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SUMMARY 

Odor recognition starts from olfactory sensory neurons (OSNs), but this process is yet to be 

fully understood in physiological conditions in vivo. Here, we performed two-photon 

calcium imaging of mouse olfactory sensory neurons in vivo and found that odors produce 

not only excitatory, but also inhibitory responses at their axon terminals. Robust inhibitory 

responses at OSN axon terminals remained in two independent mutant mice, in which all 

possible sources of presynaptic lateral inhibition were eliminated. Therefore, we examined 

the responses in the olfactory epithelium in vivo, and found robust and widespread 

inhibitory responses at the level of OSN somata. Moreover, responses to odor mixtures 

demonstrated extensive mutual modulation (both suppression and enhancement) in OSNs. 

An in vitro assay demonstrated that some odorants act as inverse agonists to some odorant 

receptors. The bidirectional nature of OSN responses may be useful for robust odor coding 

under noisy sensory environment.  

INTRODUCTION 

Sensory systems have to detect biologically meaningful sensory signals from noisy background 

signals. For example, the visual system has to detect a visual cue in the presence of background 

signals and under ambient light. In order to detect specific visual features, both decreases and 

increases in neurotransmission from photoreceptor cells are conveyed to the ON and OFF 

pathways, respectively. In addition, lateral inhibition in the retina enables the contrast 

enhancement of spatial information, thus aiding the detection of a visual object (Demb and 

Singer, 2015). The key features of the visual system are the bidirectional nature of the 

photoreceptor cell responses to visual objects, which are both excitatory and inhibitory.  
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 Similarly, the olfactory system has to reliably detect fluctuating odor molecules under 

various background signals. In fact, natural environments often contain a lot of ambient odorants. 

In addition, accumulating evidence shows that many OSNs robustly respond to mechanical 

stimuli produced by the nasal airflow (Chen et al., 2012; Connelly et al., 2015; Grosmaitre et al., 

2007; Iwata et al., 2017). As a result, sniffing alone produces responses in many OSNs without 

odors. Moreover, animals can identify an odor from temporally dynamic odor plume. How 

specific odor information is reliably extracted from such noisy signals in physiological 

conditions is a central issue in the field. The olfactory bulb (OB) and cortical circuits certainly 

play important roles for this task (Imai, 2014; Wilson and Mainen, 2006). In particular, the roles 

of inhibitory circuits have been well recognized, in terms of gain control, lateral inhibition, and 

temporal patterning (Banerjee et al., 2015; Economo et al., 2016; Fukunaga et al., 2014; Kato et 

al., 2013; McGann et al., 2005; Yokoi et al., 1995). However, we know little about odor 

information processing at the entry point of the olfactory system, the OSNs, in the physiological 

context in vivo.  

 In the mammalian olfactory system, each OSN expresses just one type of odorant 

receptor (OR) out of a large repertoire (~1000 in mice), and OSNs expressing the same type of 

OR converge their axons to a common glomerulus in the OB. It is also known that all types of 

ORs in the main olfactory system couple to Golf, and cAMP signals regulate depolarization of 

OSNs via CNG channels (Firestein, 2001). So far, most electrophysiological or calcium imaging 

studies of OSN somata have been limited to isolated OSNs or olfactory epithelium (OE). Due to 

the limited throughput of these methodologies, it has been difficult to obtain comprehensive odor 

response profiles at the level of OSNs. Imaging of the OB, based on intrinsic signals (Rubin and 

Katz, 1999), chemical calcium dyes (Wachowiak and Cohen, 2001), and synapto-pHluorin 

(Bozza et al., 2004), has been powerful in our understanding of the odor coding based on the 

glomerular map. However, the sensitivity and temporal resolution have been limited in these 

studies. While more sensitive GCaMP sensors are commonly used for calcium imaging of OB 

neurons (Wachowiak et al., 2013), its use for OSNs has been limited (Iwata et al., 2017). Based 

on our limited knowledge, it has been generally believed that odorants “activate” OSNs, and 

odor information is represented by the map of “activated” glomeruli in the OB. 

Here we performed GCaMP calcium imaging of OSNs and found widespread inhibitory 

responses at OSN axon terminals in the OB. We also found that inhibitory responses are already 

evident at the OSN somata showing inverse agomism. Moreover, a response to an odor mixture 

demonstrated extensive suppression and a non-linear enhancement. Thus, both excitatory and 

inhibitory responses in the OSNs themselves contribute to the odor coding in the mammalian 

olfactory system.  

RESULTS 

Inhibitory responses at OSN axon terminals in vivo  
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In order to understand the odor information processing in the mammalian olfactory system, it is 

fundamental to understand the odor responses at the most peripheral level, the OSNs. Previously, 

calcium imaging of OSNs has been performed through cranial windows over the OB. In these 

studies, chemical dyes (e.g., calcium green-1) were loaded to OSNs through the OE; however, 

this loading method was inefficient, and the maximum response amplitude was only up to ~10% 

F/F0 in typical experiments (Wachowiak and Cohen, 2001). A fluorescent indicator for synaptic 

vesicle release, synapto-pHluorin (spH), was a much more sensitive sensor for OSN activity 

(Bozza et al., 2004); however, its temporal resolution was much slower than calcium indicators, 

which hampered studies of dynamic responses.  

In this study, we used an OSN-specific GCaMP transgenic mice, OSN-GCaMP3 (OMP-

tTA; TRE-GCaMP3 compound heterozygous BAC transgenic mice, Figure 1A), as described in a 

previous study (Iwata et al., 2017). When the OB was imaged with two-photon microscopy, we 

could obtain highly reliable response signals (up to ~200% F/F0) for various odorants (amyl 

acetate, heptanal, valeraldehyde, and cyclohexanone, diluted at 0.5%). Unexpectedly, we often 

observed reductions in GCaMP signals (up to ~20% F/F0 reduction) upon odor stimulation 

(Figure 1B, C, S1). This is most likely due to the suppression of spontaneous activity as has been 

seen in mitral/tufted (M/T) cell imaging (Economo et al., 2016), thus representing inhibitory 

responses. The inhibitory responses were shared across fibers within a glomerulus, suggesting 

that the inhibition is OR-specific, rather than random (Figure 1B). It should be noted that the 

inhibitory responses would be only seen, in theory, for OSNs with high spontaneous activity. 

These inhibitory responses have been overlooked in previous studies, most likely due to the low 

sensitivity and/or slower kinetics of the sensors.  

We measured responses to four pure odorants (amyl acetate, heptanal, valeraldehyde, and 

cyclohexanone, diluted at 0.5%) for 299 glomeruli (5 mice in total) and inhibitory responses 

were commonly observed for all the four odorants (Figure 1D, E; data for more odorants are 

described in Figure S1). These responses were reproducible across 3 trials (Figure S1B). 

Similarly to the excitatory responses, the inhibitory responses were broadly tuned in some, but 

narrowly tuned in other glomeruli (Figure 1F). In this dataset, 56% and 12% of glomeruli 

demonstrated excitatory and inhibitory responses, respectively (defined for >3 standard 

deviations (SD) changes). A substantial fraction of glomeruli demonstrated binary responses, 

showing excitation to some and inhibition to other odorants (e/i fraction in Figure 1D). The 

temporal kinetics was different between excitatory and inhibitory responses. In general, 

inhibitory responses were slower, showing response peaks at 5-25 sec after odor stimulation 

(Figure S1A, C). Some glomeruli demonstrated more complex bi-phasic responses, showing 

excitatory-inhibitory or inhibitory-excitatory responses (Figure 1C, S1B). While most of our 

experiments were performed under anesthesia, we also observed inhibitory responses in OSN 

axons in awake animals (Figure S1D, E). 

It has been known that ~50% of OSNs show mechanosensory responses (Grosmaitre et 
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al., 2007; Iwata et al., 2017). In the in vivo situation, sniffing alone can produce airflow-

dependent mechanical responses in OSNs. Using artificial sniffing, we have examined the 

responses to changes in the nasal airflow speed. Again in this experiment, we observed both 

excitatory and inhibitory responses to increased airflow in OSN axon terminals (Figure S2). 

Inhibitory responses at OSN axon terminals remained without presynaptic inhibition 

Next we investigated the origin of the inhibitory responses seen at OSN axon terminals. The 

inhibitory responses to odors may be derived from presynaptic lateral inhibition within the OB 

circuit. Like photoreceptor cells in the retina, OSN axons receive presynaptic inhibition from OB 

interneurons. A previous study using spH mice and pharmacology indicated that presynaptic 

inhibition occurs only within a glomerulus, and lateral presynaptic inhibition plays little or no 

role in odor responses (McGann et al., 2005). However, another study suggested a role for 

presynaptic lateral inhibition (Fleischmann et al., 2008). A subset of juxtaglomerular 

interneurons in the OB (dopaminergic and GABAergic short axon cells) are known to innervate 

multiple glomeruli, and thus may be a potential source for interglomerular lateral inhibition 

(Kosaka and Kosaka, 2008). We therefore examined whether interglomerular presynaptic 

inhibition could play a role by using conditional mutant mice.  

It has been known that GABA and dopamine play major roles in the presynaptic 

inhibition of OSN axon terminals (Aroniadou-Anderjaska et al., 2000; Ennis et al., 2001; 

McGann et al., 2005). GABA-dependent presynaptic inhibition is mediated by the GABAB 

receptor. A functional GABAB receptor is a heterodimer consisting of GABAB1 and GABAB2 

subunits (Bettler et al., 2004). We therefore generated a conditional mutant mouse line for 

GABAB1, which constitutes a GABA-binding subunit. As for dopamine, the D2 receptor is 

known to mediate presynaptic inhibition (Ennis et al., 2001). We therefore generated a 

conditional mutant mouse line for D2R (see Figure S3 and Methods for details). Immunostaining 

of OB sections from the conditional mutant mice show a much reduced expression of GABAB 

receptors and D2R. The weak remaining signals are most likely derived from OB neurons 

(Figure S3). Crossed with the OMP-Cre knock-in line, we generated an OSN-specific double 

knockout animals for both GABAB1 and D2R (Figure 2A; OMP-Cre; Gabbr1
fl/fl

; D2R
fl/fl

). We 

examined odor responses using OSN-GCaMP (i.e., OMP-tTA; TRE-GCaMP3; OMP-Cre; 

Gabbr1
fl/fl

; D2R
fl/fl

 mice). However, we still observed both excitatory and inhibitory responses at 

OSN axon terminals (Figure 2B). The amplitudes and the temporal kinetics of excitatory and 

inhibitory responses were only slightly different from the wild-type mice (Figure 2D). 

Although GABA and dopamine have been considered to play major roles in presynaptic 

inhibition in OSN axons, we cannot rule out the contribution of unknown types of presynaptic 

inhibition mediated by the OB neurons. We therefore generated OSN-specific tetanus toxin light 

chain (TeNT) knock-in mice, in which synaptic transmission from OSNs is blocked (Figure 2A, 

OMP-Cre; R26-CAG-loxP-TeNT, OSN-TeNT hereafter)(Sakamoto et al., 2014)(Fujimoto et al., 
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2019). Using an M/T cell-specific GCaMP6f mouse line (Dana et al., 2014; Iwata et al., 2017), 

we confirmed that the odor responses in M/T cells are almost completely shut off in OSN-TeNT 

mice (Figure S4). Because neurotransmission from OSNs is abolished, all kinds of presynaptic 

inhibition from OB neurons should be eliminated in this mouse line. Nevertheless, a substantial 

fraction of glomeruli still demonstrated inhibitory responses to odor stimuli in OSN axon 

terminals (Figure 2). 

It is possible that homeostatic plasticity has masked some aspects of presynaptic 

inhibition under the chronic inactivation present in these mutant mice. Therefore, presynaptic 

inhibition may partly contribute to the inhibitory responses seen at OSN axons. However, results 

so far strongly suggest that a substantial fraction of inhibitory responses is generated within 

OSNs, without any contribution from OB interneurons.  

Inhibitory responses at OSN somata in the OE 

A straightforward way to confirm this possibility is to record odor responses in the OSN somata 

in the OE in vivo. We have recently established in vivo two-photon imaging of OSN somata in 

the OE (Figure 3A)(Iwata et al., 2017). In our OSN-GCaMP3 mice, only a subset of OSNs 

(~60%) expresses GCaMP3, allowing for the separation of most of somatic signals. In addition, 

due to the high basal fluorescence of GCaMP3 (Figure 3B), we were able to record all kinds of 

odor responses. We examined the odor responses of OSN somata and found that the inhibitory 

responses are also widespread in the OE (Figure 3C, D). Using the same sets of odorants as used 

for the OSN axon imaging, we found that 5% of OSN responses are inhibitory at the somata 

(defined for >3SD changes) (Figure 3E, F). Inhibitory responses at OSN somata were more 

narrowly tuned than in OSN axon terminals (Figure 3G). However, as the fluorescence signals 

are much weaker than in the glomeruli, it is difficult to compare them quantitatively.  

Representation of odor mixtures in OSNs 

The inhibition would have more impact on the representation of odor mixtures, as has been well 

known in M/T cells (Economo et al., 2016; Yokoi et al., 1995). Although earlier studies focused 

on lateral inhibition within the OB circuit, we considered that odor mixture may be more 

dynamically represented at the OSN level than has considered previously. Here we examined the 

OSN axon responses for amyl acetate, valeraldehyde, and a mixture of amyl acetate + 

valeraldehyde. We often observed that one odorant reduces or abolishes the responses to the 

other odorant at various degrees (Figure 4A-D). We obtained similar results for various odor 

mixtures (Figure S6A-C). The suppressive effects of the odor mixture representation were seen 

not only for glomeruli demonstrating inhibitory-excitatory responses to the odor pair, but also for 

null-excitatory and even for some excitatory-excitatory cases (Figure 4E, G). When we analyzed 

glomeruli showing excitatory responses to an odorant (odor 2) and excitatory or null responses to 

another (odor 1), 58% of glomeruli demonstrated suppression by odor 1(Figure 4E, G). These 

suppressed responses were also seen in OSN-specific GABAB1/D2R double knockout mice (data 
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not shown).  

A more puzzling observation was the non-linear enhancement of odor responses in the 

odor mixture experiment. For example, the responses to a mixture of amyl acetate + 

valeraldehyde were much greater than the linear sum of amylacetate and valeraldehyde responses 

in some glomeruli (Figure 4B, glomerulus #2). Here we only focused on glomeruli showing 

excitatory responses to an odorant (odor 2) and null or inhibitory responses to another (odor 1), 

but 17% of cases demonstrated enhanced responses over the response to odor 2 (Figure 4F, G). 

OSN somata also demonstrated similar suppression and enhancer effects by using odor 

mixtures (Figure 5A-D, S6D-F). When we only analyzed OSN somata showing excitatory 

responses to an odorant (odor 2) and excitatory or null responses to another (odor 1), 13% of 

them demonstrated suppression by odor 1 (Figure 5E, G). When we analyzed OSN somata that 

showed excitatory responses to an odorant (odor 2) and null or inhibitory responses to another 

(odor 1), 18% of them demonstrated enhancement by odor 1 (Figure 5F, G). 

Taken together, the results indicate that, the responses to the odor mixture are extensively 

modulated (either suppressed or enhanced), and are not always the linear sum of the individual 

ones.  

Odorants act as inverse agonists for some ORs in heterologous assay system 

What are the origins of the inhibitory responses seen in OSN somata? In one scenario, the 

inhibitory responses may be a result of non-synaptic lateral inhibition known as ephaptic 

coupling. In the Drosophila olfactory system, 2-3 OSNs are tightly packed within a sensillum, 

and electrically affect to each other (Su et al., 2012; Zhang et al., 2019). This may occur within 

the tightly packed OE and axon bundles in mice (Bokil et al., 2001); however, as each type of 

OSN is randomly scattered in the OE, so ephaptic coupling alone cannot account for the OR-

specific inhibitory responses found at axon terminals (Figure 1B). We therefore considered the 

possibility that the inhibitory responses occurs at the OR level, as has also been proposed for 

Drosophila OSNs (Cao et al., 2017; Hallem et al., 2004). Although receptor antagonism has been 

well known (Araneda et al., 2004; Kurahashi et al., 1994; Oka et al., 2004; Rospars et al., 2008; 

Tsuboi et al., 2011), inhibitory responses are not fully established for mammalian ORs. 

To study the inhibitory responses at the receptor level, we used a heterologous assay 

system. ORs were co-expressed with a chaperone molecule, RTP1S, in HEK293 cells. We 

examined cAMP responses based on cAMP-response element (CRE) promoter activity using a 

dual luciferase assay system (See Methods for details) (Saito et al., 2004; Tsuboi et al., 2011). In 

the initial screen, we expressed 83 mouse ORs, and measured the basal activity without odorants. 

We then focused on the 11 ORs with the highest basal activity, as it would be easier to find 

inhibitory responses for these ORs. We then examined the responses of these ORs to 9 odorants. 

We found that Olfr644 (also known as MOR13-1) and Olfr1054 (MOR188-2) show inhibitory 

responses to odorants. For Olfr644, benzaldehyde acted as an agonist, but heptanal and amyl 
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acetate were inverse agonists showing receptor inhibition (Figure 6A). Similarly for Olfr1054, 

acetophenone was an agonist, but ethylhexanoate was an inverse agonist (Figure 6B). Thus, the 

inhibitory responses occur, at least in part, at the receptor level.  

DISCUSSION 

It has long been considered that odorants activate ORs, and OSNs send excitatory inputs to the 

OB. However, our in vivo imaging study demonstrated that odorants elicit not only excitatory, 

but also inhibitory responses in OSNs, thus revising the classical view. These inhibitory 

responses are widespread phenomena in the mammalian OSNs.  

What are the origins of the inhibitory responses in OSNs? In the mammalian retina, 

horizontal cells are known to mediate lateral inhibition, and the inhibition by horizontal cells 

occurs both presynaptically on photoreceptor cells, and postsynaptically on bipolar cells (Demb 

and Singer, 2015). We therefore considered a possible contribution of presynaptic lateral 

inhibition by OB interneurons. However, two independent mutant mice lacking known types of 

presynaptic inhibition still demonstrated inhibitory responses at OSN axon terminals. Moreover, 

we found that inhibitory responses already exist at the level of OSN somata. These results 

suggest that a substantial fraction of inhibitory responses originate from the OE. However, as 

there are some differences between OSN somata and axon terminals (e.g., tuning specificity and 

degree of mixture effects), it is likely that there is also a contribution from interglomerular 

presynaptic inhibition by the OB interneurons (Fleischmann et al., 2008). 

In the Drosophila olfactory system, it has been reported that ephaptic coupling within 

sensilla and inverse agonism contribute to the inhibitory responses at the OSN somata (Hallem et 

al., 2004; Su et al., 2012). As OSNs and their axons are tightly packed, ephaptic coupling may 

also occur in the mammalian olfactory system (Bokil et al., 2001). However, given the random 

distribution of OSNs in the OE, this does not seem to account for the OR-specific inhibitory 

responses seen in OSN axon terminals (Figure 1). Using a reconstituted system, we showed that 

odorants act as inverse agonists at least for some ORs (Figure 6), consistent with a previous 

report on OSN electrophysiology (Reisert, 2010). It has been known that the basal activity of 

ORs is important for OSN development: Many of the ORs have basal activity without odorants 

and the basal cAMP level contributes to axonal wiring specificity during development (Imai and 

Sakano, 2008; Imai et al., 2006; Imai et al., 2009; Nakashima et al., 2013). While basal activity 

has been reported using the electrophysiological recording of isolated mature OSNs (Reisert, 

2010), its role in odor coding has been unknown. Our current study suggests that the basal 

activity of mature OSNs contributes to bidirectional responses, excitatory and inhibitory, to 

odorants. It is possible that OSNs with high basal activity tend to show inhibitory responses to 

various odorants (Figure 3E, G), as has been shown for M/T cells in awake animals (Kollo et al., 

2014). 

In addition to inverse agonism, it is also possible that antagonism has contributed to the 

apparent inhibitory responses seen in our in vivo study. OSNs may respond to ambient odors as 
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well as metabolites in the olfactory mucosa in the physiological condition in vivo. In addition, 

the OSNs respond to mechanical stimuli produced by the nasal airflow. Although the exact 

mechanism is yet to be established, an in vitro study suggested that ORs may directly recognize 

mechanical stimuli, similarly to odor recognition (Connelly et al., 2015). Therefore, antagonistic 

odorants can suppress these responses. In the visual system, opsin proteins themselves have 

extremely low basal activity; however, the ambient light allows for bidirectional responses 

(inhibition and excitation) in photoreceptor cells that are conveyed to ON/OFF pathways, 

respectively (Figure 6D). Similarly, hair cells in the auditory and vestibular systems are known 

to show bidirectional responses. The inhibitory responses in OSNs may be useful for robust odor 

identification under noisy sensory environment (Figure 6D). 

Antagonism for ORs has been studied with various ORs, including rat I7, MOR-EG, and 

MOR29B (Araneda et al., 2004; Oka et al., 2004; Tsuboi et al., 2011). However, it has yet to be 

fully established how the OR antagonism impact olfaction in vivo. In the current study we 

showed that the responses to odor mixtures are already extensively modulated at the peripheral 

level in vivo. Responses to an odorant are inhibited by another in >50% of glomeruli and >10% 

of OSN somata, supporting the idea that the extensive antagonism tunes the representation of 

odor mixtures in OSNs (Figure 5). Our in vivo observations are in good agreement with recent 

studies using ex vivo imaging and reconstituted systems. Unexpectedly, a substantial fraction of 

OSNs (10-20% both in glomeruli and OSN somata) demonstrated enhanced odor responses when 

mixed together (Figure 4 and 5). Although enhanced responses at axons may be partly due to the 

dis-inhibition of OB inhibitory circuits, we could still see the enhanced responses at OSN somata. 

This may be due to the allosteric enhancer effect of an odorant to another, as has been known to 

occur for various GPCRs including taste receptors (Schwartz and Holst, 2007). This issue needs 

to be addressed in future studies in vitro. Together, our results revise a prevailing view in which 

odor mixtures are represented as a linear sum of individual ones in OSNs (Lin et al., 2006). 

Previous studies proposed that non-linear representation of odor mixtures occurs in the olfactory 

cortex (Stettler and Axel, 2009), but this is in fact happening already in OSNs. 

In the OB, it has been well known that M/T cell responses are highly dynamic, 

particularly in awake conditions. M/T cells show both excitatory and inhibitory responses, 

contributing to timing-based representation of odor information (Cury and Uchida, 2010; 

Economo et al., 2016; Iwata et al., 2017; Kollo et al., 2014; Shusterman et al., 2011). Therefore, 

both excitatory and inhibitory responses in OSNs should contribute to the odor coding in the OB. 

We propose that extensive inhibition and modulation at the receptor level contribute to the odor 

coding in the mammalian olfactory system (Figure 6D). 
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FIGURES 

 
Figure 1. Odor-evoked inhibitory responses in OSN axons. 

(A) Two-photon calcium imaging of OSN axon terminals in vivo. OSN-GCaMP3 mice (OMP-

tTA BAC Tg crossed with R26-TRE-GCaMP3 BAC Tg) were used for in vivo imaging of OSN 

axon terminals in the glomerular layer. Only anesthetized mice were analyzed except for Figure 

S1F, G. 

(B) Excitatory (red) and inhibitory (blue) responses at OSN axon terminals in the glomerular 

layer. Mean F/F0 per pixel during the first 20 s from the stimulus onset are shown.  Scale bar, 

200 μm. 

(C) Representative glomerular responses at OSN axon terminals to odors (Aa, amyl acetate; Hep, 

heptanal; Val, valeraldehyde; Cyh, cyclohexanone; diluted at 0.5%). Odors were delivered to the 

nose for 5 s (shown in gray) under freely breathing conditions. 

(D) Glomerular and odor specificity of excitatory and inhibitory responses. Both wide and 

narrow odor tuning was observed for both excitatory and inhibitory responses. Glomeruli 

showing responses to at least one odorant were analyzed. Glomeruli are clustered based on the 

number of excitatory (4e-1e) and inhibitory (1i-3i) odors, and for bidirectional (e/i) responses. 

Only significant responses (>3 SD above baseline fluctuation) were categorized as excitatory or 

inhibitory. N = 299 glomeruli from 5 mice. 193 glomeruli showing significant responses to at 

least one odorant are shown. 

(E) Polarity of glomerular responses to each odor. Fractions out of the total number of glomeruli 

are shown. A small fraction demonstrated complex (excitatory-inhibitory or inhibitory-

excitatory) responses. 

(F) Tuning specificity of excitatory and inhibitory responses. Data are from 156 and 25 odor-

glomerulus pairs for excitatory and inhibitory responses, respectively. Bidirectional glomeruli 

are not analyzed here. 
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Figure 2. Inhibitory responses at OSN axon terminals without known types of presynaptic 

inhibition. 

(A) Schematic representation of conditional double knockout and OSN-TeNT mutant mice. We 

generated OSN-specific Gabbr1 and Drd2 mutant mice (OMP-Cre; Gabbr1
fl/fl

; Drd2
fl/fl

) (See 

Figure S3 for details). OSN axon terminals of Gabbr1 and Drd2 cKO mice cannot receive 

presynaptic inhibition mediated by GABA and DA. We also analyzed OSN-specific TeNT 

knock-in mice (OSN-TeNT). OSN axons in OSN-TeNT mice cannot release synaptic vesicles 

(Figure S4), and thus do not receive presynaptic inhibition from OB interneurons. 

 (B) Excitatory and inhibitory glomerular responses in the mutant mice. Amyl acetate, heptanal, 

valeraldehyde, and cyclohexanone (diluted at 0.5%) were tested. Stacked barplots indicate the 

fraction of response polarity in each mouse line (left). Odor-evoked responses across a 

population of odor-glomerulus pairs sorted by their response amplitude (right). The y-axis 

represents the odor-glomerulus pairs. WT, N = 1196 odor-glomerulus pairs from 5 mice; 

Gabbr1/Drd2 cKO, N = 807 odor-glomerulus pairs from 4 mice; OSN-TeNT, N = 377 odor-

glomerulus pairs from 3 mice.  

(C) Cumulative histogram of response amplitudes. The inset includes expanded x- and y-axes to 

display inhibitory response.  

(D) Temporal kinetics of excitatory and inhibitory responses. For a fair comparison across 

genotypes, the top 2% and bottom 1% was used to show the averaged excitatory and inhibitory 

response kinetics, respectively. WT, N = 34 and 11 odor-glomerulus pairs; Gabbr1/Drd2 cKO, N 

= 24 and 8 odor-glomerulus pairs; OSN-TeNT, N = 11 and 3 odor-glomerulus pairs for 

excitatory and inhibitory responses, respectively. See also Figure S4G. 
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Figure 3. Inhibitory responses at OSN somata in the OE. 
(A) Two-photon calcium imaging of OSN somata in the OE in vivo. OSNs in the dorsal OE 

(zone 1) were imaged through thinned nasal bone. 

(B) A representative image of basal GCaMP3 fluorescence in the OE. Scale bar, 100 m. 

(C) Widespread inhibitory responses in the OE. Excitatory (red) and inhibitory (blue) responses 

are shown. Scale bar, 100 m. 

(D) Representative response profiles of OSNs to odors. Odors were delivered to the nose for 5s 

(shown in gray). Traces for both excitatory and inhibitory responses are shown. 

(E) Responsive OSNs are clustered based on the number of excitatory (4e-1e) and inhibitory (1i-

3i) odors, and for bidirectional (e/i) responses. Only significant responses (>3SD above baseline 

fluctuation) were categorized as excitatory or inhibitory. OSNs showing responses to at least one 

odorant were analyzed. N = 1654 OSNs from 4 mice. 1129 OSNs showing significant responses 

are shown.. 

(F) Polarity of odor-evoked responses analyzed for total OSNs. Complex (excitatory-inhibitory 

or inhibitory-excitatory) responses were not evident in the OE. 
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(G) Tuning specificity of excitatory and inhibitory responses. Inhibitory responses were more 

narrowly tuned than in glomeruli. Data are from 1042 and 81 OSNs for excitatory and inhibitory 

responses, respectively. 

(H) Fractions of OSN somata showing excitatory and inhibitory responses. N = 6616 odor-OSN 

pairs. 
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Figure 4. Representation of odor mixtures at OSN axon terminals. 

(A) Responses to amyl acetate (Aa), valeraldehyde (Val), and a mixture of them at OSN axon 

terminals in the glomerular layer. Mean F/F0 per pixel during the first 20 s from the stimulus 

onset are shown.  Scale bar, 100 μm. 

(B) Response profiles of glomerulus #1 and #2 shown in (A). Val suppressed the response of 

glomerulus #1 to Aa. Aa enhanced the response of glomerulus #2 to Val.  

(C) Summary of glomerular responses. Glomeruli are sorted based on the k-means clustering of 

response profiles. Glomeruli showing responses to at least one odorant are shown. Eight clusters 

based on k-means clustering are shown (I-VI, mixture responses of excitatory pairs; VII-VIII, 

mixture responses of inhibitory pairs; I- II, enhancement; III, not significant; IV-V, suppression). 

N = 131 glomeruli from 3 mice. 

(D) Fraction of glomeruli showing excitatory (E), inhibitory (I), or null (N) responses to the two 

odorants, Aa and Val. Glomeruli were categorized into E-E, N-E, N-N, N-I, I-I, and E-I. 

(E) Suppression seen for E-E and N-E glomeruli. Responses to odor 1 (odorant showing the 

smaller response), odor 2 (the larger response), and the mixture of them are shown. Blue lines 

indicate glomeruli in which odor 1 suppressed responses to odor 2. All other remaining 

glomeruli in this category are shown in gray. 

(F) Enhanced responses seen for N-E and N-N glomeruli. Responses to odor 1 (smaller response), 

odor 2 (larger response), and the mixture of them are shown. Red lines indicate glomeruli in 

which odor 1 non-linearly enhanced responses to odor 2. All other remaining glomeruli in this 

category are shown in gray. 

(G) Fraction of glomeruli demonstrating suppressed and enhanced responses in mixture 

experiments, shown for each glomerular group. 
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Figure 5. Representation of odor mixtures at OSN somata in the OE. 

(A) Responses to amyl acetate (Aa), valeraldehyde (Val), and a mixture of them at OSN somata 

in the OE. Scale bar, 100 μm. 

(B) Response profiles of OSN #1 and #2 shown in (A). Aa suppressed the response of OSN #1 to 

Val. Val enhanced the response of OSN #2 to Aa.  

(C) Summary of OSN responses. Glomeruli are sorted based on the k-means clustering of 

response profiles.  Eight clusters are shown (I-V, mixture responses of excitatory pairs; VI-VIII, 

mixture responses of inhibitory pairs; I- II, enhancement; III, not significant; IV-V, suppression). 

N = 862 OSNs from 3 mice. 

(D) Fraction of OSNs showing excitatory (E), inhibitory (I), or null (N) responses to the two 

odorants, Aa and Val. OSNs were categorized into E-E, N-E, N-N, N-I, I-I, and E-I. 

(E) Suppressed responses seen for E-E and N-E OSNs. Responses to odor 1 (odorant showing 

smaller response), odor 2 (larger response), and the mixture of them are shown. Blue lines 

indicate OSNs in which odor 1 suppressed responses to odor 2. All other remaining OSNs in this 

category are shown in gray. 

(F) Enhanced responses seen for N-E and N-N OSNs. Responses to odor 1 (smaller response), 

odor 2 (larger response), and the mixture of them are shown. Red lines indicate OSNs in which 

odor 1 non-linearly enhanced responses to odor 2. All other remaining OSNs in this category are 

shown in gray. 

(G) Fraction of OSNs demonstrating suppression and enhancer effects in mixture experiments, 

shown for each glomerular group. 
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Figure 6. Inhibitory responses in a heterologous assay system for ORs.  

(A, B) Dose-response curves of Olfr644 (A) and Olfr1054 (B) for various odorants. ORs were 

expressed in HEK293 cells with a chaperone molecule, RTP1S. A  

dual luciferase assay was used to measure cAMP response element (CRE) promoter activity. 

Benzaldehyde was an agonist for Olf644. However, heptanal and amyl acetate acted as inverse 

agonists for Olfr644. Similarly, ethylhexanoate acted as an inverse agonist for Olfr1054, whereas 

acetophenone was an agonist. 

 (C) Schematic representation of the bidirectional responses in the visual and olfactory systems. 

In the visual system, dark current and responses to the ambient light set the baseline membrane 

potential of photoreceptor cells. As a result, photoreceptor cells show bidirectional responses in 

the physiological conditions, which is useful for detecting bright and dark objects through the 

ON and OFF pathways. Similarly, in the olfactory system, the basal activity of ORs, ambient 

odors, and mechanosensation sets the baseline cAMP levels in OSNs. We propose that 

bidirectional responses are useful for reliable odor identification in noisy sensory environments. 

This may also be useful for the computation of odor mixtures in the periphery. 
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METHODS 

Mouse strains 

All animal experiments were approved by the Institutional Animal Care and Use Committee 

(IACUC) of the RIKEN Kobe Branch and Kyushu University. BAC transgenic OMP-tTA (line 

#3; Accession No. CDB0506T: 

http://www2.clst.riken.jp/arg/TG%20mutant%20mice%20list.html) crossed to BAC transgenic 

TRE-GCaMP3 mice (high copy line; Accession No. CDB0505T) were described in a previous 

study (Iwata et al., 2017). R26-CAG-LoxP-TeNT knock-in (RBRC05154)(Sakamoto et al., 2014), 

OMP-Cre knock-in (JAX #006668)(Li et al., 2004), and Thy1-GCaMP6f Tg (line GP5.11) (JAX 

#024339)(Dana et al., 2014) have been described previously. Drd2
tm1a

 and Gabbr1
tm1a

 mice were 

produced from ES clones obtained from EUCOMM and KOMP, respectively. Among the three 

clones each for Drd2
tm1a

 and Gabbr1
tm1a

, only Drd2
tm1a(EUCOMM)Hmgu

 (HEPD0654_5_D11) and 

Gabbr1
tm1a(KOMP)Wtsi 

(EPD0730_1_G04) were transmitted to the germ line. Southern blotting was 

used to confirm correct gene targeting. These mice were then crossed to Flp mice (JAX# 

003800) to delete lacZ-Neo
r
 cassette and obtain Drd2

tm1c
 and Gabbr1

tm1c
 (Figure S3). 

Genotyping primers were 5’-TCACCCTCCAGCCTGCCTAC-3’ and 5’-

CGTCGCGATGTGAGAGGAGA-3’ for OMP-tTA mice; 5’-AACCGTCAGATCGCCTGGAG-

3’ and 5’-CGGTACCGCCCTTGTACAGC-3’ for TRE-GCaMP3 mice; 5’- 

TGTGGAAGGCAATTCTGAGAGG-3’ and 5’- CCACTTTGTACAAGAAAGCTGGGTCT-3’ 

for Gabbr1
tm1c

 allele; 5’- GTTGCCTTCCCCCTCTTGCT-3’ and 5’- 

CCACTTTGTACAAGAAAGCTGGGTCT-3’ for Drd2
tm1c

 allele (the primer sites are indicated 

in Figure S3).  OMP-Cre was in a 129/C57BL/6 mixed background and all other lines were in a 

C57BL/6N background. Both male and female mice were used. 

Southern blotting 

Genomic DNA (10 g) extracted from the mouse tail was digested with restriction enzymes: 

KpnI (Toyobo), ApaI (NEB, R0114S), SpeI (NEB, R0133S), and XhoI (NEB, R0146S). 

Electrophoresed agarose gels were treated with 0.4% (v/v) HCl and then alkaline transferred with 

0.4 M NaOH to Biodyne Plus Membrane (0.45 µm, Pall Corporation, #60406). Hybridization 

with DIG-labelled DNA probes was performed in Church’s buffer at 65°C overnight. Blocking 

was performed with 1.5% Blocking Reagent (Roche, #11096176001), and 0.1% Anti-

Digoxigenin-AP Fab fragments (Roche, #11093274910) in blocking buffer was used to detect 

DIG. Chemiluminescence reaction was performed with CDP-Star substrate (Thermo Fisher, 

#11685627001), and detected with an image reader (Fujifilm, LAS-3000 mini). DNA Probes 

were labelled with DIG-High prime (Roche, #1585606). The locations of DNA probes are 

indicated in Figure S3. Primer sequences for the probes are 5’-

GGAAACTGGGAGGTGGCTCA-3’ and 5’-ATCAGGCTTGGCTTGGCTTG-3’ for Drd2 

upstream; 5’-CTGGGGAGACCACCAGCAGT-3’ and 5’-CATGGATCCAACCCCAGAGC-3’ 

for Drd2 downstream; 5’-GTCAGTTCTTGGCCGCAAGC-3’ and 5’-
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ACTTTCCGGGCTTCGGTCTC-3’ for Gabbr1 upstream; 5’-TCCTGCAGTTCCATCCACCA-

3’ and 5’-CCACCCGAGTTTTGGGATTG-3’ for Gabbr1 downstream; 5’-

GCGATACCGTAAAGCACGAG-3’ and 5’-GCTTGGGTGGAGAGGCTATT -3’ for Neo
r
 

probe.  

Histochemistry 

Mice were deeply anesthetized with an overdose i.p. injection of pentobarbital. After intracardiac 

perfusion with 4% PFA in PBS, the OB was dissected and post-fixed in 4% PFA in PBS 

overnight. The OB was then cryoprotected with 30% sucrose, and then embedded in OCT 

Compound (Sakura). Frozen sections were cut at 18m thick with a cryostat (Leica). Antigen 

retrieval was performed by heating in a microwave oven for 5 min in Histofine antigen retrieval 

solution pH9 (Nichirei, #415201). Sections were pretreated with 4% PFA in PBS, and 5% 

Donkey serum (Jackson) in PBS with 0.1% Triton-X100. Rabbit anti-Drd2 (Millipore, 

AB5084P) and guinea pig anti-Gabbr1 (Millipore, AB2256) were used at 1:100 and 1:500 

dilutions, respectively. AlexaFluor647-conjugated secondary antibodies (Life technologies, 

A31573 and A21450) were used at 1:200 dilutions. Sections were counterstained with DAPI 

(Dojindo). Immunofluorescence was imaged with an inverted confocal laser-scanning 

microscope (Olympus, FV1000) using a 20x dry objective lens (Olympus). 

In vivo two-photon imaging 

In vivo imaging of the OB and OE was performed as described previously (Iwata et al., 2017).  

Adult mice (8-16 weeks of age) were used for imaging. Surgery and imaging under anesthesia 

was performed under ketamine/xylazine (80 mg/kg and 16 mg/kg, respectively) anesthesia. 

During surgery and imaging, the depth of anesthesia was assessed by the toe-pinch reflexes, and 

supplemental doses were added when necessary. For the imaging of the OB, a craniotomy (2-3 

mm in diameter) was made over the dorsal OB leaving the dura mater intact. The OB was 

covered with a thin layer of silicone sealant (Kwik-Sil, WPI) and a 3 mm diameter circular 

coverslip (Matsunami), which was secured with super-glue and dental cement (Shofu).  For the 

imaging of the OE, the dorsal part of the D zone (zone 1) OE was imaged through the thinned 

nasal bone. We used a dental drill with a 1mm drill tip to evenly thin the nasal bone. PBS was 

applied to the thinned area during the imaging. For head-fixation, a custom aluminum head bar 

(4 × 22 mm) was glued to the skull behind the cranial window. Body temperature was 

maintained with a heating pad (Akizuki, M-08908). In some experiments (Figure S1F, G), we 

imaged awake mice as described previously (Guo et al., 2014; Iwata et al., 2017). Water-

restriction was started 2-3 days after surgery. Mice under water-restriction were acclimated to 

head-fixation in an acrylic tube within 3-4 days, 30 min each. Mice were kept in the acrylic tube 

during the imaging. Imaging with artificial sniffing was performed as described previously 

(Iwata et al., 2017). The silicon tube inserted into trachea was connected to a solenoid valve, a 

flow meter, and an air suction pump in all the experiments. The solenoid valves for nasal airflow 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2019. ; https://doi.org/10.1101/803908doi: bioRxiv preprint 

https://doi.org/10.1101/803908
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

and odor delivery were regulated through relay circuits and the computer programs were written 

in LabVIEW (National Instruments). 

 

Olfactometry 

Olfactory stimulation using olfactometer was described previously (Iwata et al., 2017). The 

olfactometer consists of an air pump (AS ONE, #1-7482-11), activated charcoal filter (Advantec, 

TCC-A1-S0C0 and 1TS-B), and flowmeters (Kofloc, RK-1250). Odorants were diluted at 0.5% 

in 1 mL of mineral oil in a 50mL centrifuge tube. Saturated odor vapor in the centrifuge tube was 

delivered to a mouse nose with a Teflon tube. The tip of the Teflon tube was located 1 cm from 

the nose of animals. Diluted odors were delivered at 1 L/min. Odorants (amyl acetate, heptanal, 

valeraldehyde, and cycrohexanoate) were purchased from Tokyo Kasei (cat# A0021, C0489, 

V0001, H0025), stored at 4˚C, and diluted in mineral oil just prior to use. 50 mL centrifuge 

tubes and Teflon tubes were replaced to new one every time we change odors. 

Image data analysis 

All image data analysis was performed in MATLAB (Mathworks). Lateral drift in time-lapse 

imaging data was corrected using custom code based on correlation coefficient. ROIs for 

glomeruli and somata were manually determined. The F was normalized to the mean intensity 

for 10 s before stimulus onset (F0), and the response amplitude was defined as the mean F/F0 

during the first 20 s after stimulus onset. When the mean F/F0 was higher or lower than 3SD of 

basal fluctuation level before stimulation onset, the response was categorized as excitatory or 

inhibitory, respectively. Some glomeruli or OSNs demonstrated tonic increase or decrease of 

GCaMP fluorescence before odor stimulation. We therefore excluded data when a response slope 

(0-3 s after the stimulus onset) of a glomerulus/OSN was within 50-150% of that before stimulus 

onset. To detect complex responses, the mean F/F0 during the 0-10 s and 10-20 s after 

stimulation onset were compared to F0 ± 3SD of basal fluctuation level before stimulation onset, 

respectively. If one of them showed significantly higher value and another showed lower value, 

the responses were categorized as complex responses. Temporal median filtering with 3 s 

window size was applied to the data of OSN somata to make its noise fluctuation level similar to 

those of glomeruli. To determine the antagonistic effects in odor mixture experiments, we 

performed two-tailed t-test with Odor2 (one of the two odorants, evoking higher response than 

the other) and Odor1+2. As for the enhancer effects in mixture experiments, we compared linear 

summation of Odor1 and Odor2 responses versus Odor1+2 response. Codes are available upon 

request. 

Luciferase assay 

Luciferase assay with HEK 293 cells (293AAV cell, Cell Biolabs) was performed as described 

previously (Tsuboi et al., 2011). ORs and Rtp1 (coding for RTP1S) genes were PCR amplified 
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from cDNA prepared from C57BL6/N mouse OE and subcloned into pME18S-F-R vector and 

pcDNA3, respectively. In pME18S-F-R vector, OR genes are expressed under SR promoter. 

OR has N-terminal FLAG-tag and 20aa rhodopsin tag to facilitate cell surface expression. Cells 

were grown in DMEM supplemented with 10% FBS and 1% Penicillin/Streptomycin. Cells 

seeded in 96-well white-well plates (60% confluent) were transfected with pME18S-F-R-OR 

(125 ng/well), CRE-Luc2P (25 ng/well; Promega pGL4.29), TK-hRluc (25 ng/well, Promega 

pGL4.74) and pcDNA3-RTP1s (25 ng/well) using PEI Max (Polysciences, Inc.). Twenty-four 

hours after the transfection, the medium was replaced with DMEM with odor ligands and 

without serum. To avoid contamination of odors to other wells, wells were separated at least 3 

wells from the ones containing different stimulation medium and sealed with a plastic film, 

SealPlate (Excel Scientific, #STRSEALPLT), during incubation. Cells were incubated for 4 hrs, 

and then Luc2P and hRluc activities were quantified with Dual-Glo Luciferase assay system 

(Promega, #E2920) and a luminometer, model TriStar LB941 (Berthold). Data are mean ± SD 

based on 3 and 6 replicates for agonist and inverse-agonist in one representative experiment, 

respectively. Hill curve fitting was applied to the dose-response data by using Prism software 

(GraphPad Software).  Reproducibility was confirmed by multiple experiments. Newly generated 

pME18S-F-R-OR plasmids will be deposited to Addgene. To identify inverse agonists, we have 

analyzed 85 ORs. In the initial screen, we identified 11 ORs showing the highest basal activity 

without odorants. We then analyzed responses to 9 odorants (amyl acetate, acetophenone, 

benzaldehyde, cyclohexanone, ethylhexanoate, heptanal, hexanoic acid, valeraldehyde, and 

methyl valerate at 300 M). Agonists and inverse agonists were further analyzed for dose-

response curves. 

Statistical analysis 

MATLAB Statistics Toolbox was used for statistical analysis. Number of glomeruli, cells and 

mice was described within figure legends. No blinding was performed in data analysis. Two-

tailed Student t-test was used in Figure 4 and 5. Statistical significance was set at P < 0.05. We 

did not perform data exclusion.  

DATA AND SOFTWARE AVAILABILITY 

Newly generated plasmids will be deposited to Addgene. Requests for additional data should be 

directed to and will be fulfilled on reasonable request by the Lead Contact, Takeshi Imai (t-

imai@med.kyushu-u.ac.jp). 
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SUPPLEMENTAL FIGURES 

 

Figure S1. Inhibitory responses at OSN axon terminals. 

(A) Temporal profiles of odor-evoked responses at OSN axon terminals. The responses were 
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sorted based on the number of odorants that elicited odor-evoked responses and their amplitudes. 

Inhibition was commonly found among different odorants. N = 299 glomeruli from 5 mice. 193 

glomeruli showing significant responses to at least one odorant are shown. 

(B) Reproducibility of odor-evoked excitatory and inhibitory responses (N = 3 trials each). The 

glomeruli showed consistent responses to repeated stimuli. 

(C) Spatiotemporal profiles of odor (Val) -evoked excitatory and inhibitory responses at OSN 

axon terminals in the glomerular layer. Scale bar, 250 μm. 

 (D-G) Widespread inhibitory responses in both anesthetized (D, E) and awake (F, G) animals (N 

= 3). Larger responses seen in awake mice may be due to the higher sniffing speed/rate. 

Temporal profiles (D, F) and polarity of odor-evoked responses (E, G) in all glomeruli are shown. 

N = 105 glomeruli from 5 mice. 84 and 99 glomeruli showing significant responses to at least 

one odorant are shown for anesthetized and awake state, respectively. 
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Figure S2. Inhibitory responses by airflow stimulation. 

(A) Artificial sniffing system to examine the mechanosensation (left, Increased airflow) and odor 

responses (right, Val) in tracheotomized and anesthetized mice. Increased airflow or Val 

stimulation was applied during artificial sniffing (bellow). The timing of airflow generation was 

controlled by the opening of electromagnetic valves. 

(B) Excitatory and inhibitory responses seen for increased airflow (center) and Val stimuli (right). 

Excitatory and inhibitory responses are shown in red and blue, respectively. Scale bar, 200 μm. 

(C) Representative mechanosensory responses to increased airflow and Val-evoked responses. 

Pulsed airflow (2Hz, 250 ms on and 250 ms off) was artificially produced during the imaging 

session. Increased airflow (300 to 600 mL/min) or Val stimulation was delivered to the same 

animal for 5 s (shown in gray). 

(D) Fraction of glomeruli showing excitatory and inhibitory responses to increased airflow and 

Val stimuli. N = 149 glomeruli from 3 mice. 
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Figure S3. OSN-specific GABARB1 and D2R knockout mice and OSN-specific TeNT 

knock-in mice. 

(A) Gene targeting at Drd2 locus. We obtained germline transmission from one ES clone, 

HEPD064_5_D11. 

(B) The Drd2 locus in Drd2
tm1a

, Drd2
fl
 (= Drd

tm1c
) and Drd

cKO
. Drd2

+/tm1a
 mice were crossed 

with Flp mice to obtain Drd2
+/fl

.  

(C) Gene targeting at Gabbr1 locus. We obtained germline transmission from one ES clone, 

EPD0730_1_G04. 
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(D) The Gabbr1 locus in Gabbr1
tm1a

, Gabbr1
fl
 (=Gabbr1

tm1c
), and Gabbr1

cKO
. Gabbr1

+/tm1a
 mice 

were crossed with Flp mice to obtain Gabbr1
+/fl

. 

(E-G) Southern blot analysis on Drd2
+/+

 and Drd2
tm1a/+

 (E, Drd2 probe), Gabbr2
+/+

 and 

Gabbr2
tm1a/+

 (F, Gabbr1 probe); Drd2
tm1a/+

 and Gabbr1
tm1a/+

 (G, neo
r
 probe).   

(H) Immunostaining of D2R in the OB of OSN-specific Drd2 mutant mice. 

(I) Immunostaining of GABARB1 in the OB of OSN-specific Gabbr1 mutant mice. 

Location of 5’ and 3’ arms for gene targeting, and 5’ and 3’ DNA probes for southern blotting 

are shown in (A) and (C). KpnI (K), SpeI (S), XhoI (X) and ApaI (A).  
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Figure S4. OSN-specific TeNT knock-in mice. 

(A) OMP-Cre knock-in mice were crossed with R26-CAG-loxP-TeNT knock-in mice to obtain 

OSN-specific TeNT knock-in mice (OSN-TeNT). VAMP2 staining was eliminated at OSN axon 

terminals in this mouse (Fujimoto et al., 2019).  

(B) Thy1-GCaMP6f mouse line was used to examine the odor responses in OSN-TeNT mice. (C, 

D) Odor-evoked responses of M/T cells in wild-type (C) and OSN-TeNT mice (D). Summary of 

odor-evoked responses in total glomeruli are shown. Odor-evoked responses were almost 

completely abolished in OSN-TeNT mice. Instead, the M/T cells demonstrated synchronized and 

oscillatory spontaneous activity (D). N = 440 odor-glomerulus pairs (55 glomeruli) from 3 mice; 

OSN-TeNT, N = 496 odor-glomerulus pairs (62 glomeruli) from 3 mice. Tested odorants are: 

amyl acetate, acetophenone, benzaldehyde, cyclohexanone, ethyl hexanoate, heptanal, hexanoic 

acid, and valeraldehyde, diluted at 0.5%. 

(G, H) Temporal kinetics of excitatory (G) and inhibitory responses (H) of OSN axon terminals 

averaged across different fraction of odor-glomerulus pairs. For fair comparison across mutant 

lines, the top (1, 3 and 5%) and bottom (1, 2 and 3%) fractions were used to show averaged 

excitatory and inhibitory response kinetics, respectively.  
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Figure S5. Inhibitory responses in the OSN somata in the OE. 

(A) Temporal profiles of odor-evoked responses in OSN somata. The responses were sorted by 

the number of odorants that elicit odor-evoked responses and their amplitude. Inhibition was 

commonly found for all four odors. N = 1654 OSNs from 4 mice. 976 OSNs showing significant 

responses to at least one odorant are shown. 

(B) Spatiotemporal profiles of odor (Val) -evoked excitatory (red) and inhibitory (blue) 

responses in the OSN somata in the OE. Scale bar, 200 μm. 

(C) Comparison of OSN axon terminals vs OSN somata. Cumulative histogram of response 

amplitude for axon terminals and somata. Inset includes expanded x- and y-axes to display the 

population showing inhibitory responses. N = 1192 odor-glomerulus pairs from 5 mice for axon 

terminals; N = 6616 odor-OSN pairs from 4 mice for somata. 

(D) Temporal kinetics of excitatory and inhibitory responses in OSN somata and axon terminals. 

For fair comparisons, the top 3% and bottom 1% were averaged for excitatory and inhibitory 

traces, respectively. Data are from 35 and 11 odor-glomerulus pairs for excitatory and inhibitory 

responses, respectively, at axon terminals; Data are from 198 and 66 odor-OSN pairs for somata. 
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Figure S6. Representation of odor mixtures at OSN axon terminals and somata. 
Summary of OSN axon terminals (A-C) and somata (D-F) responses in different odor mixture 

pairs (A, D: Aa vs Hep; B, E: Aa vs Cyh; C, F: Val vs Cyh) are shown. N = 131 glomeruli from 

3 mice; N = 862 OSNs from 3 mice. Data are shown for 91 (A), 789 (B), and 88 (C) glomeruli 
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for OSN axon terminals; N = 581 (D), 469 (E) and 548 (F) OSNs for somata, showing significant 

responses to at least one condition. 

(i) Summary of OSN responses. Glomeruli or somata are sorted based on the k-means clustering 

of response profiles.  Eight clusters are shown.  

(ii) Fraction of glomeruli/OSNs showing excitatory (E), inhibitory (I), or null (N) responses to 

the two odorants. OSNs were categorized into E-E, N-E, N-N, N-I, I-I, and E-I. 

(iii) Antagonism seen for E-E and N-E glomeruli/OSNs. Responses to odor 1 (odorant showing 

smaller response), odor 2 (larger response), and the mixture of them are shown. Blue lines 

indicate glomeruli/OSNs in which odor 1 inhibited responses to odor 2. All other remaining 

glomeruli/OSNs in this category are shown in gray. 

(iv) Enhancer effects seen for N-E and N-N categories. Responses to odor 1 (smaller response), 

odor 2 (larger response), and the mixture of them are shown. Red lines indicate OSNs in which 

odor 1 non-linearly enhanced responses to odor 2. All other remaining OSNs in this category are 

shown in gray. 

(v) Fraction of OSNs demonstrating antagonism and enhancer effects in mixture experiments, 

shown for each glomerular group.  
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