

G-Graph: An interactive genomic graph viewer
Peter A. Andrews*, Joan Alexander, Jude Kendall and Michael Wigler
Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA 11724

*To whom correspondence should be addressed.

Abstract
Motivation: Effective and efficient exploration of numeric data and annotations as a function of genomic position requires
specialized software.
Results: We present G-Graph, an interactive genomic scatter plot viewer. G-Graph stacks or tiles multiple data series in
one graph using different colors and markers. It displays gene annotation and other metadata, allows easy changes to
the appearance of data series, implements stack-based undo functionality, and saves user-selected application views as
image and pdf files. G-Graph delivers smooth and rapid scrolling and zooming even for datasets with millions of points
and line segments. The primary target user is a researcher examining many copy number profiles to identify potentially
deleterious variants. G-Graph runs under Linux, Mac OSX and Windows.
Availability:	https://github.com/docpaa/mumdex/	or	https://mumdex.com/ggraph/
Contact:	andrewsp@cshl.edu	(or	paa@drpa.us)  	

1 Introduction

G-Graph is a free-software (MIT license) desktop application for interac-
tive plotting of numeric data as a function of genomic position. The pri-
mary purpose for G-Graph is to enable efficient exploratory analysis of
copy number and other datasets by genomic researchers. This requires the
ability to quickly scroll and zoom in to and out of regions of interest, to
distinguish samples and data types, to change the stacking order of sam-
ples, switch between stacked and tiled views, to revert to previous views,

to interpret events with an integrated display of gene annotation, and to
save selected images.

G-Graph is distributed as part of the MUMdex genome analysis soft-
ware package (Andrews et al., 2016). G-Graph compiles in Linux or Unix
with X11, Mac OSX with XQuartz, and Windows with Cygwin. The sys-
tem requirements for G-Graph installation are a C++11 or later compiler,
an X11 development environment, and optionally the ImageMagick con-
vert program to allow image output in png and pdf format.

At the core of G-Graph is a custom-built generic scatterplot graphing
module which is designed to be extensible. G-Graph uses this extensibility

Figure 1: A zoomed in G-Graph application view showing inherited X chromosome amplification in family females (see text for a full description).

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 18, 2019. ; https://doi.org/10.1101/803015doi: bioRxiv preprint

https://doi.org/10.1101/803015
http://creativecommons.org/licenses/by/4.0/

P. Andrews, J. Alexander, J. Kendall and M. Wigler

to incorporate capabilities that are appropriate for genomic analysis. Users
with specific requirements can similarly change G-Graph functionality. G-
Graph is written in the C++ programming language to permit development
at a high-level of abstraction without sacrificing run-time efficiency. G-
Graph code wraps low-level details such as bytes, memory locations, fun-
damental types and library interfaces in higher-level objects representing
concepts such as fonts, windows, datasets, graphs, etc.

G-Graph employs the low-level and stable X11 Xlib for visualization
without the aid of a widget toolkit such as Tk. This increases G-Graph
portability and ease of installation while allowing unique modes of inter-
action, making its distinctive look and feel invariant under different win-
dow managers and operating systems. G-Graph suffers minimal degrada-
tion of responsiveness even for remote sessions over slow networks be-
cause X11 enables very efficient data display.

2 Properties

2.1 Launching G-Graph

We illustrate the launching of G-Graph using Figure 1, which shows a
megabase portion of the X chromosome from a 500,000 bin copy number
analysis of one family from the autism Simons Simplex Collection (Fisch-
bach et al., 2010), processed with MUMdex alignment and copy number
software. The four horizontal lines in the figure indicate copy number val-
ues of 1, 2, 3 and 4. The father (blue markers) and son (yellow) have a
copy number value of 1, while the mother (red) and daughter (green) are
mostly at a copy number value of 2, but there are also amplifications in
the daughter that were inherited from the mother. This figure illustrates
the display of both bin ratio data as unconnected points and segmentation
profiles as lines for four different samples.

The input text data files for Figure 1 are m.txt, f.txt, d.txt and s.txt (cor-
responding to mother, father, daughter, and son). These files contain,
among others, columns with names abspos, ratio, and seg. Input files must
be whitespace-separated and tabular in form, with numeric x values in one
column and corresponding y values in other columns, in any order. From
the directory of the files, the command line for Figure 1 was:

ggraph cn hg19.fa abspos,ratio,seg {m,f,d,s}.txt

Here, ggraph is the command name, which is assumed to be in the shell
search path. The first argument cn indicates that copy number ratio lines
should be drawn and genome information displayed, while hg19.fa indi-
cates the reference genome fasta file used. Next, the x axis absolute ge-
nome position and two y axis variables are given as column names. The
input files are specified at the end of the command line using shell brace
expansion for compactness.

The G-Graph tutorial at https://mumdex.com/ggraph/ explains how to
input chromosomal coordinates, how to control the selection of point or
line display for each series, how to use keyboard shortcuts for various ac-
tions, how to use G-Graph for batch image generation, and other details.

The sample dataset used here, UCSC genome fasta files, plus gene and
cytoband definition files for hg19 and hg38 are available for download at
https://mumdex.com/ggraph/.

2.2 User Interface

The G-Graph user interface (see Figure 1) consists of a central graph re-
gion and a number of grouped radio button controls along three borders.
At the top border the status line displays a tooltip message for each inter-
face element that the pointer (e.g. mouse, trackpad) hovers over. The con-
trols and status display disappear when the pointer exits the window to
provide an uncluttered view of application content. The window can be
adjusted to any size possible on the user’s screen.

Clicks and drags of the three pointer buttons are used to center, scroll
and zoom the view. Pointer clicks perform immediate centering, zoom ins
and zoom outs, while pointer drags perform region selection or smooth
scrolling and zooming. In the central graph region these actions affect both
axes, while along the borders they affect only the adjacent axis. The shift
and control keys are used to emulate the secondary and tertiary pointer
button for users without a full-function mouse. The status line shown in
Figure 1 describes this pointer action behavior (for the central graph re-
gion), which was designed for rapid multiscale exploration.

The radio buttons come in togglable and non-togglable varieties, and
are grouped by function. The top right group allows reversion to succes-
sively earlier views, saves views in both png and pdf formats, and selects
between stacked or tiled views. The colored controls select which data

Figure 2: 128 samples with large duplications and deletions displayed in one graph, to show the utility of G-Graph’s new universal copy number scale.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 18, 2019. ; https://doi.org/10.1101/803015doi: bioRxiv preprint

https://doi.org/10.1101/803015
http://creativecommons.org/licenses/by/4.0/

G-Graph

series are displayed and allow color changes, while the adjacent small but-
tons toggle series group display and advance series stacking order. The
bottom right controls modify the appearance of the markers and lines. The
bottom left controls perform zoom-outs to the full data range, toggle the
display of grid lines and axis labels, and control y axis scale. Scale choices
include linear, logarithmic and a new scale smoothly covering all values
from 0 to infinity while emphasizing common ploidies (see next section).
The top left controls load the G-Graph tutorial and toggle tooltip, coordi-
nate, and genomic metadata display (such as chromosome label, gene, and
cytoband). Typing a query into the coordinate radio button also controls
genome region displayed by search criteria, such as genome position or
gene. The central group of controls along each axis perform discrete jumps
and continuous scrolling.

The genic structure and gene names are displayed at the top of the graph
region when the view is sufficiently zoomed in. If the user’s pointer hovers
over any gene name, the standard description of the gene is displayed in
the status line. If a gene name is clicked with the pointer, the user’s web
browser is instructed to load the UCSC gene browser (Kent et al., 2002)
view for the gene. Cytobands are displayed as colored thick horizontal
bands at the bottom of the graph region.

2.3 Universal Copy Number Scale

The default G-Graph Y axis display scale has been designed to provide a
uniform scale smoothly covering copy number values from 0 to infinity,
with an emphasis on common copy number values from 0.1 to 30. The
utility of this new scale is displayed in Figure 2, which shows 128 copy
number profiles, two of which are of breast cancer and the rest are exam-
ples of developmental syndromes caused by large chromosomal deletions
and duplications.

The universal copy number scale is defined by a somewhat complicated
function, chosen after much experimentation to yield a visually pleasing
display scale. The main novelty is to use the arctan function to map all
positive values to a finite range. The scale is defined by the following
equations:

The log, the power of two, the square root and the various constants used
are to refine the arctan mapping to produce a useful scale for copy number
data that is usually centered at a value of 2, while mapping the range of all

nonnegative real values to a domain from 0 to 1. The mapping from copy
number to the new scale is shown in Figure 3.

2.4 Performance and Functionality Comparisons

On a 2018 mac mini with a 3.2GHz Intel Core i7 processor, it takes 3
seconds for G-Graph to load and display the test dataset of two million
points and two million line segments. Once loaded, a zoom action induces
a scan over all data plus a redraw of in-frame data, which takes from 3 ms
for a megabase-sized region to 500 ms for the entire dataset. This level of
performance permits efficient exploratory analysis of large copy number
datasets even on midrange desktop computers.

We developed an R interface to G-Graph’s plotting engine so that we
could directly compare the speed of native plotting in R (using the plot
command with pch=’.’ to increase plot speed) to G-Graph. For 1 million
to 100 million data points already loaded in R memory, display latency
from G-Graph launch was 7 to 20 times shorter than for native R plotting.

We also compared G-Graph features and performance with the genomic
scatterplot capabilities present in the CNVkit copy number analysis py-
thon package (Talevich 2016). The first difference encountered is that
CNVkit requires a separate input file to display segmented profiles, while
G-Graph reads both ratio and segmented data from the same input file. A
second difference is that CNVkit only displays log-ratio data while G-
Graph only displays ratio data. A third difference is that CNVkit will only
display specific gene names that are listed in input files, and does not dis-
play the genic structure or extent of the gene. A fourth difference is that
panning and zooming in CNVkit uses standard matplotlib python controls
which tend to be more limited and difficult to use than G-Graph’s custom
interface. A fifth difference is that CNVkit has the ability to display b al-
lele frequencies, copy number ideograms, and copy number heatmaps,
while G-Graph lacks these features. Finally, when viewing a 1 million bin
copy number dataset, it takes CNVkit over 16 seconds to output an image
from command start, and 14 seconds to update the image after a window
resize or zoom when running on a powerful server. For G-Graph, these
same functions take less than 4 seconds and 200 ms respectively, on the
same server. The conclusion is that G-Graph is superior to CNVkit for
interactive copy number profile exploration, especially in light of its many
additional features mentioned in earlier sections.

Other copy number visualization packages have similar shortcomings,
or do not have comparable features to G-Graph to justify direct compari-
son. For example, the R copynumber (Nilsen 2012) and DNAcopy (Se-
shan 2019) packages can generate copy number scatter plots, but the time
for redraw after a window resize takes over 8 times the time G-Graph
takes, and there is no interactive zoom or scroll function present in these
utilities. The IGV (Robinson 2011) copy number display component is
only capable of segmented heatmap visualization, and the same is true of
several other utilities.

Funding
This work was supported by a grant from the Simons Foundation (497800, MW).

Conflict	of	Interest:	none	declared.

References

Andrews PA, Iossifov I, Kendall J, Marks S, Muthuswamy L, Wang Z, Levy D,
Wigler M. (2016) MUMdex: MUM-based structural variation detection. bioRxiv
078261; doi: http://dx.doi.org/10.1101/078261

Fischbach GD, Lord C. (2010) The Simons Simplex Collection: a resource for iden-
tification of autism genetic risk factors. Neuron, 68 (2), 192-195

Figure 3: The mapping from copy number on the X-axis to the new
universal copy number scale on the Y-axis.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 18, 2019. ; https://doi.org/10.1101/803015doi: bioRxiv preprint

https://doi.org/10.1101/803015
http://creativecommons.org/licenses/by/4.0/

P. Andrews, J. Alexander, J. Kendall and M. Wigler

Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D.
(2002) The human genome browser at UCSC. Genome Res. 12 (6), 996-1006.

Nilsen G, Liestol K, Van Loo P, Vollan HKM, Eide MB, Rueda O, Chin SF, Russell
R, Baumbusch LO, Caldas C, Borresen-Dale AL, Lingjaerde OC. (2012)
Copynumber: Efficient algorithms for single- and multi-track copy number seg-
mentation. BMC Genomics 13 (1), 591

Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Me-
sirov JP. (2011) Integrative genomics viewer. Nature Biotechnology 29, 24–26

Seshan VE , Olshen A. DNAcopy: DNA copy number data analysis. R package ver-
sion 1.58.0.

Talevich E, Shain AH, Botton T, Bastian BC (2016) CNVkit: Genome-Wide Copy
Number Detection and Visualization from Targeted DNA Sequencing. PLoS
Comput Biol. 12 (4); doi: https://doi.org/10.1371/journal.pcbi.1004873

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 18, 2019. ; https://doi.org/10.1101/803015doi: bioRxiv preprint

https://doi.org/10.1101/803015
http://creativecommons.org/licenses/by/4.0/

