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Abstract 1	

Everyday behaviors are governed by decisions, about what we see and which actions 2	

to take. Here we present a model of the evolution of decisions from visual perception 3	

to voluntary action, in humans. We combine accumulation-to-threshold modelling of 4	

visuomotor decisions under different levels of uncertainty, with electro-/magneto-5	

encephalographic recording, to trace the sequence of localised decision processes, 6	

separately encoded in beta and gamma frequency ranges, and the flow of information 7	

through cortical networks. We show that evidence accumulation in motor and prefrontal 8	

cortex, to resolve action uncertainty, begins within 100ms from the onset of visual 9	

evidence accumulation, before the threshold in sensory regions is reached suggesting a 10	

continuous (rather than sequential) processing of information from perception to action. 11	

Moreover, the direction of flow of information between sensory, motor and association 12	

cortices, is opposite in beta and gamma frequency bands. The frequency, temporal and 13	

spatial distributions of the decision processes reveal widespread hierarchical 14	

information processing networks through which we resolve trial-by-trial action 15	

decisions despite environmental uncertainty.   16	
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Introduction  17	

Human behaviors are the result of many decisions, from early or automatic perceptual 18	

inferences about our environment to complex goal-directed choices between alternate 19	

courses of action. Three broad lines of research have made separate contributions to 20	

understanding such decisions. First, the psychophysical analysis of visuomotor task 21	

performance and reaction times, in health 1 or in the presence of focal 2 and degenerative 22	

brain lesions 3.  23	

Second, the functional anatomical analysis of decision making using brain imaging and 24	

neurophysiology, including paradigms that manipulate visual uncertainty 4, action 25	

selection 5, or outcome evaluation 6.  Third, the development of computational models 26	

of how decisions can be reached, at the level of neuronal ensembles 7 or groups of 27	

individuals 8. 28	

It remains a challenge however, to bring these separate lines of enquiry together in a 29	

unified model of neurophysiologically informed decision process, embedded in a 30	

functional anatomical framework, that can together explain the transformation of noisy 31	

visual inputs to alternative motor outputs. The anatomical framework has an additional 32	

requirement, which is to accommodate the evidence for functional segregation between 33	

sensory and motor areas at the same time as allowing the flow of information through 34	

hierarchical and distributed brain networks.  35	

Here we develop an integrated account of visuomotor decision-making, as summarised 36	

in Figure 1, working from a novel visuomotor task that adjusts sensory and action 37	

uncertainty during functional brain imaging by combined electro-38	

/magnetoencephalography (MEEG).  39	

A long tradition in mathematical psychology has argued that decisions and their 40	

latencies are controlled by when cumulative evidence in favour of a choice reaches a 41	

criterion decision threshold 9.  We identify the accumulation-to-threshold of latent 42	

variables representing sensory evidences, based on the transformation of visual signals 43	

into evidence about the behaviorally relevant stimulus features (perceptual 44	

decisions,10,11 ); and the analogous ‘evidence’ for motor schema, which have been 45	

termed motor intentions (action decisions 12,13 ). 46	
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Previous studies of visuomotor tasks typically focus on either perceptual decisions (e.g. 47	

judgement of motion direction) or on action decisions (e.g. choice of a motor response), 48	

whereas in real-world scenarios agents are required to use the outcome of their 49	

perceptual deliberations to inform decisions between alternate responses. This 50	

distinction can be lost in experimental paradigms where perceptual decisions are rigidly 51	

mapped onto motor responses 14,15, potentially conflating perceptual and action 52	

decisions or attributing variance to one or other process 16. 53	

Rather than arbitrarily divide visual from motor transformations, we investigated their 54	

associated decision processes by separately manipulating uncertainty in the identity of 55	

visual features (perceptual uncertainty, by variable motion coherence) and range of 56	

possible actions (action uncertainty, by variable number of response options). While 57	

many studies have used two-alternate forced choice paradigms with differential 58	

rewards, we adopted a n-way decision task to study decisions made between equivalent 59	

outcomes17 (Figure 2) .  60	

Several brain regions have been identified that accumulate perceptual evidence10,11  and 61	

motor intentions12,13. However, it is also necessary to understand how a network of 62	

accumulator regions orchestrates their activity for the critical transformation between 63	

perceptual and action decisions.  64	

Specifically, we sought to distinguish (i) a serial process 18  where perceptual decisions 65	

are complete and their output passed to motor accumulators, from (ii) a continuous flow 66	

of information 19, through perceptual to associative and motor regions before 67	

completion of perceptual analysis. A serial process would be robust to error, but 68	

continuous flow would enable faster action decisions. To differentiate these 69	

alternatives, we mapped the modelled temporal profile of evidence accumulation to 70	

neurophysiological signatures, trial-by-trial. The temporal evolution of predicted 71	

evidence was based on behaviorally optimized generative linear ballistic accumulator 72	

model of the decision (Figure 3f).  73	

We exploited the temporal resolution of MEEG to measure spatiotemporal variance of 74	

the induced power20. We focused on the beta and gamma band power as the candidate 75	

correlates of the evidence for three reasons.  76	
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First, the growing evidence for separate functions of gamma and beta in the feedforward 77	

and feedback of information respectively in hierarchical brain networks 21,22. Second, 78	

that the accumulation of evidence for perceptual choices correlates with gamma-79	

frequency oscillations 23. Third, that the processes underlying the deliberation between 80	

alternate actions have been associated with beta power modulation 24–26.  81	

The use of MEEG affords a source model of cortical generators 27 and enables the 82	

functional segregation of sensory and motor area, as well as areas where sensory-motor 83	

transformations occur. Complementary connectivity measures (phase transfer 84	

entropy28) reveal the flow of information between areas, orchestrating the emergence 85	

of decision-evidences across decision networks. 86	

We show that evidence accumulation in motor and prefrontal cortex begins very soon 87	

after visual cortex, and before perceptual decisions are concluded. We further 88	

demonstrate that the timing of evidence accumulation and the direction of flow of 89	

information between widespread sensory, motor and association cortices differ between 90	

Beta (13-30Hz) and Gamma (31-90Hz) frequency range. An early sweep of Gamma 91	

activity across an occipito-parietal-frontal network precedes the gradual arising of Beta 92	

mediated decision signals.  93	

These signals emerge progressively in a lateralized caudo-rostral cascade unfolding 94	

along the dorsal stream.  The cascade is mainly driven by a lateralized and continuous 95	

flow of information from posterior visual areas to distant anterior action control 96	

regions.  Crucially, the strength of the information flow (as measured by phase-transfer 97	

entropy) determines the speed of progression throughout all stages of information 98	

processing from perception through action as reflected by a positive relationship 99	

between connectivity and both faster model accumulation-rates and shorter reaction-100	

times. This provides an important formal link between behaviour, established models 101	

of decision-making, and connectivity measures. Taken together, the results reveal a 102	

continuous flow of information transmitted and integrated through a hierarchical 103	

network that transforms decision-making from perception to action.   104	

 105	

 106	
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Results  107	

Behavior 108	

To functionally segregate computations mediating visual and action decisions, we used 109	

a novel decision-making task to separately manipulate uncertainty in the identity of 110	

visual features (perceptual uncertainty), and actions (action uncertainty). The task 111	

combined elements of the classic motion discrimination task29 with a response selection 112	

task13. Noisy visual stimuli indicated the one or more response options, which were 113	

executed by pressing a corresponding button (Figure 2 and  Methods).  114	

Uncertainty in perceptual and action decisions was manipulated by varying the noise in 115	

the option stimuli and manipulating the number of permitted responses in a full factorial 116	

design. The noise in the visual stimuli introduces perceptual uncertainty11,29. The 117	

variable number of permitted response options introduced action uncertainty13,30.  118	

Previous work has shown that the uncertainty associated with both the stimulus motion 119	

and the number of available choices systematically influences the parameters of models 120	

of  decision-evidence accumulation 11,13,30. Therefore, by manipulating motion 121	

coherence in the random dots stimuli and the number of offered choices, we sought to 122	

isolate the neural signatures of decision-evidence accumulation for perceptual and 123	

action decisions, respectively. 124	

Participants performed the task first in a training session where individual motion 125	

thresholds were estimated for both low and high action uncertainty levels (Figure 3a). 126	

Subsequently, participants performed the task with the motion thresholds that 127	

standardized performance, while undergoing MEEG scan.  128	

During training, participants where slower and less accurate when motion coherence 129	

was lower (Figure   3a). Similarly, during the scan session (Figure   3b and 130	

Supplementary Figure 1) responses were slower under high perceptual (low = 0.77s 131	

±0.1; high = 0.88s±0.1; F(1,17) = 158.17 p < 0.0001; post-hoc p < 0.0001) and action 132	

uncertainty (low = 0.80s ± 0.13; high  = 0.85s±0.1; F(1,17) = 6.28 p = 0.022; post-hoc 133	

p = 0.022; 2-by-2 repeated measures ANOVA; Tukey-Kramer correction). In summary, 134	

behavior scaled with levels of perceptual and action uncertainties, confirming the 135	

efficacy of our manipulations.  136	
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To verify that participants’ choices were substantially independent over trials, 137	

Shannon’s equitability index was calculated for sequential choice pairs 13. The 138	

Shannon’s equitability index for all participants had mean 0.77 (SD ± 0.016) and did 139	

not differ significantly from the index generated by random permutations of trial 140	

order (see Supplementary Figure  2) confirming that subjects’ choices were not 141	

biased by previous responses.  142	

 143	

Uncertainty modulates the rate of evidence accumulation 144	

Summary statistics of behavioral data cannot adequately explain the mechanism by 145	

which uncertainty slows decisions. We adopted formal models of decision-making to 146	

decompose the behavioral performance into cognitively relevant latent variables. We 147	

fitted accumulation-to-threshold models (Linear Ballistic Accumulator, LBA, 31 to each 148	

participant’s reaction time and accuracy data. 149	

The LBA model of decisions is more tractable than drift-diffusion models for n-way 150	

decisions while still remaining physiologically informative 32.  In the LBA each 151	

decision was represented by an accumulator that integrated decision-evidence up to a 152	

boundary. When the accumulated evidence crosses the boundary a decision is 153	

committed (Figure   3c). Instead of adopting a two-stage model, which assumes a 154	

discrete serial process between perceptual and action decisions, we opted for a ‘unitary’ 155	

model where both perceptual and action uncertainty concur in determining participant’s 156	

performance in a given trial.  The factorial design of the experiment enabled us to 157	

divorce perceptual and action decision processes using connectivity metrics (see 158	

below).  159	

Uncertainty can slow responses by reducing the speed of information accumulation 160	

(accumulation-rate), increasing response caution (decision boundary), stretching the 161	

time required by perceptual and motor processes not directly related to the decision 162	

process (non-decision time), or by a combination thereof.  163	

To differentiate these competing mechanisms, we fitted all possible combinations of 164	

free parameters in a set of 15 LBAs. We compared the goodness-of-fit of each model 165	

using random-effects Bayesian model comparison 33,34. The model comparison 166	
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revealed that changes in the accumulation-rate alone (model number 2; Figure  3d top 167	

panel) accounted parsimoniously for the effects of uncertainty on behavior. The 168	

goodness-of-fit of the winning model was further confirmed by posterior predictive 169	

checks (Figure  3d bottom panel), performed by simulating data under the winning 170	

model and then comparing these to the observed data. 171	

In the winning model (henceforth, the LBA model), high uncertainty is associated with 172	

comparatively slow accumulation rates. This relationship between uncertainty and 173	

accumulation rate held for both perception (z = 3.723, p = 0.00019; Wilkoxon sign rank 174	

test) and action (z = 3.723, p = 0.00019; Wilkoxon sign rank test) uncertainty, as well 175	

as for each subject (Figure 3e), in accord with previous studies 11,30.  176	

Non-decision time (t0), encompassing sensory delays and motor execution, was 177	

estimated to be 370ms on average (see Supplementary table 1), which is within the 178	

plausible range of non-decision times for humans 35,36. 179	

 180	

Localization of decision-evidence accumulation  181	

To localize neural signatures of decision-evidence represented across the brain, we 182	

derived temporally resolved estimates of neuronal population activity from the winning 183	

model, which we fitted to a combined MEG and EEG signal, inverted to source space 184	

using the L2-Minimum Norm27.  185	

We reduced the dimensionality of the MEEG data by parcellating the cortical surface 186	

into a set of 96 regions of interest (ROIs) defined using the Harvard-Oxford cortical 187	

atlas (FSL, FMRIB, Oxford) and by representing the dynamic of each ROI with a single 188	

time-course, obtained using principal component analysis37. Dimensionality reduction 189	

allows for improved computational efficiency. Further, it reduces multiple comparisons 190	

issues and increases statistical power, while retaining the maximum amount of 191	

information38.  192	

The temporal evolution of the spectral power (power envelope) in each region served 193	

as the signal for our analysis in beta (13-30Hz) and gamma (31-90Hz) bands. The time 194	

onset of evidence accumulation across ROIs was identified by optimizing the split of 195	
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the non-decision time before and after the accumulation period using Spearman 196	

correlation to the MEEG power envelope (Figure  3f, see Supplementary Figure  3 197	

for the statistical map).  This allows one to depict in space and time the emergence of 198	

decision-evidence accumulation. 199	

Traditionally, evidence accumulation is associated with increased activity (e.g. firing 200	

rates) during decisions. However, recent studies indicate that both increasing and non-201	

increasing activity can mediate evidence accumulation39–41. In agreement with this idea, 202	

we found significant (negative) correlations between the LBA model predictions and 203	

the MEEG oscillations in beta and gamma bands20 (Figure  4). Specifically, for both 204	

beta and gamma, neural activity after coherence onset desynchronized in a graded 205	

fashion and peaked approximately before response suggesting a form of threshold 206	

mechanism (Figure   4a)42–44.  207	

In the beta band, desynchronization was strongly modulated by uncertainty in good 208	

agreement with our predictions. As the decision unfolds, the accumulated decision-209	

evidence will ramp quickly with low perceptual uncertainty, and slowly with high 210	

perceptual uncertainty. Accordingly, desynchronization of beta power-envelopes 211	

averaged across trials and ROIs was larger (p < 0.0001, cluster corrected random 212	

permutations) for low than high perceptual uncertainty22,42. 213	

When a response is chosen between multiple options, the race underlying the selection 214	

of each alternative is characterized by an overall larger amount of decision-evidence 215	

summed across all he racing accumulators by the time of response13,30. Accordingly, 216	

desynchronization of beta power-envelopes averaged across trials and ROIs was larger 217	

for high than low action uncertainty (p < 0.0001, cluster corrected random 218	

permutations). Gamma power-envelopes, showed a similar trend, but the effects were 219	

statistically insignificant. 220	

To locate activity related to decision-evidence accumulation, the time course of power-221	

envelopes was correlated (Spearman) to time-varying model predictions in a trial-to-222	

trial fashion. This allows one to take advantage of inter-trial variability. Statistical 223	

significance of the resulting z-transformed correlation values was assessed for each 224	

ROI by comparisons against a null distribution created from correlating the model 225	

predictions with single trial power-envelopes scrambled by phase (104 permutations).  226	
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This analysis revealed a brain-wide network displaying decision-related dynamics 227	

expressed in the beta range (Fig3b, mean across significant ROIs: sign-test z = -3.15 ± 228	

0.48, p = 0.00065 ± 0.0016, FDR corrected). These observations agree with previous 229	

human EEG work suggesting that evidence accumulation might correlate with 230	

widespread low-frequency desynchronization45.  231	

In the gamma band we observed a more localized mosaic of ROIs including 232	

contralateral motion sensitive areas (inferior lateral occipital region), bilateral 233	

extrastriate areas and bilateral frontal motor regions (comprising premotor areas and 234	

supplementary motor area; mean across significant ROIs: sign-test z = -2.27 ± 0.27,  235	

p = 0.0058 ± 0.003, FDR corrected). 236	

In addition, we compared the z-transformed correlation values for each of the four 237	

levels of our manipulations in isolation and confirmed that the quality of fit and the 238	

results did not vary across trials types (p>0.05, FDR corrected). 239	

 240	

 241	

A continuous flow of information 242	

We traced the spectrally resolved temporal evolution of decisions through the visuo-243	

motor hierarchy, finding that decision-evidence accumulation emerges with distinct 244	

spatio-temporal profiles between beta and gamma (Figure  4b).  245	

An early wave of accumulation begins at ~120ms from coherence onset within the 246	

sparse network oscillating at gamma frequency. It is followed by a second wave 247	

mediated by Beta at ~160ms from coherence onset (Figure  4c; Conjunction of 248	

significant ROIs in beta and gamma, median latency across participants, z = 5.53, 249	

p<0.0001, Wilkoxon rank test). No difference in latencies was found between 250	

hemispheres across frequency bands.  251	

The latency maps (Figure   4b) show an accumulation gradient towards the precentral 252	

gyrus. We fitted a piecewise regression model with a free internal knot to the mean 253	

latencies of ROIs located along the dorsal path (Figure  4d), a critical system for 254	

visuomotor decisions26,46.  255	
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In keeping with our observations the model (Figure  4e left top-bottom panels) 256	

identified the precentral gyrus (comprising primary motor cortex and part of the 257	

premotor cortex) as the point of convergence of two linear functions (R2 = 0.734, p < 258	

0.0001) and outperformed a single regression model (piecewise R2 adj = 0.681; linear 259	

R2 adj = 0.649; adjusted R2 penalizes extra free parameters in favor of simple models).  260	

Interestingly, in the gamma band (Figure  4d bottom left panel) we found a mirror-261	

symmetric trend with increasing accumulation latencies while proceeding from the 262	

precentral gyrus to more posterior and anterior regions (R2 = 0.245, p = 0.042). Thus, 263	

accumulation starts with gamma at ~120ms from coherence onset in the precentral 264	

gyrus and at ~160ms in the occipital and frontal poles.  265	

The onset of the accumulation in beta overlaps with gamma in the occipital pole at 266	

~160ms from coherence onset 47. The interval from earliest onset of accumulation to 267	

last onset, is only ~100ms and the onset in precentral gyrus is on average  ~570ms 268	

before a motor response 44. The delay from motion onset to the beginning of the 269	

accumulation on the occipital pole (~160ms), and the delay from action decision to 270	

movement initiation in precentral gyrus (~100ms) are close to the sensory (~200ms) 271	

and motor (~80ms) delays measured from neural recordings on macaque 11,48.  272	

These patterns, albeit with lower spatial resolution, were also found at the sensor level 273	

(Supplementary Figure 4). As a note of caution for the piecewise regression, the fit 274	

of the LBA model for some of the ROIs within the dorsal path was not significant in 275	

the gamma band, reducing the accuracy of their latency estimates.  276	

An important observation is that the latest ROIs in the gradient for both beta and gamma 277	

starts accumulating decision-evidence before the earliest ROI (e.g. the occipital lobe 278	

for beta) has reached its decision boundary (Figure   4e right top-bottom panels). This 279	

suggests that decisions are made on the basis of a continuous flow of information, rather 280	

than a serial sequence of discrete decisions.  281	

 282	

 283	

 284	
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From perception to action 285	

The above analyses identified a flow of information across a widespread visuomotor 286	

network. To functionally segregate accumulators sub-serving perceptual and action 287	

decisions, and to reveal the influx and efflux of information across them we measured 288	

the phase-transfer entropy, a data-driven measure of information flow that is robust to 289	

signal leakage28.  290	

The analyses focused on regions whose activity significantly fitted the LBA model’s 291	

prediction.  We first identified ROIs that preferentially accumulated evidence for 292	

perception or action decisions. We reasoned that in a continuous flow of information, 293	

the amount of information transferred between perceptual and action accumulators is 294	

expected to co-vary with the rate of the accumulating process. Since the estimated 295	

accumulation-rates scale with uncertainty, the amount of information sent by a given 296	

region should also scale with uncertainty. This relationship enables one to identify 297	

regions where the amount of information varies systematically with the levels of either 298	

perceptual or action uncertainty.   299	

Figure 5a shows, for the beta band, the regions modulated by action uncertainty 300	

(Action decision regions, pcorrected < 0.0005 in all ROIs) and perceptual uncertainty 301	

(Perceptual decision regions, pcorrected < 0.0005 in all ROIs). Action decision regions 302	

include ipsilateral cingulate  and paracingulate cortex 49, contralateral frontopolar 303	

cortex, ventromedial cortex, insula, supplementary motor cortex, inferior parietal 304	

lobule and medial parietal cortex13,50. Of notice, bilateral precentral gyri were identified 305	

as action decision regions which replicates previous findings13,51.  306	

Perceptual decision regions in the contralateral hemisphere include posterior areas 307	

typically associated with decisions about motion direction. These include lateral 308	

occipital cortex (including motion area MT-complex), superior temporal cortex 309	

(comprising the superior temporal sulcus) and the superior parietal lobule comprising 310	

the superior intraparietal sulcus52 along with the dorsomedial frontal cortex4,53.  311	

Interestingly, two areas along the dorsal path on the left hemisphere were sensitive to 312	

both perceptual and action uncertainty manipulations (superior frontal gyrus, middle 313	

frontal gyrus, lateral occipital cortex superior division (comprising V2 and V3;  314	

pcorrected < 0.0005 in all ROIs).       315	
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In the gamma band, we observed bilateral involvement of the superior frontal gyrus54 316	

and inferior frontal gyrus pars triangularis5, along with contralateral frontal medial 317	

cortex (Rowe et al, 2010) and ipsilateral paracingulate gyrus in action decisions  318	

(pcorrected < 0.005 in all ROIs). Perceptual decision areas (pcorrected < 0.0005 in all ROIs) 319	

included bilateral superior temporal areas (comprising the superior temporal sulcus; 320	

Pesaran and Freedman, 2016), cuneal cortex, and subcallosal cortex which has been 321	

linked to early encoding of confidence for perceptual decisions55. 322	

The dominant direction of information transfer between ROIs was estimated using the 323	

directed phase-transfer entropy (Hillebrand et al, 2016). The average direction of 324	

information flow for each ROI was computed resulting in a single estimate of preferred 325	

direction of information flow (either inflow or outflow).  Based on these estimates, we 326	

calculated a posterior-anterior index (Hillebrand et al., 2016; PAx) to quantify the 327	

direction of flow between caudal and rostral ROIs.  328	

Figure  5b show the smooth global pattern of preferential information flow in the beta 329	

range with caudal ROIs preferentially sending information to anterior regions. This 330	

pattern is similar to that reported by Hillebrand et al. 2016 in human resting state, except 331	

that our results show a task-related lateralization, with the contralateral PAx almost 332	

twice the size of the ipsilateral one (left: p = 0.0002, PAx = 0.47; right:   333	

p = 0.0051; PAx = 0.27). 334	

 It can be seen from Figure  5b-c that, for beta, the strongest information flow was from 335	

the left lateral occipital cortex to the left middle frontal gyrus and the frontopolar cortex. 336	

This accords with previous reports of beta-synchronization between primate MT and 337	

frontal regions during motion discrimination56. No significant effect was seen for the 338	

gamma range in either hemisphere which might reflect the shorter range of gamma 339	

interactions57.  340	

 341	

 342	

 343	

 344	
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Integration of behavioral, computational and physiological evidence 345	

To highlight the behavioral relevance of the integrated account of visuomotor decision-346	

making, we explored the relationships between connectivity, accumulator model 347	

parameters and behavior. To account for multiple-comparisons, we used Holm-348	

Bonferroni correction over eight tests.  349	

In the beta range, the caudo-rostral gradient of evidence-accumulation is matched by a 350	

gradual transition from perception to action  decisions, as shown by a positive 351	

correlation between regional specificity to the type of uncertainty and the estimated 352	

accumulation latencies (Figure 6a top left panel,  r =  0.27, pcorrected = 0.044). Moreover, 353	

the information flow is aligned with the caudo-rostral gradient of accumulation since 354	

the flow proceeds from perceptual-decision regions to action-decision regions (Figure 355	

6a bottom left panel, correlation between regional specificity and direction of 356	

information flow: r = -0.37, pcorrected = 0.0016).  357	

In contrast, for the gamma band we found there was neither  significant relationship 358	

between region specificity and accumulation latency (Figure 6a top right panel,  359	

r = 0.19, pcorrected = 0.759) nor significant evidence of flow of information from 360	

perception to action decision regions (Figure  6a bottom right panel, r = -0.37, pcorrected 361	

= 0.068). 362	

Finally, we hypothesized that in a continuous flow of information the amount of 363	

information transferred between perceptual and action accumulators co-varies with the 364	

rate of accumulation. Faster progression from perception through action should be 365	

correlated with phase transfer entropy and model accumulation rate, but negatively with 366	

reaction-times.  367	

This was the case in the beta range where strong flow was associated with short reaction 368	

times (Figure 6b top left panel, repeated-measures correlation: rrm= -0.378,  369	

pcorrected = 0.03, CI [-0.588, -0.12]) and accumulation rates (Figure  6b bottom left 370	

panel, rrm= 0.356, pcorrected = 0.045, CI [0.096, 0.572]). No significant correlation was 371	

observed in gamma (Figure 6b top-bottom right, reaction times vs information flow:  372	

rrm= -0.079 pcorrected = 0.564; accumulation-rate vs information flow: rrm = 0.113, 373	

pcorrected = 0.816). 374	
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 375	

Conclusions 376	

There are two principal results from this study that illuminate the interaction between 377	

neural systems for perception and action. The first is that decisions in regions sensitive 378	

to motor precision do not wait until sensory decisions are completed. Instead, the 379	

accumulation of evidence in motor decisions begin within 100ms soon after the 380	

initiation of evidence accumulation in the first sensory regions. This indicates a 381	

continuous flow or cascade of information and its gradual transformation from sensory 382	

evidence to motor ‘intention’58.  383	

The second is that the correlates of evidence-accumulation in the beta and gamma 384	

frequency ranges have distinct spatiotemporal profiles, and opposite dominant 385	

directions of flow. This spectral directionality is predicted by hierarchical cortical 386	

networks for prediction and inference in visuomotor control 22,59–61. In the beta band, 387	

there is not only a spatial gradient in the timing of accumulation-to-threshold between 388	

occipital and pre-central cortex, but also a qualitative change in the accumulated 389	

signals: from sensitivity to visual uncertainty to sensitivity to response uncertainty. 390	

Moreover, the more sensitive a region is to action uncertainty (vs. perceptual 391	

uncertainty), the later its onset of beta accumulation, and the greater its bias to inflow 392	

(vs. outflow) as measured by phase transfer entropy (Figure  6). These effects were not 393	

confined to classical visual and motor regions, or even to the ‘dorsal stream’, but were 394	

identified throughout much of the cortex.  395	

We set out to integrate the analysis of information flow, with decision-making 396	

implemented by the accumulation of evidence, and their joint influence on trial-to-trial 397	

variation in behavior (see Figure  1). Independent manipulation of perceptual and 398	

action uncertainty was coupled with the decomposition of performance into latent 399	

variables in a parsimonious linear ballistic accumulator model 31, which accurately 400	

generated the response distributions in each task condition including the expected 401	

effects of task variance on response latencies 11,30. The model predictions of within-trial 402	

accumulation were correlated with change in beta and gamma power after the onset of 403	

stimulus coherence. Beta desynchronization has been shown to scale with uncertainty 404	
51, but here we show its interaction with the temporal evolution of decision making over 405	
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sub-second intervals. The observed desynchronization displays two signatures of the 406	

accumulation-to-threshold class of models: accumulation of decision-evidence over 407	

time and the consistent bound reached shortly before each movement10,42–44.  408	

Beta and gamma desynchronization have previously been correlated with behavioural 409	

performance. For example, in direct recording from non-human primates during 410	

working memory62 and sensory discrimination25, the beta band desynchronization was 411	

greater for accurate trials compared with inaccurate trials. Such beta power encoding 412	

of decision outcomes is supramodal in many cortical areas63.	The change in beta power 413	

followed the change in gamma power as in the current study: we found an early wave 414	

of gamma followed by a second wave of beta.   415	

Although gamma and beta rhythms have been observed to occur together or in close 416	

succession64,65, the temporal relationship is functionally relevant. For hierarchical 417	

cortical networks, message passing between regions is a function of the laminar 418	

asymmetry of afferent vs. efferent connections59, and the properties of columnar 419	

circuitry which preferentially generates gamma rhythms superficially, and lower 420	

frequencies from deep layers66,67. This promotes predictive feedback connectivity in 421	

beta and lower frequencies, and preferential feedforward ‘error’ signalling in  422	

gamma22,61. The beta band’s lower frequency makes it inherently more suitable for 423	

coordination of information processing over longer conduction delays than gamma46.  424	

As seen in Figure  4, where changes in spectral power were predicted by the LBA 425	

model, the latency to accumulation was confirmed as shorter for gamma than beta. 426	

Indeed, the spatial distribution of beta latencies in the dominant hemisphere (Figure 427	

4e) also shows a gradient from occipital, to parietal and prefrontal, and lastly motor 428	

cortex. The motor cortex is also a region of strong net influx of beta (Figure  5b), even 429	

more than premotor cortex, consistent with the active inference model of motor 430	

control22,61.  431	

The spatial gradient of gamma latencies is reversed, with earliest changes observed in 432	

precentral cortex, before occipital cortex, and later gamma latencies in time with beta 433	

responses in occipital cortex. This may be because of the difference between predicting 434	

when a response may be required and what that response should be68. The sensory 435	

stimulus change (visual coherence) in our task is not the result of the participant’s own 436	
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response, but is predictable a second after the onset of the non-coherent display. The 437	

participant can predict when an action is required, but not which actions are permitted 438	

or specified. An increase in localized and predominantly short-range interactions in 439	

gamma range may therefore be a permissive of information required for the beta-440	

mediated decision between action alternatives69.  441	

Despite the similarity of onset of beta and gamma accumulation in occipital cortex, the 442	

connectivity analyses indicated distinct channels routing information at longer and 443	

shorter spatial scales, respectively. The pattern of net efflux vs. influx of beta (Figure  444	

5b) shows a clear division between frontal cortex and posterior lobes. In other words, 445	

there was a cascade of overlapping accumulators and information flow along a rostro-446	

caudal axis from perceptual to motor regions for beta, at least in the hemisphere 447	

contralateral to the response hand.  448	

Lateralized beta activity during a decision-making task reflects not just movement 449	

preparation, but has also been related to a dynamic decision process with updating of a 450	

motor plan as a decision evolves42–44,51. The beta power lateralization in motor areas 451	

was correlated with the state of decision-evidence. Crucially, these earlier MEG and 452	

EEG studies used a fixed-mapping between decisions outcomes and categorical 453	

behavioural responses, without choice or independence of perception and action 454	

decisions. When this fixed mapping between perceptual decisions outcome and motor 455	

responses is removed, sensorimotor beta lateralization disappears15. Our findings 456	

complement this work by directly revealing a lateralized progression of evidence 457	

accumulation from posterior perceptual regions to anterior motor areas.  458	

Moreover, previous pioneering work on visuomotor decisions have focused on 459	

processes occurring at the final choice stage, leaving unresolved the question of 460	

whether evidence accumulation is coordinated throughout the whole cortex or just in 461	

specific regions. Our findings rest on a generalized model in which accumulation-to-462	

threshold provides a canonical mechanism evolving throughout all layers of a 463	

visuomotor transformation (Figure  3a) and suggest that evidence accumulation is not 464	

a limited (perceptual) process with a single cortical focus, but distributed70,71  and 465	

applicable to non-sensory evidence or intentions. This multi-focal property of evidence 466	

accumulation resonates with results from animal optogenetic70 and pharmacological71 467	
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studies showing that inactivation of local cortical areas carrying decision-related 468	

activity did not affect decision-making performance.  469	

Taken together, our observations support the hypothesis that the beta band response 470	

links sensory evidence to motor plans, throughout a widespread network72. We 471	

propose that an early neural signalling regarding the need for a response is followed 472	

by a second phase that integrates a continuous flow of information to make a decision 473	

between them73. In this second phase, decisions unfold on the basis of a continuous 474	

flow of information (Figure  4d), rather than sequential completion of intermediate 475	

decisions at the population level. However, this hypothesis refers to the population 476	

level, and we cannot exclude the possibility that within each region, a subsection of 477	

neurons completes the relevant decision and forwards this outcome to the next level in 478	

the hierarchy, while others in that region continue to accumulate.    479	

The fluctuations in the strength of information flow caused by changes in uncertainty 480	

are behaviourally relevant, in their positive correlation with accumulation-rate and 481	

negative correlation with reaction times. This establishes an important formal link 482	

between behaviour, models of decision-making, and physiological connectivity. Fast 483	

accumulating-rates of the linear ballistic accumulator model are associated with a 484	

more effective information flow throughout the visuo-motor processing hierarchy, 485	

resulting in faster decisions and responses. This relationship could be exploited to 486	

investigate clinical conditions in which the ability to use sensory inputs to guide 487	

actions is impaired. 488	

In summary, our analytical approach explains visuomotor decisions through the 489	

combination of computational modelling of behaviour to derive latent decision 490	

variables that are identified by their neurophysiological signatures in distributed 491	

cortical networks. Variations of beta and gamma power reflect the temporal and 492	

spatial dynamics of the accumulation and transfer of decision-evidence, with a 493	

continuous flow of information between regions rather than sequential discrete 494	

decisions. During this flow, there is a gradual transition from the resolution of sensory 495	

uncertainty to resolution of response uncertainty enabling goal-directed actions in the 496	

face of sensory uncertainty.    497	
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Methods: 498	

Participants 499	

Twenty healthy volunteers (9 females, 11 males, age range 18-39 years) took part in 500	

this study, after providing informed consent. Inclusion criteria included age 18-40 501	

years, right-handed, and screening for neurological or psychiatric illness. Two subjects 502	

failed to reach the requisite performance criterion during training and were excluded, 503	

leaving 18 subjects in all subsequent behavioral and neural analyses. Experimental 504	

protocols conformed to the guidelines of the Declarations of Helsinki and were 505	

approved by the local research ethics committee. 506	

 507	

Stimuli 508	

Stimuli were presented using Matlab and the Psychotoolbox routines in a sound-proof 509	

and dimly lit room. For the psychophysical training stimuli were displayed on a CRT 510	

monitor at 60cm, and for the scan session stimuli were projected on a screen through a 511	

projector at 130cm (both with a 60Hz refresh rate) with equivalent pixel resolution of 512	

0.03°.  513	

Stimuli were four random dot kinematograms 29 displayed within four circular apertures 514	

(4° diameter) positioned along a notional semi-circular arc (3.4° eccentricity) on a black 515	

background (100% contrast). 200 dots were displayed during each frame and spatially 516	

displaced in the next frame to introduce apparent downward motion (6°/sec velocity). 517	

To manipulate motion strength (i.e. motion coherence) between trials, on each frame 518	

only a certain proportion of dots moved downward whilst the rest of the dots where 519	

randomly reallocated. Motion coherence level was kept constant throughout the trial.  520	
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Since abrupt stimulus onset and offset could elicit large sensory-evoked potentials 521	

which might mask decision processes, the 1.5 seconds long coherent motion interval 522	

was preceded and followed by intervals of zero-coherence levels lasting 1sec and 523	

0.5sec, respectively. 524	

 525	

Task and procedures 526	

Participants performed a finger-tapping task adapted from previous studies 13,30.  Their 527	

goal was to detect the onset of coherent motion and to press the button corresponding 528	

to one of the downward moving stimuli (coherent stimuli).  The number of coherent 529	

stimuli defined two trial types: Low action uncertainty trials, where a single coherent 530	

stimulus commanded which button to press; and high action uncertainty trials, where 531	

three coherent stimuli required the participants to make a simple choice and press any 532	

one of the three corresponding buttons (a “fresh choice, regardless of what you have 533	

done in previous trials”30). Equal emphasis was placed on the speed and accuracy of 534	

the responses. Participants were instructed to fixate on a central red mark throughout 535	

the trial.  Eye-tracking data collected during the first six scanning sessions confirmed 536	

participants were able to successfully perform the task while maintaining fixation (see 537	

supplementary results). Each trial started with the presentation of the fixation mark 538	

and stimuli onset ensued after a variable interval comprised between 0.5sec and 1sec. 539	

The imaging session was preceded by one training psychophysical session and one test 540	

session scheduled on separate days; the scanning session was conducted a maximum of 541	

four days after the psychophysical training, depending on the availability of the 542	

participants. 543	

 544	
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Psychometric calibration 545	

Participants were firstly familiarized with the finger-tapping task during a short practice 546	

session where 100% coherent stimuli were adopted. The familiarization phase was 547	

completed when participants reached 90% accuracy across all trial types.   In the 548	

following psychophysical training, motion coherence was randomly varied between 549	

trials to estimate individual motion thresholds. Eight logarithmically spaced motion 550	

coherence levels (0 0.5 0.10….0.9) were used (32 trials per level) following extensive 551	

piloting to ensure coverage of a wide range of individual motion sensitivity.  Each 552	

training session comprised 16 blocks of 32 trials. Feedback was provided for 553	

correctness of responses as well as for too early or too late responses (100ms and 2.5s 554	

from motion coherence onset, respectively).  555	

To ensure that participants perceived all the available options (i.e. coherent stimuli) 556	

before committing to a decision, occasionally (p = 0.2) after a correct choice they had 557	

to perform a secondary match-to-sample task: a set of grey discs replaced the stimuli 558	

and participants had to report whether their locations matched the location of the 559	

previously displayed coherent stimuli. They had to press any button to report a match 560	

and withhold any response otherwise. A trial was considered as correct only when both 561	

choice and matching were correct. Trials with un-matching responses were discarded 562	

and repeated within the session. 563	

To tailor the sensory evidence to the participants’ individual motion sensitivity across 564	

number of options, the discrimination accuracy of each trial type in each training 565	

session was fitted using a maximum likelihood method, with a Log-Quick function 566	

defined as 567	
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𝐹"#$ = 1 − 2)*+,(./0) ,        (1) 568	

where α is the threshold, β is the slope and x is the coherence level. To obtain the 569	

proportion correct for each trial type, the Log-Quick function was scaled by, 570	

𝑃 = 𝛾 + (1 − 𝛾 − 𝜆)𝐹"#$ ,        (2) 571	

where γ is the guess rate and λ is the lapse rate controlling the lower and upper 572	

asymptote of the psychometric function, respectively. 573	

Individual low and high perceptual uncertainty levels for each trial type were estimated 574	

as the 75th and 90th percentile of the psychometric functions from the last session.   The 575	

reason for adopting these thresholds was twofold: firstly, participants need to perceive 576	

all the available options before committing to a decision. Secondly, supra-threshold 577	

trials are best suited for investigating neural correlates of evidence accumulation74. 578	

 579	

Test and scan sessions 580	

Test and scan sessions were scheduled on separate days; the scanning session was 581	

conducted a maximum of four days after the psychophysical training, depending on the 582	

availability of the participants. The test session was to ensure that the participants were 583	

able to perform well under the individually adjusted motion thresholds. In the test and 584	

scan sessions, coherence levels were fixed to the individual thresholds corresponding 585	

to high and low levels of perceptual uncertainty, the match-to-sample task was 586	

removed, and no feedback was provided except for too late or too long responses. 587	

Levels of perceptual and action uncertainty where randomly interspersed across trials. 588	

Each session consisted of 10 blocks (total 720 trials per participant) separated by a short 589	
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rest. Trials on which responses were made before 0.1-sec or after 2-sec (on average 590	

1.3% of total trials) were excluded from subsequent analyses. 591	

 592	

MEG and EEG data acquisition and processing 593	

An Elekta Neuromag Vectorview System simultaneously acquired magnetic fields 594	

from 102 magnetometers and 204 paired planar gradiometers, and electrical potential 595	

from 70 Ag-AgCl scalp electrodes in an Easycap extended 10-10% system. Additional 596	

electrodes provided a nasal reference, a forehead ground, paired horizontal and vertical 597	

electro-oculography (EOG), electrocardiography (ECG) and neck electromyography 598	

(EMG). All data were recorded and digitized continuously at a sample rate of 1kHz and 599	

high-pass filtered above 0.01 Hz.   600	

Before scanning, head shape, the locations of five evenly distributed head position 601	

indicator coils, EEG electrodes location, and the position of three anatomical fiducial 602	

points (nasion and left and right pre-auricular) were recorded using a 3D digitizer 603	

(Fastrak Polhemus Inc., Colchester, VA). The initial impedence of all EEG electrodes 604	

was optimized to below 10 kΩ, and if this could not be achieved in a particular channel, 605	

or if it appeared noisy to visual inspection, it was excluded from further analysis. The 606	

3D position of the head position indicators relative to the MEG sensors was monitored 607	

throughout the scan. These data were used by Neuromag Maxfilter 2.2 software, to 608	

perform environmental noise suppression, motion compensation, and Signal Source 609	

Separation.  610	

Subsequent analyses were performed using in-house Matlab (Mathworks) code, 611	

SPM12 (http://www.fil.ion.ucl.ac.uk/spm) and EEGLab (Swartz Center for 612	
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Computational Neuroscience, University of California San Diego). Separate 613	

independent component analysis was computed for the three sensor types and 614	

artifactual components were rejected.  For EEG data, components temporally and 615	

spatially correlated to eye movements, blinks and cardiac activity were automatically 616	

identified with EEGLab’s toolbox ADJUST. For MEG data, components were 617	

automatically identified that were both significantly temporally correlated with 618	

electrooculography and electrocardiography data, and spatially correlated with 619	

separately acquired topographies for ocular and cardiac artifacts. Artifactual 620	

components were finally projected out of the dataset with a translation matrix.  621	

The continuous artefact-corrected data were low-pass filtered (cut-off = 100Hz, 622	

Butterworth, fourth order), notch filtered between 48 and 52Hz to remove main power 623	

supply artifacts, down-sampled to 250Hz, and epoched from -1500 to 2500ms relative 624	

to motion coherence onset. EEG data were referenced to the average over electrodes.  625	

 626	

MEEG source reconstruction 627	

MEG and EEG data were combined before inversion into source space 27. The forward 628	

model (lead field) was estimated from a single shell canonical cortical mesh with >8000 629	

vertices of each participant’s anatomical T1-weighted MRI image. Lead fields were 630	

calculated over a window from -1500 to 2500ms relative to motion coherence onset. 631	

The cortical mesh was co-registered to the MEEG data using the digitised fiducial and 632	

scalp points. We computed the inverse source reconstruction for single trials using the 633	

minimum norm algorithm as implemented by SPM12. All conditions were included in 634	

the inversion to ensure an unbiased linear mapping. The source images were spatially 635	

smoothed using an 8 mm FWHM Gaussian kernel.  636	
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 637	

Dimensionality reduction 638	

To address the problem of multiple comparisons and reduce the computational load 639	

when comparing the model predictions with the source-localized time series, we 640	

applied a parcellation-based dimensionality reduction to our data following the 641	

procedure described by Colclough and colleagues 37. First the whole-brain surface was 642	

parcellated into 96 anatomical regions of interest (ROIs) as defined by the Harvard-643	

Oxford cortical brain atlas. Then we represented the dynamic of each ROI with a single 644	

time-course, obtained using principal component analysis. The reconstructed sources 645	

within each ROI were first bandpass-filtered.  The coefficients of the principal 646	

component accounting for the majority of the variance of the vertices within each ROI, 647	

were then taken as an appropriate representation of source activity for that region.  648	

 649	

Accumulator model of perceptual and action decisions 650	

Behavioral data were analyzed using a variant of the linear ballistic accumulator (LBA) 651	

model which has been previously applied to a finger tapping task to model fMRI 652	

evidence accumulation 13,30. According to this class of models, a decision about when 653	

and which action to select is dictated by a ‘race’ competition among independent 654	

accumulators. Each accumulator linearly integrates the decision-evidence (or the 655	

intention) over time in favor of one action, and the decision is made when the 656	

accumulated activity reaches threshold.  In our task possible actions correspond to a 657	

button press from one of four fingers, each modeled by independent accumulators  658	

i Î{1, 2, 3, 4}. When three valid actions are available, three accumulators are engaged 659	
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with activation starting at levels independently drawn from a uniform distribution  660	

[0, c0], and increasing linearly over time with an accumulation rate (v) drawn from an 661	

independent normal distribution with mean µi  and standard deviation si . 662	

A response is triggered once one accumulator wins the ‘race’ and reaches a decision 663	

bound b. When only one action is available, only the accumulator corresponding to the 664	

available action is engaged. Predicted reaction time (RT) is given by the duration of the 665	

accumulation process for the winning accumulator, plus a constant non-decision time 666	

t0 representing the latency associated with stimulus encoding and motor response 667	

initiation 31.  668	

 669	

Parameter estimation and model selection 670	

To identify the combinations of free parameters that best accounted for the observed 671	

behavioral data we firstly fitted 15 variants (i.e. all possible combinations without 672	

repetition) of the LBA. Each variant was characterized by a unique combination of free 673	

parameters allowed to vary across trials. We followed the former procedure 30 to 674	

estimate the model prediction of reaction times quantiles and selection probabilities of 675	

each condition. The best-fitting parameters for each model variant were used to 676	

calculate the Bayesian Information Criterion (BIC), which penalize extra free 677	

parameters in favor of simpler models. BIC values were then used to compare the 678	

goodness-of-fit of each variant using random-effects Bayesian model comparison 33,34. 679	

In this comparison, each model variant is treated as a random effect that could differ 680	

between participants. The critical statistical quantity is the probability that any given 681	

model outperforms the other variants most of the time (exceedance probability).  682	
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 683	

Estimation of expected neural activity 684	

We generated predictions of decision-related activity from the LBA model to locate 685	

neural signatures of decisions-evidence accumulation in single-trial analyses of MEEG 686	

data. For multiple options, the LBA model assumes multiple active accumulators, one 687	

for each finger option. Let 𝜇78 be the accumulation rate of the winning option (i.e. the 688	

one reaching response threshold b), sampled from the normal distribution	𝑁(𝜇8, 𝜎8= ). 689	

Let  𝜇7>* and 𝜇7>= be the sampled accumulation rates of the alternative options (i.e. the 690	

losers), sampled from normal distributions 𝑁(𝜇>*, 𝜎>*= ), 𝑁(𝜇>=, 𝜎>== ), respectively. If 691	

the reaction time of a given trial is RT, the latency of the accumulation process is 692	

	𝑅𝑇 −	𝑡+, such that the expected accumulation of the winning option is: 693	

𝐸[𝜇78] =
E)FG/=
IJ)KG

	           (3) 694	

Since the losing accumulators have not reached the threshold by the time of the 695	

response RT, the expected values of 𝜇7>* and  𝜇7>= are smaller than 𝜇78. Therefore, the 696	

losing accumulation rates have truncated normal distributions with an upper bound of 697	

𝜇78 and with expected values of:	698	

⎩
⎪
⎨

⎪
⎧𝐸[𝜇7>*|𝜇7>* < 𝜇78] = 𝜇>* − 𝜎>* R

STUVW/UXY
ZXY

[

\TUVW/UXY
ZXY

[
] ,

𝐸[𝜇7>=|𝜇7>= < 𝜇78] = 𝜇>= − 𝜎>= R
STU

VW/UX^
ZX^

[

\TUVW/UX^
ZX^

[
] ,

      (4) 699	

 700	

where  𝜑(𝑥) = 	 *
√=b

𝑒)d^/= and 𝛷(𝑥) = 	 *
√=b

∫ 𝑒)d^/=	𝑑𝑥d
)∞ . 701	
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The sum of the winning and losing accumulation rates gives an estimation of total 702	

accumulation activity for single trials. For trials with only one available option, the 703	

accumulation activity is determined by the only active accumulator. 704	

 705	

Single-trial analysis 706	

To identify the spatio-temporal profile of decision-related accumulation over the brain 707	

we derived model-predicted signals for each trial to compare with neural oscillations in 708	

theta (4 – 8 Hz), alpha (8-12 Hz), beta (12-30Hz) and gamma (31-90Hz) frequency 709	

bands. To estimate the power of oscillations on a single-trial basis, stimulus-locked 710	

epochs from 500 ms before to 1500ms after coherence onset. Next, we extracted 711	

frequency-specific signal envelope modulations using a Hilbert transform of the source 712	

data from each reconstructed ROI. The Hilbert’s envelope is a convenient measure of 713	

how the power of the signal varies over time in the frequency range of interest, and thus 714	

particularly suited to capture relatively slow fluctuations associated to the instantaneous 715	

accumulation of evidence/intentions. The power estimates of individual participants 716	

were down-sampled to 100Hz and normalized by their baseline (from 400ms to 100ms 717	

before coherence onset). 718	

We estimated the maximum lagged absolute Spearman correlation between the model 719	

predicted activity and the signal envelope in a trial-by-trial fashion. The lagged 720	

correlation was used to optimally split the non-decision time before and after the 721	

accumulation period to determine the time delay between the neural signal and the 722	

model predictions. The time before accumulation provides a measure of the temporal 723	

separation between coherence onset and accumulation onset. 724	
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If the model prediction x is a lagged version of the neural signal y so that 725	

𝑦(𝑡) = 𝑥(𝑡 + 𝜏+)	 	 	 	 	 	 	 	 	 (5)	726	

Where τ0 is a time delay that can vary from 0ms to the individual non-decision time 727	

(	𝑡+)	with steps of 10ms, then the maximum absolute lagged correlation between x 728	

and y is defined as 729	

𝜌dk(𝑡) = max|𝑐𝑜𝑟𝑟(𝑦(𝑡), 𝑥(𝑡 − 𝜏r))|,        (6)		730	

where	𝑖 = [0, 10, 20	… 	𝑡+].	731	

With the peak value of  𝜌dk(𝑡) occurring when 𝜏r 	= 	 𝜏+ which allows us to determine 732	

the time delay. We estimated the largest absolute lagged correlation value for each ROI 733	

and individuals by comparing concatenated epochs and model predictions. This choice 734	

permits to measure accumulation lags specific to each ROI, under the assumption that 735	

they differ across brain regions for each participant.  The strength of the Fisher-736	

transformed maximum lagged correlations for each ROI was then quantified (z-score) 737	

using a one-sample sign-test.	 To provide a conservative estimate of significant 738	

correlations between model prediction and neural activity, we repeated the above 739	

procedure 10.000 times, each iteration using a different phase-randomized version of 740	

the original MEEG signal, to obtain a distribution of correlations under chance. Two-741	

tailed statistical significance was assessed by computing the proportion of absolute 742	

values of the distribution of correlations generated by chance exceeding the correlation 743	

between model predictions and the original MEEG signal. The resulting p-values were 744	

corrected for multiple comparisons (False Discovery Rate) across ROIs and frequency 745	

bands.	746	
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 747	

Connectivity analysis 748	

To explore the direction of the information flow we employed phase-transfer entropy, 749	

a data-driven effective-connectivity measure robust to signal leakage 28. The preferred 750	

direction of information between ROIs whose activity best matched with model’s 751	

predicted activity was estimated using the directed phase-transfer entropy.  752	

To identify the ROIs that preferentially accumulated evidence for perception or action 753	

decisions, the average information flow (quantified by phase transfer entropy) sent by 754	

each ROI was calculated for each subject and condition. The difference of information 755	

flow between uncertainty levels for perception and action is compared at the ROI level 756	

with a surrogate distribution generated by flipping the condition labels for a random 757	

number of participants (10.000 iterations). Since significance was estimated separately 758	

for perception and action, the critical value for the FDR correction was halved to 759	

 𝛼 = 0.025. 760	

To quantify the direction of information flow, we calculated a posterior to anterior 761	

index (PAx) as implemented by Hillebrand et al, 2016. A positive PAx indicates 762	

preferential flow from posterior regions toward anterior regions. ROIs were split into 763	

anterior and posterior region with respect to the precentral gyrus (see Table S1). 764	

Significance was assessed with permutation testing where the average directional 765	

phase-transfer entropies were shuffled across ROIs and PAx was estimated. This 766	

procedure was repeated 10.000 times to generate a surrogate distribution of PAx values 767	

against which the observed PAx values were tested (p<0.025 to account for multiple 768	

comparisons).  769	
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For the correlations in Figure   6a, we first confirmed homoscedasticity of our data 770	

and then calculated bootstrapped Pearson’s correlations. For the correlations in 771	

Figure   6b we used repeated-measures correlation (as implemented in the rmcorr 772	

package in R) which accounts for non-independence among observations due to 773	

multiple measurements per participant. The resulting p-values were corrected for 774	

multiple comparisons by applying Holm-Bonferroni correction.  775	

Hypothesis testing 776	

Differences in reaction times were tested with a 2-way repeated measures ANOVA 777	

(Low/High Uncertainty x Action/Perception). All other hypothesis tests used non-778	

parametric tests or random permutation methods that do not rely on specific 779	

assumptions about the distributions of data values. All tests were evaluated at the 780	

p<0.05 level (two-tailed), correcting for multiple comparisons where appropriate.  781	
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Figure  1: Overview of the study. We combined behavioural, computational, and 973	

neuroimaging approaches to provide an integrated perspective of the decision 974	

processes linking perception to action. Each section is expanded in a subsequent 975	

figure, as directed.  976	
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Figure  2: Experimental manipulation of perceptual and action uncertainty. 977	

Participants pressed the button corresponding to the coherent stimulus (red downward 978	

arrow). When there were more than one coherent stimulus, they selected one response 979	

and pressed the corresponding button. Perceptual uncertainty was manipulated by 980	

changing the coherence of dot motion (i.e. by changing the motion strength), whereas 981	

action uncertainty was manipulated by changing the number of available options (i.e. 982	

the number of coherent stimuli to choose from). Perceptual and action uncertainty 983	

varied across trials in a 2 by 2 factorial design. 984	
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Figure  3: Uncertainty modulates reaction times and the speed of decision 985	

evidence accumulation.  a Decision evidence was titrated to the participants’ 986	

individual motion sensitivity: Individual motion thresholds for each trial type was 987	

measured on a session preceding the scan. Reaction times (left panel) and accuracy 988	

(right panel) varied with motion strength (grey lines: individual data, black tick lines: 989	

mean data). Low and High perceptual uncertainty were estimated at the 75% and 90% 990	

accuracy levels, respectively.  b  During the experiment, reaction times were 991	

modulated by both perceptual and action uncertainty, confirming the efficacy of our 992	

manipulations (aggregated data for uncertainty type, rm-ANOVA on log-transformed 993	

reaction times). c  The task was modelled using a race accumulation model (Linear 994	

ballistic accumulator, LBA). In this model, noisy evidence is integrated over time at a 995	

given rate (v) up to an absorbing decision bound (b). Each option is represented by 996	

one accumulator racing to reach the bound. The fastest accumulator (thick blue arrow) 997	

determines the choice. Non-decision time linked to sensorial and motor processes (t0) 998	

sums to the evidence accumulation time to produce reaction-times. d Bayesian model 999	
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comparison revealed that changes in the sole drift-rate best accounted for the 1000	

behavioral data. The quality of fit is also seen in the comparison of empirical reaction 1001	

time distributions for each condition, against data simulated using the optimal model 1002	

and its parameters. e The model predicted faster accumulation of decision evidence 1003	

when uncertainty is low for both action and perceptual uncertainty (grey lines 1004	

connects data points from each participant). f Model predicted activity was fitted to 1005	

the power envelope of the MEEG signal in a trial-by-trial fashion to identify 1006	

accumulators of decision evidence. Non decision time (t0) was decomposed into pre-1007	

accumulation (tau1) and post-accumulation (tau2) time reflecting perceptual and 1008	

motor processes, respectively. This allowed us to identify the latencies of different 1009	

accumulators across the brain and to draw  time-resolved maps of  the flow of 1010	

information from perception to action. 1011	
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Figure 4: Temporal cascade of information-representation revealed by 1012	

comparing trial-by-trial MEEG power envelopes to model’s predictions. 1013	

a Power plots ranked by reaction-times showing the temporal relationship between 1014	

signal power envelope (z-scored with regard to each individual‘s baseline average) 1015	
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and reaction times (red curve) at representative ROIs showed separately for Beta band 1016	

(top row) and gamma band (bottom row). The ordinate of each plot represents 1017	

individual trials pooled across participants and sorted according to reaction times. The 1018	

black line indicates motion coherence onset. b Latency maps showing the normalized 1019	

latencies (each accumulation onset time divided by individual non-decision time) of 1020	

decision-evidence accumulation across  anatomical regions where correlations 1021	

between power-envelopes and model’s predictions survived random permutation 1022	

testing (see Methods). c Decision-evidence accumulation in the gamma band precedes  1023	

beta (top panel). ROIs along the dorsal path color-coded with respect to their position 1024	

along the caudo-rostro axis  d ROIs  along the dorsal path are ranked based on their y-1025	

coordinate value. e  Decision-evidence accumulation mediated by beta follows a 1026	

caudo-rostral gradient along the dorsal path of the contralateral hemisphere. A 1027	

piecewise regression (top left panel) best describes the gradient showing that latencies 1028	

increase from visual areas up to M1 in the precentral gyrus and decrease afterwards 1029	

suggesting two separate converging flows (Error bars indicate SEM, shaded area 1030	

covers bootstrapped 95% regression CI). The pattern is inverted for gamma where 1031	

latencies increase while proceeding from M1 to posterior and anterior ROIs.  Despite 1032	

the differences in latencies along the gradient, the cascade of information-1033	

representation is quasi-parallel. The right panels show that the latest ROI in the 1034	

gradient starts accumulating decision-evidence before the earliest ROI (e.g. V1 for 1035	

beta) has reached the decision boundary.  RT hat is the mean reaction time (across 1036	

trials and participants) normalized by the mean non-decision time (t0). 1037	
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Figure 5: Sensitivity to uncertainty and information flow, show distinct 1038	

spatiotemporal gradients.  a Differences in phase transfer entropy between 1039	

manipulations of perceptual and action uncertainty for beta (left column) and gamma 1040	

(right column) allows to define regions accumulating information specific to 1041	

perception and action decision. b Information flow (directional phase transfer 1042	

entropy) shows a clear rostro-caudal gradient in beta with MT-complex and the 1043	

frontal regions being the strongest sender and receiver of information, respectively. c 1044	

Thresholded connectivity plots. Beta activity reflects transmission of information 1045	

across distant cortical regions mostly within the left hemisphere. Gamma shows a 1046	

more local activity with no clear lateralization. The full names of the ROIs are given 1047	

in the Supplementary Table 2. 1048	
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Figure  6: Information flow is stronger under low uncertainty and associated 1049	

with faster reaction times and larger model accumulation-rates. a Specificity to 1050	

uncertainty manipulations correlated with model latency (top row) and direction of 1051	

information flow (bottom row). Perceptual regions tend to show shorter latencies and 1052	

to drive information transmission more than action regions. Points show z-scores of 1053	

median values across subjects for each ROI (96 beta ROIs, 40 gamma ROIs). Shaded 1054	

area covers bootstrapped 95% CI b Repeated-measures correlations. Reaction times 1055	

(top-row) and accumulation-rates (bottom row) correlated with phase transfer entropy 1056	

in the beta (left column) and gamma (right column) band. Points show median values 1057	

for the four tested conditions. Data from the same participant are displayed in the 1058	

same color, with the corresponding lines showing the individual fit of the repeated-1059	

measures correlation. 1060	
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