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Abstract1

Microbial metabolism can be harnessed to produce a broad range of industrially important chemicals.2

Often, three key process variables: Titer, Rate and Yield (TRY) are the target of metabolic engineering3

efforts to improve microbial hosts toward industrial production. Previous research into improving the4

TRY metrics have examined the efficacy of having distinct growth and production stages to achieve5

enhanced productivity. However, these studies assumed a switch from a maximum growth to a maximum6

production phenotype. Hence, the choice of operating points for the growth and production stages of7

two-stage processes is yet to be explored. The impact of reduced growth rates on substrate uptake adds8

to the need for intelligent choice of operating points while designing two-stage processes. In this work, we9

present a computational framework that scans the phenotypic space of microbial metabolism to identify10

ideal growth and production phenotypic targets, to achieve optimal TRY values. Using this framework,11

with Escherichia coli as a model organism, we compare two-stage processes that use dynamic pathway12

regulation, with one-stage processes that use static intervention strategies. Our results indicate that13

two-stage processes with intermediate growth during the production stage always result in the highest14

productivity. By analyzing the flux distributions for the production enhancing strategies, we identify15

key reactions and reaction subsystems that need to be downregulated for a wide range of metabolites16

in E. coli. We also elucidate the importance of flux perturbations that increase phosphoenolpyruvate17

and NADPH availability among strategies to design production platforms. Furthermore, reactions in18

the pentose phosphate pathway emerge as key control nodes that function together to increase the19

availability of precursors to most products in E. coli. Due to the presence of these common patterns20

in the flux perturbations, we propose the possibility of a universal production strain that enhances the21

production of a large number of metabolites.22

23
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1 Introduction26

The use of microbes for the production of chemicals through metabolic engineering has garnered significant27

interest in the past few decades. The naturally modular arrangement of metabolic networks makes micro-28

bial strains amenable to be used as chemical production platforms1. Metabolic networks have a bow-tie29

architecture which allows a large number of metabolites to be produced from a few universal precursors2.30

This has allowed us to successfully engineer microbes to be biocatalysts for the production of a wide range of31

commodity chemicals3,4, pharmaceuticals5,6, biofuels,7,8 and other natural and non-natural compounds9.32

While few such processes have been successful at an industrial scale10,11, large strain development costs33

and scale-up issues could deem many processes economically infeasible12,13. Given the cost of a target34

feedstock and product, the feasibility of industrial fermentation processes is typically determined by three35

process metrics - Titer: concentration of product at the end of a fermentation batch (given in mmol/L of36

product), Rate/productivity: the rate of product secretion (given in mmol/L.h of product), and Yield:37

the amount of product produced per unit amount of substrate (given in mmol product/mmol substrate)38

- collectively termed the TRY metrics14. Titer and yield affect the operating expenditure of the process39

by impacting product separation and substrate costs respectively, while productivity affects the capital40

expenditure by determining the scale of the reactor required. Microbial production processes undergo41

several rounds of strain, pathway and process optimization to reach acceptable TRY targets15,16.42

Wild-type microbial strains have evolved to grow at maximal rates, directing little carbon flux towards43

production of target compounds17. Metabolic engineering attempts to change the operating point (or44

phenotype) of a strain to enhance target chemical production by throttling growth associated fluxes and/or45

tuning native metabolism to balance pathway energy and cofactor requirements. Given a stoichiometric46

model and substrate/nutrient uptake rates, the feasible range of chemical production in a microbial strain47

can be visualized using its production envelope which maps the maximum product flux at all possible growth48

rates of the microbe (Figure 1). Strain engineering strategies to improve TRY metrics can be broadly49

classified into static and dynamic pathway engineering strategies. Static pathway engineering involves50

making gene deletions that either couple the production of a target compound with the microorganism’s51

growth18 or, simply redirect more carbon flux through production pathways. These strategies are typically52

implemented as one-stage (OS) production processes where the strain remains at a single operating point53

throughout the course of the process (Figure 1a). Such processes result in a higher yield by ensuring high54

relative pathway flux. Recently, there has been an increased interest in dynamic pathway engineering, which55

involves temporally controlling carbon flux through growth and production pathways. This can be achieved56

through the use of biological logic or sensor and actuator systems composed of cellular components19–21.57

Such strategies are implemented as two-stage (TS) production processes which start with cells in their58

growth stage and at some point during the fermentation, production pathway genes are expressed to switch59

to the production stage (Figure 1b). Such a decoupling of growth and production stages is thought to reduce60

batch times by reaching maximal biomass concentrations faster and thereby increase productivity22,23.61

While stoichiometric models are effective for determining relative production metrics such as yield,62

absolute metrics such as end-titer and productivity are also governed by variations in substrate uptake63

rates. However, metabolic models with constant substrate uptake rates are routinely used for simulations64

to monitor metabolite production rates at different phases of metabolism. The impact of reduced substrate65

uptake rate during stationary phase metabolism24 is often overlooked while designing microbial production66
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processes. Studies have shown that the rate of glucose uptake varies by significant amounts depending on67

the genotype of the strain and phase of metabolism24–30 (Supplementary Figure S1a). A drop in substrate68

uptake rate during the production stage of a TS process would result in reduced product flux and therefore,69

a lower productivity, defeating the purpose of such a process (dotted lines in Figure 1b). This effect was70

recently shown in a theoretical study that compared the performance of TS and OS processes for D-71

lactic acid production in E. coli 31. This study showed that reduced substrate uptake rates can limit the72

use advantages of a TS process and there is a very narrow range of conditions where a TS process can73

outperform an OS process. They call for the use of methods that increase stationary phase substrate74

uptake, such as engineering ATP futile cycles to expand the range of conditions in which TS processes75

offer enhanced productivity. This study and many others consider only TS processes that switch from76

wild-type growth to a non-growing production phenotype during the stationary phase of metabolism have77

been studied. However, given the interplay between substrate uptake and growth rates, phenotypes with78

intermediate growth could hold significant value. Intermediate phenotypes have been examined in the past79

to identify operating points that result in balanced TRY values in OS processes32.80
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Figure 1: Static vs dynamic pathway engineering: Strain engineering strategies can be classified into
a. Static engineering strategies where genetic perturbations that allow cells to grow and produce the
target compound simultaneously (growth coupled production) are implemented. This enables the cells
to produce the compound in a one-stage process. b. Dynamic engineering strategies where growth and
production pathways are decoupled temporally. In such strategies, the process starts with a growth stage,
accumulating biomass and switches over to a production stage to produce the target compound. Reduced
substrate uptake during the production stage can result in lower product flux (dotted lines) than that
expected assuming constant substrate uptake rates (solid lines). Hypothetical operating points for each
production strategy are shown in the respective production envelopes.

In this work, we compare TS and OS production processes that make use of the entire range of feasible81

production operating points rather than those with maximum growth or maximum product yield. To this82
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end, we develop Two Step Dynamic Strain Scanning and Optimization (TS-DySScO), a modular compu-83

tational framework to compare microbial production processes. TS-DySScO uses TS dynamic flux balance84

analysis to determine the process metrics obtainable using hypothetical operating points calculated within85

the solution space of a microbe’s metabolic model. With this information, the framework can determine the86

best process type and phenotypic choices that result in the maximum value of a predetermined objective.87

We use TS-DySScO to discover enhanced TS processes that result in high productivity while considering88

the substrate uptake effects of reduced growth. We also identify flux perturbations that occur consistently89

in production strategies for all natural products, giving rise to the possibility of a universal chassis for90

metabolic engineering.91

2 Materials & Methods92
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Figure 2: TS-DySScO workflow: Step 1 - A metabolic reconstruction of the microorganism and an
approximation of the substrate uptake characteristics at different growth rates are given as inputs to the
formulation. Currently, TS-DySScO accepts all COBRA compatible metabolic models and any mathemat-
ical function to model substrate uptake variations. Step 2 - A realistic production envelope is generated
for the product of interest. This entails maximizing the product flux at all possible growth rates of the
organism. A user defined number of operating points are chosen on the production envelope and all pos-
sible permutations of these operating points are determined for two-stage analysis. Step 3 - A two-stage
dynamic flux balance analysis that maximizes a user-defined objective function is conducted to determine
the process metrics and fermentation characteristics for each permutation of operating points. Step 4 -
A distribution of process metrics for all two-stage processes is plotted and the optimal production strain
is identified. The optimal phenotype for each stage has been projected onto the respective production
envelope.

4

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2019. ; https://doi.org/10.1101/803023doi: bioRxiv preprint 

https://doi.org/10.1101/803023
http://creativecommons.org/licenses/by-nd/4.0/


2.1 TS-DySScO formulation93

The TS-DySScO workflow formulated in this study is briefly summarized in Figure 2 and described below.94

2.1.1 Establishing substrate uptake characteristics95

The first step towards thoroughly analyzing the performance of the production strategies using a metabolic96

model is establishing a relationship between the growth rate and the rate of substrate uptake in the organism97

being studied. There are several studies that have attempted to elucidate the relationship between substrate98

uptake and growth rates in E. coli. Many of these have examined this relationship using a chemostat under99

glucose limiting conditions33–36. Under these conditions, the rate of glucose uptake is limited by the dilution100

rate prevailing in the reactor and not by the effects of genetic perturbations in the cells. Therefore, for our101

analysis we only consider studies with batch fermentations under glucose excess conditions24–30.102

qs = qs,min + (qs,max − qs,min) ∗
(
−1 +

2

(1 + e−Kuptake∗µ)

)
where

qs,min : substrate uptake rate at zero-growth rate

qs,max : substrate uptake rate at maximum growth rate

Kuptake : substrate uptake parameter

(Eq. 1)

We chose to use a logistic curve that spans between the minimum recorded glucose uptake rate dur-103

ing stationary phase and the maximum glucose uptake rate used in the metabolic model, to estimate104

the substrate uptake rates at various growth rates (Eq. 1). We have presented a more detailed analy-105

sis of the relationship between substrate uptake rate and growth rate in the supplementary information106

(Supplementary text 1.1, Figure S1b).107

2.1.2 Defining hypothetical operating points108

The next step is to determine all hypothetical operating points of interest using a metabolic model. In this109

study, we refer to a metabolic mode of an organism, represented by a unique combination of the possible110

growth and product secretion rates within the solution space of its metabolic model, as an operating point111

or ‘phenotype’. For a user-defined number of points between the minimum and maximum growth rates of112

the organism as determined from the metabolic model, we derive the corresponding substrate uptake rates113

using the relationship established in the previous step. At each of these points, by constraining the growth114

and substrate uptake reactions to the required values and maximizing the secretion rate of the metabolite115

of interest, we obtain the hypothetical operating points of interest for examination.116

2.1.3 Two-stage dynamic flux balance analysis117

Dynamic flux balance analysis (dFBA)37 can be used to obtain process metrics for a fermentation process118

by keeping track of substrate, biomass and product concentrations over the course of a fermentation batch,119

provided that initial concentrations of these species are known. This is done by using ordinary differential120

equations to simulate changes in the concentration of relevant species using their fluxes obtained from a121

metabolic model. Here, we modify the dFBA formulation to allow for phenotype switching between the122
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two stages of a TS fermentation process (Eq. 2b-d). We do this by using distinct of biomass, substrate and123

product fluxes in the dFBA equations during the growth and production stages. By repeating this process124

with all possible permutations of the hypothetical operating points as growth and production phenotypes,125

we obtain process metrics for all possible TS processes.126

max
tswitch

f(TRY) (Eq. 2a)

such that

d[X]

dt
= νn,X ∗ [X] (Eq. 2b)

d[S]

dt
= νn,S ∗ [X] (Eq. 2c)

d[P ]

dt
= νn,P ∗ [X] (Eq. 2d)

where

n =

1 if t ≤ tswitch

2 if t > tswitch

2.1.4 Optimizing metabolite production strategy127

The time of switching between the two stages is an additional variable that affects the concentration of128

the species in the dFBA formulation and therefore, the process metrics that determine the performance129

of each TS process. In order to obtain the best fermentation metric for each combination of operating130

points, we formulate an optimization problem that varies the switching time (tswitch) to maximize a desired131

objective function (Eq. 2a). This can be the titer, rate, yield or a function of these metrics. We can132

then plot a distribution of the process metrics for each permutation to identify the optimal combination of133

operating points. Following this, the desirable operating point combinations can be chosen for experimental134

validation. For this study, we used the productivity of a fermentation process as the objective function.135

2.1.5 Packaging and availability136

The TS-DySScO framework is written as a python package that accepts COBRApy38 compatible metabolic137

models. The modular nature of this package allows users to select the metabolic model, fermentation start138

parameters and, substrate uptake characteristics with ease. In order to reduce run times, we allowed for139

the optimization and dFBA calculations shown in Eq. 2 to be run parallelly on multi-core and multi-140

processor systems. The switch time optimization problem was implemented using the COBYLA method141

in the optimization package of scipy. The TS-DySScO framework can be installed and run on any system142

with a working Python 3 distribution. The framework, along with installation instructions are available on143

GitHub (https://github.com/lmse/tsdyssco). The code used to perform the various analyses described144

in this article are available at https://github.com/lmse/phenotypic_design.145
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2.2 Implementation146

All analyses were conducted using the COBRApy38 and Cameo39 packages on a Python 3.7 distribution.147

E. coli ’s genome scale metabolic reconstruction - iJO136640 was used to perform all simulations to compare148

the two fermentation strategies. Unless otherwise specified, fermentation batches were started with 500149

mM (≈ 90 g/L) of D-glucose as the substrate and 0.05 g/L of biomass. These values are in the range of150

required substrate and biomass concentrations to achieve acceptable TRY targets15. Flux distributions for151

best performing phenotypes in each fermentation strategy were obtained by constraining growth, substrate152

uptake and product secreting reactions to required values and performing a parsimonious flux balance anal-153

ysis (pFBA)41 on the metabolic model using the IBM ILOG CPLEX (v12.9) solver. Data visualization154

was performed using the plotly package.155

156

3 Results & Discussion157

3.1 Case Study: Production of D-Lactic Acid in E. coli158
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Figure 3: TS-Dyssco implemented for D-lactic acid production in E. coli : a. substrate uptake rates,
product flux and product yields obtained using the iJO1366 reconstruction of E. coli assuming constant
and reduced substrate uptake rates. b. Productivity distribution for TS and OS processes in E. coli
assuming constant and reduced substrate uptake rates. Isoclines on the distributions show phenotypes
with the same productivity levels. c. Fermentation profile for various production strategies assuming
reduced substrate uptake rates.

We applied the newly formulated TS-DySScO framework to predict strategies that maximize the pro-159
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ductivity of D-lactic acid production in Escherichia coli, starting with 500 mM of glucose as substrate160

and 0.05 g/L biomass. First, we examined the process under constant substrate uptake conditions i.e. as-161

suming that the substrate uptake is unaffected by growth and other metabolic perturbations (Figure 3a).162

In these conditions, since the product flux and yield are highest when there is no growth, the best TS163

process for productivity is the traditional TS process, where the strain is allowed to switch from a max-164

imum growth (wild-type) to a zero-growth phenotype (Figure 3b). Industrial fed-batch processes, where165

production pathway genes are induced upon reaching stationary phase and substrate is added slowly, fall166

under this category. As expected, the traditional TS process has a much higher productivity than the best167

OS process.168

However, an impediment in growth rate either due to reaching stationary phase or rewiring of metabolism169

has been shown to alter substrate uptake rates24–30. If these effects are considered, the product flux in170

a non-growing strain is heavily impacted (shown as red dashed lines in Figure 3a). This makes a non-171

growing phenotype during the second stage of a TS process ineffective. We can observe this in Figures 3b,c172

where the traditional TS process has very low productivity - among the lowest of any possible process. As173

observed in a previous study31, many OS processes (shown as dashed lines in Figure 3b) have a higher174

productivity than the traditional TS process. However, a fair evaluation of two-stage strategies should175

include the entire available phenotypic space. Even under reduced substrate uptake conditions, there are176

several TS processes that have a higher productivity than the best performing OS process. These pro-177

cesses can be achieved by allowing the strain to grow at a reduced rate during the production stage, rather178

than completely eliminating growth. The switch time optimization formulation results in earlier switching179

between the phenotypes when the strain is allowed to grow during the production stage (Figure 3c and180

Supplementary Figure S2). The TRY metrics attained in the best TS process assuming reduced substrate181

uptake is higher than that of the OS process with the highest productivity (Figure 3b and Supplementary182

Figure S3). The best TS process predicted requires the strain to be able to dynamically switch from183

wild-type growth to a phenotype with intermediate growth and production (growth coupled production).184

However a process with the highest productivity may not be the most economically optimal choice due to185

variations in substrate and product prices. The process metric distributions can be collectively used to186

choose phenotypes for TS processes depending on substrate and product prices prevailing at a particular187

time.188

3.2 TS processes have highest productivity for all natural metabolites in E. coli189

Having established that TS processes result in a higher D-lactate productivity, we wished to examine if190

this trend held true for other native metabolites in E. coli. We anticipated that the different production191

flux profiles for each product would result in variations in the process metrics. Hence, we used TS-DySScO192

with the fermentation start parameters previously described, to predict process optimality for 70 native193

exchange metabolites in the iJO1366 reconstruction of E. coli ’s metabolism. The best TS process has the194

highest productivity for all products analyzed, with the OS process and traditional TS process trailing195

behind (Figure 4). Surprisingly, the best TS process outperforms OS processes even if substrate uptake196

rates are assumed to be constant for the OS process.197

In general, products with more carbon atoms have a lower molar productivity. However, two products,198

namely 5-methylthioribose and spermidine have unusually low productivities, which will be examined in199
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Figure 4: Productivity for exchange metabolite production in E. coli : TS-DySScO was used to simulate
the production of all exchange metabolites in the iJO1366 reconstruction of E. coli, ordered by the number
of carbon atoms in the product. The optimized two stage process always results in the highest productivity.
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later sections. The best TS processes also have a higher yield and end-titer than their OS counterparts200

(Supplementary Figure S6). Only if the substrate uptake effects of growth rate are neglected, OS processes201

have a higher yield and end-titer than the best TS processes. The traditional TS processes have very202

stunted productivities, yields and end-titers for all the exchange metabolites when substrate uptake rates203

is reduced, consistent with the previous study for D-lactic acid31.204

Upon examining the best TS processes predicted by TS-DySScO, we found that all of them had the205

same phenotype during the growth stage - wild-type growth. These processes varied in phenotype only206

during the production stage, where an intermediate growth phenotype resulted in the highest productivity.207

Similarly, OS processes with the highest productivity are those with an intermediate growth rate and208

have one growth-coupled production stage. Hence, it is possible to compare the two process types at209

every operating point in the production envelope during the production stage for all possible substrate210

uptake rates. This allows us to determine the threshold substrate uptake rate that a strain would need211

to achieve in order to make the TS process better than the OS process. Since the logistic curve used to212

model substrate uptake variation is merely an approximation, this analysis would help in determining the213

best process type under various substrate uptake rate assumptions. If a TS process is compared to an214

OS process with the same production stage operating point, the TS process has a higher productivity at215

all substrate uptake rates (Supplementary Figure S7a). Even if we compare the TS processes to the best216

performing OS process assuming constant substrate uptake, there is a large range of substrate uptake rates217

where a better performing TS process can be found (Supplementary Figure S7b). The threshold substrate218

uptake rate that needs to be crossed to make a TS process is given by the contour line that equals zero219

in Figure S7b. This analysis can be used as a general guideline to decide the process type for production220

when substrate uptake rates are exactly known for a given production strain.221

3.3 Commonalities in flux perturbations hint towards a universal production pheno-222

type223

While it is clear that TS processes have optimal productivity, it would be useful to determine how such224

processes can be physically realized. Hence, we wished to examine the flux perturbations required to225

achieve the various production strategies for each of the exchange metabolites analyzed in the previous226

section. This was done by using pFBA to obtain the flux distributions required to achieve the various227

phenotypes for each of the process types. As mentioned earlier, both the best and traditional TS processes228

use wild-type growth as the phenotype in the first stage. Therefore, using the wild-type flux distribution229

as a reference, we examined how many reactions would need to be perturbed in each of the strategies, and230

classified each perturbed reaction/flux based on whether it was switched on, switched off, upregulated,231

downregulated or reversed (Supplementary Figures S8,S9, and S10).232

A very large number of fluxes (>200) need to be modified to achieve any of the target phenotypes233

predicted by TS-DySScO. It appears that for all process types, products with fewer carbon atoms require234

more reactions to be turned on/off compared to larger products. Among these, α-ketoglutarate is an outlier,235

being a 5-carbon compound requiring an unusually large number of on-off type perturbations (>25) for the236

OS and best TS processes. Interestingly, the compounds that were determined to have an unusually low237

yield in the previous section - 5-methylthioribose and spermidine have the largest number of upregulations238

among all the products. The yield of these products is likely low due to the upregulation of pathways239
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Figure 5: Flux perturbations required for best TS processes: Percent change in flux through all reactions
compared to wild-type flux distribution required to achieve the best two-stage processes for native exchange
metabolites in E. coli. Due to the large number of reactions involved, only the reaction subsystems are
shown.
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that result in yield losses during production and the absence of alternative pathways that conserve yield.240

All process types involve a large number of downregulations. However, the number of downregulations for241

the OS and best TS processes are very high while the number of reactions turned off is very high for the242

traditional TS processes.243

To further understand the production phenotypes for each of the process types, we examined the244

magnitude of flux changes from the wild-type flux distribution for every product and arranged the reactions245

based on the subsystem in which they occur (Figure 5, Supplementary Figure S11). As noted previously,246

most perturbations for the best TS process are downregulations. It appears that the reactions which require247

downregulation are concentrated in specific subsystems. Notably, all reactions involved in membrane lipid248

metabolism are downregulated for all but one of the products. Similarly, many reactions involved in249

glycolysis, the citric acid cycle, amino acid metabolism and nucleotide biosynthesis are downregulated for250

most products. Not surprisingly, reactions involved in the production of biomass are downregulated for all251

products. The magnitude of flux changes is also very similar across the entire product range. Reactions in252

amino acid metabolism and nucleotide biosynthesis are upregulated/switched on only for the production253

of these products. Interestingly, reactions in the pentose phosphate pathway are equally divided between254

being upregulated or downregulated together for different products. Hence, this subsystem appears to255

act as a key node that controls precursor availability to manufacture metabolites within the cell. Also, it256

appears that the same fluxes need to be perturbed for the OS process as well, with the only difference being257

the magnitude of the flux change required (Supplementary Figure S11). These results suggest that it is258

possible to engineer an E. coli strain with a universal production phenotype that maximizes productivity,259

where flux perturbations that appear for all the products can be dynamically controlled and flux through260

them throttled to reduce the growth rate to a certain value. Then, depending on the class of product261

required - amino acid, nucleotide, central carbon metabolite, etc, those reactions that require upregulation262

can be dynamically expressed. Therefore, it could be possible to create productivity maximizing platform263

strains for each class of product.264

3.4 Perturbations increasing phosphoenolpyruvate and NADPH availability are en-265

riched266

In order to identify key control reactions, we analyzed which reactions are enriched in production strategies267

for the exchange metabolites previously analyzed. We did this by looking at the number of products for268

which each reaction appeared as a perturbation and classified them based on the type of perturbation - on,269

off, upregulation, downregulation or reversal (Figure 6). Only non-transport reactions involved directly270

in metabolism were retained for the final analysis. The full names of reactions have been provided in271

supplementary table S1.272

Among the reactions that are switched on for TS strategies (Figure 6), HEX1 (ATP dependent hex-273

okinase) occurs in more than half of the products. This reaction serves as an alternative to the phos-274

photransferase system that is used by wild-type E. coli to transport and phosphorylate glucose. Other275

modes of glucose phosphorylation such as the XYLI - HEX7 (Xylose isomerase - Hexokinase) system that276

converts glucose to fructose and then phosphorylates it, also appears in many products. These reactions277

differ from the conventional phosphotransferase system, in that they use ATP for phosphorylation as op-278

posed to phosphoenolpyruvate (PEP). PEP is a key precursor to many products and therefore, alternative279
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Figure 6: Key reactions in perturbations for best TS processes: Reactions most frequently occuring in the
best two-stage production strategies for native exchange metabolites in E. coli were obtained and classified
based on the type of perturbation.

means of glucose usage that use less PEP are enriched in the ‘on’ type perturbations. Consequently, the280

HEX1 glucose transport system has previously been studied for its importance in creating platform strains281

for microbial chemical production42. Furthermore, extra usage of ATP has been explored as a means to282

increase substrate uptake rates, potentially increasing product flux under low growth conditions43, sug-283

gesting the importance of studying alternatives to the native phosphotransferase system. The reaction284

THD2pp (NADP transhydrogenase) is also required to be switched on for many products. This likely285

serves to increase NADPH availability to cater to production pathways. Many reactions that need to be286

switched on are concentrated in the alternate carbon metabolism subsystem.287

Among other types of perturbations, DHAPT (Dihydroxyacetone phosphotransferase) and F6PA (Fruc-288

tose 6-phosphate aldolase) are reactions that need to be turned off for most products. These also likely289

serve to collectively increase PEP availability for production reactions since DHAPT utilizes PEP. Many290

upregulated reactions are from the pentose phosphate pathway subsystem, serving to increase the avail-291

ability of NADPH and pentose sugars for products. The transketolases and RPE (Ribulose 5-phosphate292

epimerase) need to be reversed in direction for many of the products to cater to varying precursor require-293

ments for different product classes. In summary, reactions from the pentose phosphate pathway occur294

very frequently in the best TS strategies. Also, over 70% of the reactions involved in membrane lipid295

metabolism, cofactor biosynthesis, lipopolysaccharide biosynthesis and glycerophospholipid metabolism,296

which are used for biomass production need to be downregulated (Supplementary Figure S13).297

The best OS and TS strategies have a lot of commonly required perturbations (Figure 6 and Supple-298

mentary Figure S12). Notably, the PEP conserving strategies and the pentose phosphate pathway reactions299

are enriched for either process type. This bolsters the importance of PEP as a key bow-tie metabolite in300

making metabolism modular.301

4 Conclusions302

We have seen that the choice of process type influences the process metrics and therefore the profitability303

of a microbial chemical production process to a great extent. Furthermore, strain design choices are also304
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influenced by process choice. One-stage processes require static genetic intervention strategies that couple305

growth and production whereas, TS processes require dynamic intervention strategies where gene expression306

is temporally controlled. Recent advances in CRISPR44, transcriptional switches45, riboswitches46, and307

other gene regulatory elements present an exciting outlook for the experimental implementation of such308

intervention strategies. There has also been interest in computational algorithms that predict dynamic309

control strategies which begin with high growth and switch over to growth-coupled production as required310

by the best TS production strategies predicted in this study47.311

The flux perturbations necessary to achieve the target production phenotypes predicted for these strate-312

gies is daunting due to the sheer number of perturbations required. However, it is important to note that313

this analysis does not take into account the fact that many pathways are linear and sequential. Therefore,314

it would not be necessary to actively perturb all fluxes predicted in this study. A reduction of the metabolic315

network would help to identify key control reactions that actually need to be perturbed. Furthermore, al-316

gorithmic approaches can be used to predict the genetic perurbations required to achieve target phenotypes317

given the constraints predicted by TS-DySScO. Most reactions that need to be downregulated are those318

that direct flux towards biomass production. It is interesting to note that the production of most products319

involves enhancing PEP conserving and NADPH overproducing strategies. The emergence of PEP as a320

key precursor indicates its importance as a bow-tie metabolite, funneling flux into different pathways2,48.321

Furthermore, reactions in the pentose phosphate pathway seem to work in unison to increase precursor322

availability for number of products by being upregulated or downregulated, alluding to their importance in323

making metabolic networks malleable and robust to perturbations. These common features in strains with324

enhanced production of a wide range of metabolites give rise to the idea of a universal production strain325

that could be used to maximize productivity in a TS process by redirecting flux from growth to production326

related processes for various classes of products. Such a platform strain that maximizes productivity could327

be realized by placing a minimal number of control reactions under dynamically repressible/inducible pro-328

moters to throttle biomass production flux. This is similar to the concept of a modular cellular chassis for329

the production of many different compounds, that has gained interest recently49,50.330

From our results, TS processes do seem to outperform OS processes in terms of productivity for native331

exchange metabolites in E. coli, and since the production characteristics can be expected to be similar for332

other organisms and non-native products too, this conclusion can be extended to products in other hosts333

as well. We found that this conclusion holds true over a wide range of industrially relevant fermentation334

start parameters. The overall yield and end-titer of such a TS process is also higher than an OS process335

selected for high productivity. However, the model for substrate uptake rate variation used in this study336

is only an approximation. In future, better substrate uptake rate measurements for combinatorial deletion337

mutants will help in making more accurate predictions of process performance. While it is true that the338

process metrics depend on the substrate uptake rate of the mutant strain, we have shown that a TS process339

can outperform an OS process at every production phenotype, regardless of substrate uptake rate. Further340

improvements in substrate uptake rates through various strategies51 will improve productivity even further.341

The software framework presented here - TS-DySScO, has the ability to determine the effectiveness of each342

process type and predict optimal hypothetical phenotypes for experimental evaluation. It also provides343

information about the fermentation conditions under which each process type would perform better. We344

anticipate that TS-DySScO and the findings obtained in this study will be very valuable to make process345
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and strain design decisions for industrial scale production of chemicals using microorganisms. Furthermore,346

the concept of a universal production strain that has the same growth phenotype and several common flux347

perturbations required to switch on the production of many chemicals in a flexible manner may provide a348

paradigm shift in the way chemical production processes are designed in the future.349
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