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Abstract:  

Deep convolutional neural networks (CNN) enabled a major leap in image processing tasks including brain imaging analysis. In 

this work, we present a Deep Learning framework for the prediction of chronological age from structural MRI scans of healthy 

subjects.  Previous findings associate an overestimation of brain age with neurodegenerative disease and higher mortality rates. 

However, the importance of brain age prediction and its discrepancy from the corresponding chronological age go beyond 

serving as biomarkers for neurological disorders. Specifically, utilizing CNN analysis to identify and locate brain regions and 

structures that contribute to the prediction can shed light on the complex multivariate process of brain aging. Previous work 

examined methods to attribute pixel/voxel-wise contribution to the prediction in a single image, resulting in ‘explanation maps’ 

(EM) that were found noisy and unreliable. To address this problem, we developed a novel inference framework for combining 

these maps across subjects, thus creating a population-based rather than subject-specific map. We apply this method to a CNN 

ensemble trained on predicting subjects’ chronological age from raw anatomical T1 brain images of 10,176 healthy subjects, 

obtained from various open-source datasets. Evaluating the model on an untouched test set (n = 588) resulted in MAE of 3.07 

years and a correlation between the chronological and predicted age of r=0.98. Using the inference method, we revealed that 

cavities containing CSF, previously found as general atrophy markers, had the highest contribution for age prediction in our 

model. These were followed by subcortical GM, WM, and finally cortical GM. Comparing these maps derived from different 

models within the ensemble allowed to assess differences and similarities in the brain regions utilized by the model. To validate 

our method, we showed that it substantially increases the replicability of the EM as a function of sample size. Moreover, 

benchmarking our results against a baseline of voxel-based morphometry (VBM) studies revealed a significant overlap. Finally, 

we demonstrate that the maps highlight brain regions whose volumetric variability contributed the most to the model prediction.  

 

Highlights:  

• CNNs ensemble is shown to estimate “brain age” from sMRI with an MAE of ~3.1 years 

• A novel framework enables to highlight brain regions contributing to the prediction 

• This framework results in explanation maps showing consistency with the literature 

• As sample size increases, these maps show higher inter-sample replicability 

• CSF cavities reflecting general atrophy were found as a prominent aging biomarker 
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1. Introduction 

The human brain undergoes complex structural changes across the lifespan (Sowell, Thompson, & Toga, 

2004). These include widespread synaptic pruning and myelination from early life through puberty and 

neurodegenerative processes, such as ventricle expansion and cortical thinning that peaks at aging. The 

course and extent of these changes are not uniformly distributed across the brain (Storsve et al., 2014). 

Thus, for example in healthy aging, higher atrophy rates were reported in the hippocampus, while regions 

like the early visual cortex remain relatively intact (but see: Lemaitre et al., 2012). Nevertheless, studies 

that examined the correspondence between brain structure and chronological age provide inconsistent 

findings. Such inconsistencies may be related to the specific parcellation schemes employed (Mikhael & 

Pernet, 2019), surface-based structural measurements (Lemaitre et al., 2012) or global volume covariates 

(Jäncke, Mérillat, Liem, & Hänggi, 2015). These concerns add to discrepancies due to the usage of 

relatively small samples and different statistical procedures, which together impede the attempts to 

characterize the relation between aging and structural changes in the brain. 

Studying brain aging has important implications for differentiating typical and pathological aging. 

Alzheimer’s disease (AD), the most prevalent type of dementia, affects about 22% of the population over 

the age of 75 (in the US, 2010; Hebert, Weuve, Scherr, & Evans, 2013). AD patients exhibit extensive 

cell loss in cortical and subcortical regions, but such findings are also evident in typical aging (Arendt, 

Brückner, Morawski, Jäger, & Gertz, 2015). Moreover, behavioral manifestations such as cognitive 

decline and memory deficits that accompany AD, are also apparent in aging in the absence of AD 

(Cardenas et al., 2011; Koen & Yonelinas, 2014). Thus, a reliable measure of typical brain aging may be 

beneficial in order to better distinguish between the two (Lorenzi, Pennec, Frisoni, & Ayache, 2015). 

1.1. Predicting age from structural brain imaging using machine learning 

Recent growth in data availability and advancements in the field of machine learning (ML), applied to the 

analysis of structural imaging, have allowed addressing regression problems such as brain age prediction 

based on preselected sets of anatomical features or regions of interest (ROIs). Predicting age from brain 

anatomy enables to estimate a measure of “brain age” which is independent of one’s chronological age. 

Different studies generally reveal that an over-estimation of that measure is associated with 

neurodegenerative diseases and various clinical conditions and might even predict mortality (Cole et al., 

2018). Hence, brain age estimation could be used as a potential biomarker for brain health (Cole & 

Franke, 2017). While ML methods were shown to provide a mean error of ~5 years (Cole & Franke, 

2017), age predictions are largely dependent upon the selection of features that would be used as input to 

the algorithm. 
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1.2. Application of deep Convolutional neural network for predicting “brain age”  

Deep Convolutional neural network (CNN) has enabled a major leap in many applications including 

neuroimaging analysis, among others, by learning the features, or representation from the raw data, i.e., 

an image or a volume (Goodfellow, Bengio, & Courville, 2016). CNNs are biologically inspired 

algorithms in which the connectivity between the different neurons implements a convolution operation. 

The neurons are ordered in stacked layers in a hierarchical deep formation and hence they are termed 

deep CNN (LeCun, Bottou, Bengio, & Haffner, 1998). CNN based models achieved state-of-the-art 

results in serval neuroimaging tasks including cortical segmentation and tumor detection (Kamnitsas, 

Chen, & Ledig, 2015; Pereira, Pinto, Alves, & Silva, 2016) and were recently applied to age prediction 

from raw T1 magnetic resonance images (MRI) images (Cole, Poudel, et al., 2017). Nonetheless, 

significant improvement can still be achieved by substantially increasing the sample size and utilizing 

practices such as prediction based on an ensemble of models. Both of these approaches were shown to 

produce a remarkable improvement in other visual task domains (Lee, Purushwalkam, Cogswell, 

Crandall, & Batra, 2015).  

1.3. Model interpretability – which brain regions underlie a given prediction? 

A major limitation of studies utilizing CNNs, pertains to the issue of the model interpretability. While 

CNNs have provided high accuracy for age prediction (Cole & Franke, 2017; Qi, Du, Zhuang, Huang, & 

Ding, 2018), it is typically difficult to identify the features that enabled a given prediction. Several recent 

studies attempted to identify or visualize intermediate representations of the CNN (Olah et al., 2018), but 

still, the size and complexity of the networks make it a challenging task. In the context of structural 

neuroimaging analysis, there might be an advantage to focus on the input level since it could be directly 

related to specific brain structures. Knowing which image parts, or in the current research, brain regions 

or neural attributes, contribute most to the prediction have theoretical as well as translational value. A 

possible approach to this issue is the usage of “saliency maps” or “explanation maps” indicating the 

influence of each voxel in the input volume on the model’s prediction. Such a map can be generated by 

calculating the partial derivative of each voxel in the input volume with respect to the model’s output 

(Simonyan, Vedaldi, & Zisserman, 2013; Springenberg, Dosovitskiy, Brox, & Riedmiller, 2014). 

However, local gradients in non-linear functions such as CNN were previously shown to be noisy. Recent 

work has demonstrated that this could be partially addressed by repeatedly calculating and averaging 

several explanation maps derived from the same input after adding random noise to it (Smilkov, Thorat, 
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Kim, Viégas, & Wattenberg, 2017). Nevertheless, these explanation maps are typically created on a single 

sample, hence they provide only a subject-specific rather than a population-based explanation (Yang, 

Rangarajan, & Ranka, 2018). In a task or a model were large variability exists in these explanation maps, 

i.e., if different subject-level maps highlight different regions, any translational or theoretical conclusion 

drawn from it could only be subject-specific. 

1.4. The current study 

In light of the limitations outlined above, we aimed to examine brain aging using a CNN model for “brain 

age” prediction and identify the brain structures that supported this prediction. Therefore, this study has 

two important contributions. The first is the prediction model, which is composed of an ensemble of 

multiple CNNs trained to predict individuals’ age from minimally processed T1 MRI scans.  The model 

was trained and tested on an aggregated sample size of 10,176 subjects, from several large-scale open-

access databases (n = 15), producing a result robust to scanner’s type, field strength, and resolution. 

Second, we provided and validated a novel framework for identifying the importance of the various 

anatomical brain regions to the prediction by aggregating multiple subject-level explanation maps, 

creating a population-based map. Combining subject-level maps into a population-based map is done by 

image realignment after training the model, thus no special preprocessing or architecture modification is 

required, as opposed to previous work (Ito et al., 2018). We empirically show that this significantly 

improves the explanation maps and allows the inference from the model back to the brain’s anatomy. The 

use of an ensemble of CNNs, apart from an increase in prediction accuracy, allows examining the 

diversity and the similarity of independently trained models, or to what extent different models exploit 

similar brain regions for the age prediction.  

2. Material and methods 

2.1. Datasets 

To train a model that is robust to different sites and scanning protocols, we collected a dataset of T1w 

MRI brain scans of 10,176 individuals from various open-databases (n = 15), acquired at different 

locations, scanners, and scanning parameters. Several databases from longitudinal studies consist of brain 

scans acquired at several time-points. For these databases, we only used scans of the first time point to 

avoid data leakage between the train and validation/test sets. Three exclusion criterions were applied to all 

subjects: missing age report, major artifacts in a visual inspection of the T1 volume and diagnosis of AD 

or another form of dementia. The complete list of studies, age, and gender distributions are reported in 

Table 1.  
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Table 1. List of all studies which comprise the dataset. For each study, the number of available subjects (N), the mean and 

standard deviation of the age and gender distribution are provided. * To prevent participant identification in the GSP 

study age was rounded to the closest 2 years bin.  

Study/database N Age M(± SD) Gender (F;M) 

Consortium for Reliability and Reproducibility 

(CoRR; Zuo et al., 2014) 

1378 26.0 (±15.8) 693; 685 

Alzheimer's Disease Neuroimaging Initiative (ADNI; 

Jack et al., 2008) 

1476 73.0 (±7.0) 563; 912 

Brain Genomics Superstruct Project (GSP; Buckner, 

Roffman, & Smoller, 2014)* 

1099 21.5 (±2.9) 630; 469 

Functional Connectomes Project (FCP; Biswal et al., 

2010) 

1067 28.9 (±13.9) 594; 473 

Autism Brain Imaging Data Exchange (ABIDE; Di 

Martino et al., 2014) 

1053 17.1 (±8.1) 153; 900 

Parkinson's Progression Markers Initiative (PPMI; 

Marek et al., 2011) 

702 61.7 (±10.2) 260; 442 

International Consortium for Brain Mapping (ICBM; 

Mazziotta, Toga, Evans, Fox, & Lancaster, 1995) 

641 30.6 (±12.2) 293; 348 

Australian Imaging, Biomarkers and Lifestyle 

(AIBL; Ellis et al., 2009) 

616 72.9 (±6.6) 342; 273 

Southwest University Longitudinal Imaging 

Multimodal (SLIM; Liu, Wei, Chen, Yang, & Meng, 

2017) 

574 20.1 (±1.3) 320; 252 

Information extraction from Images (IXI; 

Heckemann et al., 2003) 

563 48.2 (±16.5) 312; 252 

Open Access Series of Imaging Studies (OASIS; 

Marcus, Fotenos, Csernansky, Morris, & Buckner, 

2010; Marcus et al., 2007) 

402 51.6 (±24.9) 257; 145 

Consortium for Neuropsychiatric Phenomics (CNP; 

Poldrack et al., 2016) 

252 33.3 (±9.3) 112; 153 

Center for Biomedical Research Excellence 

(COBRE; Mayer et al., 2013) 

146 37.0 (±12.8) 37; 109 

Child and Adolescent NeuroDevelopment Initiative 

(CANDI; Frazier et al., 2008) 

103 10.8 (±3.1) 46; 57 

Brainomics (Pinel et al., 2012) 89 24.7 (±6.8) 47; 42 

Overall  10174 39.4 (±23.8) 4659; 5511 

 

2.2. Data preprocessing 

To minimize the model reliance on preprocessing steps such as image realignment and registration that 

are both computationally intensive and time-consuming, we designed a minimal preprocessing procedure. 

To ensure that the model “brain age” estimation would rely solely on regions within the skull, the only 

substantial preprocessing step was the removal of extra-cranial regions from the volume. Thus, the 

preprocessing procedure included 4 stages: Applying a coarse (90°) rotation so that all the volumes would 
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appear in similar L-R, A-P, S-I orientation (FSL fslreorient2std tool; Woolrich et al., 2009), skull 

removing tool (ROBEX; Iglesias, Cheng-Yi Liu, Thompson, & Zhuowen Tu, 2011), volume resize to 

standard size (90, 126, 110) and volume standardization (μ=0, σ=1).  Resizing of each volume was 

implemented by applying an identical scaling factor to all 3 dimensions, such that brain voxels (> 0) 

would occupy the maximum portion within the final volume (90, 126, 110). For each volume, voxels’ 

intensities were standardized by a subtraction of the volume’s mean intensity followed by division by the 

intensity’s standard deviation. 

2.3. Data augmentation 

Head orientation, the field of view (FOV) and the level of signal to noise ratio (SNR) may differ between 

scans even if they were acquired by the same machine and are of the same subject. To improve the 

robustness of the models to these variations we augmented the training data by randomly manipulating 

the head position, size, and noise level. This procedure was previously shown to improve generalization 

and avoid overfitting (Simard, Steinkraus, & Platt, 2003). Specifically, the series of transformation to the 

brain image included rotation in the x/y/z-axis 𝑢𝑛𝑖𝑓(−10°, 10°), shifting 𝑢𝑛𝑖𝑓(−5,5) voxels, scaling 

𝒩(0,0.1) and adding random noise 𝒩(0,0.015). The optimal augmentation parameters were chosen as the 

ones that maximized the validation accuracy using a random hyperparameter search. 

2.4. CNN architecture 

The CNN models were implemented using Keras (François Chollet and contributors, 2015) with 

TensorFlow (Abadi et al., 2016) backend. Each 3D CNN model was trained separately to predict age 

from a T1 MRI. The input for each network was a 3D volume, of size [90, 126, 110] and the output was a 

single scalar representing chronological age (years). The model was composed of 2 blocks, each with a 

batch normalization layer (Ioffe & Szegedy, 2015) followed by two 3D convolutional layers and a max-

pooling layer. The two blocks were followed by 2 fully connected layers (FC). All layers, but the last 

fully connected one were followed by a ReLU non-linear activation (Nair & Hinton, 2010). To reduce 

overfitting, we added dropout layers after the convolutional layer and before the last layer for the training 

stage (see Fig. 1a for the complete architecture). The loss function for each CNN was the mean squared 

error between the real and predicted age. The network architecture was chosen using random 

hyperparameters search.  
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Figure 1. Network architecture for age prediction. (a) The detailed architecture of the network used for age prediction 

from 3D T1 MRI volume. BatchNorm = batch normalization, Conv = convolutional layer, = rectified linear unit, FC = 

fully connected layer. (b) The ensemble procedure combining the output of ten separately trained CNNs (Γ1-10) using 

linear regression to create the final age prediction. 
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2.5. The ensemble model 

The ensemble in the current work included multiple 3D CNNs (m = 10) each trained separately to predict 

age from a T1 MRI. As in previous work utilizing CNNs (Lakshminarayanan, Pritzel, & Blundell, 2017; 

Lee et al., 2015), ensemble models differ only in their random weight initialization. Hence, they had 

identical architecture and were trained on the same data set. We picked m = 10 due to consideration of 

training time given the large number of parameters in a 3D CNN and the large training set. After each 

network was independently trained, a linear regression model for age prediction is learned from the outputs 

of the ten networks using the same training set (see Fig. 1b). In Section 2.9 we describe the measures of the 

models’ similarity/diversity using our proposed population-based explanation map. 

2.6. Performance metrics 

 All databases were randomly divided into training (90%), validation (5%) and test (5%) sets. The training 

set was used to train each network separately and to find the optimal ensemble weights. The validation set 

was used for hyperparameters tuning and to assess over-fitting. All performance measures were calculated 

on the untouched test set. The prediction was evaluated using mean absolute error (MAE) and the Pearson 

correlation coefficient between the network prediction and the chronological age values.  

2.7. Individual explanation maps 

We employed the SmoothGrad method (Smilkov et al., 2017) that was implemented using iNNvestigate 

(Alber et al., 2018). This is a gradient-based method in which a given input image is first distorted with 

random noise from a normal distribution N(μ=0, σ=0.1), then the partial derivative of each voxel is 

computed with respect to the trained model’s output. This was repeated several times (k = 32), then the 

produced gradient maps were averaged. We used partial derivative following Adebayo et al., (2018) work 

that demonstrated that it best captures the CNN’s training process. 

 

2.8. Aggregating explanation maps across samples 

First, the models preprocessed input was transformed into the raw anatomical space using FSL FLIRT 

(Jenkinson, Bannister, Brady, & Smith, 2002) followed by surface-based non-linear registration to the 

MNI space using Freesurfer (Greve & Fischl, 2009). The transformations were computed on the T1 

images, then applied to the explanation maps. The complete pipeline was created using Nipype ( 

Gorgolewski et al., 2011). Next, each volume is standardized (μ=0, σ=1), and smoothed with a 3D 

Gaussian using Scikit-image (Full width at half maximum = 4; van der Walt et al., 2014). Finally, all 

volumes were averaged to create population-based explanation maps. In line with previous work, we used 
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the absolute value of the resulting maps (Ancona, Ceolini, Öztireli, & Gross, 2017). To identify regions 

with the highest contribution to the model’s prediction, we threshold the map, keeping only 1% of the 

voxels with the highest gradient value (see fig. 2 – for the inference scheme). To create an ensemble 

population-based map, we aggregate these population-based maps generated for each of the ten CNN by 

taking the median of each voxel across the ten maps. We will refer to the statistics obtained for these 

explanation maps, which is the standardized partial derivative, as an explanation score (ES). 

 

 

Figure 2. A layout of the inference scheme. For a subset of n subjects, an explanation map was computed, representing the 

contribution of each voxel to the model's output.  Each saliency map was first registered to the subject anatomical image, 

then it was transformed to the MNI space. Next, each volume was smoothed with a 3D Gaussian. Finally, all the volumes 

were averaged to create a population-based explanation map.  

 

2.9. Assessing the similarity of explanation maps within the ensemble 

To assess the diversity among independently trained CNNs, or the extent to which different CNNs utilize 

different brain regions for the prediction, we examined the similarity among their explanation maps. 

Specifically, the similarity between each pair of population-based explanation maps (n = 100) was evaluated 

with two measures: Dice similarity (Zou et al., 2004) and the modified Hausdorff distance (MHD; 

Dubuisson & Jain, 2002) on the threshold maps. Maps thresholding was generated by taking the absolute 

value of each population-based map, computing the 5th percentile of the ES within the brain mask and 

creating a binarized map for super-threshold values: 𝑓(𝑥) =  {
1 𝑖𝑓 |𝑥| > threshold
0         otherwise        

. For each pair of 

binarized maps, the Dice coefficient was defined as: 𝐷𝑖𝑐𝑒 =  
2 |𝑋 ∩ 𝑌|

|𝑋|+|𝑌|
 , where |𝑋 ∩  𝑌| is the number of 

overlapping super-threshold voxels in both maps, and |X| and |Y| are the number of super-threshold voxels 

for maps X and Y, respectively. MHD was derived by first finding the surface for each cluster of super-

threshold voxels within each map by using a gradient-based edge detector. Then, the MHD, or the 

symmetric average surface distance was calculated as follows: 
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ASD(𝑋, 𝑌) =
1

M𝑥
∑ min𝑖 𝑑(𝑥𝑘 , 𝑦𝑖)    

M𝑥

𝑘=1

 

 

MHD(𝑋, 𝑌) =  
1

2
(ASD(𝑋, 𝑌) +  ASD(𝑌, 𝑋)) 

Where 𝑑 is the Euclidian distance, Mx is the number of voxels in the surface map X and x and y are points 

on the surface in maps X and Y, respectively. Both the MHD and Dice coefficients were calculated for each 

pair of maps creating a distance/similarity matrix. The mean distance/similarity was calculated by taking 

the mean over the lower triangle of that matrix.  

 

2.10. Relating contribution to specific tissues and brain structures 

To obtain a general view of the features utilized by the model, we first segmented the brain volume to 4 

classes of tissue type: cerebrospinal fluid (CSF) and choroid plexus, white matter (WM), subcortical gray 

matter (GM) and cortical GM. These were determined by applying the Desikan-Killiany Atlas (Desikan et 

al., 2006) using Freesurfer on the MNI template. Taking the calculated ensemble population-based 

explanation map, we devised a volume-normalized class ES by dividing the mean ES in each class by the 

total class volume. The resulting class scores were reported as a percentage of the sum of class scores. Next, 

to identify the specific brain regions that contributed the most for predicting age, we identified clusters of 

voxels in the threshold map (1st percentile) using FSL cluster (Woolrich et al., 2009). For each cluster, we 

report the name of the brain region, its MNI coordinates, the cluster size and peak ES within the cluster. 

Brain regions were identified by locating the pick value of each cluster in the Desikan-Killiany Atlas for 

GM structures and with the ICBM-DTI-81 Atlas (Mori, Wakana, Zijl, & Nagae-Poetscher, 2005) for WM 

structures. Since many of the clusters were located within CSF spaces, whose sub-parts are poorly 

delineated in most parcellation, we manually identified sub-divisions of the cisterns and ventricles. The 

unthresholded population-based maps for each of the ten CNN and the ensemble map are available at 

Neurovault (Gorgolewski et al., 2015;  https://neurovault.org/collections/5552/). 

Validating the population-based inference scheme 

2.10.1. Replicability of the produced explanation map as a function of sample size  

To examine whether creating explanation maps based on a larger population would increase the split-

sample similarity, two population-level explanation maps were created by sampling m subjects (m = 1, 6, 

11,…,101) with replacement from two groups. The groups were created by randomly splitting to half, a 
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sample of 200 subjects from the test and validation sets. Each map was thresholded, binarized (see 2.8) and 

the Dice similarity and the MHD were calculated between the two maps as a function of the sample size m. 

The procedure was repeated 100 times, and for each iteration, the 200 subjects were randomly assigned to 

the two groups. This test was repeated independently for each population-based explanation map derived 

from the ten CNNs. 

2.10.2. Benchmarking the results against a standard voxel-based morphometric analysis 

To examine whether the derived explanation map elicits similar regions to those detected with established 

methods, we compared it with a baseline obtained from studies that use voxel-based morphometry (VBM; 

Ashburner & Friston, 2000) to test structural age-related changes. Briefly, in the VBM method, a mass-

univariate test between the tissue composition of any voxel in the brain and a given external variable (age) 

is conducted. To address the differences in brain position and anatomy, all brain volumes are normalized 

to a common space and then smoothed by a Gaussian kernel to account for small registration differences. 

In the current study, we used a published activation likelihood estimation (ALE) meta-analysis of age VBM 

studies (Vanasse et al., 2018). Here, by utilizing peak reported coordinates from several VBM studies (n = 

43), the ALE analysis assigns each voxel the probability that it lies within a reported peak (Laird, Bzdok, 

Kurth, Fox, & Eickhoff, 2011). The ALE value across all the superthreshold (1st percentile) voxels in the 

ensemble population-based explanation map were averaged. This empirical value was compared to a null 

distribution created by randomly sampling one percent of the voxels within the brain mask.   

2.10.3. Specificity of the regions obtained in the analysis to the employment of the current model  

To evaluate the contribution of the regions discovered using the population-based explanation map to the 

prediction of the current model we examined how variability in their age-controlled volume correlated 

with the model’s prediction error. Regional volumes of cortical and subcortical areas were extracted using 

the Desikan-Killiany atlas (Desikan et al., 2006) computed using Freesurfer following by regressing out 

the total intracranial volume (ICV; Voevodskaya et al., 2014). Next, subjects’ chronological age was 

further regressed out from these values to produce the age-normalized volume. Prediction error was 

formulated as the signed difference between the chronological age and the predicted age. The test was 

conducted separately for each anatomical ROI in the parcellation. Specific ROIs within the Desikan-

Killiany parcellation, such as WM hyperintensities and the fifth ventricle, exist for only some of the 

subjects (n= 619; from the test/validation sets), and thus were subsequently excluded (9 excluded, 98 

remained; see supplementary Fig. 6 for the complete list). 
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3. Results 

We start by presenting the model’s ensemble performance for predicting subject chronological age from 

their T1 structural images on an unseen test set (N = 526). Then, using a novel inference scheme, we locate 

the anatomical regions that contributed the most to the model’s prediction. We validate the robustness of 

our inference framework in three ways. First, we demonstrate that it substantially increases reliability 

compared to previous methods, creating more coherent and localized explanation maps. Second, we 

quantitatively compare these explanation maps to age voxel-based morphometric studies, demonstrating 

significant overlap with a simple baseline model. Finally, we demonstrate that this approach enables to gain 

specific insights about the model by identifying brain regions for which the model shows the highest 

sensitivity to inter-subject volumetric variability.  

3.1. Estimating “Brain Age” 

Several attempts were previously made to identify the relation between chronological age and brain 

structure, using various feature extraction techniques, advanced preprocessing methods and a relatively 

limited sample size (Irimia, Torgerson, Goh, & Van Horn, 2015; Kandel, Wolk, Gee, & Avants, 2013; 

Shamir & Long, 2016). Here, we build upon recent progress in utilizing CNNs for predicting chronological 

age from raw structural brain imaging (Cole & Franke, 2017) and introduce substantial improvements using 

an ensemble of models. In the current work, ten randomly initialized CNNs, were separately trained. The 

mean MAE across networks was 3.72 years (± 0.17), and the Pearson correlation between the predicted and 

the chronological age was 0.97 (±0.001). Next, a simple linear regression model was trained on the output 

of each network to find an optimal linear combination between them, yielding an MAE of 3.07 and a 

Pearson correlation of 0.98 to the chronological age (Fig. 3; see supplementary Fig. 1 for evaluation per 

data set).  
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Figure 3. Regression plot of the chronological age compared to the model’s prediction for the test set. The main plot 

depicts the Pearson correlation coefficient between the chronological and the predicted age; the Pearson correlation 

coefficient (r) and the mean absolute error (MSE) are indicated on the plot. The data points are presented with partial 

transparency thus overlapping points are shown in darker gray. The top and right panels of the figure depict histograms 

and kernel density plots of the distribution of the chronological age and the predicted age (respectively) obtained in the 

test set. 

 

3.2. From the model to the brain – a novel inference scheme  

Building upon previous attempts to assign pixel-wise (or voxel-wise) explanation measures to a model’s 

prediction (Smilkov et al., 2017), we propose that creating explanation maps based on a population, rather 

than on a specific sample, may substantially improve the coherence and reliability of these maps. We create 

these maps for each of the ten independently trained CNNs and examine their similarity. Then, using an 

aggregated map across all ten networks we present the brain regions that contributed the most to predicting 

age.  

3.2.1. Assessing the similarity of explanation maps within the ensemble 
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Explanation maps for the ten CNNs, averaged across 100 subjects from the test/validation set were 

produced to create a population-based map (see 2.7; supplementary Fig. 2). First, to assess the similarity 

between each pair of these produced maps among the ten independently trained networks, each map was 

thresholded (5th percentile) and binarized, then the Dice coefficient similarity measure was computed for 

each pair of maps (supplementary Fig. 3). We found a significant Dice similarity across all 45 possible pairs 

(Dice coefficient: m= 0.17, SD =0.058; binomial test: p < 0.001). Since Dice similarity fails to capture the 

relation between two maps that are adjacent in the Euclidean space but non-overlapping, we additionally 

computed the MHD (Dubuisson & Jain, 2002), taking the symmetric average surface distance, among all 

pairs. We found that the mean MHD among all possible pairs was 6.44 mm (SD = 1.22).  Thus, even though 

these different population-based maps were derived from independently trained networks, there is a 

moderate, significant, overlap between them. The fact that this overlap is merely moderate coincide with 

the prediction differences that allow the accuracy gain in ensemble prediction.   

3.2.2.  Mapping the anatomical regions underlying “brain age” prediction 

After estimating the similarity among the different explanation maps for the ten CNNs, we created an 

ensemble population-based map by taking the median value for each voxel across all networks. We report 

how the ES is distributed among different tissue types, and among different anatomical regions in order to 

examine their contribution for age prediction. Testing the volume-normalized contribution of each tissue 

type, we found that cavities containing CSF and choroid plexus had the highest contribution (35.62%), 

followed by subcortical GM (27.66%), WM (19.49%), and finally, cortical GM (17.23%) which contributed 

the least. Table 2 presents the location of clusters (> 100 voxels) in the threshold explanation map (1st 

percentile). We found that the structures contributing most to age prediction in our model were the 

ventricles, subarachnoid cisterns, and their borders (see Fig. 4). Specifically, the 4th ventricle, the ambient 

cistern bilateral to the midbrain, the superior cerebellar cistern, the bilateral Sylvian cistern, the lateral 

ventricles, the interpeduncular cistern, and the right parahippocampal fissure. WM tracks that were found 

important for age prediction were the bilateral tapetum, the right anterior limb of the internal capsule and 

the left medial lemniscus. Finally, the bilateral thalamus and the right precentral gyrus were the GM regions 

that contributed most to the prediction. Both these analyses support the notion that age prediction in the 

current model is largely based on age-related morphological changes in the cavities containing CSF. 

Table 2.  Anatomical location of clusters in the threshold explanation map. MNI coordinates of clusters in the ensemble 

population-based explanation map threshold for the 1st percentile. Cluster size is reported in terms of the number of voxels, 

and the peak ES is the maximum ES within the cluster.  

  

MNI coordinates 
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Region Cluster size x y z Peak ES 

4th ventricle and ambient cistern 5531 -2 -43 -39 4.71 

Superior cerebellar cistern 4619 -3 -55 0 2.54 

R tapetum 1984 27 -43 18 1.35 

L Sylvian cistern 1409 -45 -16 11 1.62 

R Lateral ventricle 1115 6 1 8 1.42 

R Sylvian cistern 1105 41 -20 0 1.56 

R Lateral ventricle 1024 30 -49 2 1.83 

R Anterior limb of internal capsule 847 11 6 2 1.48 

3rd ventricle 787 0 -26 11 1.89 

L lateral ventricle 740 -28 -52 4 2.08 

Interpeduncular cistern 446 1 -17 -22 2.09 

R Sylvian cistern 440 39 12 -20 1.23 

L medial lemniscus 307 -2 -36 -41 1.25 

L thalamus 303 -12 -18 11 0.993 

L ambient cistern 238 -12 -34 -13 1.18 

Tapatum left 231 -26 -49 15 0.989 

R thalamus 212 13 -17 -2 0.925 

L ambient cistern 171 -16 -24 -21 1.17 

R precentral gyrus 127 50 11 29 0.958 

Perihippocampal fissure 110 32 -9 -26 1.06 
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Figure 4. The threshold explanation map shown on a midsagittal (top left), a coronal (top row left) and 3 axial (bottom 

row) slices. Aggregated explanation map across 100 subjects and the ten networks, thresholded for the 1st percentile of the 

ES. Abbreviations: ant. = anterior, cis. = cistern, g. = gyrus, fis. = fissure, ven. = ventricle. For each image, the slice 

number in the MNI template is indicated on the left upper corner. The color bar indicates the values of the ES. 

 

3.3. Validating the population-based inference scheme 

To validate the suggested approach for detecting regional contribution to a CNNs ensemble, we conducted 

three tests. First, we tested the importance of sample size to the explanation maps replicability by testing 

the half-split similarity of these maps as a function of the population size. Second, to test whether these 

results coincide with data from other studies, we tested the similarity of the produced maps to a simple 

baseline of VBM studies meta-analysis. Lastly, to confirm the specificity of these results to the current 

model, we examined whether the produced maps highlight the particular brain regions for which the model 

shows the highest sensitivity to inter-subject volumetric variability.  

3.3.1.  Replicability of the produced explanation map as a function of sample size 
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It is not clear to what extent an explanation map derived from a single sample would indeed represent the 

entire population. To examine this issue, we tested the split-sample similarity of the explanation maps with 

a gradually increasing sample size obtained from two separate groups. In each test repetition (k = 100), the 

groups were created by randomly half-splitting a sample of 200 subjects (see 2.10). We report the Dice 

similarity and the MHD among these maps as a function of the sample size drawn from them (see Fig. 3). 

Across all ten networks, we found an increase of the Dice similarity and a decrease of the MHD as a function 

of the sample size, ranging from a single sample to 101 samples (mean Dice = 0.19, mean MHD = 3.73; 

mean Dice = 0.74, mean MHD = 1.00; respectively) (Fig. 5a, 5b). The relative improvement in the 

replicability of these maps asymptotes at 40-60 subjects, such that adding more samples had little further 

impact. Figure 5c shows 2D glass brain projections of the population-based maps to illustrate the change 

as a function of the sample size, resulting in a visually apparent increase in coherence and decrease in noise. 

These results suggest that whether due to noise or fundamental differences in subject-specific maps, such 

as gender or age group (Jäncke et al., 2015; Tamnes et al., 2013), an explanation produced from a single 

sample has low replicability. Thus, when addressing a general, rather than a sample-specific question, a 

population-based explanation should be favored, as opposed to previous practices in the field (Zhang & 

Zhu, 2018). 

 

Figure 5. The split-sample similarity of the explanation maps as a function of sample size. The similarity of two maps 

produced from an increased sample size from two separate groups (n=100 for each group) was measured using (a) Dice 

coefficient and (b) MHD (mm). The results are reported for all ten CNNs and each is presented in a separate color. (C) A 

visual illustration of an explanation map for network 1 produced by increasing the sample size (from top to bottom, N = 

1,5,10,100).  The error bars represent a 95% confidence interval. 

3.3.2.  Benchmarking the results against a standard voxel-based morphometric analysis 

To quantitatively assess whether the regions detected in the current inference scheme coincide with 

previous findings, we compared the resulting explanation maps to a baseline obtained from VBM studies 

testing structural age-related changes. The VBM method has the desired property of allowing to test the 
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relation between the estimated tissue composition of each voxel and any given relevant variable, age in the 

present case. In contrast, other methods are limited to a specific set of ROIs or a given brain parcellation 

that often fails to properly parcellate non-GM regions. We used a published ALE meta-analysis of age 

VBM studies (n = 15, Vanasse et al., 2018) in which each voxel is assigned with a probability for its location 

in a reported peak coordinate in one of the studies (Laird et al., 2011). Using this map, we examined whether 

that ALE value is significantly higher within the regions identified using the threshold explanation map 

with a permutation test. The mean ALE value within the super-threshold (1st percentile) explanation map 

was higher than any set of randomly selected voxels in the permutation test (k = 10,000; meta-analysis: 

empirical mean ALE: 0.003, p<0.0001; see supplementary, Fig. 4). Interestingly, both methods highlighted 

regions surrounding the lateral and 3rd ventricles, subcortical areas, and the bilateral insulas/sylvian cisterns, 

as opposed to cortical regions that appeared only in the ALE map (see supplementary, Fig. 5).  

3.3.3.  Specificity of the regions obtained in the analysis to the employment of the current model 

Prediction errors could result from the inability of the model to capture the complexity of the brain aging 

process or due to the natural variability in brain morphology within the population. Exploiting the latter, in 

the current analysis we aimed to examine whether prediction error could be associated with volumetric 

variability of specific brain regions. Specifically, by applying the Desikan-Killiany atlas using Freesurfer 

we tested whether age-controlled volume of the ventricles and cisterns that were highlighted by the 

inference scheme were correlated with the CNNs ensemble prediction error. Indeed, we found a significant 

correlation between the age-normalized volume and the prediction error for the ventricles excluding the 4th 

ventricle, the choroid plexus and non-ventricular CSF (n = 619; for all 9 regions but 4th ventricle: r > 0.13, 

p < 0.002). This correlation was higher in these regions than in any other brain region in the parcellation 

supporting the specificity of the results to the regions obtained using the population-based explanation maps 

(see Fig. 4). Interestingly, this specificity was not apparent when examining the correlation between 

regional volume and chronological age, in which significant correlation is seen in almost all regions (> 93% 

of the ROI; see supplementary, Fig. 7). Put differently, while volume of almost all regions correlated with 

age, deviance from the age norm in the ventricles and CSF, detected using the population-based maps, best 

reflected the prediction error. This suggests that the current inference scheme not only detected regions that 

are altered in aging, but it detected the distinct regions that had the highest contribution to the current 

prediction, attesting to the high specificity of this method. 
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Figure 6. Deviation in volume from age norm and prediction error. (a) Graphs of five ROIs, detected with the current 

inference scheme, showing the correlation between the age-controlled volume and the signed prediction error. Age-

normalized volume was computed by regressing out subjects chronological age from the measured volume. Volume was 

determined according to the Desikan-Killiany atlas fitted with Freesurfer. Prediction error was formulated as the 

chronological age minus the predicted age. Note that for the sake of brevity, in the upper five plots, the volume of the 

lateral ventricles and choroid plexus was computed as the sum of their sub-parcellations. (b) The bar graph depicts the 

correlation between the age normalized volume and the signed prediction error for all the 98 regions in the parcellation. 

Positive correlations are presented in blue and negative in orange for simple magnitude comparison. As shown, the age-

controlled volume of cavities containing CSF and the choroid plexus (L/R Lateral Ventricle, L/R inferior Lateral 

Ventricle, 3rd ventricle, non-ventricles CSF, L/R choroid plexus), except for the 4th ventricle, had the largest correlation 

with the model’s prediction error compared with all other WM/GM regions (see supplementary for a figure with the full 

labels). 

 

 

 

  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2019. ; https://doi.org/10.1101/803742doi: bioRxiv preprint 

https://doi.org/10.1101/803742
http://creativecommons.org/licenses/by-nc/4.0/


4. Discussion  

In the current study, we examined whether individuals’ chronological age could be predicted from T1 MRI 

scan and whether it is possible to localize the underlying brain regions that allow such prediction. Using a 

large aggregated sample of 10,176 subjects we trained and validated an ensemble of 3D CNN models, and 

showed that “brain age” could be estimated from raw T1 MRI with MAE of ~3.1 years. We demonstrated 

that the use of an ensemble of models rather than a single estimator reduces the MAE in more than 6 months 

and provided evidence that such gain is due to the difference in the features or brain regions that are utilized 

by each model. Brain age was previously shown to be indicative of neurodegenerative diseases and other 

clinical conditions (Cole & Franke, 2017), thus improving the estimation and the interpretability of this 

biomarker could be an important step toward integrating it in clinical use.  

4.1.  Identifying the brain regions underlying age prediction using population-based explanation 

maps 

Drawing from previous studies aiming at identifying regional contributions to the model’s prediction, we 

aimed to locate the brain regions that governed our brain age estimation. Here we presented a novel 

approach to aggregate multiple explanation maps from several subjects, thus creating a population-based 

map. This was achieved by deriving a series of transformations warping the 3D volumes presented to the 

CNN into the MNI space. We then applied those transformations to the computed explanation maps, thus 

allowing to average different explanation maps in a common space. This approach precludes the need for 

pre-registration to a common template in the training stage, as done previously (Ceschin et al., 2018), a step 

that is error-prone, time-consuming and might result in the loss of relevant structural information (Iscan et 

al., 2015). Importantly, this approach could be used for any ML application for neuroimaging. 

In order to validate our method, we tested how it affects three important aspects. First, we quantitively 

assessed how sample size in population-based maps improved their reproducibility. We reported a 

substantial improvement in split-sample similarity as moving for a map based on a single subject to a map 

based on a population of 40-60 subjects. The low split-sample similarity of single-subject maps emphasized 

the need to apply such classic neuroscience practices when analyzing these explanation maps. Next, we 

demonstrated that despite the methodological differences, the proposed map shows significant similarity 

with ALE maps from age VBM meta-analysis study (Vanasse et al., 2018), attesting to its convergence 

validity. Finally, using regional volumetric measures we demonstrated that brain regions highlighted by our 

method were found as the ones with the highest influence on the model’s prediction, indicating the 

specificity of the derived maps to the current model. 

4.2. Reducing noise or averaging over true relevant population differences? 
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Comparing our approach for deriving population-based explanation maps to one based on a single sample 

as in Smilkov et al. (2017) paper, we demonstrate an increase in reproducibility and a distinct visual 

improvement in these maps’ coherence. We therefore discuss possible mechanisms that may account for 

these findings. In their study, Smilkov et al. (2017) demonstrated that the derivative of CNNs are highly 

noisy, and averaging explanation maps derived from several noised samples of the same input can improve 

these maps. Here, after applying the Smilkov et al. (2017) method, we further averaged multiple explanation 

maps derived from different inputs, i.e. brain volumes of different subjects. A possible explanation to the 

apparent reproducibility improvement is that sampling from the true input distribution (brain volumes of 

different individuals), rather than mere noised samples of the same input, would result in estimation that is 

more robust to local gradient noise. A second, non-exclusive possible account might stem from the fact that 

the model was trained on brain volumes from heterogenic population. Differences in brain aging trajectory 

were found both at the individual level (Raz, Ghisletta, Rodrigue, Kennedy, & Lindenberger, 2010) and 

among different populations, for example in relation to gender (Jäncke et al., 2015). Thus, it is possible that 

the model extracts different features due to relevant structural variability in different populations. 

4.3. The ventricles and cisterns as biomarkers for brain aging 

Aging is accompanied by multiple processes affecting the human brain, manifested in structural changes 

that could in part be quantified by neuroimaging (see: Lorio et al., 2016). Accordingly, a wealth of literature 

reported a complex pattern of morphological changes evident across all brain regions, but arguably more 

apparent in some areas such as the frontal lobes, insular cortices, and the hippocampus (Fjell et al., 2009). 

Interestingly, in our model, it is the ventricles and cisterns that were highlighted as the most relevant for 

age prediction. Several possible reasons might account for this finding. First, CSF volume was found to 

increase already from young adulthood (Courchesne et al., 2000), thus it may constitute an early aging 

biomarker. Notably, since CSF pressure remains relatively constant and even decreases in old age 

(Fleischman et al., 2012), it is likely that CSF expansion reflects a decrease in WM/GM volumes rather 

than an increase in CSF pressure. Thus, CSF volume changes might be a surrogate for general brain atrophy, 

as suggested in previous work (De Vis et al., 2016). Nevertheless, the CNN operation is not likely to be 

reduced to mere volume extraction of these regions, given the substantially lower accuracy of prediction 

models based on regional volumetric measurements (Liem et al., 2016; Valizadeh, Hänggi, Mérillat, & 

Jäncke, 2017). Finally, it is also possible that compared to other brain regions, for example within the 

cortex, the ventricles and cisterns present lower inter-subject structural variability, thus comprising a more 

reliable measure of brain aging. These possible reasons could be tested in future work but nevertheless, the 
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ability to generate new biologically relevant hypotheses from a deep learning predictive model is a desirable 

practice supported here by our novel inference scheme. 

4.4. Ensemble diversity and similarity among models’ population-based explanation maps 

Evidence suggests that prediction based on a set of learning algorithms instead of a single algorithm will 

result in an accuracy gain (Sagi & Rokach, 2018) that increases as these models are more accurate and 

diverse (Breiman, 2001; Kuncheva & Whitaker, 2003). Learning diverse models could be achieved by 

changes in architecture (Singh, Hoiem, & Forsyth, 2016) or introducing different subsets of the training 

data to each model (Benou, Veksler, Friedman, & Riklin Raviv, 2017). In the context of deep CNN, as 

opposed to convex or shallow learning algorithms, it has been shown that models that differ only in their 

random weight initializations constitute an ensemble that is not only adequately diverse, but perform better 

than models exposed to different subsets of the data (Lakshminarayanan et al., 2017; Lee et al., 2015). In 

the current work, we examined the similarity among pairs of population-based explanation maps derived 

from different models within such an ensemble. Although within each model population maps showed high 

reliability, on average, pairs of models exhibit only moderate similarity. This supports the notion that 

random weight initializations generate diverse models that utilized different parts of the input, i.e. different 

brain regions, which may explain the improvement in prediction accuracy. Nevertheless, aggregating these 

maps revealed that a set of regions, such as the ambient and cerebellar cisterns, consistently utilized across 

all models. Overall, it seems that general conclusions regarding the contribution of different brain regions 

to age prediction should be made based on maps derived from multiple models. 

4.5. Future direction: testing population differences in explanation maps 

Computing population-based explanation maps allow examining group differences in maps produced from 

different populations. For example, one might ask whether a CNN model would extract different aging 

biomarkers for men versus women or healthy elderly versus individuals diagnosed with AD. These tests 

could be applied on maps derived from two identical models separately trained on different populations or 

within the same model trained on both populations. In the second case, subjects’ group affiliation could be 

explicitly introduced to the model as an input. Alternatively, it will be possible to test whether a distinction 

among populations in the form of explanation maps differences, would arise without introducing such an 

input. Importantly, explanation maps yield from a population of subjects, registered to the same template 

could allow harnessing known neuroscience statistical procedures based on voxel or regional wise 

comparison of within compared to between-group variability. 

4.6. Conclusions 
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Incorporating deep learning for analysis of neuroimaging data requires improvement in both the accuracy 

of these predictive models and the ability to interpret them, as we aimed to address in the context of age 

prediction. Respectively, in the current work, we demonstrated that an individual’s chronological age could 

be estimated with an MAE of 3.1 years from their raw T1 images, yielding a robust biomarker across several 

datasets. We further showed that aggregating multiple explanation maps substantially increases their 

reproducibility and allow to create a coherent and localized map depicting and quantifying the contribution 

of different brain regions to age prediction. From these maps, we conclude that the ventricles and cisterns 

govern these predictions. We argue that this ability to pinpoint specific brain areas is a key step for utilizing 

these models as possible brain health biomarkers.  
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