
Caliban: Accurate cell tracking and lineage construction in live-cell imaging

experiments with deep learning

Morgan Sarah Schwartz1, Erick Moen1, Geneva Miller1, Tom Dougherty1,2, Enrico Borba3, Rachel Ding1,
William Graf1,4, Edward Pao1, and David Van Valen1

1Division of Biology and Biological Engineering, Caltech
2Present Affiliation: Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine

3Division of Engineering and Applied Science, Caltech
4Present Affiliation: Capital One

September 12, 2023

Abstract

While live-cell imaging is a powerful approach for studying the dynamics of cellular systems, converting these imaging

data into quantitative, single-cell records of cellular behavior has been a longstanding challenge. Deep learning methods

have proven capable of performing cell segmentation—a critical task for analyzing live-cell imaging data—but their per-

formance in cell tracking has been limited by a lack of dynamic datasets with temporally consistent single-cell labels. We

bridge this gap through integrated development of labeling and deep learning methodology. We present a new framework

for scalable, human-in-the-loop labeling of live-cell imaging movies, which we use to label a large collection of movies of

fluorescently labeled cell nuclei. We use these data to create a new deep-learning-based cell-tracking method that achieves

state-of-the-art performance in cell tracking. We have made all of the data, code, and software publicly available with

permissive open-source licensing through the DeepCell project’s web portal https://deepcell.org.

Live-cell imaging, in which cells are imaged over time with light microscopy, provides a window into the dynamic behavior

of living cells. Data generated by this class of experiments have shed light on numerous cellular processes, including cellular

heterogeneity1–4, cell division5,6, morphological transitions7–11, and signal transduction12–15. New technologies that pair

perturbations with imaging have led to renewed interest in using imaging to phenotype cellular dynamics16–20. While

powerful, live-cell imaging data present a significant challenge to rigorous quantitative analysis. Central to the analysis of

these data is single-cell analysis, where each cell is detected and tracked over time. Accurate solutions to these two tasks—cell

detection and tracking—are essential components of every live-cell imaging analysis pipeline.

Modern deep learning methods offer a compelling path to general solutions to the computer vision problems raised by

cellular imaging data. While powerful, the performance of these methods is limited by the availability of labeled data.

Researchers have made substantial progress in cell segmentation, primarily because of the increased availability of labeled

data and the development of human-in-the-loop (HITL) labeling methodology for static images21–23. Progress in deep learning

solutions to cell tracking has been more limited due to a lack of similar data resources and methodology for dynamic data.

Existing datasets (Table 1) are limited in their scope and scale24–31, whereas simulated datasets have not yet proven capable

of creating high-performing models24,32,33. Further, existing datasets are limited in the resolution of their labels (e.g., point

labels vs. pixel-level segmentation labels), trajectory length (the number of frames over which a cell is tracked), and the
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number of mitotic events (Table 1). These limitations are understandable, given the time-consuming nature of labeling

dynamic movies. Not only must each cell be segmented in a temporally consistent way, but lineage information must also be

captured by tracking cells over time and labeling cell division events. Existing labeling methodology that has proven scalable

for static images has yet to be extended at scale to these dynamic datasets34.

In this work, we applied a full-stack approach to the problem of cell tracking, with a specific focus on tracking fluorescently

labeled cell nuclei in mammalian cells. Specifically, we combined an HITL approach to image labeling22 adapted to dynamic

imaging data, a novel deep learning algorithm for cell tracking, and new benchmarks for cell tracking to create a new

labeled reference dataset for cell tracking. We used this dataset—DynamicNuclearNet—to develop state-of-the-art deep

learning models for cell tracking. We further integrated these models into a pipeline called Caliban, which enables rapid

and accurate segmentation, tracking, and lineage construction of nuclear live-cell imaging data with no manual parameter

tuning. The source code described in this work is available at https://github.com/vanvalenlab/deepcell-tf and https:

//github.com/vanvalenlab/deepcell-tracking; datasets and pre-trained models are available through our lab’s web

portal https://deepcell.org.

1 Results

1.1 HITL labeling of large-scale, dynamic imaging data

Name Modality Annotation Type Cell
Types

Objects Tracks Divisions Source

DynamicNuclearNet Fluor. Nuclei Nuclear Mask 5 606,455 15,175 2,222 This work

DeepSea Phase Nuclear Mask 3 100,000 2,576 137 Zargari et al.31

BTrack/CellX Fluor. Nuclei Nuclear Mask 1 - 1,032 - Cuny et al.36

CTMC DIC Bounding Box 14 2,045,834 2,900 457 Anjum & Gurari27

C2C12 Phase Centroid 1 135,859 23,400 7,159 Ker et al.25

CTC 2D+T DIC Part. WC Mask 1 - 70 18 CTC37

CTC 2D+T Phase Part. WC Mask 2 - 2,415 1,019 CTC37

CTC 2D+T Fluor. Nuclei Part. Nuclear Mask 3 - 1,227 395 CTC37

CTC 2D+T Fluor. WC Part. WC Mask 2 - 128 10 CTC37

CTC 2D+T Brightfield Part. WC Mask 2 - 459 242 CTC37

Table 1: Publicly available labeled datasets for two-dimensional temporal (2D+T) cell tracking. CTMC: Cell
Tracking with Mitosis Detection Dataset Challenge, ISBI: International Symposium on Biomedical Imaging, CTC: Cell
Tracking Challenge, Fluor: fluorescent, DIC: differential interference contrast, WC: whole cell, Part: partial.

We employ two key strategies to label dynamic imaging data efficiently. First, we make use of crowdsourcing to parallelize

our work. Second, we utilize an HITL approach to accelerate labeling efforts. Our approach has two phases: temporally

consistent cell segmentations are generated in the first phase, whereas cells are tracked and cell divisions are labeled in the

second phase (Fig. 1a). The segmentation phase of our approach follows prior work22, beginning with a small seed dataset

for cell segmentation generated by expert labelers. We then train a preliminary model to generate candidate segmentations,
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Figure 1: Developing DynamicNuclearNet with HITL annotation of dynamic data. (a) The HITL process for
generating labels alternates between preliminary models generating predictions and human annotators correcting errors
generated by the model. This process is conducted twice: first for segmentation and again for tracking. Each update to the
labeled data is versioned and saved with DVC35. (b) With a two-stage HITL process, we assembled DynamicNuclearNet, a
dataset of segmented and tracked dynamic cell nuclei encompassing five cell lines. (c) Example images of each of the five cell
lines. (Scale bar = 50 µm)

which are refined through a round of crowdsourced correction and expert quality control (QC). We used DeepCell Label,

our browser-based labeling engine specifically designed for cellular images for this work. Critically, labelers were shown a

sequence of five frames rather than individual frames to leverage temporal information to increase the label accuracy. After

a sufficient amount of data was labeled, the model was retrained on a new dataset that combined the original seed dataset

and the corrected predictions; the updated model was then used to generate subsequent segmentation labels. This cycle was

repeated until model predictions matched expert predictions, as judged by qualitative comparison and quantitative metrics

(Section 3.5.5). In the tracking phase, labelers were given a complete movie (42-71 frames) and tasked with tracking cells

and identifying cell divisions. This phase was achieved through iterative cycles of model prediction, crowdsourced correction,

expert QC, and model updating. For this task, we extended DeepCell Label to include tools for labeling cell lineages and

divisions. To coordinate this multi-stage dataset development process, we implemented a data and model versioning system

using Data Version Control (DVC)35, which acts alongside Git to track each data file and its associated metadata (Fig. 1a).

By automating these file associations, we removed the need for an expert user to manage the labeling pipeline and keep track

of various computational notebooks or scripts.

Using this methodology, we built DynamicNuclearNet, a segmented and tracked dataset of fluorescently labeled cell nuclei

spanning five different cell lines. This dataset contains approximately 600,000 unique nuclear segmentations assembled into

over 15,000 trajectories with over 2,200 division events (Fig. 1b,c). Each trajectory begins at the cell’s appearance in the field

of view (FOV) or birth as a daughter cell and ends when the cell disappears by leaving the FOV, dying or dividing. While it

is expensive to generate pixel-level masks for each cell compared to other types of labels (e.g., centroids or bounding boxes),
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these masks facilitate numerous downstream analysis steps, such as quantifying signaling reporters or nuclear morphology.

The 2,200 division events in our dataset surpass all previous annotation efforts that utilize nuclear segmentation masks

(Table 1), which allows us to incorporate cell division detection into our deep-learning-based cell-tracking method.

1.2 Accurate nuclear segmentation and tracking with Caliban

In tandem with the labeling methodology advances described above, we developed Caliban, an integrated solution to nuclear

segmentation and tracking. Caliban employs a tracking-by-detection approach in which cells are first identified in each frame

by a deep learning model; these detections are then used to reconstruct a lineage tree that connects cells across frames and

through cell division events. For reconstruction of lineage trees, we utilize a deep learning model inspired by Sadeghian

et al.41, which encodes temporal dependencies for multiple features of each object. In this approach, accurate cell detection

and segmentation are essential to producing faithful lineage reconstructions. To this end, we have combined our prior work

on cell segmentation22,42 with DynamicNuclearNet and a comprehensive benchmarking framework to train an accurate deep

learning model for nuclear segmentation as part of Caliban.

The processing steps for Caliban are shown in Fig. 2a. Raw images are passed through the nuclear segmentation model

to produce cell masks. These masks are used to extract features for each cell, while the centroids are used to construct an

adjacency matrix to identify cells in close proximity (< 64 pixels, 41.6 µm). These features and the adjacency matrix are fed

into a neighborhood encoder model, which uses a graph attention network38,39 to generate feature vectors that summarize

information about a cell’s—and its neighbors’—appearance, location, and morphology (Fig. 2b). These feature vectors are

then fed into a tracking model that causally integrates temporal information and performs a pairwise comparison of each

cell’s feature vector across frames to produce an effective probability score indicating whether two cells are the same cell, are

different cells, or have a parent–child relationship (Fig. 2c). Separating our tracking model into two pieces also facilitates

rapid and scalable inference. During inference, the computationally expensive neighborhood encoder model can be run on

all frames in parallel, leveraging GPU acceleration, followed by the lightweight tracking inference model, which is run on

a frame-by-frame basis. The tracking inference model assigns lineages to cells by comparing the feature vectors of the last

frame of existing lineages with the feature vectors of candidate cells in the current frame; model predictions are used with the

Hungarian algorithm43,44 to complete the assignment. To accommodate the entry and exit of cells in the linear assignment

framework, we create a “shadow object” for each cell in the frame, which allows assignments for the “birth” or “death” of cells

in each frame44. The methods (Section 3.5) provide full details of the model architecture, model training, postprocessing,

and hyperparameter optimization.

In addition to Caliban, we also developed a comprehensive framework for evaluating tracking performance as part of this

work. Most existing metrics for cell tracking focus on the quality of linkages between cells in lineage trees45–48. While useful,

these approaches mask the method’s performance on cell division. Many downstream analyses rely on accurate division

detection; however, the relative rarity of division events makes them difficult to assess with summary metrics. To resolve this

issue, we implemented several evaluation metrics that quantify a method’s performance on cell division; the details of each

metric are given in the methods (Section 3.5.5).

We used these metrics in combination with prior metrics30,45–47 to compare Caliban against four alternative algorithms
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Figure 2: A deep learning approach to cell segmentation and tracking using Caliban. (a) Caliban takes a movie of
fluorescently labeled nuclei as input and then generates a nuclear segmentation mask for each frame. Features for each cell in
a frame are extracted and passed through a neighborhood encoder model to generate a vector embedding for each cell. These
embeddings and cell positions are passed into the tracking inference model, which predicts the probability that each pair of
cells between frames is the same, is different, or has a parent–child relationship. These probabilities are used as weights for
linear assignment to construct cell lineages on a frame by frame basis. (b) The neighborhood encoding model takes as input
an image of each cell, its centroid position, and three metrics of morphology (area, perimeter, and eccentricity). A vector
embedding of each input is used as node weights in a graph attention network38,39, where edges are assigned to cells within
64 pixels (41.6 µm) of each other. The final neighborhood embedding for each cell captures the appearance of that cell and
its spatial relationship with its neighbors in that frame. (c) The tracking inference model performs pairwise predictions on
cells in frame tn to cells in frame tn+1. The model is given neighborhood embeddings and centroid positions of cells in the
previous seven frames [tn−7, tn] to compare with cells in frame tn+1. The temporal context of the previous seven frames
is modeled using long short-term memory (LSTM) layers40. Ultimately, the model outputs a set of effective probabilities
(psame, pdiff, and pparent-child) for each pair of cells between frame tn and frame tn+1. (d) The performance of Caliban and
that of four other tracking methods were evaluated on the test split of DynamicNuclearNet. TRA: tracking accuracy in the
Cell Tracking Challenge. (e) A sample montage from DynamicNuclearNet with predictions from Caliban. Circles highlight
the correct identification of three division events. (Scale bars = 26 µm)
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for cell tracking: Baxter, CellTrackerGNN, EmbedTrack, and Tracx. We focused on methods that performed well in the

Cell Tracking Challenge and that could be run without manual parameter tuning including using parameters published

as part of the challenge submission. Baxter implements the Viterbi algorithm49. CellTrackerGNN constructs a global

track solution by pairing a graph neural network with an edge classifier to extract cell lineages50. EmbedTrack utilizes a

single convolutional neural network for joint cell segmentation and tracking51. Tracx pairs a feature-based linear assignment

problem with a cell fingerprint classifier to curate tracking results36. We tested each algorithm on ground truth and predicted

segmentations. Predicted segmentations for each method were generated with that method’s segmentation model or Caliban’s

segmentation model if the former was unavailable. We found that Caliban outperforms all algorithms on all metrics except

for Baxter on target efficiency (0.97 vs. 0.98) and association accuracy (0.97 vs. 0.98) (Fig. 2d). Importantly, on measures of

division performance, Caliban performs substantially better than all previously published methods. This performance boost

is primarily attributable to Caliban’s cell-tracking capability (Fig. 2e), as the performance boost is present when tracking is

performed on ground truth segmentations. Complete benchmarking results are shown in Supplementary Table 1.

To increase the accessibility of Caliban, we have made Caliban available through our lab’s GitHub (https://github.

com/vanvalenlab/deepcell-tf) and the DeepCell web portal (https://deepcell.org). Converting algorithms into robust,

user-friendly software can be expensive and time-consuming, particularly for cell-tracking algorithms, given the large size and

varied nature of the data on which these algorithms must operate24,32,34,52. Here, we leverage our prior work in developing

the DeepCell Kiosk53, a cloud-native, scalable software platform for cellular image analysis pipelines that use deep learning

methods. Our cloud deployment of Caliban was facilitated by our emphasis on inference speed, scalability, and accuracy

during method development. We believe that the availability of Caliban in both local and cloud versions will make this tool

accessible to the broader life science community. Further, the open-source datasets, models, and benchmarking tools will

facilitate future method development.

2 Discussion

Live-cell imaging is a transformative technology critical to elucidating cellular proliferation, migration, and other dynamic

phenomena. The utility of this technology has long been limited by our ability to extract quantitative, single-cell information

from these movies. In this work, we have made a significant step toward solving the computer vision challenges of dynamic

cellular imaging data. By extending scalable, HITL labeling frameworks21,22,54–57 to dynamic data, we have generated a

labeled dataset of over 15,000 cellular trajectories and 2,200 cell divisions. We demonstrated that these labeled data can

power accurate nuclear segmentation and tracking models. We further showed that these models can be combined into an

integrated pipeline and deployed on a cloud-native platform for scalable, user-friendly inference.

While we achieved impressive performance on nuclear segmentation and tracking, several areas of improvement exist

for future work. First, accurate cell segmentation remains a performance bottleneck, as highlighted by the difference in

the performance of tracking methods on ground truth and deep-learning-generated segmentations (Fig. 2). Additional

performance gains on segmentation will likely arise via methods that leverage temporal information to improve performance.

Newer segmentation methods that enable the segmentation of overlapping objects23,58—a limitation of all cell segmentation
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methods that currently see wide use59—may also help close this gap. Second, while the dataset we have collected is impressive

in scale, its diversity remains limited compared with the full space of live-cell phenotypes. Our focus on cell nuclei allowed

us to develop a new labeling methodology for dynamic datasets; creating a dataset similar in label scale and quality for

whole cells will likely be the focus for future work. Moreover, dynamic cell phenotypes change substantially in the setting of

perturbations. Such shifts in data distribution are expected to degrade cell segmentation and tracking performance; the best

approach for mitigating this issue is to expand the space of labeled data to capture these phenotypes. Doing so will require

expanding our labeling framework to capture more dynamic phenotypes (e.g., cell death). We note that imaging data from

pooled optical screens16,18,20,60,61 may also be a valuable path for generating images of perturbed cell phenotypes at scale.

Our work contains several lessons for the community of researchers developing deep learning methods for cellular image

analysis. First, our work highlights the importance of data labeling methodology and data scale. By developing a scalable

approach for labeling dynamic live-cell imaging data, we have compiled a pixel-level labeled dataset that is substantially larger

than previous datasets. The increased scale of the data allowed us to compile enough examples of cell divisions—a critical but

rare dynamic event—to enable accurate detection by deep learning models. While models trained on sparsely labeled data can

be effective34,62, increasing the amount of labeled data is essential to creating models that generalize across datasets. Second,

our study demonstrates the importance of informative benchmarks. As highlighted by our work and that of others30,62,63,

accurate cell division detection is one of the most challenging aspects of cell tracking but is critical to constructing cell lineages.

This task is challenging for supervised methods, largely because of the class imbalance—cell divisions represent a relatively

minor fraction of linkages in cell lineage trees. Aggregate metrics for cell tracking mask cell division events, making it difficult

to judge performance gains during and after algorithmic method development45. Combining aggregate metrics with specific,

informative metrics creates a more complete picture of performance and is critical to crafting methods that can be used in

production. Finally, this work underscores the value of model scalability. While accuracy is often the metric used to judge

cellular image analysis methods, inference speed—and hence scalability—is equally important. Faster workflows can process

substantially more data and provide a better user experience. A major focus of this work was scalability, which was achieved

by crafting an architecture in which computationally expensive operations (e.g., the neighborhood encoder) were performed

in parallel on specialized hardware (e.g., GPUs). Our model’s scalability enables a responsive cloud deployment—a typical

dataset (10,000 cell detections over 30 frames) can be processed in ∼ 40 s on an A6000 GPU, with much of the processing

time taken by segmentation (Supplementary Fig. 1).

In conclusion, our work provides the live-cell imaging community with an accessible, accurate method for reconstructing

single-cell lineages from dynamic imaging experiments. We believe our work will facilitate the analysis of cell phenotypes

and behaviors in a wide variety of high-throughput imaging experiments.

3 Materials and Methods

3.1 Cell culture

We used five mammalian cell lines (NIH-3T3, HeLa-S3, HEK293, RAW 264.7, and PC-3) to collect training data. All lines

were acquired from the American Type Culture Collection. We cultured the cells in Dulbecco’s modified Eagle’s medium
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(DMEM; Invitrogen; RAW 264.7, HEK293, and NIH-3T3) or F-12K medium (Caisson; Hela-S3 and PC-3) supplemented

with 2 mM L-glutamine (Gibco), 100 U/mL penicillin, 100 µg/ml streptomycin (Gibco), and either 10% calf serum (Colorado

Serum Company) for NIH-3T3 cells or 10% fetal bovine serum (FBS; Gibco) for all other cells.

3.2 Live imaging

Before imaging, cells were seeded in fibronectin-coated (10 µg/mL; Gibco) glass 96-well plates (Nunc or Cellvis) and allowed to

attach overnight. We performed nuclear labeling via prior transduction with H2B-iRFP670 (Hela, RAW 264.7), H2B-mClover

(HEK293, NIH/3T3), and H2B-mCherry (PC-3). The media was removed and replaced with imaging media (FluoroBrite

DMEM (Invitrogen) supplemented with 10 mM HEPES (Sigma-Aldrich), 10% FBS (Gibco), 2mM L-glutamine (Gibco)) at

least 1 h before imaging. We imaged cells with a Nikon Ti-E or Nikon Ti2 fluorescence microscope with environmental control

(37◦C, 5% CO2) and controlled by Micro-Manager or Nikon Elements. We acquired images at 5- to 6-min intervals with a

20x objective (40x for RAW 264.7 cells) and either an Andor Neo 5.5 CMOS camera with 2×2 binning or a Photometrics

Prime 95B CMOS camera with 2×2 binning. All data were scaled so that pixels had the same physical dimensions before

training.

3.3 Data annotation

3.3.1 DeepCell Label

We previously described DeepCell Label22, our browser-based software for data annotation. We extended DeepCell Label to

support labeling cell lineages and divisions in dynamic datasets. Additionally, we implemented a state machine that allows

annotators to apply undo/redo functions during their work.

In this study, we utilized DeepCell Label in two stages in order to generate a nuclear tracking dataset. First, annotators

were asked to correct nuclear segmentation labels for all frames in the dataset. Second, after segmentation annotations were

complete, annotators were asked to label the nuclear segmentation masks such that a single cell maintains the same label

across frames. Additionally, all division events were annotated with the connection of the parent cell to each daughter cell.

An expert annotator reviewed all annotated movies before incorporation into the training dataset. The supplementary infor-

mation provides a user manual for DeepCell Label (Supplementary File 1), along with sample instructions for segmentation

(Supplementary File 2) and tracking (Supplementary File 3) corrections.

3.3.2 Data versioning with DVC

Each labeled movie was versioned and tracked with DVC35. We recorded additional metadata in each .dvc file, including the

data dimensions, annotation progress, and data source. These metadata enabled automatic data processing for generating

segmentation and tracking predictions as well as launching annotation tasks.

8

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2023. ; https://doi.org/10.1101/803205doi: bioRxiv preprint 

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by/4.0/


3.4 Nuclear segmentation

3.4.1 Deep learning model architecture

The deep learning model for nuclear segmentation was based on the design of feature pyramid networks64,65. The network

was constructed from an EfficientNetV2L backbone66 connected to a feature pyramid. Input images were concatenated with

a coordinate map before entering the backbone. We used backbone layers C1–C5 and pyramid layers P1–P7. The final

pyramid layers were connected to three semantic segmentation heads that predict transforms of the label image.

3.4.2 Label image transforms

For each image, we used a deep learning model to predict three different transforms, as inspired by previous work22,67,68. The

first transform predicted whether a pixel belongs to the foreground or background, known as the “foreground–background

transform.” The second transform predicted the distance of each pixel in a cell to the center of the cell and is called the “inner

distance.” If the distance between a pixel and the center of the cell is r, then we compute the transform as 1
1+αβr , where

α = 1√
cell area

and β is a hyperparameter set to 122. The final transform was the “outer distance,” which is the Euclidean

distance transform of the labeled image. The loss function was computed as the sum of the the mean squared error on the

inner and outer distance transforms and the weighted categorical cross-entropy69 on the foreground–background transform.

The cross-entropy term was scaled by 0.01 prior to the sum.

3.4.3 Preprocessing

Each image was required to have a minimum of one labeled object. Additionally, each image was normalized using contrast-

limited adaptive histogram equalization with a kernel size equal to 1/8 of the image size to ensure that all images have the

same dynamic range70.

3.4.4 Postprocessing

We fed two of the three model outputs, the inner and outer distance, into a marker-based watershed method71 to convert

the continuous model outputs into a discrete labeled image in which each cell is assigned a unique integer. We applied

a peak-finding algorithm72 with a radius of 10 pixels and a threshold of 0.1 to the inner distance prediction in order to

determine the centroid location of each cell. Next, we generated the cell mask image by applying the watershed algorithm to

the inverse outer distance prediction with the centroids as markers and a threshold of 0.01.

3.4.5 Model training and optimization

Training data were augmented with random rotations, crops, flips, and scaling to improve the diversity of the data. We used

70% of the data for training, 20% for validation, and 10% for testing. The model was trained using the Adam optimizer73

with a learning rate of 10−4, a clipnorm of 10−3, and a batch size of sixteen images; training was performed for sixteen

epochs. After each epoch, the learning rate was adjusted using the function lr = lr × 0.99epoch. Additionally, if the loss of

the validation data did not improve by more than 10−3 after five epochs, the learning rate was reduced by a factor of 0.01.
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To optimize the model’s performance on nuclear segmentation, we tested ten backbones: ResNet5074, ResNet10174,

EfficientNetB275, EfficientNetB375, EfficientNetB475, EfficientNetV2M66, EfficientNetV2L66, EfficientNetV2B166, Efficient-

NetV2B266, and EfficientNetV2B366. Additionally, we explored the optimal set of pyramid layers: P1–P7 and P2–P7.

3.4.6 Segmentation evaluation

To fully evaluate the performance of our segmentation model, we developed a set of object-based metrics that assess the model

on a per-object basis as opposed to a per-pixel basis. This framework provided a perspective on model performance that

reflects downstream applications. First, we built a cost matrix between cells in the ground truth and cells in the prediction,

where the cost is one minus the intersection over union (IoU) for each pair of cells. We performed a linear sum assignment

on this cost matrix, with a cost of 0.4 for unassigned cells, to determine which cells were correctly matched between the

ground truth and prediction. For all remaining cells, we constructed a graph in which an edge was established between a

ground truth and a predicted cell if the IoU was greater than zero. For each subgraph, we classified the error type based

on the connectivity of the graph. Nodes without edges corresponded to a false positive or negative if the graph contained

only a predicted or ground truth cell, respectively (Supplementary Fig. 2a–c). A single predicted node connected to multiple

ground truth nodes indicated a merge error (Supplementary Fig. 2d). Conversely, a single ground truth node connected to

multiple predicted nodes was a split error (Supplementary Fig. 2e). Finally, any subgraphs that contain multiple ground

truth and predicted nodes were categorized as “catastrophe” (Supplementary Fig. 2f).

3.5 Cell tracking

3.5.1 Linear assignment for tracking

Our tracking algorithm drew inspiration from Jaqaman et al.44, where tracking was treated as a linear assignment problem.

To solve the tracking problem, we first constructed a cost function for possible pairings across frames. The tracking problem

was then reduced to the selection of one assignment out of the set of all possible assignments that minimizes the cost function.

This task can be accomplished with the Hungarian algorithm76. One complicating factor of biological object tracking is that

objects can appear and disappear, which leads to an unbalanced assignment problem. Cells can disappear by either moving

out of the FOV or dying. Similarly, cells can appear by moving into the FOV or dividing into two daughter cells from one

parent cell. In the context of the linear assignment problem, one can preserve the runtime and performance by introducing

a “shadow object” for each object in the two frames that represent an opportunity for objects to “disappear” (if an object

in frame tn is matched with its shadow object in frame tn+1) or “appear” (if an object in frame tn+1 is matched with its

shadow object in frame tn)
44. Assuming that mitotic events can be accommodated by a “shadow object” as well, division

detection and assignment fit neatly into this framework. This framework can also accommodate cells that disappear from

the field of view and reappear, by allowing unmatched cells from prior frames that were not assigned to cell division events

to participate in the assignment. With the annotated trajectories and divisions from our dataset, it then becomes a matter

of developing a deep learning architecture to extract an object’s features and learn an optimal cost function.

To construct our learned cost function, we cast it as a classification task. Let us suppose that we have two cells: our target

cell 1 in frame tn and cell 2 in frame tn+1. Our goal was to train a classifier that takes in information about each cell and

10

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2023. ; https://doi.org/10.1101/803205doi: bioRxiv preprint 

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by/4.0/


produces an effective probability indicating whether these two instances are the same, are different, or have a parent–child

relationship. To incorporate temporal information, we used multiple frames of information for cell 1 as an input to the

classifier. This approach allowed us access to temporal information beyond just the two frames we are comparing. Our

classifier was a hybrid deep learning model that blends recurrent, convolutional, and graph submodels; its architecture is

summarized in Fig. 2b,c. The three scores that the model outputs, (psame, pdiff, and pparent-child), which are all positive and

sum to unity, can be thought of as probabilities. These scores were used to construct the cost matrix. If a cell in frame tn+1

is assigned to a shadow cell, i.e., if it “appears,” then we assessed whether there is a parent–child relationship. This was done

by finding the highest pparent-child among all eligible cells (i.e., the cells in frame tn that were assigned to “disappear”)—if

this probability was above a threshold, then we made the lineage assignment.

3.5.2 Neighborhood encoder architecture

To capture the contextual information of each cell and its neighbors, we constructed a graph attention network38,39. There

were three input heads to the model. The first head received images of each cell after reshaping to a standard 32×32 shape

and converted these images to a vector embedding with a convolutional neural network. The second head received the centroid

location of each cell. The third head received three morphology metrics for each cell: area, perimeter, and eccentricity. The

latter two heads made use of fully connected neural networks to convert the inputs into vectors. We built an adjacency matrix

for the graph attention network based on the Euclidean distance between pairs of cells; cells were linked if they are closer than

64 pixels (41.6 µm). The normalized adjacency matrix and concatenated embeddings were fed into a graph attention layer38

to update the embeddings for each cell. The appearance and morphology embeddings were concatenated to the output of

the graph attention layer to generate the final neighborhood embedding.

3.5.3 Tracking model architecture

Given cell 1 in frame tn and cell 2 in frame tn+1, the neighborhood encoder was used to generate embeddings for cell 1 in

frame tn and the previous seven frames [tn−7, tn]. Long short-term memory40 layers were applied to the resulting embedding

for cell 1 to merge the temporal information and to create a final summary vector for cell 1. The neighborhood encoder then

generated an embedding for cell 2. Next, the vectors for cell 1 and cell 2 were concatenated and fed into fully connected

layers. The final layer applied the softmax transform to produce the final classification scores: psame, pdiff, and pparent-child.

3.5.4 Training and optimization

Both the neighborhood encoder and the inference model were jointly trained end-to-end such that the neighborhood embed-

ding was tuned for the inference task. The model was trained on data that compare a set of frames [tn−7, tn] with frame

tn+1. Each comparison of tn with tn+1 contributed to the loss. For inference, the model was given single pairs of frames, e.g.,

tn vs. tn+1. Training data were augmented with random rotations and translations. We used 70% of the data for training,

20% for validation, and 10% for testing. The model was trained using the rectified Adam optimizer77 with a learning rate

of 10−3, a clipnorm of 10−3, and a batch size of eight images. After each epoch, the learning rate was adjusted using the

function lr = lr × 0.99epoch. Additionally, if the loss of the validation data did not improve by more than 10−4 after five
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epochs, the learning rate was reduced by a factor of 0.1. The model was trained over 50 epochs.

To optimize the performance of the tracking model, we tested the following parameters: graph layers (graph convolution

layer, graph convolution layer with trainable skip connections, and graph attention convolution layer), distance threshold

(64, 128, 256 pixels; 41.6, 83.2, 166.4 µm), crop mode (fixed and resized), birth probability, division probability, and death

probability.

3.5.5 Evaluating tracking performance

To evaluate the tracking performance, we utilized two sets of metrics. The first set assessed the linkages between cells,

whereas the second set focused on the linkages of dividing cells. For the first set of metrics, we calculated the target efficiency

(TE) and association accuracy (AA)46,47. Briefly, TE assesses the fraction of cells assigned to the correct lineage, and AA

measures the number of correct linkages generated between cells.

Traditional metrics for evaluating tracking, including TE and AA, do not accurately reflect the ability of the method to

identify divisions because divisions are relatively rare events. To overcome this weakness, we developed a new evaluation

pipeline that classifies each division event as a correct, missed, or incorrect division. Our pipeline can handle tracking

assignments on ground truth and predicted segmentations. First, we calculated the IoU between cells in the ground truth

and the predictions to establish a mapping that can be used to compare tracking predictions. For each division in the ground

truth, we checked the corresponding node in the prediction to determine whether it was labeled as a division. If the daughter

nodes in the prediction match those in the ground truth, the division was counted as a correct division (Supplementary

Fig. 3a). We have found that depending on the predicted segmentations, a division can sometimes be assigned to the frame

before or after the frame that is annotated as a division in the ground truth data. We treated these shifted divisions as

correct. If the predicted node was not labeled as a division, it was considered as a missed division (Supplementary Fig. 3b).

Finally, if a predicted parent node was identified as a division, but the daughters do not match the ground truth daughters,

the division was counted as incorrect (Supplementary Fig. 3c).

We utilized the classified divisions to calculate a set of summary statistics, including recall, precision, and F1 score.

Additionally, we utilized the mitotic branching correctness (MBC) metric defined by Ulicna et al.30, calculated as follows:

MBC =
correct divisions

correct divisions + missed divisions + incorrect divisions

3.6 Deployment

We previously described the DeepCell Kiosk53, our scalable cloud-based deployment for deep learning models. The Kiosk

provides a drag-and-drop interface for model predictions currently deployed at www.deepcell.org/predict. To provide a

seamless pipeline for nuclear segmentation and tracking, we deployed a new consumer for tracking jobs. First, each movie

is split into single frames, which are distributed for nuclear segmentation. This step takes advantage of the Kiosk’s ability

to parallelize and scale resources to match demand. Once nuclear segmentation is complete on all frames, the masks are

concatenated, and tracking is performed. The user receives a final output that contains the raw data, labeled masks, and

lineages.
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3.7 Benchmarking

We compared the performance of our model against four other algorithms: Baxter49, CellTrackerGNN50, EmbedTrack51,

and Tracx36. Using the test split of our dataset, we evaluated the tracking performance of each algorithm on ground truth

segmentation and predicted segmentations generated by either the algorithm or Caliban. We evaluated the resulting tracking

predictions using our division evaluation pipeline and evaluation software from the Cell Tracking Challenge45. The notebooks

used to generate benchmarks are available at https://github.com/vanvalenlab/Caliban-2023_Schwartz_et_al.

We evaluated the speed of Caliban for inference using a single GPU (NVIDIA RTX A6000) and eight CPUs (AMD EPYC

7763 64-Core Processor). The inference time was split into four sections: segmentation inference, neighborhood encoder

inference, tracking inference, and linear assignment. Inference was repeated three times for each movie in the test data split.

References

1. Lahav, G., Rosenfeld, N., Sigal, A., Geva-Zatorsky, N., Levine, A. J., Elowitz, M. B. & Alon, U. Dynamics of the

p53-Mdm2 feedback loop in individual cells. Nature genetics 36, 147–150 (2004).

2. Geva-Zatorsky, N., Rosenfeld, N., Itzkovitz, S., Milo, R., Sigal, A., Dekel, E., Yarnitzky, T., Liron, Y., Polak, P., Lahav,

G., et al. Oscillations and variability in the p53 system. Molecular systems biology 2, 2006–0033 (2006).

3. Regot, S., Hughey, J. J., Bajar, B. T., Carrasco, S. & Covert, M. W. High-sensitivity measurements of multiple kinase

activities in live single cells. Cell 157, 1724–1734 (2014).

4. Hughey, J. J., Gutschow, M. V., Bajar, B. T. & Covert, M. W. Single-cell variation leads to population invariance in

NF-κB signaling dynamics. Molecular biology of the cell 26, 583–590 (2015).

5. Neumann, B., Held, M., Liebel, U., Erfle, H., Rogers, P., Pepperkok, R. & Ellenberg, J. High-throughput RNAi screening

by time-lapse imaging of live human cells. Nature methods 3, 385–390 (2006).
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Supplement

Supplementary File 1: DeepCell Label User Manual

Supplementary File 2: Segmentation Correction Instructions

Supplementary File 3: Tracking Correction Instructions

Tracking Segmentation DET SEG TRA Div R Div P Div F1 MBC AA TE

Caliban
Caliban 0.991 0.924 0.990 0.90 0.94 0.92 0.85 0.97 0.97
GT 1.000 1.000 1.000 0.95 0.98 0.97 0.94 0.99 0.99

Baxter
Caliban 0.988 0.920 0.987 0.50 0.74 0.60 0.43 0.98 0.98
GT 0.997 0.996 0.997 0.60 0.89 0.72 0.56 1.00 0.99

Tracx
Caliban 0.991 0.924 0.989 0.32 0.26 0.28 0.17 0.95 0.95
GT 1.000 1.000 0.999 0.34 0.54 0.42 0.27 0.98 0.98

CellTrackerGNN
CellTrackerGNN 0.815 0.682 0.812 0.43 0.05 0.08 0.04 0.76 0.76
GT 1.000 0.999 0.996 0.65 0.10 0.18 0.10 0.93 0.93

EmbedTrack EmbedTrack 0.816 0.642 0.815 0.64 0.17 0.27 0.15 0.82 0.82

Supplementary Table 1: Benchmarking the performance of different tracking methods on the test split of
DynamicNuclearNet. Bold font indicates the best scores on predicted segmentations. Italic font denotes the best scores on
ground truth (GT) segmentations. CTC: Cell Tracking Challenge, DET: CTC detection accuracy45, SEG: CTC segmentation
accuracy78, TRA: CTC tracking accuracy78, Div R: division recall, Div P: division precision, Div F1: division F1 score, MBC:
mitotic branching correctness30, AA: association accuracy46,47, TE: target efficiency46,47.

Supplementary Figure 1: Runtime for segmentation and tracking with Caliban. The total runtime for segmentation
and tracking is plotted as a function of the number of objects and frames in the sample. Each point represents a movie in
the test data split, with a unique color assigned to each movie.
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Supplementary Figure 2: Object-based evaluation of segmentation performance. Segmentation predictions were
evaluated based on object-level accuracy by first constructing a graph in which edges indicate an overlap between two
objects. Each subgraph is then isolated and analyzed to identify the type of segmentation error present. (a) Subgraphs with
one ground truth (GT) and one predicted node represent a true positive segmentation. Subgraphs containing only one node
represent (b) a false negative if the node is ground truth or (c) a false positive if the node is predicted. Subgraphs with three
nodes indicate (d) a merge if two ground truth nodes are associated with one predicted node or (e) a split if two predicted
nodes are associated with one ground truth node. (f) Finally, all subgraphs containing more than three nodes are assigned
to the catastrophe error class.

Supplementary Figure 3: Division-based evaluation of tracking performance. Division events are classified as correct,
missed, or incorrect based on a comparison of the true and predicted tracking graphs. (a) A division is considered correct
if the prediction links the parent to the correct daughters within one frame of the ground truth division event. We allow
divisions to shift in time because segmentation predictions can change when the cell is identified as one or two objects. (b)
Divisions are identified as missed if the daughter cells are assigned to the incorrect parent or if no parent is identified. (c) A
division is incorrect if the parent is assigned to only one of the correct daughter cells.
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