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Abstract 

Live-cell imaging experiments have opened an exciting window into the behavior of living systems. While these 
experiments can produce rich data, the computational analysis of these datasets is challenging. Single-cell analysis 
requires that cells be accurately identified in each image and subsequently tracked over time. Increasingly, deep 
learning is being used to interpret microscopy image with single cell resolution. In this work, we apply deep learning 
to the problem of tracking single cells in live-cell imaging data. Using crowdsourcing and a human-in-the-loop 
approach to data annotation, we constructed a dataset of over 11,000 cell nuclear trajectories that includes lineage 
information. Using this dataset, we successfully trained a deep learning model to perform cell tracking within a linear 
programming framework. Benchmarking tests demonstrate that our method achieves state-of-the-art performance 
on the task of cell tracking with respect to multiple accuracy metrics. Further, we show that our deep learning-based 
method generalizes to perform cell tracking for both fluorescent and brightfield images of the cell cytoplasm, despite 
having never been trained those data types. This enables analysis of live-cell imaging data collected across imaging 
modalities. A persistent cloud deployment of our cell tracker is available at http://www.deepcell.org. 

Introduction 
Live-cell imaging experiments, where living cells are imaged over time with fluorescence or brightfield microscopy, 
has provided crucial insights into the inner workings of biological systems. To date, these experiments have shed 
light on numerous problems, including information processing in signaling networks1–3 and quantifying stochastic 
gene expression4–7. One key strength of live-cell imaging experiments is the ability to obtain dynamic data with 
single-cell resolution. It is now well appreciated that individual cells can vary considerably in their behavior, and the 
ability to capture the temporal evolution of cell-to-cell differences has proven essential to understanding cellular 
heterogeneity. Increasingly, these dynamic data are being integrated with end-point genomic assays to uncover even 
more insights into cellular behavior8–10. 

Central to the interpretation of these experiments is image analysis. Traditionally, the analysis of these data occurs 
in three phases. First, images are cleaned with steps that include background subtraction and drift correction. Next, 
the image is segmented to identify each individual cell in every frame. This segmentation step can capture the whole 
cell or cellular compartments like the nucleus. Lastly, all the detections for an individual cell are linked together in 
time to form a temporally cohesive record for each cell; a schematic of this step is shown in Figure 1(a). With a 
suitable algorithm and data structure, these records can contain lineage information such as parent-child 
relationships for each cell. The output of this analysis pipeline is a record for each cell of which pixels are associated 
with it in each frame of the dataset as well as lineage information. This record can then be used to obtain quantitative 
information – ranging from metrics of cellular morphology to fluorescence intensity – over time. 

Advances in imaging technologies – both in microscopes11 and fluorescent reporters12 – have significantly reduced 
the difficulty of acquiring live-cell imaging data while at the same time increasing the throughput and the number of 
systems amenable to this approach. Increasingly, image analysis is a bottleneck for discovery as there is a gap 
between our ability to collect and analyze data. This gap can be traced to the limited accuracy and generality of cell 
segmentation and tracking algorithms. These limitations lead to a significant curation time, recently estimated to be 
>100 hours for one manuscript worth of data13. Recent advances in computer vision, specifically deep learning, are 
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closing this gap14. For the purposes of this paper, deep learning refers to a set of machine learning methods capable 
of learning effective representations from data in a supervised or unsupervised fashion. Deep learning has shown a 
remarkable ability to extract information from images and it is increasingly being recognized that it is a natural fit 
for the image analysis needs of the life sciences15,16. As a result, deep learning is increasingly being applied to 
biological imaging data – applications include using classification to determine cellular phenotypes17, enhancing 
image resolution18, and extracting latent information from brightfield microscope images19,20. Of interest to those 
who use live-cell imaging has been the application of this technology to single-cell segmentation. The popular deep 
learning model architecture U-Net targeted cell segmentation as its first use case21,22 and our group’s prior work has 
shown that deep learning can perform single-cell segmentation for organisms spanning the domains of life as well 
as in images of tissues13,23. Recent approaches have extended these methods to 3D datasets24. The improved accuracy 
of single-cell segmentations for live-cell imaging is crucially important, as a single segmentation error in a single 
frame can impair subsequent attempts at cell tracking and render a cell unsuitable for analysis.  

While deep learning has been successfully applied to single-cell segmentation, a robust deep learning-based cell 
tracker for mammalian cells has been elusive. Integration of deep learning into live-cell imaging analysis pipelines 
achieve performance boosts by combining the improved segmentation accuracy of deep learning with conventional 
object tracking algorithms13,25–27. These algorithms include linear programming28 and the Viterbi algorithm29; both 
have seen extensive use on live-cell imaging data. While useful, these object tracking algorithms have limitations. 
Common events that lead to tracking errors include cell division and cells entering and leaving the field of view. 
Furthermore, their use often necessitates tuning numerous parameters to optimize performance for specific 
datasets, which leads to fragility on unseen data. Though there have been attempts at adapting deep learning to track 
cells30, their performance is significantly limited by a lack of training data, as fine-tuned conventional methods still 
achieve superior performance.  

Three technical challenges have impeded the creation of a readily available, deep learning-based cell tracker. First, 
as previously mentioned, the unique features of live-cell imaging data (i.e. cell divisions) confound traditional 
tracking methods as well as deep learning-based object trackers. Second, successful deep learning solutions are data 
hungry. While unsupervised deep learning can be a useful tool, most applications of deep learning to imaging data 
are supervised and require significant amounts of specialized training data. Aggregating and curating training data 
for tracking is especially difficult because of the additional temporal dimension – objects must be segmented and 
tracked through every frame of a training dataset. Third, deep learning’s requirement for hardware acceleration 
presents a barrier for performing large inference tasks. On premise computing has limited throughput, while cloud 
computing poses additional software engineering challenges. 

In this paper, we address each of these challenges to construct an effective deep learning-based solution to cell 
tracking in two dimensional live-cell imaging data. We show how cell tracking can be solved with deep learning and 
linear programming. We then demonstrate how a combination of crowdsourcing and human-in-the-loop data 
annotation can be used to create a live-cell imaging training dataset consisting of over 11,000 single cell trajectories. 
We benchmark the resulting tracker using multiple metrics and show it achieves state-of-the-art performance on 
several datasets, including data from the ISBI cell tracking challenge. Lastly, leveraging our prior work with cloud 
computing31, we show how our cell tracker can be integrated into the DeepCell 2.0 single-cell image analysis 
framework to enable segmentation and tracking live-cell imaging datasets through their web browser.  

Tracking single cells with deep learning and linear programming 
Our approach to cell tracking is motivated by the now classic work of Jaqaman et al32 and recent work applying deep 
learning to object tracking33. In these works, object tracking is treated as a linear assignment problem (Figure 2a). 
In this framework, Ni objects in frame i must be assigned to Ni+1 objects in frame i+1. To solve this assignment 
problem, one constructs a cost function for a possible pairing across frames, which is traditionally based on each 
object’s location and appearance features (brightness, size, etc.)28. The guiding intuition is that objects are unlikely 
to move large distances or have distinct changes in appearance from frame-to-frame if the frame rate is sufficiently 
high. The problem is then reduced to the selection of one assignment out of the set of all possible assignments that 
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minimizes the cost function, a task that can be accomplished with the Hungarian algorithm34. One complicating factor 
of biological object tracking is that objects can appear and disappear – this often leads to Ni and Ni+1 being unequal. 
This problem can be solved by introducing a “shadow object” for each object in the two frames32 – Ni+1 shadow 
objects in frame i and Ni shadow objects in frame i+1. These shadow objects represent an opportunity for objects to 
“die” (if an object in frame i is matched with its shadow object in frame i+1) or to be “born” (if an object in frame i+1 
is matched with its shadow object in frame i). This framework leads to a cost matrix describing the cost of every 
possible assignment that is size Ni + Ni+1 x Ni + Ni+1; its structure is shown in Figure 2a.  

Assuming error-free image segmentation and an accommodation for dealing with cell divisions, cell tracking can fit 
neatly into this framework. Whole movies are tracked by sequentially tracking every pair of frames – this is to be 
contrasted with approaches like the Viterbi algorithm that incorporate multiple frames worth of information to 
determine assignments. One advantage of this approach is that it can cope with missing objects – instead of using 
the objects in frame i for comparison, we instead compare all objects that have been successfully tracked up to frame 
i. If objects disappear and reappear, the opportunity to correctly track them still exists.  Optimization of the linear 
assignment approach’s performance on real data comes about through cost function engineering. By varying key 
aspects of the cost function – how sensitive it is to the distance between two cells, how much it weights the 
importance of cell movement vs cell appearance, etc. – it is possible to tune the approach to have acceptable 
performance on live-cell imaging datasets. However, this approach has several downsides – the accuracy is limited, 
the time required for cost function engineering and curation of results is prohibitive, and solutions are tailored to 
specific datasets which reduces their generality. 

Here, we take a supervised deep learning approach to learn an optimal cost function for the linear assignment 
framework. Our approach was inspired by previous work applying deep learning to object tracking33. Building on 
this work, we make adaptations to deal with the unique features of live-cell imaging data (Figure 1c). To construct 
our learned cost function, we consider it as a classification task. Let us suppose we have two cells – cell 1 in frame i 
and cell 2 in frame i+1. Our goal is to construct a classifier that would take in information about each cell and produce 
a probability that these two cells are either the same, are different, or have a parent-child relationship. If such a 
classifier worked perfectly, then we could use it in lieu of our hand engineered cost function, as is shown in Figure 
2b. To incorporate temporal information, we can use multiple frames of information for cell 1 as an input to the 
classifier. This allows us access to the temporal information beyond just the two frames we are comparing. For our 
work here, we use 7 frames worth of information. 

Our classifier for performing this task is a hybrid recurrent-convolutional deep learning model; its architecture is 
shown in Figure 1c. This deep learning model takes in 4 pieces of information about each cell using 4 separate 
branches. Conceptually, each branch seeks to summarize its input information as a vector. These summary vectors 
can then be fed into a fully connected neural network to classify the two cells being compared. The first branch takes 
in the appearance, that is a cropped and resized image, of each cell and uses a deep convolutional neural network to 
generate a summary. This network is applied to every frame for cell 1, creating a sequence of summary vectors. 
Conversely, cell 2 only has 1 frame of information and hence only has 1 summary vector. The appearance gives us 
access to information on what the two cells look like, but the resizing operation removes notions of size scale. To 
mitigate this, we incorporate a second branch that takes in a vector of morphological information for each cell and 
uses a densely connected neural network to create a summary vector of this information. The morphology 
information used includes the area, perimeter, and eccentricity. The third branch acquires information about cell 
motion over time. For cell 1, we collect a vector of all the centroid displacements. For cell 2, we create a single vector 
that is the displacement between cell 1 and cell 2’s centroid. This branch gives us a history of cell 1’s motion and 
allows us to see whether a potential positive assignment of cell 2 would be inconsistent from the point of view of cell 
motion. The last branch incorporates neighborhoods, which is an image cropped out around the region surrounding 
cell 1. We reasoned that because neighborhoods contain information about cell divisions, they could prove useful in 
performing lineage assignments. Just as with appearances, a deep convolutional neural network is used to 
summarize the neighborhoods as a vector. We extract the neighborhood around the area cell 1 is predicted to be 
located given cell 1’s velocity vectors and use it as the neighborhood for cell 2. The result of these 4 branches are 
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sequences of summary vectors for cell 1 and individual summary vectors for cell 2. Long short-term memory (LSTM) 
layers are then applied to each of cell 1’s sequence of summary vectors to merge the temporal information and create 
4 individual vectors that summarize each of the 4 branches. The vectors for cell 1 and cell 2 are then concatenated 
and fed into fully connected layers. The final layer applies the softmax transform to produce the final classification 
scores – psame, pdiff, and pparent-child. These three scores, which are all positive and sum to 1, can be thought of as 
probabilities. They are used to construct the cost matrix, as shown in Figure 2b. If a cell in frame i+1 is assigned to a 
shadow cell, i.e. it is “born,” then we check whether there is a parent-child relationship. This is done by finding the 
highest pparent-child among all eligible cells (i.e. the cells in frame i that were assigned to “die”) – if this is above a 
threshold then we make the lineage assignment. Full details of the model architecture, training, hyperparameter 
optimization, and post processing are described in the Supplemental Information. 

Dataset annotation and cell segmentation 
To power our deep learning approach to cell tracking, we generated an annotated dataset specific to live-cell imaging. 
This dataset consists of movies of 4 different cell lines – HeLa-S3, RAW 264.7, HEK293, and NIH-3T3. For each cell 
line, we collected fluorescence images of the cell nucleus. We note that the nucleus is a commonly used landmark for 
quantitative analysis of live-cell imaging data, and that recent work has made it possible to translate brightfield 
images into images of the cell nucleus20. The annotations we sought to create consisted of label movies – movies in 
which every pixel that belongs to a cell gets a unique integer id in every frame that cell exists – and lineage 
information which accounts for cell divisions. This latter piece of information, referred to as relational data, takes 
the form of a JSON object that links the ids of parent cells with the ids of child cells. In total, our dataset consists of 
11,393 cell trajectories (~25 frames per trajectory) with 855 cell divisions in total. This dataset is as essential to our 
approach as the deep learning code itself. Existing single-cell datasets were not adequate for a deep learning 
approach, as they were either too small35 or did not contain temporal information13,36. 

Our approach to constructing this dataset is shown in Figure 2a. Briefly, our dataset annotation consisted of two 
phases. The first phase relied on crowdsourcing and internal annotators. Using the Figure 8 platform, annotators 
were given a sequence of frames and instructed to color each cell with a unique color for every frame it appeared in. 
In this fashion, contributors provided both segmentation and tracking annotations simultaneously. Internal 
annotators took these annotations and manually corrected errors and recorded cell division events in these data. 
Once enough training data was collected (~2,000 trajectories), we trained preliminary models for segmentation and 
cell tracking. These were accurate enough to empower annotators to correct algorithm mistakes as opposed to 
creating annotations from scratch. To facilitate this human-in-the-loop approach, we developed a software tool 
called Caliban37 to specifically curate live-cell imaging data. Caliban, also shown in Figure 2a, takes in segmented and 
tracked live-cell imaging data and enables users to quickly correct errors using their keyboard and mouse.  

The resulting dataset was used to train our cell tracking model as well as nuclear segmentation models. We used a 
model based on RetinaMask38 for nuclear segmentation, which provided moderate gains to our previously published 
approach13 (Table S1). We also used our pipeline for crowdsourcing to create single cell annotations of static 
fluorescent cytoplasm images and brightfield images of 7 different cell lines – MSC (mesenchymal stem cells), NIH-
3T3, A549, HeLa, HeLa-S3, CHO, and PC3. This dataset consisted of 63,280 single cell annotations and was used to 
train models for single cell segmentation of fluorescent cytoplasm and brightfield images, allowing us to benchmark 
our cell tracking algorithm on cytoplasmic images. Full details of our annotation methods, model architectures, and 
model training can be found in the Supplemental Information. 

Deployment 
The need for hardware acceleration and software infrastructure can pose a significant barrier to entry for new 
adopters of deep learning methods15. This is particularly true for large inference tasks, as is often the case in the life 
sciences. To solve these issues, we recently developed a platform for performing large-scale cellular image analysis 
in the cloud using deep learning-enabled models39. This platform uses a micro-service architecture and allows 
sequences of image analysis steps – some enabled by deep learning and some not - to be applied to an image before 
returning the result to the user. It also scales resources requested from cloud computing providers to meet demand. 
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This ability allows large analysis tasks to be finished quickly, making data transfer the sole bottleneck. Further, this 
software allows analysis to be performed through a web portal. 

We integrated our deep learning-enabled cell segmentation and tracking software into this platform (Figure 2b), 
allowing users to interface with this algorithm through a web portal. Data in the form of a tiff stack (or a zip file with 
directories that contain multiple tiff stacks) is uploaded into a cloud bucket. Once there, the images are segmented, 
cells are tracked, and the end result is returned to the user in the form of “.trk” files, a custom file format with the 
raw movie, the label movie, and a json with the mother-daughter information. The results can be curated with 
Caliban to correct errors and then queried for single cell analysis using user generated scripts. While we have made 
this work is accessible in the form of Jupyter notebooks for both training and inference, incorporating this algorithm 
into a cloud deployment makes it more accessible as analysis can be performed through a web portal. Further, it will 
make it significantly easier to perform large inference tasks.  

 
Benchmarking 
A visual montage of our algorithm’s output is shown in Figure 3a. To benchmark our method, we reserved 10% of 
our annotated data solely for testing. We also made use of the ISBI cell tracking dataset; where necessary, we used 
our pipeline to create label movies of these data. As a baseline for the current state-of-the-art, we used an existing 
implementation of the Viterbi algorithm29,40. One challenge of benchmarking tracking methods is that errors can 
arise from both segmentation and tracking. Here, we make use of three different tracking metrics. The first are 
confusion matrices for our deep learning model, which provides a sense of which linkage errors are most likely. The 
second is a graph-based metric35,41 that treats cell lineage as a directed acyclic graph (DAG). The number of graph 
operations (split/delete/add a node and delete/add/change an edge) needed to map the DAGs generated by an 
algorithm to the ground truth DAGs is used to generate a score from 0 to 1. Last, we quantified the true positive, false 
positive, and false negative rates for detecting cell divisions, one of the most challenging tasks of cell tracking.  

We first computed confusion matrices for our method on our testing dataset; these are shown in the Supplemental 
Information. These demonstrate that the most common error made by our method is confusing linkages between 
the same cell with linkages between mother and daughter cells. This leads to false division events, where the mother 
cell only has one daughter, and missed cell divisions. The former can be mitigated with appropriate post-processing. 
Next, we used the graph-based metric to compare the performance of our method to a Viterbi based method that has 
produced state-of-the-art performance in the ISBI cell tracking challenge; this is shown in Figure 3b. To separate cell 
segmentation performance from cell tracking performance, we applied this metric in three settings. First, we used a 
classical computer vision method to segment cells and applied the Viterbi cell tracking algorithm to generate a 
baseline score. Next, to measure the improvement provided by deep learning-enabled cell segmentation, we used 
deep learning to generate cell segmentations and applied both the Viterbi and our method to link cells together over 
time. Last, to measure the improvement provided by deep learning-enabled cell tracking, we used our ground truth 
segmentations as the input to both cell trackers. This comparison (Figure 3b) reveals that the bulk of the 
performance boost offered by deep learning comes from improved cell segmentations, an insight that is consistent 
with previous work13. This comparison also shows that our deep learning-enabled cell tracker outperforms the 
Viterbi algorithm on these data with respect to the graph-based metric, albeit by a small margin. 

While the graph-based metric provides a global measure of performance, it is less informative for rare but important 
events like cell divisions. To complete our analysis, we quantified the recall, precision, and F1 score for cell division 
detection on our held-out datasets. This was done for both deep learning generated and ground truth segmentations 
for our method and the Viterbi algorithm. As seen in Figure 3c, deep learning provides a marked improvement in cell 
division detection, and hence lineage construction. With ground truth segmentations, our approach achieves a recall 
and precision of 89% and 84%; the Viterbi algorithm achieves 57% and 85% respectively on these measures. The 
performance of our method falls to a recall of 72% and a precision of 71% when deep learning generated 
segmentations are used. These results are consistent with the minor differences seen in the graph-based metric 
because divisions are rare events, and hence require only a few graph operations to fix if they are misidentified. This 
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analysis highlights the strength of our approach; live-cell imaging experiments that require correct lineage 
construction stand to benefit the most. 

Last, because our deep learning model was trained in the same fashion as Siamese neural networks (i.e. same vs 
different), we wondered whether it would generalize beyond just nuclear data. To test this, we used our 
crowdsourcing pipeline to generate label movies of brightfield and fluorescent cytoplasmic data from the ISBI cell 
tracking challenge. We then used the segmentations from these label movies as the input into our cell tracker. 
Surprisingly, our cell tracker performed markedly well on this challenge, despite never having seen cytoplasmic data. 
This finding means that single model can be used to track cells irrespective of the imaging modality. This raises the 
possibility of a pipeline that can process live-cell imaging data while being agnostic to image type or acquisition 
parameters. As a proof of principle, we constructed a pipeline that uses deep learning models to find the relative 
scale of input images to our training data and identify the imaging modality. Using this information, we can rescale 
images, direct them to the appropriate segmentation model, and then send the results to our deep learning-based 
cell tracker for lineage construction. While this demonstrates the feasibility of analyzing diverse datasets with a 
single pipeline, additional training data is necessary to produce cytoplasmic segmentations accurate enough for 
automated analysis. 

Discussion 
Live-cell imaging is a transformative technology. It has led to numerous insights into the behavior of single cells and 
will continue to do so for many years to come as imaging and reporter technologies evolve. While the adoption of 
this method has typically been limited to labs with the computational expertise single cell analysis of these data 
demands, the arrival of deep learning is changing this landscape. With suitable architectures and deployment tools, 
deep learning can turn single cell image segmentation into a data annotation problem. With the work we present 
here, the same can be said for cell tracking. The applications of this technology are numerous, as it enables high 
throughput studies of cell signaling, cell lineage experiments, and potentially dynamic live-cell imaging-based 
screens of pharmaceutical compounds. 

While deep learning methods are powerful, they are not without limitations. This is particularly true for our 
approach. Accurate detection is still essential to cell tracking performance, and deep learning-based segmentation 
methods still make impactful errors as cells become more crowded. We expect this to be mitigated as more expansive 
sets of data are annotated, and as segmentation methods that use spatiotemporal information to inform 
segmentation decisions come online42. This method, and all supervised machine learning methods, is limited by the 
training data that empower it. Our training dataset contains less than 1000 cell divisions; we expect division 
detection to become more accurate with additional annotated data. Because our training data did not include 
perturbations that markedly change cell phenotypes or fates (i.e. apoptosis or differentiation), it is possible 
performance will be limited if these are features of processed data. This can be mitigated by collecting additional 
training data; we anticipate our existing models combined with a human-in-the-loop approach will enhance future 
annotation efforts. We also focused on 2D images, as are collected with widefield imaging. Modern confocal and light 
sheet microscopes can collect 3D data over long time periods. We suspect that our approach can be adapted to these 
data by using 3D deep learning sub-models, but the requisite annotation task is more challenging than the one 
undertaken here.  

Lastly, our work has centered on live-cell imaging of mammalian cell lines. While these are important model systems 
for understanding human biology, and the potential of deep learning applications to these systems has for improving 
human health is substantial, they vastly under sample the diversity of life. Much of our understanding of living 
systems comes from basic science explorations of bacteria, yeast, and archaea. Live-cell imaging and single cell 
analysis are powerful methods for these systems; extending deep learning-enabled methods to these systems43 by 
annotating the requisite data could be just as impactful, if not more so, as the discoveries that will be derived from 
the work presented here.  
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Figures 

 

Figure 1: Tracking single cells with deep learning and linear programming. (a, b) Computational analysis is a 
significant barrier for extracting single cell information from movies of living cells. Cells must be identified in every 
frame and then these detections must be linked together over time to form a temporal record for each cell. (c) Cell 
tracking can be framed as a linear assignment problem in which Ni objects in frame i are matched up with Ni+1 objects 
in frame i+1. Shadow objects can be introduced to account for births (i.e. from cell division events) or deaths (i.e. 
cells leaving the field of view). Solving the linear assignment problem requires first creating a cost matrix that scores 
each possible assignment. The Hungarian algorithm34 is then used to find the optimal assignment that minimizes the 
cost function. Instead of manually engineering this cost function, we use a deep learning model to learn one from 
annotated data. Here, psame is the probability that two cells being compared are the same, b is the cost associated 
with cell “births” (i.e. a cell in frame i+1 being assigned to a shadow cell), and d is the cost associate with a cell death 
(i.e. a cell in frame i being assigned to a shadow cell).  A deep learning model learns to take information from two 
cells and compute the probability these are the same cell, different cells, or have a parent-child relationship. This 
model takes information on each cell’s appearance, local neighborhood, morphology, and motion and summarizes 
as a vector using a deep learning sub-model. A fully connected layer reads these summaries and determines the 
scores for the three classes. 
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Figure 2: A human-in-the-loop to dataset construction and cloud computing facilitate a scalable solution to live-cell 
image analysis. (a) Combining crowd sourcing and a human-in-the-loop approach to dataset annotation enables the 
construction of an ImageNet for live-cell imaging. By annotating montages, crowd contributors both segment and 
track single cells in live-cell imaging data. This data leads to models that are used to process additional data; expert 
annotators use Caliban to correct model errors and identify cell division events. The resulting data is then used to 
train a final set of deep learning models to perform cell segmentation and tracking. (b) Integration of a cell tracking 
service into DeepCell 2.0. Datasets are uploaded to a cloud bucket; once there, a tracking consumer object facilitates 
interactions with deep learning models via Tensorflow serving for segmentation and tracking. The implementation 
within the Kubernetes engine includes an autoscaling module that monitors resource utilization and scales the 
compute resources accordingly. 
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Figure 3: Benchmarking demonstrates that deep learning achieves state-of-the-art performance on cell tracking 
tasks for a variety of cell types. (a) A montage of tracking results for fluorescent images of cell nuclei and brightfield 
images of cells. (b) Confusion matrices for our deep learning model identify the linkages between mother cells and 
daughter cells as our dominant error mode. These linkage errors lead to erroneous and missed divisions.  (c) A graph-
based metric for cell tracking demonstrates that deep learning enables state-of-the-art performance, with the bulk 
of this performance boost coming from improved segmentations. (d) Analysis of performance in cell division 
detection reveals that the performance boost offered by deep learning comes from more accurate detection of cell 
divisions. 
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Supplemental Information 

Cell line acquisition and culture methods. We used the mammalian cell lines NIH-3T3, HeLa-S3, HEK 293, and RAW 
264.7 to collect training data for nuclear segmentation and the cell lines NIH-3T3 and RAW 264.7 to collect training 
data for augmented microscopy. All cell lines were acquired from ATCC. The cells have not been authenticated and 
were not tested for mycoplasma contamination.  

Mammalian cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen or Caisson) 
supplemented with 2mM L-Glutamine (Gibco), 100 U/ml penicillin, 100μg/ml streptomycin (Gibco or Caisson), and 
either 10% fetal bovine serum (Omega Scientific or Thermo Fisher) for HeLa-S3 cells, or 10% calf serum (Colorado 
Serum Company) for NIH-3T3 cells.  Cells were incubated at 37°C in a humidified 5% CO2 atmosphere.  When 70-
80% confluent, cells were passaged and seeded onto fibronectin coated glass bottom 96-well plates (Thermo Fisher) 
at 10,000-20,000 cells/well. The seeded cells were then incubated for 1-2 hours to allow for cell adhesion to the 
bottom of the well plate before imaging. 

Collection of live-cell imaging data. For fluorescent nuclear imaging, mammalian cells were seeded onto fibronectin 
(Sigma, 10ug/ml) coated glass bottom 96-well plates (Nunc) and allowed to attach overnight. Media was removed 
and replaced with imaging media (FluoroBrite DMEM (Invitrogen) supplemented with 10mM Hepes, 1% FBS, 2mM 
L-Glutamine) at least 1 hour prior to imaging. For nuclear imaging, cells without a genetically encoded nuclear 
marker were incubated with 50ng/ml Hoechst (Sigma) prior to imaging. For cytoplasm imaging, cells were incubated 
with 2 µM CellTracker CMFDA prior to imaging. Cells were imaged with either a Nikon Ti-E or Nikon Ti2 fluorescence 
microscope with environmental control (37°C, 5% CO2) and controlled by Micro-Manager or Nikon Elements. Images 
were acquired with a 20x objective (40x for RAW 264.7 cells) and either an Andor Neo 5.5 CMOS camera with 2x2 
binning or a Photometrics Prime 95B CMOS camera with 2x2 binning. All data was scaled to so that pixels had the 
same physical dimension prior to training. Fluorescence images were taken for nuclear data, while both brightfield 
and fluorescence images were taken for cytoplasmic data. For time-lapse experiments, images were acquired at 6-
minute intervals. 
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Deep learning architecture for single-cell segmentation. Our pipeline for single cell segmentation is shown in Figure 
S1. This pipeline uses deep learning models to rescale images and direct them to the appropriate segmentation. We 
used modified RetinaMask38 models for single cell segmentation of fluorescent nuclear, fluorescent cytoplasm, and 
brightfield images. RetinaMask generates instance masks in a fashion similar to Mask-RCNN but uses single shot 
detection like RetinaNet44 rather than feature proposals45 to identify objects. Each model used a ResNet50 backbone 
pre-trained on ImageNet. For nuclear segmentation, we used the P3 and P4 feature pyramid layers for object 
detection with an anchor size of 16 and 32 pixels respectively. For the fluorescent cytoplasmic and brightfield 
segmentation, we used the P3, P4, P5, and P6 layers with anchor sizes of 32, 64, 128, and 256 pixels. For all three 
models, we attached two semantic segmentation heads46 to predict pixelwise and deep watershed segmentations. 
This encouraged the backbone and feature pyramid network to learn more general image features. We used a 
weighted softmax loss for both heads that was weighted by 0.1. All three models were trained on their respective 
datasets in the same fashion. We used the Adam47 optimization algorithm with a learning rate of 10-5 and clip norm 
of 0.001, batch size of 4, and L2 regularization strength of 10-5 for 16 epochs on a NVIDIA V100 graphics card. For 
the nuclear data, we ensured that our training/validation split was the same as was used for training the cell tracking 
model. Our post processing consisted of removing segmentation masks that have high overlap with >2 other masks. 
Masks that only overlapped with 1 other mask were resolved using a marker based random walker segmentation 
step48. All masks smaller than 100 pixels were also removed during post processing. For nuclear segmentation, we 
used the output of the watershed semantic segmentation mask to add cells that were missed by the RetinaMask 
object detection. 
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Deep learning models for scale and image type detection. To develop a live-cell imaging analysis workflow that is 
agnostic to imaging modality and acquisition parameters, we trained two deep learning models for detecting scale 
and image type. The scale detection model sought to identify the relative scale of between an input image and our 
training data; we applied affine transformations to our training data to create images of different scales. The model 
consisted of a MobileNetV2 backbone connected to an average pooling layer and followed by two dense layers. The 
model was trained for 20 epochs on a combined dataset (nuclear, fluorescent cytoplasmic, and brightfield images) 
using a mean squared error (MSE) loss. We used the Adam optimization algorithm with a learning rate of 10-5 and 
clip norm of 0.001, batch size of 64, and L2 regularization strength of 10-5 on an NVIDIA V100 graphics card. The 
image type detection model consisted of a MobileNetV2 backbone connected to an average pooling layer followed 
by two dense layers and a softmax layer. The model was trained for 20 epochs on a combined dataset using a 
weighted categorical crossentropy loss. We used We used the Adam optimization algorithm with a learning rate of 
10-5 and clip norm of 0.001, batch size of 64, and L2 regularization strength of 10-5 on an NVIDIA V100 graphics card. 
The scale detection model achieved a mean absolute percentage error of 0.85% on validation data while the image 
type detection achieved a classification accuracy of 98% on validation data. We found that using the MobileNetV2 
backbone provided similar performance to larger networks while offering a higher inference speed and lower 
memory footprint.  

 

Figure S1 Computational pipeline for single cell segmentation. Our pipeline uses a scale detection deep learning 
model to rescale input images to the same physical pixel dimensions of our training data. Another deep learning 
model detects whether the rescaled images are fluorescent nuclear images, fluorescent cytoplasm images, or 
brightfield images. Once the image type is determined, the images are sent to a RetinaMask based deep learning 
model for single cell segmentation. The segmentation masks are then sent to the cell tracking deep learning model 
to construct cell lineages. 
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Segmentation benchmarking. Because segmentation performance is critical to cell tracking performance, we 
performed rigorous benchmarking during model optimization. In addition to pixel-based metrics, we also used an 
object-based approach36 to segmentation benchmarking. This approach compares ground truth and prediction 
segmentations to identify segmentation errors. Our first step is to link prediction and ground truth segmentations 
based on object overlap – this can be thought of as constructing of a DeBruijn graph where we are using objects 
rather than sequences. We solve this problem using a linear assignment framework in a manner akin to how we link 
cells during cell tracking. We construct a cost matrix where the cost of linking two cells is 1 − 𝑖𝑜𝑢, where iou is the 
intersection over union of those two cells. Leaving a ground truth cell unassigned (missed detection) or a prediction 
cell unassigned (gained detection) has a cost of 0.4. This means for a ground truth and predicted cell to be linked, 
they must have an iou of at least 0.6.   

All the unassigned cells are then gathered for a second round of construction of graph construction to classify error 
types. This is shown in Figure S2. We view each cell as a node and examine all pairs of unassigned ground truth cells 
and unassigned predicted cells; we link two cells if they have an iou greater than 0.1. We then extract all the 
subgraphs of this graph and categorize them into three groups. The first group consists of all subgraphs that have a 
single node (i.e. the highest degree of any node is 0). If the node is a ground truth cell this corresponds to a missed 
detection (i.e. a false negative); if the node is a predicted cell this corresponds to a gained detection (i.e. a false 
positive). The next group consists of all subgraphs where the highest degree node has degree 1. Each subgraph in 
this group has one node that corresponds to a ground truth cell and one node that corresponds to a prediction cell. 
Because these cells were not assigned in the first round of graph construction, they correspond to a missed detection 
and a gained detection. The third group are all subgraphs with a node that has degree > 1. This group can be further 
divided into three subgroups based on the type and uniqueness of the highest degree node. If the highest degree 
node is a ground truth cell and is unique, then it corresponds to a splitting error. If the highest degree node is a 
predicted cell and is unique, it corresponds to a merge error. If the highest degree node is not unique, then it falls 
into a third class which we call catastrophes. Catastrophe’s involve both splitting and merging mistakes, but it is not 
possible to decouple the two from the subgraphs. We have found that catastrophes become increasingly common in 
dense datasets, and that their inclusion was essential to accurately categorize segmentation errors. One limitation 
of this approach is that it relies on accurate ground truth datasets. We found that segmentation “errors” often 
reflected errors in training data. 

 

Figure S2. Subgraph classification enables the identification of merge, split, and catastrophe errors in cell 
segmentations. 

The segmentation benchmarks for our segmentation model are given in Tables S1 and S2. For nuclear segmentation, 
we included feature-nets that were trained in a pixel-wise and deep watershed fashion for comparison. For all 
benchmarks, we removed objects smaller than 100 pixels from the ground truth and prediction masks prior to 
benchmarking. 
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Figure S3. Segmentation benchmarks for deep learning segmentation models for fluorescent nuclear images. The 
RetinaMask approach provides a mild improvement over pixel-wise and deep watershed approaches to 
segmentation with feature-nets. This improvement allows for more accurate cell lineage construction. 
Benchmarking of cytoplasm segmentation models was performed on brightfield images. 
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Model training and post processing for the cell tracking deep learning model. We used a hybrid 
convolutional/recurrent deep learning model for identifying whether an existing track of cells and a candidate cell 
are the same, different, or have a mother daughter relationship. The architecture is described in the main text; source 
code for the model containing the full implementation is available at http://www.github.com/vanvalenlab/deepcell-
tf under the deepcell.model_zoo library. The cell tracking deep learning model was trained using stochastic gradient 
descent with momentum. We used a batch size of 128, learning rate of 0.01, momentum of 0.9, and learning rate 
decay of 0.99; the model was trained for 10 epochs, with each epoch consisting of ~800,000 examples. For post 
processing, we examined the lineage graphs to identify and remove false division events. A false division event was 
classified as divisions in a lineage with only one mother-daughter pair and within 9 frames of another division.  

Grid search for hyperparameter optimization. Our cell tracking framework contains several hyperparameters 
including the birth parameter (b), the death parameter (d), division threshold (div), and the number of frames (f) 
extracted for each track. We performed a grid search to find the optimal values for these hyperparameters. Candidate 
values for each hyperparameter (b – 0.9, 0.95, 0.99, d – 0.9, 0.95, 0.99, div – 0.9, 0.95, 0.99, f – 3, 5, 7, 9). We performed 
the grid search in parallel by submitting Jupyter notebooks as Jobs in a Kubernetes cluster. The grid search revealed 
the optimal values were b = 0.99, d = 0.99, div = 0.9, and f = 7. 
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Cell tracking benchmarking. In addition to using the ISBI executable to benchmark our cell tracker, we developed a 
graph-based approach to benchmark cell divisions. This approach treats the ground truth and predicted lineages as 
a graph, with each cell at each time point being a node. We use the intersection over union to link nodes in the ground 
truth and predicted graphs as being the same cell. All nodes of degree > 2 were identified as cell division events; 
using this information, we quantified the number of true positive, false positive, and false negative detections.  

 

Figure S4. Optimization and benchmarking of a deep learning-based cell tracker. (a) A hyperparameter search 
reveals that a track length of 7 frames provides optimal performance. The most common error type is misclassifying 
two cells that are the same as having a mother-daughter relationship. (b) Recall and precision for cell division 
detection on our nuclear data as well as nuclear data from the ISBI cell tracking challenge. We evaluated the 
performance of a Viterbi based algorithm (KTH) as well as our deep learning approach.  (c) ISBI graph metric 
performance of a Viterbi based algorithm and our deep learning approach on nuclear and cytoplasmic data. The bulk 
of the performance boost from deep learning is due to more accurate cell detection. Fluorescent cytoplasmic data 
was not benchmarked due to poor segmentations. 

Caliban implementation. A desktop version of Caliban was implemented in Python and can be run from a Docker 
container. The full source code is available at https://github.com/vanvalenlab/caliban.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint 

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

Instructions for crowdsourced dataset annotation. We performed our crowdsourced data annotation on the Figure 8 
platform. The instructions given to annotators, which include common error types, are included below. The cost for 
annotating each dataset was adjusted so that contributors were paid ~$4-5/hour. Ignoring the annual cost of a 
Figure 8 subscription, we found that the marginal cost of annotating a single cell nucleus was ~1.5 cents while the 
marginal cost of annotating a single cell cytoplasm was ~5.2 cents. Here, we provide the instructions given to the 
annotators. 

Nuclear Time-lapse Cell Annotation 

Overview: In this task you will be asked to individually label cells in frames of a microscopy video. 

Background: Our group is in the process of writing a computer program to automatically identify and track the 
movement of individual cells in microscope images. To help us do this, we're asking you to help create annotated 
datasets where single cells are manually identified. We can then feed this into the computer program to teach it how 
to accurately identify cells by itself. The program developed using the data you are annotating will be used in other 
research laboratories to study a range of topics, including viruses and cancer cells. The software we create is only as 
good as the data used to create it, so accuracy in your annotations is extremely important.  

In this job, each image consists of a sequence of snapshots in time, ordered from left to right, top to bottom. Every 
image in this sequence needs to be annotated. An example of what the image should look like before and after your 
annotation is shown below: 
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Annotation Instructions: 

You must stick to the following rules when labelling cells (further explanations are provided below): 

 

One good strategy to use would be to start from a specific region and follow one cell at a time across all the frames.  
After the first cell is colored the same across all the frames it is present in, go back and choose a neighboring one.  
Continue doing this to build up to the entire frame, one cell at a time (never reuse colors for different cells, even if 
the cell disappears before the end of the frames). 
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Annotation Technique 

Zoom in on a frame and use the brush tool to outline the cell and fill in the middle, changing the brush size using the 
slider. Use the eraser tool to correct mistakes.  

OR 

Roughly color the same cell in all 
panels using the paintbrush tool. 

 

Click on the background of the 
image with the magic tool. 

 

Select the eraser tool and click on 
the colored area that is outside of 
the cell. This should leave only 
the cells colored in. You should 
now go back and correct the 
coloring if need be.  
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Examples 

 

 

Video instructions: A video explaining the described labelling process is here: https://youtu.be/tvzGl5b1NDw 
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Cytoplasm Time-lapse Cell Annotation 

Overview: In this task you will be asked to individually label cells in frames of a microscopy video. 

Background: Our group is in the process of writing a computer program to automatically identify and track the 
movement of individual cells in microscope images. To help us do this, we're asking you to help create annotated 
datasets where single cells are manually identified. We can then feed this into the computer program to teach 
it how to accurately identify cells by itself. The program developed using the data you are annotating will be 
used in other research laboratories to study a range of topics, including viruses and cancer cells. The software 
we create is only as good as the data used to create it, so accuracy in your annotations is extremely important.  

In this job, each image consists of a sequence of snapshots in time, ordered from left to right. Every image in 
this sequence needs to be annotated. An example of what the image should look like before and after your 
annotation is shown below: 
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Annotation Instructions: 

You must stick to the following rules when labelling cells (further explanations are provided below): 

 

One good strategy to use would be to start from a specific region and follow one cell at a time across all the 
frames.  After the first cell is colored the same across all the frames it is present in, go back and choose a 
neighboring one.  Continue doing this to build up to the entire frame, one cell at a time (never reuse colors, 
even if the cell disappears before the end of the frames). 

Annotation Technique 

Zoom in on a frame and use the brush tool to outline the cell and fill in the middle, changing the brush size using 
the slider. Use the eraser tool to correct mistakes. It is okay if you color in the black edges between images, but 
NOT if the annotation crosses over into the next image. 
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Examples 

Different Cell Shapes 

Raw image 

     

Correct 
annotation 

     

Description 

Some cells are compact and 
dark. These are still cells, 
not debris, and SHOULD be 
annotated. 

Some cells are spread out and can 
have very different shapes. If you 
can clearly make out the edges of 
the cell, you should annotate them. 

Sometimes, the edges of a 
cell are too hard to see. 
Color in the part of the cell 
that you can see clearly. 

 

 Overlapping Cells 

Raw image  

Correct annotation  

Description Sometimes, cells overlap but have clear boundaries. First, annotate the cell 
that is on top. Lock the color you used to annotate the first cell. Then, 
annotate both parts of the cell underneath as the same cell. 
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 Annotate As One Cell Annotate As Separate Cells 

Raw image 

 

 

 

  

Correct annotation 

 

 

 

 

Description Sometimes, cells will appear to 
overlap without clear boundaries, or 
have bulges in them. Annotate these 
as one cell. 

Cells that are next to each other need to be annotated 
as different cells. Look for boundaries between the 
cells, such as in these examples. Cells sometimes 
touch each other directly, and sometimes are nearby 
without touching. 

 

Video instructions: A video explaining the described labelling process is here: https://youtu.be/7nY90iJ1HZY 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint 

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

