying to either the whole 

image or an area of the image) (Figure 1.b). This process is implemented through a custom keras 

image generator. This image generator streams 50 training images, randomly generated, of every tile 

as an input into the CNN, using the described preprocessing method. By means of such procedures, 

there was no need to save any additional images to disk and, with random permutations on every 

training epoch, we maximized the learning efficacy and robustness of the neural network (Figure 

4.b). 
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Training and Evaluation 

Training was performed with a batch size of 128, using the Adam-Optimizer [30] and a cyclic 

learning rate (cLR) [31] oscillating between 10-8 and 10-3 every quarter epoch, with a schedule to 

drop the cLR if validation-loss did not improve for 10 epochs. Training performance was controlled 

using accuracy, loss and area under the curve (AUC) as metrics where plotted every epoch.    

As a first step, base layer weights were frozen, only training the custom top layer with a cLR (10-3 – 

10-5). In a second step, the whole model was trained including the base layers with a very low cLR 

(10-6 – 10-8), thus maintaining the basic image-classification patterns of the pre-trained model and 

prevent overfitting. Model parameters were saved every reduction of validation-accuracy and the 

best parameters were used for predictions on the unseen test-set. 

We further evaluated model performance with 10fold cross-validation and a training- and validation-

split of 0.9, while maintaining the original case-distribution and without having any training- and 

validation-slide overlap. 

To evaluate model performance on the unseen test-set, images were generated using our random-

rotate-zoom technique with 100 iterations on every test-tile, which were then individually predicted 

and averaged to obtain the prediction of a WSI. In the next step, the predictions on multiple WSIs of 

one case were averaged to obtain the prognosis for the whole case (Figure 2.c: Prediction Process). 

To further assess testing-performance the classification results were evaluated by accuracy, adjusted 

geometric mean (AGM), area under the receiver operating characteristic curve (AUC ROC), 

sensitivity, precision and F1 score (harmonic mean of precision and sensitivity). 

 

Visualization 

Gradient-weighted class activation maps (Grad-CAM) and Guided Grad-CAM have shown to be 

useful tools to understand how the model is analyzing the images and revealing the features of 

relevance for the classification-task [32, 33]. Grad-CAMs are a form of localization maps based on a 
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given image passing through the trained model to generate the class-gradient, setting all other class-

gradients except the class of interest to zero and backpropagating the rectified convolutional features 

to compute a Grad-CAM [33]. In dependence of the convolutional layer different degrees of detailed 

spatial information and higher-level semantics are displayed. According to the original paper we 

expected the penultimate convolutional layer (block5_conv3) to have the best visualization results 

for our purpose. This Grad-CAM can be visualized using different colormaps to obtain a better 

understanding at which regions of a given image the model is focusing. Guided Grad-CAM is a 

combination of Grad-CAM’s “heatmaps” and guided backpropagation merged with point-wise 

multiplication to achieve pixel-level resolution of discriminative features [33]. We performed our 

studies based on Gildenblats' open-source implementations of Grad-CAM and Guided Grad CAM 

for Keras [34], using our own models and adaptations of the code for our task-specific problems.   

This combination formed an optimal foundation to gain insight into which histomorphological 

features on region- and pixel-level, not discernible to the human eye, were relevant to distinguish 

between these two entities.  

 
Web application 

We developed a custom web application for online slide review using Django and VueJs frameworks 

and openslide for WSI visualization. H&E specimens representing can be microscopically reviewed 

without any further information. Inside the application snapshots in 20x magnification can be taken 

on which regions a potential reviewer deemed important and submit the images from these regions 

via the web application. We then implemented an online classifier into the application which 

incorporated the trained model at the server-side. The online classifier worked as follows: An image 

could be taken directly from a WSI at 20x magnification and a predefined size at review and was 

subsequently stored on the server and classified by the model at the server-side. This way we assured 

the image fulfills certain quality criteria prior to being predicted by the model to obtain an averaged 

diagnosis over all the ROIs of one potential review-participant (Figure 3).  
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Hardware 

We implemented our approach on a local server running Ubuntu (18.04 LTS) with one NVIDIA 

GeForce GTX 1080Ti and one NVIDIA Titan XP, AMD CPU (AMD Ryzen Threadripper 1950X 

16x 3.40GHz), 128Gb RAM, CUDA 10.0 and cuDNN 7.  

 

Figure 3 | Slide overview of our self-developed slide review and prediction platform. Home screen with 
short introduction following the black arrow to enter the slide review. ROI selection and quality control 
(following the blue arrow), you can only screenshot ROIs in 20x magnification. Storing ROI and ROI 
localization on a server (2nd black arrow). Prediction with random-rotate-zoom on all stored ROIs of one 
reviewer, with averaged prediction (grey arrow). 
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Results 

Validation and Test Performance 

All CNNs were trained to classify the ROIs containing balloon cells and giant cells of FCD IIb and 

TSC-tuber, respectively, as well as surrounding tissue. First, we performed a study to determine 

which model to use for our classification task ranging from VGG16 to models with more trainable 

parameters, i.e. ResNet50, DenseNet121, NasNetMobile and Xception. We evaluated all those 

models on a small training- and validation subset of our whole dataset, with validation accuracy 

ranging from 75% (Xception) to 92% (VGG16) after 40 epochs (Supplement 1.b). We decided to 

implement VGG16 for our approach as it yielded the best validation results with little overfitting on 

the validation-subset, low training times and good architecture to visualize.  In the next study, we 

compared our random-rotate-zoom preprocessing method with a direct ROI extraction of 300x300 

pixel tiles on another training- and validation subset to determine if our approach improves 

classification performance and prevents overfitting. The results showed the superiority of the 

random-rotate-zoom technique over direct ROI extraction as validation accuracy was higher 

(Supplement 1.a).  

Based on these studies we built our final VGG16 model with a custom top layer for extended Batch 

Normalization with random-rotate-zoom preprocessing and additional data augmentation (Figure 

1.c). To assess the whole training set and select the best performing model for our final prediction, 

we evaluated our models via 10-fold cross-validation. The overall cross validation-performance is 

shown in Figure 4.a with a validation accuracy averaging at 94% (91%-97%) and an AUCROC 

averaging at 0.91 (0.89-0.95). During training validation accuracies mostly stayed above training 

accuracies and validation loss stayed below training loss values, indicating little to no overfitting on 

the training dataset. 

The best performing model in cross-validation was picked to classify the unseen test set. Scoring an 

overall accuracy of 91.2% on the tile level while not misclassifying a single case in our unseen test 
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set (Figure 4.c ). Additional performance metrics while testing are shown in Figure 4.c. The 

confusion matrix for the single tile predictions on the hold-out test set is shown in Figure 4.d. The 

results indicated a good overall performance for a classification task not easy to accomplish even for 

expert neuropathologists. To analyze problems and pitfalls of the trained CNN resident 

neuropathologists reviewed the most confident wrongly classified tiles (tiles with a high accuracy for 

the wrong label) to depict possible disruptive factors. The inspection of these tiles showed that some 

present folding artifacts (2/34) and stripy artifacts (6/34) due to tissue processing as well as some 

areas being slightly out of focus. Thereby making it more difficult to classify on a per tile basis 

(Figure 4.e).  

    

Figure 4 | Data distribution and performance overview. a | Average predictions for each cross-
validation fold with overall mean and standard deviation (SD). b | Data distribution as well as 
comparing view of training, validation and testing performance of our best performing model. c | 
Performance metrics for our best performing model in 10-fold crossvalidation on the unseen test 
set (average geometric mean (AGM)) d |  Confusion matrix for the best performing model on the 
unseen test set on tile level. e |  Most confident wrongly classified tiles for FCD IIb and TSC.  
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Model Visualization 

We further investigated morphological features relevant to the classification task of both FCD IIb 

and TSC using Grad-CAM and Guided Grad-CAM. A total of 10000 Grad-CAMs and Guided Grad-

CAMs heatmaps were generated and reviewed by three resident neuropathologists. Although ROI’s 

extracted via random-rotate-zoom reveal better classification results for visualization purposes a 

stable magnification level turned out to be better for the generation of accurate heatmaps (data not 

shown). This result is expected as the model can fit more precise to a single magnification level but 

generalizes worse when tested on the unseen test set. 

The analysis of the generated Guided Grad CAMs revealed matrix reaction as an important feature 

distinguishing between cortical tuber and FCD IIb. In TSC patients the matrix reaction was fibrillar 

and strand-like throughout our visualized test-set of 10000 heatmaps ( Figure 5.a). In contrast, the 

matrix reaction in FCD IIb specimens was diffuse and granular. Another new feature was that 

astrocytes and their nuclei played an important role in the morphological distinction between FCD 

IIb and TSC. Smaller nuclei of astrocytes with more condensed chromatin were a hallmark of FCD 

IIb (Figure 5.b), while larger nuclei of astrocytes with uncondensed chromatin structure were mainly 

found in TSC (Figure 5.b). 

Surprisingly balloon cells were itself hardly used for the distinction of these two entities. The CNN 

often focused on the cytoplasm, cell wall and some chromatin sprinkles of balloon cells in TSC 

patients. An interesting finding in TSC patients were halo artifacts around balloon cells occurring in 

the majority of our dataset (Figure 5.c).  

It is important to note that the CNN, even in images with artifacts like marker or small empty areas, 

did not target these structures to classify the tile. 
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Discussion 

We developed a deep learning approach to help diagnosing difficult-to-classify histopathologic 

entities and used CNN to extract novel distinguishing features. We then developed a new web-based 

application for histopathology diagnostics with a built in classifier.  

At first, we evaluated different state-of-the-art model architectures to identify the most suitable for 

our purpose in terms of a) best classification results, b) least overfitting and c) best to visualize. 

Amongst all evaluated network we have chosen VGG as it accomplished these needs (see results). It 

is interesting to note, however, that models with higher network parameter counts and more complex 

architectures overfitted the given training data. In addition, VGG16 visualization through Guided 

Grad-CAMs has recently been used as a successful application in medical research, because it makes 

Figure 5 | Visualization of representative Guided Grad CAM results matched with the original image 
tiles. a Matrix reaction, b Glia cells and c Balloon cells as seen by our best predicting model. Relevance 
scale is plotted with red being most confident and blue the least confident. Grey areas are unimportant 
to the prediction of the given class. 
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visualization at the pixel level possible [35-37]. The next step was to augment our use-case data set 

through appropriate preprocessing. Small datasets are of major concern for deep learning tasks and 

likely result in overfitting to the given training data and yielding inaccurate results of the 

independent test set [38]. We could show the benefit of effectively multiplying our data by a new 

random-rotate-zoom technique in addition to classical image preprocessing from direct patch 

extraction for the given task. This protocol was influenced by daily histopathology practice using 

different optical zoom ranges of the microscope to extract all available histomorphological 

information. Further and independent work is needed, however, to confirm the benefit of such 

preprocessing pipeline over direct patch extraction for deep learning tasks in digital pathology.  

Another important goal was to extract classifying features from our model using the Guided Grad-

CAM approach. Patterns of matrix reaction and a halo artifact around balloon cells were novel and 

not yet described. The feature of condensed nuclei of astrocytes in FCD IIb compared to the 

uncondensed and bigger nuclei of astrocytes in TSC confirmed prior studies of the role of astrocytes 

in TSC and represented also a stable histomorphologic correlate in H&E stained sections [39, 40].  

Different limitations and possible solutions moving into the future: 

A well-recognized obstacle in digital pathology represents batch effects including variation in 

staining intensity or fixation artifacts [10, 41]. We contained such batch effects in our input data 

through hand-picked ROIs and normalization. However, more sophisticated H&E normalization 

standards needed to be developed to allow a comprehensive application of deep learning for the large 

spectrum of disease conditions [42, 43].  In particular, integration of cell-type-specific brain somatic 

gene information into disease classification will advance inter- and intra-observer liability of 

histopathology diagnosis as well as better understanding of underlying pathomechanisms [44].  

Our dataset was small with respect to deep learning standards, especially when comparing datasets 

collected by Imagenet or OpenImage with a compilation of million images and thousands of unique 

samples per class when training deep learning architectures [45, 46]. But this will be an impossible 
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task when studying rare brain diseases. Our dataset of 56 cases is extraordinarily large and was 

collected with the help of the archives of the European Epilepsy Brain Bank [47]. Such sample 

numbers exceed what most pathologists will see in their lifetime. Hence, we call for multi-center 

collaborations to obtain big enough datasets and to develop open-access online tools for consultation 

if a certain disease is suspected. Furthermore, our approach passed many previous endeavors in size 

of the dataset and sophistication of preprocessing.  Our approach may support the diagnosis of rare 

MCD entities in regions of the world with no genetic testing available [48, 49]. Despite the fact that 

such online tools are not yet approved for diagnostic use, we think it will help to disseminate web-

based digital pathology tools into regions of the world where genetic testing or advanced 

neuropathology expertise is not a common or even available standard.  

In conclusion, our study demonstrated the successful use of deep learning in the diagnosis of 

histomorphologically difficult-to-classify MCD entities. Morphological features learned by the 

system and relevant for the classification of FCD IIb and cortical tuber were then visualized. These 

results are promising and will help to amplify CNN visualization and deep learning methodologies in 

the arena of digital pathology.  

Availability and implementation 

Project Home Page: https://github.com/FAU-DLM/FCDIIb_TSC 
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Supplement

 

Supplement 1 | Selection of the right Preprocessing and Model-Architecture. a | Comparison of 
Single Patch Extraction (300x300 Tiles) versus random-rotate-zoom (2000x2000 Tiles with 
subsequent random sub-tile extraction & resizing to 300x300). b | Comparison of VGG16, 
NasNetMobile, DenseNet121, ResNet50 and Xception on a subset of our whole dataset with 40 
training epochs for each model. 
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