
1 
 

Response modality-dependent abstract choice representations for vibrotactile 1 

comparisons 2 

 3 

Yuan-hao Wu a, Lisa A. Velenosi b, and Felix Blankenburg a, b 4 

 5 

a Neurocomputation and Neuroimaging Unit (NNU), Department of Education and 6 
Psychology, Freie Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin, 7 
Germany 8 
b Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu 9 
Berlin, Unter den Linden, 10099 Berlin, Germany 10 
 11 

Corresponding Author: 12 

Yuan-hao Wu 13 

Freie Universität Berlin 14 

Department of Education and Psychology 15 

Neurocomputation and Neuroimaging Unit (NNU) 16 

Habelschwerdter Allee 45 14195 Berlin 17 

yuan-hao.wu@fu-berlin.de   18 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2019. ; https://doi.org/10.1101/802652doi: bioRxiv preprint 

https://doi.org/10.1101/802652
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 19 

Previous electrophysiological studies in monkeys and humans suggest that premotor 20 

regions are the primary loci for the encoding of perceptual choices during vibrotactile 21 

comparisons. However, these studies employed paradigms wherein choices were 22 

inextricably linked with the physical properties of the stimuli and action selection. It 23 

raises the question what brain regions represent choices at a more abstract level, 24 

independent of the sensorimotor components of the task. To address this question, 25 

we used fMRI-MVPA and a variant of the vibrotactile frequency discrimination task 26 

which enabled the isolation of choice-related signals from those related to stimulus 27 

properties and selection of the manual decision reports. We identified the left, 28 

contralateral dorsal premotor cortex (PMd) and intraparietal sulcus (IPS) as carrying 29 

information about abstract choices. Notably, our previous work using an oculomotor 30 

variant of the task also reported abstract choice representation in intraparietal and 31 

premotor regions. However, the informative premotor cluster was centered in the 32 

frontal eye fields rather than in the PMd, providing empirical support for a response 33 

effector-dependent organization of abstract choice representation in the context of 34 

vibrotactile comparisons. Considering our results together with findings from recent 35 

studies in animals, we speculate that the premotor region likely serves as a 36 

temporary storage site for information necessary for the specification of concrete 37 

manual movements, while the IPS might be more directly involved in the computation 38 

of choice. 39 

 40 

Keywords 41 

Vibrotactile comparison, perceptual decision making, categorical choice, fMRI, 42 

multivariate pattern analysis     43 
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Introduction 44 

In everyday life, we are continuously encountering situations wherein we need to 45 

make decisions based on comparisons between stimuli occurring at different times. 46 

Imagine choosing an avocado at a grocery store: one squeezes two or more 47 

avocados sequentially and decides for one based on their firmness. The neural 48 

processes underlying this type of decision have been extensively studied in the 49 

somatosensory domain using the vibrotactile frequency discrimination task (reviewed 50 

in Romo & de Lafuente, 2013). In their seminal work, Romo and colleagues trained 51 

monkeys to compare frequencies of two sequentially presented vibrotactile stimuli 52 

and report with a manual response whether the second frequency (f2) was higher or 53 

lower than the first (f1). Crucially, firing rates in premotor regions implicated in the 54 

planning and execution of manual movements, such as the supplementary motor 55 

area (SMA), ventral (PMv), and dorsal premotor cortices (PMd), have been 56 

consistently found to reflect perceptual choices (Hernández et al., 2002, 2010; Romo 57 

et al., 2004). 58 

The involvement of motor-related regions during vibrotactile comparisons also agrees 59 

well with findings from an influential line of decision-making research in the visual 60 

domain. Monkey neurophysiological experiments employing random motion dot tasks 61 

with saccade responses consistently reported decision-related signals in regions 62 

implicated in saccadic movement (reviewed in Gold & Shadlen, 2007), such as the 63 

lateral intraparietal area (LIP, Shadlen & Newsome, 2001; Roitman & Shadlen, 2002), 64 

the frontal eye fields (FEF, Kim & Shadlen, 1999; Ding & Gold, 2012), and the 65 

superior colliculus (Horwitz & Newsome, 1999; Ratcliff et al., 2003). Findings from 66 

these two lines of work have converged to the view that decisions are directly 67 

implemented in regions involved in the planning and execution of the resultant action 68 
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(Gold & Shadlen, 2007; Cisek & Kalaska, 2010). In other words, decisions are 69 

implemented in a response modality-dependent manner. Moreover, the posited 70 

response modality-specific implementation appears to translate to human vibrotactile 71 

comparisons. Herding and colleagues (2016, 2017) reported premotor regions as the 72 

most likely source of choice-selective beta oscillatory activity in the EEG signal. The 73 

choice-related modulation was localized in the medial part of the premotor cortex 74 

when human observers used button presses to indicate their choices (Herding et al., 75 

2016). However, when they reported their choices with saccades, the source of the 76 

choice-related modulation shifted to the FEF (Herding et al., 2017). 77 

Of importance, the majority of findings in the context of vibrotactile comparisons were 78 

yielded from experimental settings wherein perceptual choices were inextricably 79 

linked to the sensory and motor components of the task. In such settings, f1 typically 80 

serves as the reference stimulus against which f2 (the comparison stimulus) is 81 

compared. Thus, observers will mostly decide for the percept “higher” if frequencies 82 

were presented in an increasing order (f1 < f2), and “lower” if presented in a 83 

decreasing order (f1 < f2). The abstract contents of perceptual choices are directly 84 

bound with the physical properties of the stimulus presentation. Moreover, decisions 85 

are typically implemented as choices between two hand or saccade movements so 86 

that choosing a particular percept is the same as choosing a specific hand or 87 

saccade movement. Due to these dependencies, the presumed choice-related 88 

signals may reflect a multiplicity of choice and sensorimotor aspects, rather than the 89 

choice per se (Park et al, 2014, see also Huk et al., 2016 for a review). This limitation 90 

leaves open the question of whether choices are represented in a more abstract, 91 

internal cognitive format, uncontaminated by stimulus order and action selection. For 92 
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succinctness, we refer to this more abstract type of choice representation as an 93 

abstract choice representation throughout the rest of this article. 94 

Our previous work (Wu et al., 2019) addressed this question by means of human 95 

fMRI-MVPA and a novel variant of the vibrotactile frequency discrimination task. 96 

Intriguingly, although participants’ choices were decoupled from the preceding 97 

stimulus orders and ensuing saccade movements used for reporting the decisions, 98 

regions implicated in saccade planning and selection such as the FEF and 99 

intraparietal sulci (IPS) were identified as representing abstract choices. The finding 100 

suggests that activities in these human brain regions are not confined to the sensory 101 

and motor aspects of perceptual decisions, but involved in more abstract cognitive 102 

computation. Moreover, it hints at the possibility that abstract choices may also be 103 

represented in an effector-specific manner.    104 

In the present fMRI study, we sought to further explore the interplay between the 105 

topographic organization of abstract choice representations and response modality 106 

during vibrotactile comparisons. We asked participants to perform an analogous 107 

version of the vibrotactile frequency discrimination task as in our previous work, with 108 

saccade responses replaced by manual button presses. Further, the same whole-109 

brain searchlight multivariate analysis routines (Kriegeskorte et al., 2006) as 110 

implemented in the previous work was employed to identify brain regions that carry 111 

information about abstract choices. Following the interpretation drawn from our 112 

previous study, we expected abstract choice representations in premotor regions 113 

implicated in the selection of manual responses such as the PMd, PMv, or SMA. 114 

 115 
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Materials and methods 116 

Participants  117 

Thirty-one volunteers participated in the fMRI experiment. They were right-handed, 118 

had no history of neurological or psychiatric impairment, and normal or corrected-to-119 

normal vision. Data of four participants were excluded due to poor behavioral 120 

performance (accuracy rate < 0.5 in at least one stimulus pair), leaving the data of 27 121 

participants in the analyses (18 females and 9 males; mean age: 25, range: 18–34). 122 

All participants provided written informed consent as approved by the ethics 123 

committee of the Freie Universität Berlin and received monetary compensation for 124 

their time. 125 

 126 

Task design and stimuli 127 

We asked participants to complete a variant of the vibrotactile frequency 128 

discrimination task (Fig. 1). Similar to standard versions of the task, participants 129 

compared two sequentially presented vibrotactile frequencies and made a decision 130 

on whether the frequency of the comparison stimulus was higher or lower than that of 131 

the reference stimulus. It differed from standard versions in two important aspects: 132 

First, we introduced task rules that alternately designate f1 or f2 as the 133 

comparison/reference stimulus across trials so that the perceptual choices were 134 

independent of the physical properties of the stimulus order. Second, instead of using 135 

a direct choice-motor response mapping, participants reported a match or mismatch 136 

between their percept and the proposition of a visual matching cue. After the decision 137 

phase, participants selected a color-coded target after a decision phase, from which 138 

their perceptual choice was inferred. Hence, participants were not able to plan a 139 
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specific manual movement or anticipate a target color during the decision phase. As 140 

a consequence of these measures, if there were detectable choice-related signals 141 

during the decision phase, it would be unlikely to result from the physical properties 142 

of the stimulus order or action selection. 143 

Each trial was preceded by a variable fixation period (3 – 6 s), during which 144 

participants were asked to fixate on a gray cross centrally presented on the screen. 145 

The trial started with a switch from the fixation cross to either a square or a diamond 146 

for 500 ms, instructing participants which task rule applies in the current trial. In half 147 

of the trials, participants used f1 as the comparison stimulus and evaluated whether it 148 

was higher or lower than the reference stimulus f2. In the other half, participants 149 

made comparisons in the reversed direction. That is, they evaluated f2 relative to f1. 150 

The rule cue was followed by two sequentially presented vibrotactile stimuli with 151 

different frequencies administered to participants’ left index finger (each of 500 ms 152 

separated by a 1 s retention). After a decision phase of 2 s, a visual matching cue in 153 

the form of either an upward-pointing or a downward-pointing equilateral triangle 154 

appeared centrally on the screen for 500 ms, indicating a comparison stimulus of 155 

higher or lower frequency, respectively. Following the offset of the visual matching 156 

cue, a target screen with a central fixation cross and two color-coded targets (blue 157 

and yellow disks) in the periphery along the horizontal meridian was displayed for 1.5 158 

s. During this time period, participants reported a match or mismatch between their 159 

perceptual choice (‘higher’ vs. ‘lower’) and the visual matching cue by selecting one 160 

of the color-coded targets corresponding to their report. Depending on the spatial 161 

location of the corresponding target, participants pressed the left or right button of a 162 

response box held in their right hand with their index or middle finger.  163 
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164 
Fig. 1. Trial schematic. A rule cue (square or diamond) indicated whether f1 or f2 served as the 165 
comparison stimulus. The stimuli presentation was followed by a decision phase. Thereafter, a 166 
matching cue (equilateral triangle) was presented. An upward-pointing triangle represented a 167 
comparison stimulus of higher frequency, while a downward-pointing triangle represented a lower 168 
comparison frequency. Participants compared their perceptual choice with the matching cue. A match 169 
or mismatch was indicated by choosing one of the color-coded disks presented in the periphery via a 170 
button press. See Wu et al. (2019) for an oculomotor variant of the task.     171 

 172 

Visual stimuli were generated using MATLAB version 8.2 (The MathWorks, Inc, 173 

Natick, MA) and the Psychophysics toolbox version 3 (Brainard, 1997). Except for the 174 

two peripheral, color-coded discs on target screens, all other visual symbols were 175 

presented centrally in white on a black background. During the fMRI session, visual 176 

stimuli were projected with an LCD projector (800 x 600, 60 Hz frame rate) onto a 177 

screen on the MR scanner’s bore opening. Participants observed the visual stimuli 178 

via a mirror attached to the MR head coil from a distance of 110 ± 2 cm. 179 

Suprathreshold vibrotactile stimuli with a consistent peak amplitude were applied to 180 

participants’ distal phalanx of the left index finger using a 16-dot piezoelectric Braille-181 

like display (4 x 4 quadratic matrix, 2.5 mm spacing), controlled by a programmable 182 

stimulator (QuaeroSys Medical Devices, Schotten, Germany). Frequencies of the first 183 

vibratory stimuli (f1) varied between16 and 28 Hz in steps of 4 Hz. The second 184 
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stimulus was either 4 Hz higher or lower than the preceding f1, yielding a total of 185 

eight possible stimulus pairs. 186 

Participants performed six experimental runs of the vibrotactile frequency 187 

discrimination task, each lasting ~12.5 min. During each run, each stimulus pair was 188 

presented eight times, each time with a unique combination between rule cues 189 

(diamond vs. square), matching cues (upward-pointing vs. downward-pointing 190 

triangles), and target screens (blue-left, yellow-right vs. yellow-left, blue-right). This 191 

yielded a total of 64 trials per run, which were presented in a randomized order. 192 

Further, the association between visual symbols and task rules as well as between 193 

target colors and match reports was counterbalanced across participants. 194 

 195 

FMRI data acquisition 196 

The fMRI data were obtained with a 3 T Tim Trio MRI scanner (Siemens, Erlangen, 197 

Germany) equipped with a 12-channel head coil at the Center for Cognitive 198 

Neuroscience Berlin. Functional volumes sensitive to the BOLD signal were acquired 199 

using a T2* weighted echo planar imaging sequence (TR = 2000 ms, TE = 30 ms, 200 

field of view = 192 mm, flip angle = 70°). Each volume consisted of 37 axial slices 201 

and was acquired in an interleaved order (64x64 in-plane, 3 mm isotropic with 0.6 202 

mm gaps between slices). 378 functional volumes were obtained in each 203 

experimental run. In addition to the six experimental runs, a T1 weighted structural 204 

volume was acquired for co-registration and spatial normalization purposes using a 205 

3D MPRAGE sequence (TR = 1900 ms, TE = 2.52 ms, 256x256 in-plane, 1mm 206 

isotropic). 207 

 208 
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Data preprocessing and analyses 209 

FMRI data preprocessing and general linear model (GLM) were performed with 210 

SPM12 version 6685 (www.fil.ion.ucl.ac.uk/spm) and custom MATLAB scripts 211 

(https://github.com/yuanhaowu/DecodingAbstractChoices), while multivariate 212 

decoding analyses were performed using The Decoding Toolbox version 3.991 213 

(Hebart et al. 2017, https://sites.google.com/site/tdtdecodingtoolbox/). During the 214 

preprocessing, functional volumes were corrected for slice acquisition time 215 

differences and spatially realigned to the mean functional volume. 216 

Decoding choices. The focus of the present study was to identify brain regions that 217 

carry information about choice-related information independent of stimulus order and 218 

selection of specific manual response. To this end, we used MVPA combined with a 219 

whole-brain searchlight routine to pinpoint brain regions that show distinguishable 220 

local activity patterns between different choices during the decision phase.  221 

We first obtained run-wise beta estimates for choice-related activity during the 222 

decision phase for each voxel. We fitted a GLM (192 s high-pass filter) to each 223 

participant’s data. Separate impulse regressors were defined to model the two 224 

choices (‘higher’ vs. ‘lower’), convolved with the canonical hemodynamic function at 225 

the onsets of the decision phases. To minimize the number of potential indecisions 226 

during decision phases, only correctly answered trials were modelled. Incorrectly 227 

answered and missed trials were modelled with a separate regressor of non-interest 228 

and not included in the subsequent MVPA. In addition, six movement parameters, 229 

the first five principal components explaining variance in the white matter and 230 

cerebrospinal fluid signals respectively (Behzadi et al., 2007), and a run constant 231 

were added as nuisance regressors, culminating in a total of 120 parameter 232 

estimates per participant (20 x 6 runs).  233 
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To identify brain regions that exhibit choice-selective activity patterns, a searchlight 234 

MVPA was performed on each participant’s data using linear support vector machine 235 

classifiers (SVM) in the implementation of LIBSVM 2.86 (Chang & Lin, 2011) with a 236 

fixed cost parameter of c = 1. We generated a 4 voxel radius spherical searchlight 237 

and moved it voxel-by-voxel through the entire measured volume. The searchlight 238 

was centered on each voxel in turn and comprised a maximum of 251 voxels (note 239 

that searchlights with 3 and 5 voxel radii yielded similar results). At each voxel, run-240 

wise beta estimates for each of the two choice regressors extracted from voxels 241 

within the searchlight formed the 12 response patterns (2 conditions x 6 runs) for the 242 

decoding analysis. To avoid overfitting, we estimated the classifier’s decoding 243 

accuracy using a leave-one-run-out cross-validation routine. That is, we iteratively 244 

trained the classifier to distinguish between response patterns between participant’s 245 

choices with data from five runs and tested how well the classifier predicted 246 

participant’s choices based on response patterns in the remaining run. This 247 

procedure was repeated until all runs were used as the test set. The decoding 248 

accuracy of the classifier was estimated as the number of correct predictions divided 249 

by the number of all predictions. Decoding accuracy resulting from the searchlight 250 

analysis around a given voxel was stored to the corresponding location of a whole-251 

brain volume before the searchlight moved to the next voxel. The searchlight analysis 252 

was applied to all voxels in the measured volume so that a continuous whole-brain 253 

accuracy map could be obtained. For each voxel in the measured volume, the 254 

resulting accuracy map displayed the extent to which the multivariate signal in the 255 

local spherical neighborhood was selective to choices. Notably, due to the use of a 256 

balanced design, different perceptual choices were expected to have approximately 257 

the same number of trials associated with each stimulus order and motor response. 258 

That is, each choice regressor contained roughly the same amount of information 259 
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about stimulus order and button press. Thus, choice-selective activity detected during 260 

the decision phase would be unlikely to result from the physical properties of stimulus 261 

order or planning of button press responses. 262 

For the group inference, each participant’s accuracy map was transformed to MNI 263 

space, resampled to 2 x 2 x 2 mm3 voxel size, and smoothed with a 3mm full width at 264 

half maximum Gaussian filter. The transformed maps were submitted to a group one-265 

tailed, one-sample t-test to assess whether the decoding accuracy at any voxel was 266 

significantly higher than the chance level (50%). A voxel with significant above-267 

chance decoding accuracy would indicate that the local activity pattern around that 268 

voxel carries information about choices. 269 

Behavioral control analyses. By virtue of the balanced experimental design, the 270 

implemented variant of the vibrotactile frequency discrimination task has proven to be 271 

capable of disentangling choice-related activity from that related to sensory and 272 

motor task components (Wu et al., 2019). However, it remains possible that the 273 

classifier could exploit the subtle difference in the distributions of the two stimulus 274 

orders (f1 > f2 vs f1 < f1) or motor responses (left vs right button press) between 275 

choice conditions to achieve above-chance decoding accuracy (Görgen et al., 2018; 276 

Hebart & Baker, 2018). This is of particular relevance for the present study as the 277 

balanced number of trials across conditions might not hold after the exclusion of 278 

incorrect answered trials and have a biasing effect on MVPA on fMRI data. To 279 

address this concern, we applied the same decoding analysis pipeline used with to 280 

behavioral data, which enabled us to directly test whether choices can be predicted 281 

based on the number of trials associated with different stimulus orders and motor 282 

responses in each choice.  283 
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For each of the variables of interest, we performed an independent analysis with the 284 

following procedure: For each choice in each run, we generated a two-dimensional 285 

vector using the number of trials associated with different variable levels. For 286 

instance, if a participant responded 15 times with a left and 17 times with a right 287 

button press to indicate a comparison stimulus of higher frequency, it was coded as 288 

[15 17]. The remainder of the analysis proceeded in a manner analogous to the fMRI 289 

data analysis pipeline. Twelve data vectors (2 choices x 6 runs) were used to predict 290 

participant’s choices in a decoding analysis with a leave-one-run-out cross-validation 291 

routine. For the group inference, we used one-tailed Wilcoxon sign rank tests to 292 

probe the statistical significance against chance accuracy (50%). Significant results 293 

would imply potential confounds due to the biased distributions of stimulus orders 294 

or/and motor responses. 295 

Neuroimaging control analysis. As informative clusters identified in the main fMRI 296 

analysis include brain regions typically implicated in the planning and execution of 297 

manual movements (see result), we did an additional analysis on fMRI data to test 298 

whether the result might be confounded with motor planning. We repeated the 299 

searchlight choice decoding analysis 100 times for each participant. In each 300 

repetition, we randomly sampled a subset of trials so that the number of trials 301 

associated with the left and right button presses was fully balanced across choices 302 

and runs. We then performed the same GLM and searchlight analysis as described 303 

above on a subset of data to obtain a decoding accuracy map per repetition, yielding 304 

a total of 100 accuracy maps per participant. The within-participant averaged 305 

accuracy maps were then forwarded to a group level t-test to identify brain regions 306 

which carry choice-related information. Importantly, by keeping the number of left and 307 

right button presses balanced across choices and runs, this analysis eliminated 308 
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potential confounds related to motor planning. If informative clusters reported in the 309 

main result were mainly driven by motor planning rather than by choices, we would 310 

not expect choice-related information in the reported regions. Reversely, a similar 311 

pattern of informative clusters would strengthen the result of the main analysis. 312 

 313 

Results 314 

Behavior 315 

The overall behavioral performance of participants during the scanning session was 316 

highly accurate. The average accuracy rate was 0.881 (SD: 0.057; range: 0.778 - 317 

0.99), while the average reaction time (latencies between the onsets of the target 318 

screens and button presses) was 0.554 (SD: 0.104, range: 0.359 - 0.77). 319 

 320 
Fig. 2. Behavioral performance. The bar plots show the mean accuracy rates across participants over 321 
all runs for different stimulus orders, rules, and f1 magnitudes. Error bars represent 95% confidence 322 
intervals (CIs) of the means. 323 

 324 

We further examined participants’ behavioral accuracies and reaction times with 325 

three-way repeated measure ANOVAs with task rule (compare f1 against f2 vs f2 326 

against f1), stimulus order (f1 > f2 vs f1 < f2), and f1 magnitude (16Hz, 20Hz, 24Hz, 327 

and 28Hz) as within-subject factors, respectively. For the behavioral accuracy, there 328 
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was no task rule effect observable (F(1,26) = 1.66, p = 0.209). The performance 329 

remained stable regardless of which particular rule was applied, suggesting that the 330 

cognitive demands were equivalent across rules. In addition, we observed a 331 

significant effect of stimulus order (F(1,26) = 7.749, p = 0.001), with a slightly better 332 

performance in f1 > f2 trials than in f1 < f2 trials (meanf1>f2 = 0.911, meanf1<f2 = 0.851, 333 

CI95  = [0.0166 0.1035]). Moreover, there was a significant interaction between 334 

stimulus order and f1 magnitude (F(3, 78) = 11.239, p < 0.001).  As indicated by 335 

linear trend analyses, participants’ performance decreased slightly with an increasing 336 

f1 in f1>f2 trials (slope = -0.0113, p < 0.001), while the performance was unaffected 337 

by f1 magnitude in f1 < f2 trials (slope = 0.003, p = 0.233). Contrary to the behavioral 338 

accuracy, we did not reveal any difference in reaction times between conditions. 339 

Considering the possibility that response biases and the exclusion of incorrect trials 340 

from fMRI analysis may cause differences in stimulus order and motor response 341 

distribution between choices and thereby distort the outcome of the fMRI analysis, 342 

we performed Pearson chi-square tests on data included in the fMRI analysis, for 343 

each participant respectively. The tests did not reveal significant differences in the 344 

distribution of stimulus orders and motor responses between choices in any of the 345 

participants (all p > 0.1, uncorrected), suggesting that participants’ choice behavior 346 

included in the fMRI analysis was not biased by the stimulus order or motor response. 347 

In addition, the same decoding analysis routine as used for the fMRI data was 348 

performed to test whether the numbers of trials associated with different stimulus 349 

orders and motor responses were predictive of choices. As the results of one-sided, 350 

one-tailed Wilcoxon sign rank tests show, neither stimulus order nor motor response 351 

was predictive of choices (all p > 0.05, Holm corrected). 352 
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Collectively, there is no evidence from our behavioral analyses indicating that the 353 

fMRI results reported below were confounded by the physical properties of the 354 

stimulus order and selection of the ensuing motor responses. 355 

 356 

Neuroimaging results 357 

The main objective of the present study was to identify brain regions that carry 358 

information about perceptual choice independent of the physical properties of 359 

stimulus orders and selection of the ensuing manual responses. Using whole-brain 360 

searchlight MVPA, we tested for brain regions exhibiting distinguishable local activity 361 

patterns between choices during the 2 s decision phase. The result of the whole-362 

brain searchlight analysis is shown in Fig. 3 (displayed at p < 0.05, FDR corrected for 363 

multiple comparisons at the cluster level with a cluster-defining voxel-wise threshold 364 

of p < 0.001). We were able to decode perceptual choices from the intraparietal 365 

sulcus (IPS, mainly in area hIP3; cluster size = 130, peak voxel: [-34 -52 50], t[26] = 366 

5.115, mean decoding accuracy at the peak = 57.737%, CI95 = [4.628% 10.847%]) 367 

and the dorsal premotor cortex (PMd, BA 6) in the left hemisphere, contralateral 368 

hemisphere to the response effector (cluster size = 109, peak voxel: [-20 2 70], t[26] = 369 

4.864, mean decoding accuracy = 60.504%, CI95 = [6.066% 14.943%). To test 370 

whether choices are indeed represented in a lateralized manner, we conducted two-371 

sided paired t-tests between decoding accuracies extracted from the identified peak 372 

voxels and those extracted from the corresponding locations in the right hemisphere 373 

(right panel in Fig. 3). These tests show that decoding accuracies extracted from the 374 

identified peak voxels were significantly higher than those in the right hemisphere, 375 

ipsilateral to the response effector (IPS: t[26] = 2.413, p = 0.002, CI95 = [0.928% 376 
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11.619%]; PMd: t[26]  = 4.43, p < 0.001, CI95 = [7.137% 19.467%]), corroborating the 377 

lateralized representation of choice-related information. 378 

We were further interested in whether decoding accuracies in the reported regions 379 

were explanatory to the behavioral performance. To this end, we estimated the 380 

Pearson correlation between the decoding accuracy and behavioral performance. 381 

We were not able to find statistical evidence for such a linkage between them in any 382 

of the reported regions (IPS: rho = 0.089, p = 0.659; PMd: rho = -0.016, p = 0.938). 383 

 384 

 385 
Fig. 3. fMRI decoding results. The left IPS and the PMd were found to carry choice-related information 386 
independent of stimulus order and ensuing button press, contralateral to the response effector (PFDR < 387 
0.05, cluster corrected for multiple comparisons). Coordinates refer to MNI space and indicate the 388 
peak voxel of each region respectively. The unthresholded statistical map can be inspected at 389 
https://www.neurovault.org/images/256861/ The bar plot shows decoding accuracies at the reported 390 
peak voxels and at the equivalent positions in the right hemisphere, ipsilateral to the response effector. 391 
Error bars represent 95% CIs of the means, while dots indicate individual participants’ decoding 392 
accuracies in each brain region. Asterisks indicate statistically significant differences between 393 
hemispheres at p < 0.05, Holm corrected for multiple comparisons. Participant-specific decoding 394 
accuracy maps are available at https://doi.org/10.6084/m9.figshare.9920111.v2 395 

 396 

Importantly, the pattern of informative clusters at the group level remains similar 397 

across different searchlight radiuses. We performed the same MVPA with searchlight 398 

radii of 3-5 voxels and found that locations of significant informative clusters remain 399 

centered in the left IPS and PMd (Fig. 4). Moreover, results of two-sided paired t-400 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2019. ; https://doi.org/10.1101/802652doi: bioRxiv preprint 

https://doi.org/10.1101/802652
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

tests between all possible pairs show that decoding accuracies do not differ across 401 

searchlight radii (all p > 0.05, Holm corrected). 402 

  403 
Fig. 4. fMRI decoding results using three different searchlight radii. The left panel depicts the 404 
informative clusters (one column for each radius, indicated by r). Bar plot in the right panel displays 405 
decoding accuracies at peak voxels of the IPS and PMd clusters for each radius respectively. The 406 
unthresholded statistical maps are available at https://www.neurovault.org/collections/5936/ Error bars 407 
indicate 95% CIs of the means. Grey dots and lines represent individual participants’ decoding 408 
accuracies.            409 

 410 

We performed an additional decoding analysis to explore whether the identified brain 411 

regions with significant above-chance decoding accuracies may result from a bias 412 

toward a particular choice-response association. We repeated the searchlight choice 413 

decoding analysis and eliminated the potential motor-related confound by keeping 414 

the left and right button presses balanced across choices and runs. This analysis 415 

yielded a highly similar pattern of brain regions carrying choice-related information as 416 

in the main analysis. As shown in Fig. 5 (reported at p < 0.001 uncorrected due to 417 

significant reduced amount of data compared to the main analysis), choice-related 418 

information was again found in the left IPS ([-34 -52 52], t[26] = 5.173, cluster size = 419 

128, mean = 56.157%, CI95 = [3.711% 8.603%) and in the left PMd ([-20 0 72], t[26] = 420 

4.443, cluster size = 76, mean = 57.662%; CI95 = [4.117% 11.207%]). Altogether, the 421 
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results of both behavioral and neuroimaging control analyses suggest that the main 422 

results were not driven by motor-related confounds. 423 

 424 

 425 
Fig 5. fMRI control analysis result. The left panel displays significant clusters detected by the analysis 426 
controlling for motor-related confounds (displayed at p < 0.001, uncorrected). The unthresholded 427 
statistical map is available at https://www.neurovault.org/images/256864/ The right panel shows box 428 
plots for IPS and PMd separately. Box edges indicate the 25th and 75th percentiles, central horizontal 429 
lines correspond to the median. Grey dots represent individual participants’ decoding accuracies. 430 

 431 

Next, we compared the result of the present study with that of our previous study, in 432 

which decisions were communicated with saccades, instead of button presses (Wu et 433 

al., 2019, n = 30). Similar to the present study, choice-selective activity was found in 434 

premotor and intraparietal regions, with the difference that it was evident in both 435 

hemispheres. The previous study also reported choice-selective activity in the left 436 

prefrontal cortex (PFC), while it was absent in the current study. Notably, although 437 

both studies identified premotor and intraparietal regions as carrying choice-related 438 

information, there were no overlapping clusters. In particular, the premotor clusters 439 

identified in the previous study were located in the junction of precentral gyri and the 440 

caudal-most part of the superior frontal sulci (peakleft: [-32 10 62], peakright: [34 4 52]), 441 
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commonly referred to as the FEF (determined with the probabilistic maps by Wang et 442 

al., 2015; www.princeton.edu/~napl\vtpm.htm). In contrast, the premotor cluster 443 

detected in the current study lies in the adjacent PMd (-20 0 72),  dorsocaudal to the 444 

FEF (determined with the SPM Anatomy toolbox version 3; Eickhoff et al., 2005), 445 

hinting that the location of choice-related information might shift between regions 446 

specialized for eye and hand movements depending on what response effector is 447 

used.           448 

   449 
Fig.6. Comparison with results from the saccade version of the task (Wu et al., 2019, n = 30). The 450 
upper panel displays brain regions carrying choice-related information as identified in the present 451 
study (in red-orange) and those detected in our previous work using saccades as decision reports (in 452 
blue-green, unthresholded statistical map available at https://www.neurovault.org/images/63793/), 453 
both displayed at pFDR < 0.05, cluster corrected. The circles indicate the premotor and intraparietal 454 
clusters used for ROI analysis. The lower panel depicts mean decoding accuracies across participants 455 
collapsed across response modalities and effector-specific regions. Error bars indicate 95% CIs of the 456 
means.  457 

 458 

To further assess this possibility, we ran a set of regions of interest (ROI) analyses. 459 

First, we took the peak voxels in the bilateral FEF from the previous study as the ROI 460 
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for the current data. For each participant, we extracted decoding accuracies from 461 

these voxels and averaged them. The averaged decoding accuracies were then 462 

submitted to a two-tailed, one-sample t-test against the chance level. Likewise, we 463 

used the peak voxel of the PMd cluster from the present study as the ROI for the 464 

previous study and tested whether choices could be reliably decoded from the PMd. 465 

The results of these ROI analyses support the interpretation of an effector-dependent 466 

shift of choice representation within the premotor cortex (Fig. 6). Despite the higher 467 

sensitivity of ROI approach, the mean decoding accuracy computed from the bilateral 468 

FEF in the present study did not surpass the chance level (t[26] = 1.534, mean = 469 

52.272%; CI95  = [-0.772% 5.315%], p = 0.137). Likewise, the mean decoding 470 

accuracy in the left PMd derived from the previous study did not differ significantly 471 

from the chance level (t[29] = 2.172, mean = 54.301%; CI95  = [0.250% 8.352%], p = 472 

0.076, Holm corrected). That is, when manual response was used, choice could only 473 

be reliably decoded from the left PMd, but not from the FEF. Conversely, choice 474 

could only be read out from the FEF, but not from the PMd, when saccadic response 475 

was required (Fig. 6).  476 

                          477 

Discussion 478 

In the present study, we sought to identify human brain regions that represent 479 

abstract choices in the context of vibrotactile frequency comparisons. We used fMRI 480 

combined with a variant of the vibrotactile frequency discrimination task which 481 

allowed us to dissociate choice-selective BOLD signals from those related to the 482 

physical properties of stimulus orders and the selection of manual responses. We 483 

identified the left IPS and PMd, contralateral to the response effector, as carrying 484 

choice-related information. Notably, using the same task, but saccades as response 485 
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effector, our previous study (Wu et al., 2019) also reported choice-related information 486 

in intraparietal and premotor regions. Interestingly, the informative premotor cluster 487 

was centered in the FEF rather than in the PMd. Evidence from these two studies 488 

suggests a response modality-specific organization of abstract choice 489 

representations in the context of vibrotactile comparisons. 490 

The pivotal role of the premotor cortex in decision formation during vibrotactile 491 

comparisons has been established by the seminal work of Romo and colleagues 492 

using neurophysiological recordings in monkeys (reviewed in Romo and de Lafuente, 493 

2013). The premotor cortex is strongly implicated in the computation of comparisons 494 

between the two sequentially presented stimuli, based on the consistent observation 495 

of choice-predictive signals before the initiation of manual responses (Hernández et 496 

al., 2002; 2010). In line with these reports, we identified the dorsal part of the 497 

premotor cortex as carrying choice-related information, with the crucial difference that 498 

choices in the present study were independent of sensorimotor components, while 499 

choices in the above-mentioned monkey neurophysiological studies were inextricably 500 

linked with them. Taking this into account, the finding of such abstract choice 501 

representations in a region that is primarily associated with the planning and 502 

preparation of manual actions may not appear straightforward. Indeed, results from 503 

few human fMRI studies in the visual domain, wherein perceptual choices were 504 

disentangled from specific actions, are inconsistent. On the one hand, several 505 

studies failed to find evidence for decision-related BOLD signals in the premotor 506 

cortex when choices were decoupled from actions (e.g., Hebart et al., 2012; Filimon 507 

et al., 2013). On the other hand, premotor activity reflecting categorical choices 508 

regarding the stimulus identity independent of motor planning has been shown in 509 

other human fMRI studies (e.g., Hebart et al., 2014). With this study, we provide 510 
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additional fMRI evidence for a premotor involvement in the representation of choices 511 

in a more abstract, internal cognitive format.  512 

Hereof, it is important to note that the analysis we used in the present study does not 513 

permit an inference about whether abstract choices are indeed encoded in the PMd 514 

or generated elsewhere. Independent of this issue, one possible explanation for our 515 

premotor finding is that the PMd serves as a node for short-term storage of abstract 516 

choice representations and the transformation into commands for concrete manual 517 

movement once all information required for the execution of specific actions are 518 

known. This interpretation agrees with a recent study showing a causal role of the 519 

premotor cortex in the flexible stimulus-response mapping in mice (Wu Z. et al., 2019) 520 

and monkey neurophysiological studies implicating the PMd in the retrieval and 521 

integration of task-relevant information necessary for specification of particular 522 

actions (e.g., Nakayama et al., 2008; Yamagata, 2009, 2012).  523 

While there is a vast amount of neurophysiological evidence for the premotor 524 

involvement during vibrotactile comparisons, neural activities in the posterior parietal 525 

cortex (PPC) has remained largely unexplored in this context. Nevertheless, our 526 

finding of intraparietal choice representation was not surprising. Similar to the 527 

premotor area, posterior parietal regions are thought to be crucially involved in 528 

various decision-making tasks, most prominently when decisions are communicated 529 

by saccades (Gold & Shadlen, 2007). In particular, activity in the monkey LIP 530 

(homologous to the intraparietal subregions in humans) has been shown to mimic the 531 

presumed evidence accumulation toward one or the other saccade choices and 532 

thereupon regarded as the explicit neural representation of the evolving decisions 533 

(Shadlen & Kiani, 2013, but see Huk et al., 2017 for a critical review). Moreover, 534 

evidence from recent studies on a wide range of decision-making tasks suggests that 535 
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PPC’s involvement is not confined to motor decisions but pertains to decisions at 536 

different levels of abstraction. For instance, both monkey and human PPC have been 537 

shown to represent choices that were independent of the planning of saccade 538 

responses (Bennur & Gold, 2011; Hebart et al., 2012). Among studies in the broader 539 

context of decision making, findings from monkey neurophysiological recordings 540 

using visual categorization tasks are particular revealing (reviewed in Freedman & 541 

Assad, 2016). In these studies, monkeys were trained to perform delayed match-to-542 

category tasks in which they decide whether the motion direction of the sample 543 

stimulus and the test stimulus belong to the same category based on a previously 544 

learned, arbitrarily defined boundary. After the test stimulus, monkeys indicated their 545 

decision on a match or mismatch with manual or saccadic responses. Using this task, 546 

LIP has been shown to exhibit signals reflecting the categorical choice which cannot 547 

be attributed to specific sensory stimulus properties nor action selection (Freedman & 548 

Assad, 2006; Swaminathan & Freedman, 2012; Swaminathan et al., 2013). Such 549 

categorical information is reminiscent of the choice-related information observed in 550 

our study as both are dissociated from sensory and motor components of the task 551 

and are thus, represented at a similar level of abstraction. The similarity between 552 

them opens the possibility of a common mechanism and thereby boosts the notion of 553 

the PPC, and IPS more specifically, as a central node mediating abstract cognitive 554 

computations (Freedman & Assad, 2016). 555 

Given the above-mentioned functions ascribed to the PPC, one question which 556 

naturally emerges from our results is whether the reported choice-related information 557 

is directly computed in the PPC via the evidence accumulation process or other 558 

mechanisms. We are not able to answer this question with our experimental design. 559 

In this study, we only used stimulus pairs with supra-threshold differences to facilitate 560 
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the decodability of choice-related information. This is, however, problematic for 561 

assessing neural correlates of evidence accumulation as they would, according to 562 

the accumulation-to-bound model (Ratcliff et al., 2016), provide strong momentary 563 

evidence signals which are difficult to distinguish as such. Similar to the premotor 564 

cortex, it is possible that the IPS merely receives choice-related signals from 565 

elsewhere in the brain and thus, is not actively involved in the decision formation. 566 

However, there is evidence from several lines of research that warrants the IPS 567 

being a promising candidate region for decision formation during vibrotactile 568 

comparisons. 569 

First, vibrotactile comparisons as implemented in the present study can be regarded 570 

as a process in which a choice is made based on the relation between two 571 

magnitudes. Combined evidence from monkey neurophysiology and human 572 

neuroimaging suggest that magnitudes and the relation between them are encoded 573 

by a network comprising the IPS and lateral PFC (reviewed in Jakobs et al., 2013). 574 

Moreover, the IPS appears to be the first region within this network to process 575 

magnitude information (reviewed in Nieder, 2016). Second, Herding and colleagues 576 

(2019) showed that the centro-parietal positivity (CPP) in EEG signal, which has 577 

been suggested as a proxy for accumulated evidence across a variety of decision-578 

making tasks (O’Connell et al., 2012; Kelly & O’Connell, 2013), also indexes the 579 

amount of sensory evidence during vibrotactile comparisons. More specifically, they 580 

identified the left IPS as the likely source of the CPP component reflecting the signed 581 

subjectively perceived difference between two frequencies. Notably, in this study, 582 

participants always compared f2 against f1. It would be interesting to explore whether 583 

and how this effect is modulated by comparisons in the reversed direction. Finally, 584 

using a reversible inactivation approach to investigate PPC’s contribution to sensory 585 
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evaluation and action selection. Zhou and Freedman (2019) revealed that monkeys’ 586 

decisions were more severely affected when visual stimuli, rather than motor targets, 587 

were placed in the inactivated receptive fields of LIP neurons under investigation, 588 

providing compelling evidence for the causal role of the PPC in the sensory aspect of 589 

visual decisions. Given that the IPS is thought to have a similar role as a mediating 590 

node in the sensorimotor transformation across multiple sensory domains, it is 591 

intriguing to see whether a causal effect could also be demonstrated during 592 

vibrotactile comparisons.  593 

With the present finding of premotor and intraparietal choice-selectivity, we have also 594 

replicated the finding of our previous study using the same task but with saccades as 595 

the response modality (Wu et al., 2019). When comparing both studies more closely, 596 

two differences are apparent. First, choice-related information was found in bilateral 597 

premotor and intraparietal regions when saccades were used. However, when 598 

manual responses were required, the premotor and intraparietal selectivity was only 599 

evident in the contralateral hemisphere. Moreover, we observed a relocation of 600 

choice-related information within the premotor area from the FEF to the PMd. 601 

Importantly, we did not assign these functional labels merely based on the required 602 

response modalities tasks. Both the FEF and the PMd were determined by means of 603 

well-established functional probability maps. In addition, the spatial arrangement of 604 

the FEF and the PMd clusters as identified by the spatially unbiased whole-brain 605 

searchlight routines in these two studies corresponds well to that reported in 606 

monkeys (e.g. Petrides, 1982; Halsband & Passingham, 1982; Bruce & Goldberg, 607 

1985) and humans (Amiez, 2006), with saccade-related premotor region lying more 608 

anterior and rostral to premotor region exhibiting activities related to manual 609 

movements. Thus, it is unlikely that these differences were merely a by-product of 610 
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idiosyncratic differences between samples. Altogether, the results from these two 611 

studies suggest a response modality-dependent organization of abstract choice 612 

representations. One question emerged from this interpretation concerns whether the 613 

posited response modality-dependent organization of abstract choice information is 614 

confined to a specific level of abstraction. For instance, the dependency observed in 615 

our studies might result from the explicit foreknowledge of the required response 616 

modality. Evidence from other fMRI studies suggests that decision-related activities 617 

may occur elsewhere when the required response modality is not known (Ho et al., 618 

2009; Liu and Pleskac, 2011; Filimon et al., 2013). In this light, future studies 619 

combining the present task with a wide range of response modalities, target locations, 620 

and task difficulties will provide essential insights into how vibrotactile choices are 621 

evolved and transformed into internal cognitive states in humans. 622 
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