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Abstract

Motivation: Identifying the genes regulated by a given transcription factor (its “target genes”) is a key step in de-
veloping a comprehensive understanding of gene regulation. Previously we developed a method for predicting the target
genes of a transcription factor (TF) based solely on the correlation between a histone modification at the TF’s binding site
and the expression of the gene across a set of tissues. That approach is limited to organisms for which extensive histone and
expression data is available, and does not explicitly incorporate the genomic distance between the TF and the gene.
Results: We present the T-Gene algorithm, which overcomes these limitations. T-Gene can be used to predict which genes
are most likely to be regulated by a TF, and which of the TF’s binding sites are most likely involved in regulating particular
genes. T-Gene calculates a novel score that combines distance and histone/expression correlation, and we show that this
score accurately predicts when a regulatory element bound by a TF is in contact with a gene’s promoter, achieving median
positive predictive value (PPV) above 50%. T-Gene is easy to use via its web server or as a command-line tool, and can also
make accurate predictions (median PPV above 40%) based on distance alone when extensive histone/expression data is not
available for the organism. T-Gene provides an estimate of the statistical significance of each of its predictions.
Availability: The T-Gene web server, source code, histone/expression data and genome annotation files are provided at
http://meme-suite.org.
Contact: timothybailey@unr.edu
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1 Introduction

The regulation of the transcription of many genes involves
the looping of distal chromatin regions bound by transcrip-
tion factors (TFs) to bring them into contact with the gene’s
promoter [7]. This contact activates or inhibits the action
of transcriptional machinery at the transcription start site
(TSS) the gene. These TF-bound chromatin regions func-
tion as “regulatory elements” (REs) in ways that are often
unique to a specific cell type, condition, developmental stage
or tissue (for brevity hereinafter referred to as a “tissue”).
Defective binding of TFs to REs due to genomic mutations in
the TF binding sites (e.g., “regulatory SNPs” [10], or in the
TF itself [9] can cause dysregulation of genes and pathological
phenotypes. The tissue-specific identification of REs and the
TFs that bind to them is relatively easy compared to direct
verification of the contacts they make with gene promoters.
Thus, to decipher the genetic regulatory networks involved in
most biological processes computational prediction methods
are of significant value [17].

Although regulatory elements can be identified in several
ways (see Yao et al. [17] for a review), in the current work we
focus on REs bound by a particular transcription factor in a
particular cell type/condition/tissue. The current preferred
of determining where a TF binds the genome in a given tissue
is to use the ChIP-seq assay—chromatin immunoprecipita-
tion followed by sequencing [1]. This yields a set of genomic
regions called “ChIP-seq peaks” that are highly-enriched for
regions bound by the TF used in the assay. Our objective
is primarily to predict the target genes of the TF under the
conditions of the ChIP-seq experiment. However, since we
will validate our predictions using Hi-C chromatin contact
data [11], the method we describe should work equally with
regulatory elements determined by other methods (such as
the analysis of epigenetic signatures [18]), as long as the REs
are similar in size to ChIP-seq peaks (typically about 100 bp).

The dominant approach for predicting the target genes of
transcription factors is to simply use some function of the
the genomic distance between the predicted transcription fac-
tor binding site (TFBS) and each gene promoter [14]. These
methods are easy to use, and generally require only the loca-
tions of the ChIP-seq peaks, and a file containing the locations
of the TSSes of the organism’s genes.

Underlying most distance-based methods is the assumption
that each predicted TFBS regulates the closest gene, or that
each gene is regulated by the closest TFBS, where distance is
defined as the number of base-pairs between the TFBS and a
TSS of the gene. However, a good deal of transcriptional reg-
ulation is via distal enhancer regions and involves chromatin
looping [4] that bypasses the nearest gene. In one human
cell line (GM12878), fully 41% of chromatin loops connect-
ing a non-promoter region to a promoter skip one or more
intervening promoters [11], violating the “closest gene” as-

sumption. Similarly, if the target gene has multiple TSSs,
distance-based methods cannot tell which TSS is the actual
target of a TF bound at a nearby enhancer. Finally, if a TF
binds at multiple locations near a gene, there is no guarantee
that the closest binding site actually regulates the gene, as
the “closest TFBS” method assumes.

We previously described a method—CisMapper [12]—for
predicting the regulatory targets of TFs using TF ChIP-seq
data and correlation between histone modifications and gene
expression across a panel of tissues, and showed that it was
more accurate than distance-based methods. That work built
upon several prior methods for linking regulatory elements
to target genes that are not based on distance alone. For
example, the method of Ernst et al. [6] uses distance plus
data for three histone modifications (H3K4me1, H3K4me2
and H3K27ac) and gene expression in a panel of tissues. It re-
quires a supervised learning training step, and was not tested
with regulatory elements predicted in a tissue not included in
the panel. Similarly, Thurman et al. [16] showed that cross-
tissue correlation of DNaseI hypersensitivity (DHS) between
DHS regions overlapping promoters DHS regions not overlap-
ping promoters can predict regulatory relationships, but it is
not clear how to extend their approach to linking TFBSes to
promoters. DHS data is also available in far fewer organisms
than histone modification data, restricting the applicability
of that approach. The PreSTIGE algorithm [5] uses cross-
tissue correlation of H3K4me1 and expression, but it was de-
signed for linking enhancers (not TFBSes) to genes, requires
CTCF binding data, and only predicts regulatory links when
both the H3K4me1 and expression signals are specifically en-
riched in a given tissue. He et al. [8] and Roy et al. [13] also
proposed methods for training predictors of regulatory links
between regulatory elements and genes using a large number
of input features (e.g., histone modifications, DHS and TF
ChIP-seq). These predictors are more accurate than the sim-
ple correlation-based approaches like PreSTIGE, but require
data from many assays in order to make predictions in a tis-
sue of interest. None of the prior methods (except CisMapper)
was tested with TFBSes predicted by TF ChIP-seq.

The primary goal of the current work is to provide a method
for analyzing peaks from TF ChIP-seq experiments that is as
easy to use as existing distance-based methods, but is sub-
stantially more accurate. Our new computational method,
T-Gene, combines distance and histone/expression correla-
tion into a single score, and we show that it is substantially
more accurate than CisMapper, makes more extensive pre-
dictions, produces calibrated statistical estimates, and can
be used with or without expression and histone data, mak-
ing it much more widely applicable. Researchers can use
T-Gene via its web server or as a downloadable command-
line tool, both of which are part of the MEME Suite (found
at http://meme-suite.org). When used with TF ChIP-seq
peak regions, T-Gene predictions can help answer two ques-
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tions of significant interest to biologists studying gene regu-
lation. Specifically, T-Gene’s predictions tell the user which
genes are most likely to be regulated by the TF, and which
of the TF’s binding sites are involved in regulating particular
genes.

2 Methods

2.1 T-Gene command-line tool

The minimal input to the T-Gene command-line tool is a set
of putative regulatory region (RE) coordinates (e.g., ChIP-
seq peaks) for a given organism, and an annotation file spec-
ifying the TSSes of all known transcripts for the organ-
ism. The putative regulatory regions must be provided as
a BED file, such as are output by ChIP-seq peak-calling
programs (e.g., MACS [19]), and the gene annotation file
must be in GTF format, such as those provided by Ensembl
(http://ensembl.org/info/data/ftp/index.html).

As we shall show in the Results section, T-Gene can pro-
vide far more accurate predictions when provided with an
(optional) tissue panel containing paired histone modification
and gene expression data for a number of tissues in the or-
ganism. From the MEME Suite website, users can currently
download three tissue panels (two human and one mouse)
suitable for use with T-Gene, as well as annotation files for
eight model organisms.

T-Gene constructs a putative regulatory “link” for all (RE,
transcript) pairs whose genomic distance satisfies the max-
imum distance constraint, D, (D = 500,000 bp by default).
T-Gene defines the distance between an RE and a transcript
as the distance between the TSS of the transcript and the
closest edge of the RE locus, or 0 if the RE locus overlaps the
TSS. T-Gene labels each link as to whether it is a Closest-
TSS (CT) or Closest-Locus (CL) link, or both. In the case
where an RE or transcript would have no link, T-Gene adds a
single link to the closest transcript or RE locus, respectively,
assuring that every RE and every TSS has at least one link.

T-Gene calculates up to five scores for each putative regu-
latory link. T-Gene always computes one score based solely
on the distance between the RE locus and the TSS. T-Gene
can also compute a more accurate score if the user provides
auxiliary information in the form of a “tissue panel”—paired
gene expression and histone modification data for a set of
tissues in the organism. In that case, for each link, T-Gene
also computes its histone/expression correlation, the statis-
tical significance of the correlation, and, finally a statistical
score that combines histone/expression correlation with RE-
TSS distance. The computation of these five scores is de-
scribed below.

For each link, T-Gene always computes the “Distance p-
value”, which is designed to capture the tendency for regula-
tory links to be short—e.g., for transcription factors to bind

near their gene targets. Consequently, the Distance p-value is
defined as the probability that the link length (d) is as short
or shorter than observed under a null model. For the null
model, we assume that, given that an RE is observed within
the maximum distance D of the TSS, it is equally likely to
fall anywhere within that radius of the TSS. This suggests a
uniform null model, so T-Gene defines the Distance p-value
as Pr(X ≤ d |X ∼ U [0, D]). Since the RE can be either
upstream or downstream of the TSS, T-Gene estimates the
Distance p-value as (2d+w)/(2D +w), where w is the width
of the RE in base-pairs. Note that this definition gives all links
where the RE overlaps the TSS the same (minimal) Distance
p-value of w/(2D +w), and the minimal Distance p-value de-
creases as the resolution of the RE data (e.g., ChIP-seq peak
width) improves. Note also that links whose length exceeds D
(e.g., some Closest-Locus or Closest-TSS links) are assigned
a Distance p-value of 1.

The second score that T-Gene calculates for each link (when
provided with a tissue panel) is the correlation between the
level of a histone mark at the RE and the level of expres-
sion of the transcript across the tissues in the tissue panel.
T-Gene log-transforms (x′ = log(x + 1)) the histone and ex-
pression levels and then computes their Pearson correlation
coefficient. In this work, we evaluate T-Gene using the his-
tone mark H3K27ac, but the T-Gene website provides tissue
panels for human and mouse that include both H3K27ac and
H3K4me3 data. When provided with data for more than one
histone mark in the tissue panel, T-Gene treats each (RE,
transcript, histone) triplet as a separate link.

The third score computed by T-Gene is called the “Cor-
relation p-value”, which estimates the statistical significance
of the histone/expression correlation. To accurately estimate
the p-value of the correlation, we propose a null model that
breaks the relationship between the expression and histone
values by randomly shuffling the order of the tissues for the
expression data. T-Gene generates samples from this null dis-
tribution by shuffling the expression columns, computing the
correlation for each link, and repeating the entire process ten
times. (This generates ten random samples from the null cor-
relation distribution for each link.) T-Gene then estimates the
p-value of each observed correlation, using the complete set of
null samples, as the fraction of null samples with correlations
less than or equal to the observed correlation (with a pseu-
docount of 1 added to the numerator and the denominator of
the fraction to avoid zeros).

The fourth T-Gene score combines the effects of his-
tone/expression correlation and link length into a score that
we refer to as the “CnD p-value” (short for Correlation and
Distance p-value). This is score is simply the p-value of the
product of the correlation and Distance p-values. This ap-
proach of combining evidence using the product of p-values
has previously proven useful in different contexts in bioinfor-
matics [2].
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Finally, T-Gene converts either the CnD p-value or the Dis-
tance p-value into a q-value, depending on whether a tissue
panel was provided or not, respectively. The q-value is de-
fined as the minimum false discovery rate (FDR) required to
consider this link statistically significant, using the method of
Benjamini and Hochberg [3]. (See also Storey and Tibshirani
[15] for genome-wide studies.) To keep the output format of
T-Gene the same when used with or without a tissue panel,
when T-Gene is used without a tissue panel it sets the corre-
lation to 0, the Correlation p-value to 1, and the CnD p-value
to the value of the Distance p-value for each link.

There are technical problems associated with transcripts
that have very low expression levels across the tissue panel.
For example, if both the expression and histone values are
0 for a link in all tissues but one, the resulting correlation
score is 1, regardless of the actual expression level in that one
tissue. If the maximum expression level is very low, it may
be dominated by measurement noise, and empirical evidence
suggests that such correlation scores are not good predictors
of regulatory relationships. CisMapper deals with this prob-
lem by simply omitting such links, enforcing constraints on
both the minimum expression value required in some tissue
and the variation in expression across the tissue panel. Since
we want T-Gene to be able to report links for all transcripts
and REs, we take a different approach.

Firstly, T-Gene adds random Gaussian noise to all 0 values
in both the histone and expression data in the tissue panel.
The magnitude of this noise is a factor of ten smaller than the
lowest non-zero value of the expression or histone level across
the tissues. Note that if there is no non-zero expression of a
TSS across the panel, the correlation score for the link will be
0 by definition.

Secondly, T-Gene can down-scale the computed correlation
score of any link where the highest expression of the transcript
in any tissue is less than L, a user-specified parameter that de-
faults to 0 (no scaling). Specifically, if the highest expression
value for a given transcript is E, and E < L, the correlation
scores of its links are all reduced by a factor of E/L before
they are used in the computation of the Correlation p-values.
Naturally, this same scaling is applied in computing the corre-
lation of the null correlation scores as well in the Correlation
p-value estimation process described above. We refer to L
as the “Low Expression Correlation Adjustment Threshold”
(LECAT).

The primary outputs of T-Gene are an interactive HTML
report and a tab-separated values (TSV) file, each of which
contains the links and their associated scores. The interac-
tive HTML report allows the user to choose which fields to
display (e.g., Gene ID, Gene Name, Strand, RE Locus, Dis-
tance, CT, CL, Correlation, CnD p-value etc.), to sort and
filter the results based on any of those fields, and to down-
load the displayed links as a TSV file. This allows the user to,
for example, view (and save) the results sorted on the CnD

p-value, or, alternatively, sorted on the Distance p-value. Us-
ing fields on the HTML output report, the user can also, for
example, choose to view only links involving REs that are
upstream (or downstream) of their putative target.

In addition, T-Gene’s HTML report and TSV file both in-
clude two fields (CT and CL) that specify if a particular link
connects an RE to the closest TSS on its chromosome, or
connects a transcript to its closest RE locus. As we show
in the Results section, CT links prove to be more predictive
of regulatory relationships than non-CT links. Consequently,
by default the HTML report is sorted first on the CT field,
followed by the CnD p-value (or Distance p-value if there is
no tissue panel). This causes the CT links to appear before
all other links, while ordering all links within the CT- and
non-CT-link groups by statistical significance. The T-Gene
output files also include fields giving the maximum expres-
sion value of the transcript and the maximum histone level of
the RE across the tissue panel.

By default, the T-Gene HTML report and TSV file both
include all CT (Closest-TSS) and CL (Closest-Locus) links,
regardless of whether they violate the maximum distance con-
straint (D), and regardless of their p-values, as well as all links
with CnD p-values no greater than 0.05. If the user desires
that all links satisfying the maximum distance constraint be
included, they can set the p-value threshold to 1.0 on the T-
Gene command line. The user can also suppress CT- and
CL-links that violate the distance constraint, if desired.

2.2 T-Gene web interface

The T-Gene web interface conveniently exposes most of the
functionality of T-Gene. It allows the user to upload a file
of regulatory elements in BED format and select a genome
or a tissue panel from a drop-down list. Currently, the web
interface provides two human tissue panels, one mouse tissue
panel, and genomes for eight model organisms—arabidopsis
(A. thaliana), worm (C. elegans), zebra fish (D. rerio) fly (D.
melanogaster), human (H. sapiens), mouse (M. musculus),
rat (R. norvegicus) and yeast (S. cerevisiae). The user can
also adjust the maximum p-value for links to be reported and
whether to include Closest-TSS and/or Closest-Locus links
that violate the maximum distance constraint (D). The com-
plete results of the T-Gene are returned as links to the HTML
and TSV output files, as well as a compressed TAR file for
more convenient downloading.

2.3 Testing methodology and data

2.3.1 Evaluation

We validate the regulatory links predicted by T-Gene using
a set of chromatin contacts predicted by the capture Hi-C
(CHiC) assay in GM12878 [11]. This validation approach is
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Figure 1: Length distribution of chromatin contacts in
the Mifsud CHiC dataset. The plot shows the fraction
of promoter-other CHiC contacts (y-axis) of a given length
(x-axis) when considering only lengths up to 1 Mb in length.

based on the assumption that direct contact between a pro-
moter and a distal chromatin region bound by a TF is re-
quired for the TF’s binding to affect expression of the gene.
The CHiC assay captures Hi-C derived DNA fragments that
contain a promoter region. The capture step enriches for chro-
matin contacts between promoter regions and other loci. We
define the set of chromatin contacts C = {〈o,m〉}, where o
and m are “other” and “promoter” regions from promoter-
other CHiC contacts. We will refer to this as the “Mifsud”
dataset.

Suppose that 〈p, t〉 is a predicted regulatory link, where p
is a locus (e.g., a ChIP-seq peak) and t is a TSS. We say that
this link is “confirmed” if it “coincides” with some contact
〈o,m〉 ∈ C. We say that link 〈p, t〉 coincides with contact
〈o,m〉 if locus p overlaps the “other” region o, and TSS t is
contained in the promoter region m.

Using this rule, given a set of predicted regulatory links
L, we determine the set of confirmed links S. As our es-
timate of prediction accuracy we compute the positive pre-
dictive value (PPV), which is the fraction of predicted links

that are confirmed as true, PPV = |S|
|L| . For plotting purposes

we estimate the standard deviation of the PPV by assum-
ing that the number of confirmed links |S| follows a bino-
mial distribution. Thus, error bars are based on sd(PPV) =√

(PPV ∗ (1− PPV)/|L|. When plotting the average accu-
racy over a number of runs of T-Gene, we use boxplots of the
PPV that show the range of the middle quartiles with a line
at the median, and stars show outliers farther than 1.5 times
the interquartile range (the whiskers) from the median.

The distribution of the distance between the centers of the
two regions (o and m) for each contact in the Mifsud dataset
is shown in Fig. 1. This data shows that the prior probability
of a chromatin contact varies inversely with distance, suggest-

ing that link length should be a good predictor of regulatory
interactions.

Although not apparent from Fig. 1, the Mifsud dataset does
not contain any contacts where the centers of the promoter
and other regions are less than 20,000 bp apart (see Supple-
mental Fig. S1). For technical reasons explained in Mifsud
et al. [11], they censored shorter contacts from their reported
data. Consequently, we restrict our validation of T-Gene links
to those whose length is at least 30,000 bp. This ensures that
we do not attempt to validate regulatory links predicted by
T-Gene where the (potential) validating contact was censored
from the Mifsud data.

Unless otherwise noted, all experiments reported in the Re-
sults section use the default settings of the command-line ver-
sion of T-Gene, with the exception of the value of LECAT,
which is set to 6, as opposed to its default value of 0.

2.3.2 Datasets

For evaluation studies, we downloaded 23 GM12878 transcrip-
tion factor TF ChIP-seq datasets from the ENCODE repos-
itory at UCSC. We describe this in detail in Supplemental
Table S1. Details on how we obtained the Mifsud et al.
[11] CHiC contact data are given in the Supplement (in sec-
tion “Data sources”). The data sources we used to construct
our histone/expression tissue panels are described in Supple-
mental Table S2 (ENCODE 8-tissue panel) and Supplemental
Table S3 (Roadmap Epigenomics 48-tissue panel).

3 Results

3.1 Accuracy of T-Gene regulatory link pre-
dictions

The relative merits of three of T-Gene’s scoring functions
are illustrated in Fig. 2, which shows the results of running
T-Gene using the Roadmap Epigenomics 48-tissue panel on
23 GM12878 TF ChIP-seq datasets. Averaged over the 23
sets of predictions made by T-Gene, the accuracy of the top
links is substantially greater when links are sorted by CnD
p-value, compared to sorting links by the correlation or Dis-
tance p-values (Fig. 2A). For example, the median PPV for
the top 100 links is approximately 42% using CnD p-values,
and slightly less than 30% using the other two scores. For
comparison, randomly chosen links have a PPV of only about
15%. As shown in Fig. 2B, the CnD p-value performs best
in the majority of cases, with the PPV of the 100 top links
above 50% for several TFs. However, for six TFs (notably
Pax5), sorting all links by Distance p-value gives higher PPV
for the first 100 links.

T-Gene achieves substantially higher predictive accuracy
when we combine its Closest-TSS link filter with its scor-
ing functions, as shown in Fig. 2C and Fig. 2D. The median
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Figure 2: Accuracy of T-Gene scores using the Roadmap Epigenomics 48-tissue panel. Boxplots show the accuracy
(PPV) of the top links (panel A) or top Closest-TSS links (panel C) predicted by T-Gene using the the CnD, Correlation or
Distance p-values, averaged over 23 GM12878 TF ChIP-seq datasets. Barplots present the accuracy of T-Gene’s predictions
on each of the 23 ChIP-seq datasets, focusing on the top 100 links (panel B), or the top 100 Closest-TSS links (panel D).
The accuracy of randomly selected Closest-TSS links is shown for comparison (“Random”).
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Figure 3: Accuracy of T-Gene scores using the ENCODE 8-tissue panel. Boxplots show the accuracy (PPV) of
the top links (panel A) or top Closest-TSS links (panel B) predicted by T-Gene using the the CnD, Correlation or Distance
p-values, averaged over 23 GM12878 TF ChIP-seq datasets. The accuracy of randomly selected Closest-TSS links is shown
for comparison (“Random”).
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PPV of the first 300 links is slightly more than 50% when
the Closest-TSS links are sorted by CnD p-value (Fig. 2C).
In this setting, the performance of the Correlation p-value is
similar to that of the CnD p-value, reflecting the decreased
additional information present in the link length when we
restrict predictions to Closest-TSS links. Using the CnD p-
value gives higher median PPV for (at least) the top 1000
predicted links, compared to using the Distance p-value, and
similar performance up to the top 3000 links (Fig. 2C). As
shown in Fig. 2D, with Closest-TSS links, the accuracy of
the CnD p-value on the top 100 links is consistently as good
or better than the other two T-Gene scores for all but one of
the 23 TF ChIP-seq datasets, reaching PPV of approximately
60% for five TFs, and 50% or more for a majority of the TFs
in this study.

Running T-Gene with the ENCODE 8-tissue panel rather
than the Roadmap Epigenomics 48-tissue panel on the 23
GM12878 TF ChIP-seq datasets gives predicted links with
very similar levels of accuracy (Fig. 3A). When T-Gene sorts
all links using the CnD p-value, the median PPV of the top
100 links is 40%—approximately the same as when using the
Roadmap Epigenomics tissue panel (compare with Fig. 2A).
Accuracy is even better when T-Gene’s Closest-TSS filter is
employed together with the CnD p-value, with PPV over 55%
for the top 300 links (Fig. 3B). This increased accuracy may
be due to the fact that the Roadmap Epigenomics expression
data assigns the same expression value to all transcripts of
a given gene, whereas the ENCODE data provides discrete
expression values for each transcript. As with the Roadmap
Epigenomics tissue panel, with the ENCODE 8-tissue panel
T-Gene’s CnD p-value performs as well or better at prior-
itizing both all links and Closest-TSS links for up to 3000
predictions (Fig. 3A and B). The PPV of the top 100 Closest-
TSS links sorted by CnD p-value is over 60% for five of the 23
TF ChIP-seq datasets (Tcf12, Elf1, Pax5, Bcl3 and Sp1), and
it is over 50% for 14 of the datasets (Supplemental Fig. S2B).

We have shown that the subset of all links reported by T-
Gene that are labeled by it as Closest-TSS links are consider-
ably more reliable, especially when they are sorted according
to the CnD p-value score. This is further illustrated in Fig. 4,
where we compare the accuracy of links filtered by T-Gene
on several criteria. Using T-Gene with either the Epigenetic
Roadmap 48-tissue panel (Fig. 4A) or the ENCODE 8-tissue
panel (Fig. 4B) leads to similar conclusions. Firstly, Closest-
TSS (CT) links prove most accurate at all numbers of pre-
dicted links from 100 to 3000. Secondly, there is no synergy if
we require that a link be both a Closest-Locus and a Closest-
TSS link. Furthermore, the resulting subset of links is much
smaller (hence the missing boxplots for “CL and CT Links”
at the higher numbers of predicted links in Fig. 4). Thirdly,
the overall accuracy of all links is dominated by that of the
links that are not Closest-TSS links (non-CT links). Finally,
Closest-Locus links are generally less accurate, on average,

than the entire set of links. Thus, using T-Gene’s Closest-TSS
filter seems extremely useful, but other filter combinations are
not.

3.2 Reducing the effect of low gene expres-
sion

As we show in this section, when T-Gene computes the his-
tone/expression correlation of a link, the value is less reliable
if the expression of the transcript is uniformly low across the
tissues in the tissue panel. Consequently, T-Gene allows the
user to specify a value, L, called the “Low Expression Correla-
tion Adjustment Threshold (LECAT)”, and T-Gene scales the
computed correlation toward zero if the maximum expression
of the transcript is less than L. To measure the effectiveness
of this approach, we ran T-Gene using the ENCODE 8-tissue
panel on the 23 GM12878 TF ChIP-seq datasets, while vary-
ing the value of L from 0 (no scaling) to 10 (scale correlation
if maximum expression is less than 10).

Using a non-zero value of L can increase the median accu-
racy (PPV) of the first 100 links predicted by T-Gene from
30% (L = 0) to over 40% (L = 4), as shown in Fig. 5. The ac-
curacy of the first N predicted links is higher using non-zero
L even for the first 3000 links. The improvement is relatively
insensitive to the size of L beyond a value of 4. When we re-
peat the same test using the Roadmap Epigenomics 48-tissue
panel (Supplemental Fig. S4), using a non-zero value of L has
very little effect. This may be due to the fact that there are
fewer genes with very low expression values in the Roadmap
Epigenomics data, which combines the expression at all TSSes
of a gene into a single expression value for the gene. Based
on these results, the T-Gene web server uses a value of L = 6
for the human and mouse tissue panels. The command-line
version of T-Gene uses a default value of L = 0.

3.3 Statistical accuracy of T-Gene p-values

Fig. 6 shows Q-Q plots to assess the statistical accuracy of
the p-values computed by T-Gene. We generated the plots by
first creating a random set of ChIP-seq peaks from the largest
of the 23 ENCODE GM12878 ChIP-seq datasets. For each of
the 67,695 peaks in the original dataset, we created a random
peak on the same chromosome with the same peak width, w.
Next we created a random version of the ENCODE 8-tissue
panel, where the order of the tissues is shuffled for the ex-
pression data, breaking any correspondence between expres-
sion and histone modification levels. We then ran T-Gene
on the random peak file using the shuffled tissue panel. We
then constructed a Q-Q plot by sorting the p-values reported
by T-Gene for the n links, and for the p-value with rank r
plotting (X,Y ), where Y is the link’s p-value (as estimated
by T-Gene), and X = r/(n + 1) is its “rank p-value”. If the
reported p-values are statistically accurate, the p-values and
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Figure 4: Accuracy of CnD p-value scores for different link types. Boxplots show the accuracy (PPV) of Closest-TSS
links, all links, non-Closest-TSS links and Closest-Locus links, sorted by their CnD p-values, averaged over 23 GM12878 TF
ChIP-seq datasets. T-Gene used the ENCODE 8-tissue panel (panel A), or the Roadmap Epigenomics 48-tissue panel (panel
B), and LECAT=6. The accuracy of randomly selected links is shown for comparison (“Random”).

rank p-values should be approximately equal for a given link,
and the points will lie near the line X = Y in the Q-Q plot.

Distance p-values are accurate except for very small val-
ues because, due to how we have defined them, they cannot
be smaller than w/(2D + w) (Fig. 6A). This causes Distance
p-values to be conservative (too large) for small distances.
However, this is only noticeable for input files containing
more than 1000 loci (Supplemental Fig. S3). Correlation p-

Figure 5: Effect of LECAT on the accuracy of T-Gene
CnD p-values. Boxplots show the accuracy (PPV) of the
top links predicted by T-Gene using the the CnD p-values
with different values of the LECAT (Low Expression Corre-
lation Adjustment Threshold) parameter, averaged over 23
GM12878 TF ChIP-seq datasets. T-Gene used the ENCODE
panel of 8 tissues.

values are accurate (Fig. 6B). Even with large numbers of loci
(67,965 in this example) and despite the inaccuracy of the un-
derlying Distance p-values for small distances, CnD p-values
are only slightly conservative (Fig. 6C). As a result, T-Gene’s
estimates of q-values are accurate under the assumptions of
the null model we have defined (random peak positions and
no relationship between expression and histone modification
levels).

4 Discussion

We have presented a general-purpose algorithm for predicting
regulatory relationships between genomic loci and genes. T-
Gene can be used with sets of loci from any organism for which
a gene annotation file exists. Such files can be downloaded for
hundreds of species from ftp://ftp.ensembl.org/pub and
ftp://ftp.ensemblgenomes.org/pub. T-Gene can be con-
veniently used via its web server at http://meme-suite.org/
tgene, or downloaded (along with gene annotation files and
tissue panels), for use on the user’s computer. We currently
provide tissue panels only for human and mouse, but we will
continue to add to these as sufficient histone/expression data
becomes available for other organisms. We provide gene an-
notation files for eight model organisms, and can easily add
more in response to user requests.

Our results show that a combination of features is most
effective for predicting chromatin contacts between regions
bound by transcription factors and regions containing tran-
scription start sites. Combining histone/expression correla-
tion, the distance between the TF ChIP-seq peak and the
TSS, and the fact that the TSS is the nearest-neighbor to the
peak yields the most accurate predictions of chromatin con-
tact, and, by inference, potential regulation of the gene by the
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Figure 6: Statistical accuracy of T-Gene p-values. Q-Q plots show the accuracy of the p-values estimated by T-Gene
on random input data for distance (panel A), expression-histone correlation (panel B) and the combination of correlation
and distance (panel C). Each point (X,Y ) represents one of n links, sorted by p-value, where Y is its p-value as estimated
by T-Gene, and X = r/(n + 1), where r is the rank of its p-value. The diagonal line X = Y is shown for reference.

TF. It is worth noting that the reciprocal situation—where
the ChIP-seq peak is the closest one to the TSS is far less
informative. This is perhaps not surprising, given that TFs
tend to bind close to the genes that they regulate, whereas
most genes are not regulated by a given TF.

Like our previous algorithm, CisMapper [12], T-Gene can
use information from a tissue panel to compute a score based
on the correlation between the histone modification state of
the RE with the expression of the TSS. However, T-Gene im-
proves on the CisMapper algorithm’s approach in five ways.
First, T-Gene can be used to predict regulatory relationships
in organisms where data for constructing a histone/expression
panel is not available. This greatly increases T-Gene’s appli-
cability. Second, since link length is known to correlate with
the likelihood of a regulatory relationship, T-Gene computes
a more predictive score that combines histone/expression cor-
relation with link length. Third, unlike CisMapper, computes
an accurate p-value for the correlation, which allows T-Gene
to report the false discovery rate associated with each link
via the q-value [3] statistic. A fourth improvement is that
every TSS and every RE is included in at least one link in
the T-Gene output, rather than omitting any TSS or RE
whose shortest link would exceed the maximum link length
constraint. Finally, T-Gene incorporates a heuristic that re-
duces false positives by increasing the influence of link length
on the score of links where the transcript has very low expres-
sion across the tissue panel, rather than omitting such links
entirely as CisMapper does.
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