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Abstract 20 

 21 

Mineral amount in bovine muscle affect meat quality, growth, health and reproductive traits 22 

in beef cattle. To better understand the genetic basis of this phenotype, we implemented new 23 

applications of use for two complementary algorithms: the partial correlation and information 24 

theory (PCIT) and the regulatory impact factor (RIF), by including GEBVs as part of the 25 

input. We used PCIT to determine putative regulatory relationships based on significant 26 

associations between gene expression and mineral amount. Then, RIF was used to determine 27 

the regulatory impact of genes and miRNA expression over mineral amount. We also 28 

investigated over-represented pathways, as well as evidences from previous studies carried in 29 

the same population, to determine regulatory genes for mineral amount e.g. NOX1, whose 30 

expression was positively correlated to Zn and was described as regulated by this mineral in 31 

humans. With this methodology, we were able to identify genes, miRNAs and pathways not 32 

yet described as important for mineral amount. The results support the hypothesis that 33 

extracellular matrix interactions are the core regulator of mineral amount in muscle cells. 34 

Putative regulators described here add information to this hypothesis, expanding the 35 

molecular relationships between gene expression and minerals. 36 

 37 
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Introduction 41 

 42 

 Mineral amount affects meat quality [1]–[4], reproduction [5], health and growth 43 

performance [6], [7] in beef cattle and the control of mineral homeostasis depends on genetic 44 

factors, among others [8]. Understanding the genetic aspects linked to mineral amount in 45 

bovine muscle can lead to a better modulation of this trait, allowing for future production of 46 

healthier, more productive animals, and better-quality meat. 47 

A differential expression approach detects genes and pathways underlying mineral 48 

amount in Nelore cattle, by comparing extremes of the population used herein [9] [10]. 49 

However, as mineral amount traits occur in a continuous distribution, to verify these 50 

relationships and infer regulatory modes of action, it is necessary to study the whole 51 

population. It is possible to go beyond contrasting extreme phenotypes, beyond differential 52 

expression [11]. Thus, by applying a co-expression network approach it is possible to identify 53 

genome-wide genes with similar expression patterns related to specific phenotypes or 54 

conditions. In this methodology, traits are usually integrated into the analysis in a condition-55 

dependent network, by previous selection of genes or sample clusters related to the trait 56 

before the analysis [12]. Another way of including phenotypes to select gene groups 57 

putatively involved with them, already used for mineral amount in our population [13], is to 58 

cluster all expressed genes by their co-expression profiles and then associate these clusters to 59 

the phenotypes using the Weighted correlation network analysis (WGCNA) iR package [14]. 60 

In this case, groups of genes with similar functions are identified and associated with the 61 

phenotypes. 62 

Among the challenges of these methods regarding phenotype inclusion is that no 63 

single approach is used to search genome-wide for specific genes linked to phenotypes 64 

without prior selection. Also, it is challenging to pinpoint the direction of interactions or  the 65 

regulation, as co-expression networks do not provide this information a priori [12]. To 66 

overcome these limitations, we propose a new application of the partial correlation and 67 

information theory (PCIT) algorithm, originally used for deriving gene co-expression 68 

networks, by identifying significant associations between expression profiles [15]. 69 

Additionally, we propose a new application of the regulatory impact factor (RIF) algorithm 70 

[16] to identify significant genes and miRNAs expression with regulatory impact over 71 

mineral amount in bovine muscle. To this end, we used the expression values of genes and 72 

miRNAs correlated to minerals instead of transcription factors (TFs) used in the original 73 

application, allowing the regulatory role to go beyond current functional annotation of the 74 
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cattle genome. When calculating the RIF of genes and miRNAs with expression correlated 75 

with a mineral over the amount of this mineral, the mineral mass fraction genomic estimates 76 

of breeding values (GEBVs) were used instead of the expression data of selected gene. 77 

Therefore, we were able to use GEBVs on the networks to identify regulatory elements 78 

linked to the phenotypes. This new use of the PCIT-RIF algorithms identified genes and 79 

miRNAs expression related to the mass fraction of calcium (Ca), copper (Cu), potassium (K), 80 

magnesium (Mg), sodium (Na), phosphorus (P), sulfur (S), selenium (Se), zinc (Zn) and iron 81 

(Fe) in Nelore steers’ Longissimus thoracis muscle. In short, we aimed to predict the 82 

regulatory impact of genes and miRNAs expression over mineral amount in Nelore muscle.  83 

 84 

Results 85 

 86 

Genes and miRNAs with expression values correlated to minerals 87 

  88 

 After data quality control, filtering, normalization and batch effect correction 89 

performed separately in the mRNA-Seq and miRNA-Seq from 113 samples, the expression 90 

of 12,943 genes and 705 miRNAs remained for further analyses. To identify genes and 91 

miRNAs with expression values correlated to ten different minerals, we carried out two 92 

different PCIT analyses, using our new application: i) PCIT general: incorporating genes, 93 

miRNAs expression and GEBVs together, and ii) PCIT miRNA: considering only miRNAs 94 

expression and GEBVs together. Simultaneously considering the results of both PCIT 95 

analyses, we identified a total of 242 genes and 35 miRNAs with expression values correlated 96 

to at least one mineral GEBV. From these, the expression of 46 genes and 12 miRNAs was 97 

correlated to more than one mineral GEBV. The number of genes and miRNAs with 98 

expression values correlated to each mineral ranged from 19 to 55 and from five to nine, 99 

respectively. The number of miRNAs’ expression that were correlated to a mineral in both 100 

PCIT analyses varies from zero to three (Table 1). There were two genes and one miRNA 101 

expression values correlated to six minerals, Vitamin D3 receptor (VDR) and bta-miR-92b 102 

correlated to Ca, K, Mg, Na, P and S; and Doublecortin (DCX), correlated to K, Mg, Na, P, S, 103 

and Zn. From these analyses, we identified significant correlations among minerals’ GEBVs. 104 

There were no significant correlations between Se and other minerals (Figure 1). Correlations 105 

identified among K, Mg, Na, Zn, S, and P GEBVs ranged from 0.77 to 0.97.  106 

 107 

 108 
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Principal component score and Regulatory Impact Factor (RIF) 109 

 110 

 From a principal component analysis based on the GEBVs for each animal, 111 

considering ten minerals, we calculated a score for each sample regarding its contribution to 112 

phenotypic variation. Based on that, we selected 30 contrasting samples concerning all 113 

minerals together, 15 with low score and 15 with high score (Figure 2). These contrasting 114 

groups were used to estimate the RIF of all genes and miRNAs with expression values 115 

correlated to at least one mineral in the amount of all minerals together, using our application 116 

of the original RIF algorithm (see methods). Also, we estimated the RIF of the genes and 117 

miRNAs with expression values correlated to each mineral separately using contrasting 118 

sample groups for specific minerals. For that, based on the GEBVs, we expanded to 15 the 119 

number of samples on the same contrasting groups detailed in previous works with 120 

differentially expressed genes regarding mineral amount [9] [10] containing six samples for 121 

Ca, Cu, K, Mg, Na, P, S, Se and Zn and five samples for Fe in each group.  122 

There were 22 genes and two miRNAs with significant RIF based on the high and low 123 

score approach. Based on the single mineral analysis, there were three common genes and 124 

one common miRNA with significant RIF for two minerals, CD86 molecule (CD86) for K 125 

and Mg, VDR for Mg and Na, WD repeat-containing planar cell polarity effector (WDPCP) 126 

for Na and P and bta-miR-369.3p for Ca and S. The number of genes with significant RIFs 127 

for each mineral varied from zero to seven and for miRNA from zero to two (Table 2). The 128 

RIF values of each gene and miRNA presenting significant RIF for each mineral and score 129 

analysis is in Supplementary Table S1. 130 

 131 

Correlation network  132 

 133 

 We used the significant correlations between a gene or a miRNA expression and a 134 

given mineral, identified in both analyses implemented with the PCIT algorithm, as above 135 

described, to derive a co-expression correlation network. To identify potential regulatory 136 

mechanisms related to each mineral, we added on this network other layers of information 137 

from the same samples, tissue and population, as follows: differentially expressed genes 138 

(DEGs) for contrasting mineral amount sample groups [9] [10], transcription factors (TF) 139 

[17] and genes affected by eQTLs [18]. This information and genes with significant RIFs 140 

were used as node attributes and included in the network analyses (Figure 1). All correlations 141 

and attributes necessary to compose Figure 1 are provided (see Supplementary Table S2). 142 
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There was at least one putative regulatory element (i.e. a significant RIF, TF, miRNA, or 143 

gene affected by eQTLs) correlated to each mineral. The number of genes and miRNAs with 144 

expression values correlated per mineral per attribute identified is showed in Table 3 and the 145 

genes, miRNAs and their attributes are showed in Supplementary Table S2.  146 

There were no functional clusters or over-represented pathways identified in the 147 

functional annotation analysis carried out separately for each group of genes correlated to a 148 

specific mineral. However, from the functional annotation table, we noted that the gene 149 

expressions correlated to the minerals are well conserved among a broad range of organisms. 150 

They have functions related to the extracellular matrix, integral membrane constituents, metal 151 

ion binding, and partake on regulatory processes linked to transcription, replication, splicing, 152 

apoptotic processes, metabolism, transport vesicles, RNA processing, signaling, cell division, 153 

adhesion, migration and proliferation, embryonic development and tissue regeneration. 154 

 155 

Integration with differentially expressed genes (DEGs)  156 

 157 

 To convey the relationship among all genetic elements related to mineral mass 158 

fraction detected in our population, we used PCIT to estimate the correlations between a gene 159 

or miRNA expression that was found to be correlated to a given mineral in the present work 160 

and DEGs previously identified for the same mineral [9] [10]. This analysis was carried out 161 

for each mineral separately and included the same genes with regulatory potential as in the 162 

previous section (DEGs [9] [10], TFs [17], genes affected by eQTLs [18] and genes with 163 

significant RIF). To identify elements with regulatory potential, we then selected the genes 164 

that were network hubs or that were significant according to RIF (see methods). We 165 

performed a functional annotation analysis with the selected genes for each mineral, 166 

separately, to determine which ones were underlying biological pathways. 167 

The expression of all selected putative regulatory elements (hub, significant RIF or 168 

miRNA), the ones underlying biological pathways newly identified and the ones being part of 169 

enriched pathways in previous work with DEGs related to mineral amount [9] [10] were used 170 

as inputs for a final PCIT analyses. This PCIT was carried to identify possible regulators of 171 

genes in enriched pathways. Figure 3 shows the co-expression networks built with significant 172 

correlations from the final PCIT analyses for Ca, Cu, K, Mg, Na, P, S, Se, and Fe. 173 

Supplementary Tables S3 has the correlations and attributes related to creating Figure 3.  174 

As we included the differentially expressed genes regarding mineral amount 175 

previously detected in in the same population [9] [10], most of the over-represented pathways 176 
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identified correspond to the previously detected pathways expression analyses. In addition, 177 

by the inclusion of correlated genes and pathways from the Reactome database [19], we 178 

identified new pathways for K, related to protein metabolism, for Ca, Cu, S and Fe related to 179 

immune response, and for S related to signaling. All the pathways enriched for S are new, 180 

when compared with our previous work [9]. A list of the pathways enriched for each mineral 181 

considering the ones detected with the inclusion of correlated genes expressions and the ones 182 

from the previous work [9] [10] is shown in Table 4. 183 

Regarding Zn, no gene taking part in the unique enriched pathway previously detected 184 

[9] met our criteria. Because of that, for this mineral, we generated a co-expression network 185 

by including the DEGs for Zn [9] that had their expression values significantly correlated to 186 

hub or RIF elements for Zn and their attributes, in order to identify possible regulators for the 187 

DEGs in general. This co-expression network is shown in Figure 4, and the correlations and 188 

attributes supporting Figure 4 are presented in Supplementary Table S4.  189 

 190 

Discussion 191 

 192 

Relationship among minerals 193 

 194 

 Correlations identified among GEBVs for most minerals were high (0.77 to 0.97). 195 

Thus, a word of caution must inform this discussion of all genes and miRNAs with 196 

expression values correlated to each mineral, as correlated responses across minerals may 197 

underlie the identified genes and miRNAs, as well as their predicted relationships. All 198 

minerals, except Se, were correlated among themselves and all of them revealed genes in 199 

common, in the correlation network. In this network, the link between Se and the other 200 

minerals was Zn, through the common correlation with the NADPH oxidase 1 (NOX1) gene 201 

expression, which had significant RIF results for Zn. NOX1 expression was positively 202 

correlated to Zn and negatively to Se. Accordingly, Zn positively regulates NOX1 protein 203 

expression in humans, since an increase in Zn leads to a Zn accumulation in the 204 

mitochondria. This accumulation increases the production of reactive oxygen species which 205 

activates NF-Kb, a known positive transcriptional regulator of NOX1, thus increasing its 206 

expression [20]. Moreover, Se deficiency is known to induce the oxidation of NrX, a 207 

transmembrane protein, by the accumulation of H2O2, which is catalyzed by the NOX1 208 

protein  [21].  As the Se deficiency and the H2O2 accumulation catalyzed by the NOX1 209 

protein act in the same known biochemical process, this could explain the negative 210 
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correlation found in our analysis. Further, the oxidation of NrX protein leads to the activation 211 

of the Wnt signaling pathway [21], that can act in adult muscle regeneration [22], an evidence 212 

for the relevance of this regulation for muscle homeostasis. Another link between Se and Zn 213 

were the correlations with three miRNAs expressions: bta-miR-411c-5p (with significant RIF 214 

for Zn), bta-miR-2285co and bta-miR-2285bl, although no literature relates these miRNAs to 215 

Se or Zn amount, nor to the genes related to these minerals in our analysis. 216 

 Fe exhibited a weak correlation with Mg, K, P, and S (from 0.25 to 0.31, p < 0.05) 217 

and was linked to other minerals through S, sharing negative correlations with the expression 218 

of 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gene (PLCB2). PLCB2 protein 219 

is critical to Ca efflux [23], although no correlation with Ca amount was found in our data, 220 

nor in our previously reported DEGs [9]. The relationship of PLCB2 gene expression with Fe 221 

and S is undocumented, although Fe was reported to cleave the PLCB2 protein in the cornea 222 

of bovine, porcine and humans [24]. The PLCB2 gene is affected by 61 trans eQTLs, 223 

harbored across 12 chromossomes [18], making these eQTL regions candidates to regulate 224 

this gene expression and consequently Fe and S mass fractions in the muscle. 225 

 226 

PCA score analyses identified regulators of mineral composition 227 

 228 

 Our score successfully detected contrasting samples regarding all minerals together, 229 

allowing for the identification of genes and miRNAs with significant overall RIFs. 230 

Considering these genes and the functional enrichment analysis, we identified well-conserved 231 

functions for 14 out of 22 genes. From these, we can highlight three with functions related to 232 

minerals: Delta-aminolaevulinic acid dehydratase (ALAD) encodes a metal ion binding 233 

protein linked to Zn, Zinc finger CCHC domains-containing protein 7 (ZCCHC7), which 234 

encodes a chaperone and Zn finger protein, while Myosin light chain kinase 3 (MYLK3) is 235 

part of the Ca signaling pathway that participates in muscle contraction.  236 

 Mutations in the ALAD gene were linked to the phenotypic expression of potentially 237 

toxic metal by fly ash exposure in cattle born near thermal power plants, being pointed as a 238 

candidate for genomic studies related to metal toxicity [25]. Our results indicated that ALAD 239 

is a candidate linked to minerals in general, including potentially toxic metals.  240 

 241 

 242 

 243 

 244 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 15, 2019. ; https://doi.org/10.1101/804419doi: bioRxiv preprint 

https://doi.org/10.1101/804419


Functional analyses and the search of regulatory elements 245 

 246 

Functional annotation analyses, performed based on the genes with expression values 247 

correlated to each mineral, showed no functional clusters nor enriched pathways for any 248 

mineral. However, some of these genes’ expressions were correlated with DEGs partaking in 249 

different pathways and are themselves part of these pathways, which lead us to hypothesize 250 

that the remaining genes of the pathways may be modulated in less intensity. This agrees with 251 

the small QTL effects already observed for mineral amount [26]. The function annotation for 252 

each gene separately showed membrane proteins and extracellular matrix (ECM) related 253 

proteins as common annotation for many genes. This observation helps to corroborate the 254 

hypothesis that ECM interactions are at the regulatory core for the mineral mass fraction [9]. 255 

ECM pathways were enriched for co-expressed groups of genes related to mineral mass 256 

fraction and meat quality traits in this Nelore population [13].  257 

 When components of a specific pathway are known, a guided-gene approach in a co-258 

expression network can help to identify new genes for the same pathway-related-trait [27], 259 

and a pre-selection of genes by biological meaning can improve the network interpretation 260 

[12]. Our selection based on enriched pathways, TFs, and significant RIF allowed the 261 

inference of genes and miRNAs with a regulatory potential in these pathways. We identified 262 

high correlations among these selected elements when compared with the correlations among 263 

unselected genes/miRNAs and minerals or considering all genes/miRNAs correlated to a 264 

mineral and their respective DEGs. These high correlations and the presence of genes related 265 

to regulatory processes reinforces that our methodology can be used to drive the search for 266 

meaningful regulatory relationships. 267 

 268 

Potential regulators for more than one mineral  269 

 270 

 Genes with significant RIF and genes with expression values correlated to others that 271 

belong to enriched pathways are the potential regulators. These candidate genes may 272 

modulate mineral mass fraction by affecting their target genes and pathways. For the minerals 273 

presenting enriched pathways, except Zn, the elements with significant RIFs were connected 274 

with miRNAs, correlated genes expressions, TFs and genes being affected by trans eQTLs. 275 

They were also part of enriched pathways, reinforcing their regulatory role on the 276 

phenotypes. The intricate patterns obtained in these network analyses arise from the fact that 277 

the same genes are part of different pathways.  278 
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 As expected, the pathways identified by considering gene expression correlation with 279 

mineral GEBVs were often the same already reported in the differential expression study [9]. 280 

The pathways with functions related to ECM processes and protein metabolism were 281 

enriched for almost all minerals, except Se, Fe, and Zn. These results also corroborate our 282 

previous hypothesis that the regulatory core of mineral amount is linked to ECM processes 283 

[9]. Pathways related to fatty acid metabolism were enriched for Cu, as reported in that 284 

previous study. However, with the inclusion of the genes with expression values correlated to 285 

the minerals, pathways linked to immune responses were enriched for Ca, Cu, Fe, and S. The 286 

pathways enriched for S, related to signal transduction and immune response, were not 287 

detected in the previous cited work, emphasizing that the integrative approach used herein 288 

can bring up new evidences of regulatory processes not identified under the differential 289 

expression analysis.  290 

 We identified putative regulators that might impact more than one mineral. Cluster of 291 

differentiation 86 gene (CD86) showed a significant RIF and was a hub gene for Mg and K 292 

analyses. The gene CD86 encodes a protein signaling for T cell activation and proliferation 293 

[28] and is linked to T cell adhesion after activation [29]. A Mg sensor, ITK, seems to be 294 

required  for optimal T cell activation [30] and K+ channels are involved in T cell activation, 295 

after the binding of the CD86 protein in the CD28 receptor [31], putatively explaining the 296 

relationship among these two minerals and CD86. The PI3k-akt signaling pathway is 297 

activated after this protein-receptor binding in an antigen-presenting cell, leading to 298 

downregulation of integrins, participants of the pathways enriched for these two minerals 299 

[32]. For both minerals, Mg and K, the known roles of CD86 support the idea that this is a 300 

regulator for the enriched pathways. 301 

 The Vitamin D receptor (VDR), is a TF with significant RIF for Mg and Na. VDR 302 

expression has a known relationship with Ca metabolism [33], and it was correlated to this 303 

mineral, but it was not identified here as a putative regulator for Ca based on the RIF score. 304 

Mg is essential to vitamin D activation, once both enzymes involved in this process, 25-305 

hydroxylase and 1α-hydroxylase, are Mg-dependent [34]. VDR expression link with Na is not 306 

extensively documented. A putative role of this encoded receptor in the increased Ca 307 

absorption and/or reduced Ca loss in menopause women containing no f alleles of the VDR 308 

gene under a Na and protein-rich diet was reported [35]. The relationship between this gene 309 

expression and the ECM processes-related pathways enriched for both minerals seems to be 310 

the interaction of the VDR receptor with the Runx2 receptor which, in mammals, stabilizes 311 

chromatin remodelers by activating genes involved in ECM mineralization [36].  312 
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 WD repeat-containing planar cell polarity effector (WDPCP) is a gene with 313 

significant RIF for Na and P and was affected by one trans eQTL in chromosome five [18]. 314 

The WDPCP gene encodes a protein that inhibits Wnt activity [37], whose pathway acts in 315 

adult muscle regeneration [22], and is activated by high P amounts [38]. ECM processes-316 

related pathways were also enriched for these minerals. ECM stiffness increases the 317 

expression of several members of the Wnt pathway through integrins and focal adhesion 318 

pathways [39], thus relating the WDPCP gene expression with the enriched pathways. The 319 

link between WDPCP expression and Na is not known. In both minerals, Na and P, WDPCP 320 

expression value is correlated positively (0.19) with the TF VDR expression that represses the 321 

Wnt pathway [40].  322 

 The miRNA bta-miR-369-3p had a significant RIF for Ca and S. The genes with 323 

expression values correlated to this miRNA are not known targets to it. This miRNA 324 

expression levels increases in skin and serum of humans with psoriasis [41]. A homolog of 325 

psoriasin, a common protein in psoriasis patients, was identified in bovines and have the 326 

same antimicrobial and immune response activity as the human one [42]. Psoriasis trigger 327 

seems to be the activation of the cellular immune system [43], probably explaining why the 328 

bta-miR-369-3p expression level was correlated to several genes involved in immune 329 

pathways for Ca and S. Further, Ca and vitamin D play important roles in keratinocyte 330 

differentiation and regulate proteins involved in psoriasis [44] and S is used as a known 331 

treatment and prevention of recurrence for this disease [45]. Our results suggest the genes 332 

expressions correlated to bta-miR-369-3p expression as non-described candidate targets of 333 

this miRNA, linked to immune response and mineral concentration. 334 

 335 

Potential regulators for a specific mineral concentration 336 

 337 

 Some putative regulators showed significant RIF for only one mineral. The miRNA 338 

bta-let-7i showed significant RIF for Mg and one of the correlated genes, Collagen alpha-1 339 

(XI) chain (COL11A1) is a target of this miRNA. The COL11A1 gene is a DEG, associated to 340 

protein digestion and absorption, as well as, to ECM receptor interaction. This gene encodes 341 

a collagen protein, the most abundant protein in ECM. COL11A1 expression is correlated to 342 

Mg, which stimulates collagen synthesis [46], and its expression is correlated to other genes 343 

expressions being part of the same or related pathways. Cystathionine gamma-lyase (CTH) is 344 

also a gene with significant RIF just for Mg. This gene expression is correlated to a Zn finger 345 
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protein of the cerebellum (ZIC3), a TF, which was correlated to the already mentioned CD86 346 

gene expression, also associated with Mg herein.  347 

 We identified two genes with significant RIF specifically for K: Matrix 348 

metallopeptidase (MMP16) and E3 ubiquitin-protein ligase (RNF34). The gene MMP16 349 

encodes a protein whose family is involved in the breakdown of ECM, mostly of collagen 350 

genes [47], explaining its link to the enriched pathways related to ECM organization and its 351 

correlation with Collagen type XXI alpha 1 chain (COL21A1). Both MMP16 and RNF34 352 

expressions were correlated to CD86 expression, for which the link to K was already 353 

discussed. RNF34 encodes a RINF finger protein that negatively regulates the NOD1 354 

pathway, involved in receptors activating immune responses, similar to CD86. Bta-miR-92b 355 

expression was correlated to seven genes expressions, and one of them, MMP16, is a known 356 

target for this miRNA regulation, which could explain the relationship of this miRNA with 357 

the over-represented pathways. 358 

 For Na, we identified six genes with significant RIF: WDPCP and VDR, linked to the 359 

already discussed ECM processes, Vimentin type intermediate filament associated coiled-coil 360 

protein (VMAC), Cyclin-dependent kinase inhibitor 3 (CDKN3), Centromere protein E 361 

(CENPE), and Calcium/calmodulin-dependent protein kinase kinase 1 (CAMKK1). VMAC 362 

intermediates filament,  play an important role in cytoskeletal organization [48]. Cell 363 

adhesions, mediated by integrins, link ECM and cytoskeleton [49]. CDKN3 encodes a 364 

cycling-dependent kinase inhibitor that is involved in cell cycle regulation [50], a process 365 

where integrins act [51]. The presence of an integrin gene, integrin subunit alpha 10 366 

(ITGA10) in the network, as well as actin interactions, could explain the link of these two 367 

genes and the ECM-related pathways for Na. Na presents a miRNA with significant RIF, bta-368 

miR-125a, presenting its expression values correlated to two genes with significant RIF, 369 

WDPCP and VMAC, and the integrin gene ITGA10. This miRNA targets VMAC who is also 370 

affected by six trans eQTLs in chromosome six, being candidates to future studies.  371 

 The miRNAs bta-miR-25 and bta-miR-378c had significant RIF for Fe. Their 372 

expression values were correlated to each other, to other miRNAs expression and, as with 373 

other miRNA found in our results, the genes expressions correlated to them were not 374 

described as their targets. Both miRNAs expressions were correlated to ALAD gene 375 

expression, also a hub gene in the Fe network. Fe amount in the extracellular environment 376 

positively affects ALAD protein level and activity [52]. The relationship with the immune 377 

response pathways enriched for Fe seems to be in the proteasome involvement in these 378 
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pathways. ALAD protein modulates proteasome activity [53], and proteasome function can 379 

shape innate and adaptative immune responses [54]. 380 

 Lysophosphatidic acid receptor 4 (LPAR4) is a hub gene with significant RIF for Ca, 381 

already known to positively regulate cytosolic Ca amount involved in phospholipase C-382 

activating G protein-coupled signaling pathway (GO:0051482). Its expression is linked in our 383 

network to MAF BZIP transcription factor B (MAFB)expression, a TF that interacts with 384 

Gcm2 and modulates parathyroid hormone, which in turn regulates Ca mass fraction [55]. 385 

These genes expressions were correlated to other six genes expression. Three of them were 386 

DEGs for Ca being part of pathways involved in ECM processes, and the other three were 387 

hub genes. From these hub genes, Bcl-2-modifying factor (BMF) regulates apoptosis after 388 

cell detachment from the ECM [56]. 389 

 We identified the RAS like family 11 member A (RASL11A), which encodes a RAS 390 

protein, with significant RIF for Cu. This gene expression was correlated mainly to the 391 

expression of genes involved in fatty acid metabolism, a process where Cu is a known 392 

enzymatic co-factor [57]. RAS proteins’ posttranslational modifications are affected by fatty 393 

acids [58], possibly explaining the link of this gene expression with the fatty acid-related 394 

proteins. 395 

 For S, we identified Fucosyltransferase 8 (FUT8), RAB44 member RAS oncogene 396 

family (RAB44), Proline-rich and gla domain 3 (PRRG3), Protein-lysine methyltransferase 397 

METTL21E (METTL21E), and Phospholipid phosphatase related 5 (PLPPR5) genes with 398 

significant RIF, presenting their expression values correlated or being part of immune 399 

response and signal transduction pathways. Sulfur amino acids affect inflammatory aspects of 400 

the immune system [59]. Although there is no primary connection between FUT8 and RAB44 401 

proteins and the immune system, these proteins contribute to tumor progression [60] [61], in 402 

which a robust immune response is involved [62]. PRRG3 encodes a vitamin K-dependent 403 

transmembrane protein with a GLA domain, involved in coagulation factors [63], a process 404 

that is linked to the innate immune system [64]. Regarding signal transduction pathways, 405 

METTL21E was linked to signaling pathways in mouse siRNA experiments [65], and 406 

PLPPR5 encodes a protein member of the phosphatidic acid phosphatase family, acting in 407 

phospholipase D mediating signaling [66]. The bta-miR-500, who presented a significant RIF 408 

for S is a known regulator of the genes whose mRNA levels were correlated to this miRNA 409 

in our analysis.  410 

  For Se, all enriched pathways were related to ECM interactions and protein digestion 411 

and absorption. For this mineral, we identified six annotated genes with significant RIF, 412 
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Thyrotroph embryonic factor (TEF), Zn finger DBF-type containing 2 (ZDBF2), 413 

Tetratricopeptide repeat domain 21 (TTC21A), Histidyl-tRNA synthetase (HARS), DTW 414 

domain containing 1 (DTWD1), and Pyruvate dehydrogenase kinase 3 (PDK3). TEF is a TF 415 

and a leucine zipper protein [67], whose family is required for the activation of DDRs 416 

receptors, essential to matrix remodeling [68]. PDK3 encodes an enzyme responsible for the 417 

regulation of glucose metabolism, among many other functions, is related to ECM 418 

remodeling [69]. We could not find a link among ZDBF2, HASR, and DTWD1 genes 419 

expression and Se or the enriched pathways. They are candidates for future studies regarding 420 

these potential relationships.  421 

Regarding Zn, even without over-represented pathways, it is possible to infer that the 422 

six elements presenting significant RIF are putatively regulators of several correlated genes 423 

expressions and a few DEGs, as already discussed by NOX1. From the six genes with 424 

significant RIF, Membrane-bound transcription factor peptidase, site 2 gene (MBTPS2) is 425 

also a hub gene encoding an intramembrane Zn metalloprotease and TNR encodes an ECM 426 

glycoprotein. This information can lead to the assumption that ECM processes can also be 427 

associated to Zn amount, as they putatively do to most of the other minerals in study [9].  428 

 429 

New application for PCIT and RIF algorithms  430 

 431 

The first co-expression network, containing genes and miRNAs expressions 432 

correlated to the mass fraction of at least one mineral, is considered to be a correlation 433 

network among elements from two different sources: sequencing (mRNA-Seq and miRNA-434 

Seq) and a measure referring to the trait of interest, the minerals` GEBVs. Originally, outputs 435 

from PCIT algorithm forms co-expression networks based on significant correlations between 436 

gene and miRNA expression levels. PCIT works in two steps: first, a partial correlation is 437 

calculated for every trio of genes/miRNAs based on the expression values of these elements 438 

in a specific set of samples, giving us the strength of the linear relationship between every 439 

two items, independent of the third one. In the end, PCIT calculates, for each trio of genes 440 

expression, the average ratio of partial to direct correlations. This value is set as the 441 

information theory threshold for significant associations, not the same for every analysis, 442 

specific for each trio [15]. Statistically, both steps can be used to test the correlation and the 443 

significance threshold of other genetic elements, if they vary in the population. Thus, there is 444 

no statistical impediment of using PCIT in the way proposed here, to detect genes and 445 

miRNAs whose expression values variate in our samples in correlation with the minerals` 446 
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GEBVs, as proposed here, since they already represent just the additive genetic effect of the 447 

traits [26].  448 

The RIF algorithm was developed to calculate the impact of TFs over a selected list of 449 

genes through the expression values of genes and TFs across samples, in two contrasting 450 

groups for the studied phenotype (in our case, minerals). This impact factor is calculated in 451 

two ways (RIF 1 and RIF 2). RIF 1 gives high scores to TFs that are most differentially co-452 

expressed, highly abundant, and with more expression difference between the groups. RIF 2 453 

gives a high score to TFs for which the expression can predict better the abundance of DEGs 454 

[16]. Again, there is no impediment in the analytical methodology to use other genetic 455 

information, e.g., GEBVs, since it variates in the population. In our application, we used 456 

genes and miRNAs with expression values correlated to at least one mineral in the place of 457 

TFs, and GEBVs were used instead of selected genes. In this case, RIF 1 gives a high score to 458 

the genes or miRNAs that are most differentially co-expressed, highly abundant and with 459 

more expression difference between the contrasting groups (mineral specific groups and 460 

score-based groups, separately) and RIF 2 to genes and miRNAs for which the expression 461 

can predict better the magnitude of the GEBVs. Together, both new applications can be used 462 

to predict genes and miRNAs expressions correlated to mineral mass fraction and to pinpoint 463 

which ones have a regulatory impact over mineral amount. 464 

 465 

Conclusion 466 

 467 

By using a modification of the PCIT/RIF methodology, we were able to predict 468 

regulatory elements related to the mineral amount of ten minerals, indicating over-represented 469 

pathways linked to the mass fraction of each mineral and putative regulators that are mineral 470 

specific. Our analyses corroborate the link between mineral amounts and the ECM processes, 471 

including a relationship with Zn not seen in our previous analysis. In our proposed approach, 472 

PCIT can be applied to predict the relationship between gene transcripts or miRNAs and 473 

phenotypes, in a genome-wide fashion. Similarly, RIF may predict the regulatory impact of 474 

mRNAs and miRNAs levels over phenotypes. This new approach can be applied for any 475 

phenotype that is of interest for genomic selection and livestock breeding.  476 

 477 

Methods 478 

  479 

Figure 5 contains a flowchart of the steps of our methodology. 480 
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Samples 481 

 482 

The Ethical Committee of Embrapa Pecuária Sudeste (São Carlos, São Paulo, Brazil) 483 

approved all experimental and animal protocols (CEUA 01/2013). We used the GEBVs from 484 

mineral mass fraction [26] and the mRNA-Seq [10], and miRNA-Seq [70] data from 113 485 

samples of Longissimus thoracis muscle from Nelore steers that are part of the population 486 

already described in previous differential expression analysis related to mineral amount [9] 487 

[10]. 488 

The animals forming our samples came from a Nelore steer population described 489 

elsewhere [26], [71]. In summary, all animals come from half-sibling families, generated by 490 

artificial insemination in two different farms, transferred to Embrapa Pecuária Sudeste (São 491 

Carlos, São Paulo, Brazil) and maintained in feedlot system with ad libitum feed and water 492 

access until slaughter, approximately 70 days after the start of the confinement, where the 493 

muscle sample collection was done. 494 

 495 

Mineral mass fraction and genetic estimated breeding value (GEBV) 496 

 497 

Calcium (Ca), copper (Cu), potassium (K), magnesium (Mg), sodium (Na), 498 

phosphorus (P), sulfur (S), selenium (Se), zinc (Zn) and iron (Fe) mass fractions were 499 

determined from lyophilized and microwave-assisted digested samples, such as described 500 

elsewhere [26]. Calcium, Cu, K, Mg, Na, P, S, Zn, and Fe were determined by inductively 501 

coupled plasma optical spectrometry (ICP OES, Vista Pro-CCD with a radial view, Varian, 502 

Mulgrave, Australia). Selenium was determined by inductively coupled plasma mass 503 

spectrometry (ICP-MS 820-MS, Varian, Mulgrave, Australia).  504 

The estimation of the genetic breeding value (GEBVs) for all the minerals’ amount 505 

was previously made [26] through a Bayesian model that considered birthplace, feedlot 506 

location and breeding season in the contemporary groups as fixed effects and age at slaughter 507 

as a linear covariate. 508 

 509 

mRNA-Seq and miRNA-Seq sequencing and quality control 510 

 511 

The total RNA extraction, quality control, and sequencing were described elsewhere 512 

[70]. In summary, total RNA from all the 113 samples was extracted using Trizol® (Life 513 

Technologies, Carlsbad, CA) and its integrity was evaluated in a Bioanalyzer 2100® (Agilent, 514 
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Santa Clara, CA, USA). Regarding the mRNA-Seq data, the library preparation was made 515 

with the TruSeq® sample preparation kit, and the paired-end sequencing [10] was made in an 516 

Illumina HiSeq 2500®. For the miRNA-Seq data, the library preparation was made with 517 

TruSeq® small RNA sample preparation kit, and the single-end sequencing [70] was made in 518 

a MiSeq sequencer.  519 

 As a quality control for the sequences, we filtered out reads with less than 65 bp and 520 

Phred Score less than 24 for the mRNA-Seq data, and the removal of reads with less than 18 521 

bp and Phred Score less than 28 of the miRNA-Seq data were made using the Seqyclean 522 

software (http://sourceforge.net/projects/seqclean/files/).  523 

The reads that passed the quality control were aligned to the reference bovine genome 524 

ARS-UCD 1.2 with the STAR v.2.5.4 software [72] for the mRNA-Seq data and with the 525 

mirDeep2 software [73] for the miRNA-Seq. The same software was used to the 526 

identification and quantification of transcripts and miRNAs, respectively, in raw counts.  527 

 528 

Filtering, normalization and batch effect correction 529 

 530 

 After quality control, the mRNA-Seq and miRNA-Seq expression data were filtered 531 

separately to remove the transcripts and miRNA not expressed in at least 22 samples, or 532 

approximately 20% of the samples.  533 

 A first component analysis was performed for the mRNA-Seq expression data, with 534 

the NOISeq v.2.16.0 software [74] to visually verify the batch effect of the birthplace, feedlot 535 

location, breeding season, age at slaughter, slaughter group and a combination of sequencing 536 

flowcell and lane over the expression data. The data were normalized using the VST function 537 

from DESEq2 software [75], and the batch effect correction for the combination of 538 

sequencing flowcell and lane was made using the ARSyNseq function from the NOISeq 539 

v.2.16.0 software [74]. For the miRNA-Seq expression data, the procedure was the same, 540 

with the batch effect test only for the sequencing lane.   541 

 542 

PCIT (Partial Correlation Coefficient with Information Theory) with mRNA, miRNA 543 

and phenotypes 544 

 545 

A new application of the PCIT algorithm [15] was developed to test the correlation 546 

between the expression values of genes and miRNAs that passed the quality control filters 547 

and the GEBVs for ten minerals.  548 
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The original application of the algorithm is used to test the co-expression between 549 

genes by correlation analysis between expression values [15]. In our application, we included 550 

the GEBVs for each one of the ten minerals evaluated here for each sample in the algorithm 551 

input with the gene and miRNA expression values (called PCIT general). Using this 552 

approach, we estimated the correlations among all the elements. Among the significant 553 

correlations, we selected only the genes and miRNAs with expression values correlated to the 554 

GEBV of at least one mineral. Due to the low number of miRNAs identified compared to the 555 

high number of genes, we did one more PCIT analysis only with miRNAs expression values 556 

and the GEBVs (called PCIT miRNA). The results from these two PCITs analysis were 557 

combined. In the end we had a list of elements (genes and miRNAs) with expression values 558 

correlated to each mineral GEBV. 559 

 560 

RIF (regulatory impact factor)  561 

 562 

 A new application of the RIF algorithm [16] was applied to obtain the predict 563 

regulatory impact of the genes and miRNAs with expression values associated with a given 564 

mineral on the amount of the same mineral, considering its GEBVs. The original application 565 

of the algorithm was developed to determine the regulatory impact of TFs over selected genes 566 

(targets) related to a given trait through their expression values analysis between contrasting 567 

groups for the same trait [16]. In our approach, for each mineral, we used the genes and 568 

miRNAs with expression values correlated to a mineral, from the previous PCIT analyses, as 569 

elements to be tested as regulators and the mineral GEBV as the target.  570 

We carried out 10 different analyses with the RIF algorithm [16], being one for each 571 

mineral. As input, we used the GEBVs for the 30 contrasting samples for each mineral as 572 

targets (15 representing samples with high mineral mass fraction and 15 with low mineral 573 

mass fraction) and the expression values for the genes and miRNAs correlated to the same 574 

mineral as elements to be tested. To select these contrasting groups we expanded the sample 575 

selection based on GEBVs previously made [9] [10]. Genes and miRNAs with RIF I or II 576 

results higher than |1.96| were considered as significant, as authors suggest [16]. 577 

 578 

RIF for all minerals together 579 

 580 

To identify genes and miRNAs with significant impact factor in all minerals’ mass 581 

fraction together, we used the new application for the RIF algorithm [16] using the GEBV 582 
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from 30 contrasting samples forming two groups regarding the amount of the ten minerals as 583 

targets and the expression values for the genes and miRNAs correlated to at least one mineral 584 

as elements to be tested.  585 

To select contrasting samples for all the minerals together, we ranked our samples 586 

based on a score. To calculate this score for each sample, we performed a principal 587 

component analysis (PCA) using the GEBVs for ten minerals for the 113 samples. From the 588 

PC results, the score of each sample was calculated based on the following formula: 589 

 590 

𝐴𝑖  =  ∑ 𝑘

10

𝑗=𝑖

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑖𝑗𝑘  ×  𝑍𝑖𝑗𝑘  × %𝑉𝑃𝐶𝑗  591 

 592 

Where: Ai = score for the animal i, ∑ 𝑘 =10
𝑗=𝑖  sum of all minerals k, in all the PCs j and in all 593 

the animals i, 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑖𝑗𝑘 = contribution of the animal i in the PC j for the mineral k, 𝑍𝑖𝑗𝑘 = 594 

standardized value (standard deviation one and mean zero) of the GEBV for the mineral k for 595 

the animal i in the PC j and %𝑉𝑃𝐶𝑗 = eigenvalue of the PC j. 596 

We performed a functional annotation analysis using DAVID 6.8 software [76] with 597 

the genes presenting significant RIFs for the score, representing all minerals together. 598 

 599 

Genes and miRNAs correlated to minerals 600 

 601 

 Significant correlations obtained from PCIT [15] analysis between genes or miRNAs 602 

expressions and minerals were used to build a co-expression network with the Cytoscape 603 

software [77]. We overlapped the gene list from our network with the genes previously 604 

reported from our research group based on the same population evaluated here presenting 605 

differentially expressed to at least one mineral [9] [10], TFs [17], affected by cis or trans 606 

eQTLs [18] and with significant RIF. These features were used as attributes in the network. 607 

Regarding the differentially expressed genes (DEGs) for Fe [10], we called the genes more 608 

expressed in the high Fe content group as upregulated and the genes more expressed in the 609 

low Fe content group as downregulated, to match the nomination of the other minerals’ 610 

DEGs [9]. Functional annotation analyses were made using DAVID 6.8 software [76]. 611 

 612 

 613 

 614 
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Integration with DEGs  615 

 616 

 To estimate the relationship among the genes or miRNAs with expression values 617 

correlated with minerals and the DEGs between contrasting groups for mineral concentration 618 

previously detected [9], we made ten separately PCIT [15] analysis. In these analyses, the 619 

PCIT algorithm was used as proposed initially [15] to test the correlations among the genes 620 

and miRNAs with expression values correlated to each mineral, and the DEGs previously 621 

detected for the same mineral [9] [10]. 622 

 The significant correlations identified in each analysis was used to obtain co-623 

expression networks with the Cytoscape software [77]. The NetworkAnalyzer tool for the 624 

Cytoscape software [77] was used to obtain the connectivity degree of each gene and miRNA 625 

in the networks. This value was used to identify the hub genes/miRNAs from the average of 626 

the connectivity degree from the network summed with the double of the referent standard 627 

deviation.  628 

 We considered only the significant correlations containing at least a hub or significant 629 

RIF gene/miRNA for a given mineral. The genes present in these considered correlations 630 

were used to perform a functional annotation analysis with the STRING v.1.2.2 software 631 

[78]. From these analyses, we selected the genes being part of enriched pathways considering 632 

KEGG [79] and Reactome [19] databases with Bos taurus reference genome. 633 

  634 

Putative regulators of the genes being part of enriched pathways 635 

 636 

 To identify the elements putatively regulating the genes being part of over-637 

represented pathways for each mineral in the study, we did another round of PCIT [15] 638 

analyses, separately for each mineral. In this case, from each mineral last PCIT analysis, we 639 

selected as inputs the genes being part of enriched pathways, also considering the previously 640 

enriched pathways from differentially expressed genes related to mineral amount [9] [10], the 641 

hub elements, TFs [17], miRNAs and the ones with significant RIFs, with their respective 642 

attributes. The PCIT [15] results were used to obtain co-expression networks with Cytoscape 643 

[77] software. 644 

 645 

 646 

 647 

 648 
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miRNA-gene targeting confirmation 649 

 650 

 We used TargetScan software [80] to predict the target genes for the miRNAs with 651 

expression values correlated to a mineral in Figures 3 and 4 and we compared these putative 652 

targets with the genes with expression values correlated to them in our networks. 653 

 654 

References 655 

 656 

[1] Geesink GH, Koohmaraie M. Effect of Calpastatin on Degradation of Myofibrillar 657 

proteins by µ -Calpain Under Postmortem Conditions. J Anim Sci 1999; 77:2685–92.  658 

[2] Williams P. Nutritional composition of red meat. Nutr Diet. 2007;64:S113-19.  659 

[3] Doyle JJ, Spaulding JE. Toxic and Essential Trace Elements in Meat - a Review. J Anim 660 

Sci. 1978;47(2):398–419.  661 

[4] Campbell I. Macronutrients, minerals, vitamins and energy. Anaesth Intensive Care Med. 662 

2017;18(3):141–6.  663 

[5] Ahola JK, Baker DS, Burns PD, Mortimer RG, Enns RM, Whittier JC et al. Effect of copper, 664 

zinc, and manganese supplementation and source on reproduction, mineral status, and 665 

performance in grazing beef cattle over a two-year period. J. Anim. Sci. 2004; 95:2357-2383. 666 

[6] Genther ON, Hansen SL. Effect of dietary trace mineral supplementation and a multi-667 

element trace mineral injection on shipping response and growth performance of beef cattle. J 668 

Anim Sci. 2014;92(6):2522–30.  669 

[7] Enjalbert F, Lebreton P, Salat O. Effects of copper, zinc and selenium status on 670 

performance and health in commercial dairy and beef herds: Retrospective study. J Anim 671 

Physiol Anim Nutr. 2006;90(11–12):459–66.  672 

[8] Mateescu RG, Garmyn AJ, Tait JG, Duan Q, Liu Q, Mayes MS, et al. Genetic parameters 673 

for concentrations of minerals in longissimus muscle and their associations with palatability 674 

traits in angus cattle. J Anim Sci. 2013;91(3):1067–75.  675 

[9] Afonso J, Coutinho LL, Tizioto PC, Diniz WJS, De Lima AO, Rocha MIP et al. Muscle 676 

transcriptome analysis reveals genes and metabolic pathways related tomineral concentration 677 

in Bos indicus. Sci Rep. 2019;9:1-11. 678 

[10] Diniz WJ, Coutinho LL, Tizioto PC, Cesar ASM, Gromboni CF, Nogueira ARA, et al. 679 

Iron content affects lipogenic gene expression in the muscle of Nelore beef cattle. PLoS One. 680 

2016;11(8):1–19.  681 

[11] Hudson NJ, Dalrymple BP, Reverter A. Beyond differential expression: the quest for 682 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 15, 2019. ; https://doi.org/10.1101/804419doi: bioRxiv preprint 

https://doi.org/10.1101/804419


causal mutations and effector molecules. BMC Genomics. 2012;13(1):1-16.  683 

[12] Serin EAR, Nijveen H, Hilhorst HWM, Ligterink W. Learning from Co-expression 684 

Networks: Possibilities and Challenges. Front Plant Sci. 2016;7:1–18.  685 

[13] Diniz WJS, Mazzoni G, Coutinho LL, Banerjee P, Geistlinger L, Cesar ASM, et al. 686 

Detection of Co-expressed Pathway Modules Associated With Mineral Concentration and 687 

Meat Quality in Nelore Cattle. Front Genet. 2019;10:1–12.  688 

[14] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network 689 

analysis. BMC Bioinformatics. 2008;9:1-13. 690 

[15] Reverter A, Chan EKF. Combining partial correlation and an information theory 691 

approach to the reversed engineering of gene co-expression networks. Bioinformatics. 692 

2008;24(21):2491–7.  693 

[16] Reverter A, Hudson NJ, Nagaraj SH, Pérez-Enciso M, Dalrymple BP. Regulatory impact 694 

factors: Unraveling the transcriptional regulation of complex traits from expression data. 695 

Bioinformatics. 2010;26(7):896–904.  696 

[17] de Souza MM, Zerlotini A, Geistlinger L, Tizioto PC, Taylor JF, Rocha MIP, et al. A 697 

comprehensive manually-curated compendium of bovine transcription factors. Sci Rep . 698 

2018;8(1):1–12.  699 

[18] Cesar ASM, Regitano LCA, Reecy JM, Poleti MD, Oliveira PSN, de Oliveira GB, et al. 700 

Identification of putative regulatory regions and transcription factors associated with 701 

intramuscular fat content traits. BMC Genomics. 2018;19(1):1–20.  702 

[19] Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, et al. The 703 

Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018;46:D649–55.  704 

[20] Salazar G, Huang J, Feresin RG, Zhao Y, Griendling KK. Zinc regulates Nox1 705 

expression through a NF-κB and mitochondrial ROS dependent mechanism to induce 706 

senescence of vascular smooth muscle cells. Free Radic Biol Med. 2017;108:225–35.  707 

[21] Brigelius-Flohé R, Kipp AP. Selenium in the redox regulation of the Nrf2 and the Wnt 708 

pathway. Methods Enzymol. 2013;527:65–86. 709 

[22] Maltzahn JV, Chang NC, Bentzinger CF, Rudnicki MA. Wnt signaling in myogenesis. 710 

Trends in Cell Biol. 2012; 22:602-9.   711 

[23] Park SH, Ryu SH, Suh PG, Kim H. Assignment of human PLCB2 encoding PLC β2 to 712 

human chromosome 15q15 by fluorescence in situ hybridization. Cytogenet Genome Res. 713 

1998;83(1–2):48–9.  714 

[24] Seidman SA, Johnson NA, Arbelo U, Aribindi K, Bhattacharya SK. Tissue protein and 715 

lipid alterations in response to metallic impaction. J Cell Biochem. 2019;120(2):2347–61.  716 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 15, 2019. ; https://doi.org/10.1101/804419doi: bioRxiv preprint 

https://doi.org/10.1101/804419


[25] Behera R, Kothekar MD, Kale DS, Krishnamurthi K, Sirothia AR, Kalorey DR, et al. 717 

Study of mutations in aminolevulinic acid dehydratase (ALAD) gene in cattle from fly ash 718 

zone in Maharashtra, India. Indian J Anim Res. 2016;50(1):19–22.  719 

[26] Tizioto PC, Taylor JF, Decker JE, Gromboni CF, Mudadu MA, Schnabel RD, et al. 720 

Detection of quantitative trait loci for mineral content of Nelore longissimus dorsi muscle. 721 

Genet Sel Evol. 2015;47(1):1–9.  722 

[27] Itkin M, Heinig U, Tzfadia O, Bhide AJ, Shinde B, Cardenas PD, et al. Biosynthesis of 723 

antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science. 724 

2013;341:175–9.  725 

[28] Lanier LL, O’Fallon S, Somoza C, Phillips JH, Linsley PS, Okumura K, et al. CD80 726 

(B7) and CD86 (B70) provide similar costimulatory signals for T cell proliferation, cytokine 727 

production, and generation of CTL. J Immunol. 1995;154(1):97–105.  728 

[29] Lozanoska-Ochser B, Klein NJ, Huang GC, Alvarez RA, Peakman M. Expression of 729 

CD86 on Human Islet Endothelial Cells Facilitates T Cell Adhesion and Migration. J 730 

Immunol. 2008;181(9):6109–16.  731 

[30] George AB, Kanellopoulou C, Masutani E, Chaigne-delalande B, Michael J. ITK is a 732 

magnesium sensor during T cell activation. J Immunol. 2017;198:1-10. 733 

[31] Chandy KG, Wulff H, Beeton C, Pennington M, Gutman GA, Cahalan MD. K+ 734 

channels as targets for specific immunomodulation. Trends Pharmacol Sci. 2004;25(5):280–735 

9.  736 

[32] Gavile CM, Barwick BG, Newman S, Neri P, Nooka AK, Lonial S, et al. CD86 737 

regulates myeloma cell survival. Blood Adv. 2017;1(25):2307–19.  738 

[33] Ferrari S, Bonjour JP, Rizzoli R. The vitamin D receptor gene and calcium metabolism. 739 

Trends Endocrinol Metab. 1998;9(7):259–65.  740 

[34] Uwitonze AM, Razzaque MS. Role of Magnesium in Vitamin D Activation and 741 

Function. J Am Osteopath Assoc. 2018;118(3):181-89.  742 

[35] Harrington M, Bennett T, Jakobsen J, Ovesen L, Brot C, Flynn A, et al. The effect of a 743 

high-protein , high-sodium diet on calcium and bone metabolism in postmenopausal women 744 

and its interaction with vitamin D receptor genotype. Br J Nutr. 2004;25:41–51.  745 

[36] Marcellini S, Bruna C, Henríquez JP, Albistur M, Reyes AE, Barriga EH, et al. 746 

Evolution of the interaction between Runx2 and VDR, two transcription factors involved in 747 

osteoblastogenesis. BMC Evol Biol. 2010;10(1):1–12.  748 

[37] Mayr T, Deutsch U, Kühl M, Drexler HCA, Lottspeich F, Deutzmann R, et al. Fritz: A 749 

secreted frizzled-related protein that inhibits Wnt activity. Mech Dev. 1997;63(1):109–25.  750 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 15, 2019. ; https://doi.org/10.1101/804419doi: bioRxiv preprint 

https://doi.org/10.1101/804419


[38] Yao L, Sun YT, Sun W, Xu TH, Ren C, Fan X, et al. High phosphorus level leads to 751 

aortic calcification via β-catenin in chronic kidney disease. Am J Nephrol. 2015;41(1):28–36.  752 

[39] Du J, Zu Y, Li J, Du S, Xu Y, Zhang L, et al. Extracellular matrix stiffness dictates Wnt 753 

expression through integrin pathway. Sci Rep. 2016;6:1–12.  754 

[40] Larriba MJ, González-Sancho JM, Barbáchano A, Niell N, Ferrer-Mayorga G, Muñoz A. 755 

Vitamin D is a multilevel repressor of Wnt/β-catenin signaling in cancer cells. Cancers. 756 

2013;5(4):1242–60.  757 

[41] Guo S, Zhang W, Weia C, Wang L, Zhu G, Shi Q, et al. Serum and skin levels of miR-758 

369-3p in patients with psoriasis and their correlation with disease severity. Eur J 759 

Dermatology. 2013;23(5):608–13.  760 

[42] Regenhard P, Leippe M, Schubert S, Podschun R, Kalm E, Grötzinger J, et al. 761 

Antimicrobial activity of bovine psoriasin. Vet Microbiol. 2009;136:335–40.  762 

[43] Lowes MA, Bowcock AM, Krueger JG. Pathogenesis and therapy of psoriasis. Nature. 763 

2007;445:866–73.  764 

[44] Cubillos S, Norgauer J. Low Vitamin D-modulated calcium-regulating proteins in 765 

psoriasis vulgaris plaques: S100A7 overexpression depends on joint involvement. Int J Mol 766 

Med. 2016;38(4):1083–92.  767 

[45] Kazandjieva J, Grozdev I, Darlenski R, Tsankov N. Climatotherapy of psoriasis. Clin 768 

Dermatol. 2008;26(5):477–85.  769 

[46] Senni K, Foucault-Bertaud A, Godeau G. Magnesium and connective tissue. Magnes 770 

Res. 2003;16(1):70–4.  771 

[47] Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), 772 

the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for 773 

anticancer drugs. J Enzyme Inhib Med Chem. 2016;31:177–83.  774 

[48] Yamamoto Y, Irie K, Kurihara H, Sakai T, Takai Y. Vmac: A novel protein associated 775 

with vimentin-type intermediate filament in podocytes of rat kidney. Biochem Biophys Res 776 

Commun. 2004;315(4):1120–5.  777 

[49] Geiger B, Bershadsky A, Pankov R, Yamada KM, Correspondence BG. Transmembrane 778 

Extarcelluler Matrix-Cytoskeleton. Nat Ver Mol Cell Biol. 2001;2:793-805.  779 

[50] Graña X, Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin 780 

dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors 781 

(CKIs). Oncogene. 1995;11(2):211–9.  782 

[51] Moreno-Layseca P, Streuli CH. Signalling pathways linking integrins with cell cycle 783 

progression. Matrix Biol. 2014;34:144–53.  784 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 15, 2019. ; https://doi.org/10.1101/804419doi: bioRxiv preprint 

https://doi.org/10.1101/804419


[52] Chauhan S, Titus DE, O’Brian MR. Metals control activity and expression of the heme 785 

biosynthesis enzyme δ-aminolevulinic acid dehydratase in Bradyrhizobium japonicum. J 786 

Bacteriol. 1997;179(17):5516–20.  787 

[53] Bardag-Gorce F, French SW. Delta-aminolevulinic dehydratase is a proteasome 788 

interacting protein. Exp Mol Pathol. 2011;91(2):485–9.  789 

[54] Kammerl IE, Meiners S. Proteasome function shapes innate and adaptive immune 790 

responses. Am J Physiol - Lung Cell Mol Physiol. 2016; 311:L328-36.  791 

[55] Kamitani-Kawamoto A, Hamada M, Moriguchi T, Miyai M, Saji F, Hatamura I, et al. 792 

MafB interacts with Gcm2 and regulates parathyroid hormone expression and parathyroid 793 

development. J Bone Miner Res. 2011;26(10):2463–72.  794 

[56] Delgado M, Tesfaigzi Y. Is BMF central for anoikis and autophagy ? Autophagy. 795 

2014;10:1–2.  796 

[57] Cunnane C. Differential regulation of essential fatty acid metabolism to the 797 

prostaglandins: possible basis for the interaction of zinc and copper in biological systems. 798 

Prog Lipid Res. 1982;21:73–90.  799 

[58] Tamanoi F, Hsueh EC, Goodman LE, Cobitz AR, Detrick RJ, Brown WR, et al. 800 

Posttranslational modification of ras proteins: Detection of a modification prior to fatty acid 801 

acylation and cloning of a gene responsible for the modification. J Cell Biochem. 802 

1988;36(3):261–73.  803 

[59] Grimble RF. The effects of sulfur amino acid intake on immune function in humans. J 804 

Nutr. 2006;136:1660S-1665S.  805 

[60] Chen C-Y, Jan Y-H, Juan Y-H, Yang C-J, Huang M-S, Yu C-J, et al. Fucosyltransferase 806 

8 as a functional regulator of nonsmall cell lung cancer. Proc Natl Acad Sci. 807 

2013;110(2):630–5.  808 

[61] Macaluso M, Russo G, Cinti C, Bazan V, Gebbia N, Russo A. Ras family genes: An 809 

interesting link between cell cycle and cancer. J Cell Physiol. 2002;192(2):125–30.  810 

[62] Whiteside TL. Immune responses to malignancies. J Allergy Clin Immunol. 811 

2010;125:S272-S283.  812 

[63] Cranenburg ECM, Schurgers LJ, Vermeer C. Vitamin K:Thecoagulationvitamin that 813 

became omnipotent. J Thromb heamostasis. 2017;98:145–61.  814 

[64] Delvaeye M, Conway EM. Coagulation and innate immune responses: Can we view 815 

them separately? Blood. 2009;114(12):2367–74.  816 

[65] Huang J, Hsu YH, Mo C, Abreu E, Kiel DP, Bonewald F et al. METTL21C is a potential 817 

pleiotropic gene for osteoporosis and sarcopenia acting through the modulation of the NFκB 818 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 15, 2019. ; https://doi.org/10.1101/804419doi: bioRxiv preprint 

https://doi.org/10.1101/804419


signaling pathway. J Bone Miner Res. 2014;29(7):1531–40.  819 

[66] Billah MM. Phospholipase D and cell signaling. Curr Opin Immunol. 1993;5(1):114–23.  820 

[67] Drolet DW, Scully KM, Simmons DM, Wegner M, Chu KT, Swanson LW, Rosenfeld 821 

MG. TEF, a transcription factor expressed specifically in the anterior pituitary during 822 

embryogenesis, defines a new class of leucine zipper proteins.Genes and Develo. 823 

2009;5:1739–53.  824 

[68] Noordeen NA, Carafoli F, Hohenester E, Horton MA, Leitinger B. A transmembrane 825 

leucine zipper is required for activation of the dimeric receptor tyrosine kinase DDR1. J Biol 826 

Chem. 2006;281(32):22744–51.  827 

[69] Sullivan WJ, Mullen PJ, Schmid EW, Flores A, Momcilovic M, Sharpley MS, et al. 828 

Extracellular Matrix Remodeling Regulates Glucose Metabolism through TXNIP 829 

Destabilization. Cell. 2018;175(1):117-132 830 

[70] Oliveira GB, Regitano LCA, Cesar ASM, Reecy JM, Degaki KY, Poleti MD et al. 831 

Integrative analysis of microRNAs and mRNAs revealed regulation of composition and 832 

metabolism in Nelore cattle. BMC Genomics. 2018;19(1):1–16.  833 

[71] de Oliveira PSN, Cesar ASM, do Nascimento ML, Chaves AS, Tizioto PC, Tullio RR, et 834 

al. Identification of genomic regions associated with feed efficiency in Nelore cattle. BMC 835 

Genet. 2014;15:10.  836 

[72] Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast 837 

universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.  838 

[73] Friedländer MR, MacKowiak SD, Li N, Chen W, Rajewsky N. MiRDeep2 accurately 839 

identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic 840 

Acids Res. 2012;40(1):37–52.  841 

[74] Tarazona S, Furió-Tarí P, Turrà D, Di Pietro A, Nueda MJ, Ferrer A, et al. Data quality 842 

aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic 843 

Acids Res. 2015;43(21):15.  844 

[75] Love MI, Huber W, Anders S. Moderated estimation of fold change and  dispersion for 845 

RNA-seq data with DESeq2. Genome Biol. 2014;15(12):15. 846 

[76] Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large 847 

gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.  848 

[77] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al. Cytoscape: a 849 

software environment for integrated models of biomolecular interaction networks. Genome 850 

Res. 2003;13:2498–504.  851 

[78] Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie 852 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 15, 2019. ; https://doi.org/10.1101/804419doi: bioRxiv preprint 

https://doi.org/10.1101/804419


enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 853 

2015;33(3):290–5.  854 

[79] Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: New perspectives 855 

on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–61.  856 

[80] Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites 857 

in mammalian mRNAs. Elife. 2015;4:1–38.  858 

 859 

Acknowledgements 860 

 861 

We thank FAPESP (2012/23638-8) for financing the projects encompassing this one 862 

and Capes for the scholarship for the first author. We thank all the Staff of Embrapa Pecuária 863 

Sudeste responsible for monitoring and taking care of animals. We thank CNPq for the 864 

productivity scholarship for the ninth, tenth and last authors. We also thank The University of 865 

Queensland for receiving the first author in a Ph.D. internship and the Commonwealth 866 

Scientific and Industrial Research Organisation (CSIRO) for assistance during the same 867 

internship.  868 

 869 

Authors Contribution 870 

 871 

J.A., M.R.S.F., A.R and L.C.A.R. designed the experiments and analysis. J.A., 872 

M.R.S.F., A.R., W.J.S.D., A.S.M.C, A.O.L., J.P., M.M.S., L.L.C., G.B.M., A.Z., C.F.G., 873 

A.R.A.N., performed the experiments and analysis. J.A., M.R.S.F., A.R. and L.C.A.R. 874 

interpreted the results. J.A. and M.R.S.F. drafted the manuscript. All authors revised and 875 

approved the final manuscript. 876 

 877 

Competing Interests 878 

 879 

 The authors claim no competing interests. 880 

 881 

 882 

 883 

 884 

 885 

 886 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 15, 2019. ; https://doi.org/10.1101/804419doi: bioRxiv preprint 

https://doi.org/10.1101/804419


Table 1. Number of genes and miRNAs with expression values correlated to each 887 

mineral considering both PCIT analysis. PCIT general, with mineral genomic estimates of 888 

breeding values, genes and miRNAs expression and PCIT miRNA with mineral GEBVs and 889 

miRNAs expression. The data came from Longissimus thoracis muscle from Nelore steers 890 

and the genes and miRNA expressions were identified based on RNA-Seq analysis. 891 

 892 

Mineral Gene miRNA Repeated miRNAa 

Ca 22 6 0 

Cu 35 5 0 

K 33 5 0 

Mg 37 8 0 

Na 42 6 3 

P 19 6 0 

S 55 6 1 

Se 32 6 2 

Zn 36 9 0 

Fe 27 5 1 
a number of miRNAs with expression values correlated to a mineral in both PCIT analysis 893 

(PCIT general and PCIT miRNA) 894 

 895 

 896 

Table 2. Number of genes and miRNAs with a significant regulatory impact factor over 897 

the genomic estimates of breeding values for each mineral and all minerals together 898 

(PCA score). The data came from Longissimus thoracis muscle from Nelore steers and the 899 

genes and miRNA expressions were identified based on RNA-Seq analysis. 900 

 901 

Mineral Gene miRNA 

Ca 1 1 

Cu 4 0 

K 3 1 

Mg 3 1 

Na 6 1 

P 1 0 

S 5 2 

Se 7 0 

Zn 4 2 

Fe 0 2 

PCA Score 22 2 

 902 
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Table 3. Number of genes and miRNAs with expression values correlated per mineral and per attribute considering both PCIT analysis. PCIT general, 903 

with mineral genomic estimates of breeding values, genes and miRNAs expression and PCIT miRNA with mineral GEBVs and miRNAs expression. The data 904 

came from Longissimus thoracis muscle from Nelore steers and the genes and miRNA expressions were identified based on RNA-Seq analysis. Attributes: a) 905 

differentially expressed genes [9] [10], b) genes and miRNAs with significant regulatory impact factor, c) transcription factors [17], d) genes affected by cis 906 

eQTLs [18], e) genes affected by trans eQTLs [18], f) miRNAs and g) genes and miRNAs with expression values correlated to each mineral that were not 907 

identified in previous works. 908 

 909 

Minerals DEGsa Significant RIFb TFsc cis eQTLsd trans eQTLse miRNAsf No attributesg 

Ca 0 3 2 0 3 5 14 

Cu 1 4 1 0 1 5 28 

K 2 5 2 0 7 3 19 

Mg 2 6 2 0 5 6 23 

Na 3 7 2 0 13 6 21 

P 0 1 2 0 3 6 12 

S 1 8 3 0 8 6 34 

Se 1 9 2 1 3 6 17 

Zn  0 6 1 0 3 9 27 

Fe 3 19 0 0 2 5 9 

 910 

 911 
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Table 4. Pathways enriched for each mineral considering the gene expressions correlated to each one of 

them and the previously detected differentially expressed genes related to the same minerals in the same 

Nelore population. Pathways just enriched in previous works with a differential expression approach and the 

same Nelore population are marked in dark grey, pathways enriched in our correlated genes expressions are 

marked in black and the pathways enriched in both in previous work and in the correlated genes expressions 

are marked in light grey. There were no enriched pathways for Zn. 

 

 Ca Cu K    Mg Na P   S   Se Fe 

AMPK signaling pathway           

Antigen processing and presentation           

Assembly of collagen fibrils and other multimeric structures           

Biosynthesis of unsaturated fatty acids           

Collagen biosynthesis and modifying enzymes            

Collagen chain trimerization              

Collagen formation           

DAP12 interactions           

Degradation of the ECM           

ECM organization                

ECM-receptor interaction                 

Fatty acid biosynthesis           

Fatty acid metabolism           

Fc gamma receptor (FCGR) dependent phagocytosis           

Focal adhesion               

G alpha (q) signaling events           

Herpes simplex infection           

Immune system           

Influenza A           

Innate immune system           

Integrin cell surface interaction             

Measles           

Neutrophil degranulation           

Non-integrin membrane-ECM interactions           

O-glycosylation of TSR domain-containing proteins           

Phagosome           

PI3K-Akt signaling pathway               

Platelet activation           

PPAR signaling pathway            

Prion disease           

Protein digestion and absorption                

Signal transduction           

 

 

 912 

 913 

 914 

Figure 1. Co-expression network among genes and miRNAs with expression values correlated to at 915 

least one mineral. A) Complete network, B) Details about the correlations regarding the genes and miRNAs 916 

with expression values correlated to more than one mineral, the internal circle of the complete network, C) 917 

Correlations among the mineral’s GEBVs.  918 
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Figure 2.  Representation of the contrasting samples considering the genomic estimated 936 

breeding values of all 10 minerals together,  based on the PCA score. Orange circles 937 

represent the samples with the highest scores (positive contrast) and the green circles 938 

represent the samples with the lowest scores (negative contrast).  939 

 940 

 941 
 942 

 943 

 944 

 945 

 946 

 947 

Figure 3. Co-expression networks among genes and miRNAs being part of enriched 948 

pathways (DEGs and correlated to a mineral), hubs, TFs, miRNAs or presenting a 949 

significant RIF regarding nine of the minerals in study. A) Mg, B) Fe, C) Ca, D) Se, E) K, 950 

F) Na, G) Cu, H) P, I) S. Red lines represent the correlations with a significant RIF gene or 951 

miRNA. 952 
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 959 

 960 

 961 

 962 

 963 

 964 

 965 

 966 

 967 

 968 

 969 

 970 

 971 

 972 

 973 

 974 

          Co-expression network containing DEGs for Zn, genes or miRNAs that are 975 

correlated to these DEGs  and are also a hub or a significant RIF for Zn, ora miRNA 976 

correlated to Zn. Their functional attributes are presented in different colors or shapes. 977 

Red lines represent the correlations with a significant RIF gene or miRNA. 978 
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Figure 4.  Co-expression network containing DEGs for Zn, genes or miRNAs with 1053 

expression values that are correlated to these DEGs  and are also a hub or a significant 1054 

RIF for Zn, ora miRNA correlated to Zn. Their functional attributes are presented in 1055 

different colors or shapes. Red lines represent the correlations with a significant RIF gene 1056 

or miRNA. 1057 
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Figure 5. Flowchart representing the steps of the methodology. 1103 
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