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Abstract 
Recent work has highlighted that many types of variables are represented in each 
neocortical area. How can these many neural representations be organized together 
without interference, and coherently maintained/updated through time? We recorded 
from large neural populations in posterior cortices as mice performed a complex, dynamic 
task involving multiple interrelated variables. The neural encoding implied that correlated 
task variables were represented by uncorrelated modes in an information-coding 
subspace. We show via theory that this can enable optimal decoding directions to be 
insensitive to neural noise levels. Across posterior cortex, principles of efficient coding thus 
applied to task-specific information, with neural-population modes as the encoding unit. 
Remarkably, this encoding function was multiplexed with rapidly changing, sequential 
neural dynamics, yet reliably followed slow changes in task-variable correlations through 
time. We can explain this as due to a mathematical property of high-dimensional spaces 
that the brain might exploit as a temporal scaffold. 

Introduction 
Hypothesized neocortical functions such as predictive coding1–3 and Bayesian inference4,5 
have emphasized that a crucial component of cortical computation is context: variables that 
indicate the external state of the world, as well as the internal state of the animal. Our work 
here, as well as several recent studies6–10, have indeed found that many different variables 
are all represented in almost every region of the dorsal cortex. These variables range from 
sensory and motor, to internal and cognitive. However, the need to simultaneously 
represent many pieces of information in neural activity can also pose computational 
challenges for neural systems to overcome. We focus on three such challenges. One, how 
are multiple variables represented together without crosstalk or interference? Two, how 
can this neural information be read out if the multiple variables are interrelated? Three, do 
these representations also include temporal context, an important factor for episodic 
memory and behavior in general? To answer these questions, we examined the structure of 
neural population coding during a rich yet well-controlled task, where context-dependent 
sensory information guided a decision-making behavior. 
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We recorded from large neural populations across the posterior cortex as mice performed 
a navigation-based visual evidence accumulation task11,12, which required subjects to 
generate/utilize time-varying relationships between multiple visual, motor, cognitive, and 
memory-related task variables. All these dorsal cortical areas were implicated in mice’s 
performance of the task13, and here we wished to understand how the neurophysiology 
relates to behavior. Our analysis of neural data is based on conceptualizing the collective 
activity of neurons as a point in a high-dimensional neural state space, where each 
coordinate is the activity level of one neuron. It has been observed that in many scenarios, 
the neural state seemed confined to a lower-dimensional region of the neural state space, 
termed the “neural manifold”14–25. We analyzed the geometrical structure of the neural 
manifold by examining two types of state-space directions, defined by the neural encoding 
and decoding of the above-mentioned task variables as explained below.  

To understand how multiple variables were represented together, we considered encoding 
directions along which the neural state changes if the task variables change. These 
encoding directions can be thought of as defining a transformation of behavioral 
information into a neural code, which can also transform relationships between neurally-
represented variables. For example, using the same pattern of neural activity to encode two 
different variables creates interference, in that these two pieces of information cannot then 
be distinguished from the neural state. However, such an encoding scheme could also 
support a cognitive function, generalization, by indicating that the two variables are 
equivalent in the process of computing successively more complex features of the world. 
This illustrates that the relationships between neural representations can themselves 
contain extractable information about the expected structure of the world26, which we 
quantified by examining decoding directions along which the neural state best 
discriminates task variables of interest. How information can be decoded must depend on 
how it has been encoded27–29, and others have used this to propose encoding schemes 
based on single-neuron stimulus tuning/filtering properties that optimizes various 
decoding-based criteria28–33. Our approach differs in considering neural-state directions to 
be the basic encoding unit, and consequences of how neural noise and statistical 
correlations between task variables modify the relationship between decoding and 
encoding directions. Our main finding is that all examined posterior cortices had a 
remarkably consistent structure of encoding and decoding directions, which were 
multiplexed with sequential neural dynamics that indicated temporal context within the 
task. Correlated task variables were encoded by approximately uncorrelated neural modes, 
which supports theories of efficient coding34,35, and theoretically enables optimal decoding 
directions to not depend on neural noise levels. The encoding directions varied rapidly in 
time as neurons were sequentially active in all areas, yet the geometry of encoding 
directions remained much more stable, and linear decoding of task variables could be 
performed over timescales much longer than that of neural dynamics. 

Our findings have implications for longstanding theories of efficient coding. Much work on 
this subject has focused on how individual neurons in a population should exhibit 
statistically independent responses in order to represent sensory information with 
minimal redundancy36–44, as well as how this function is modified by representational 
constraints and neural noise28,29,32,45–49. Our contribution is threefold. First, we extend 
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these notions to neural-state-level encoding and decoding directions, which capture how 
neural populations coordinate to represent information as a whole. Second, we discovered 
that efficient coding may not only apply to early sensory information, but also applies in 
downstream neocortical regions to a set of external and internally-computed variables 
associated through a learned behavioral task. Third, we report that under dynamic task 
conditions and also time-varying neural representations, the neural population 
nevertheless maintained efficient coding of task information through time. We can explain 
this stability as a mathematical property of large (i.e. high-dimensional) populations of a 
phenomenon we call “multiplicative neural sequences”, where neural responses 
approximately had the form 𝑤(𝑥) 𝑔(𝑡), with 𝑤(𝑥) being a function only of task variables 𝑥, 
and 𝑔(𝑡) being a function only of time 𝑡. Our results thus link concepts of efficient coding 
with properties of computation in high-dimensional spaces, through an ethologically 
important question of how neocortical areas represent multiple interrelated variables to 
support a complex, dynamic behavior. 

Results 

We performed cellular-resolution two-photon imaging of six posterior cortical regions of 
11 mice trained in the Accumulating-Towers task (Fig. 1a). These mice were from 
transgenic lines that express the calcium-sensitive fluorescent indicator GCaMP6f in 
cortical excitatory neurons (Methods), and participated in previously detailed behavioral 
shaping11 and neural imaging procedures (Methods), as summarized below. 

We trained water-restricted mice in a head-fixed virtual reality system50 to navigate in a T-
maze. As they ran down the stem of the maze, a series of transient, randomly located cues 
appeared along the right and left walls of the cue region corridor, followed by a delay 
region with no cues. Mice received a liquid reward for turning down the arm corresponding 
to the side with more cues, and experienced a longer time-out in the inter-trial-interval 
(ITI) otherwise. In agreement with previous work11, all mice utilized multiple cues to make 
decisions (Fig. 1b). To facilitate comparison of data across animals, trials, and also the ITI, 
we resampled the behavioral and neural data according to a coordinate that measured 
progress through the trial (“time in the trial”; see Methods). In addition, we identified 
thirteen variables that spanned execution and psychophysics of the task: (1&2) the running 
tally #ipsi and #contra of cue-counts on the sides ipsilateral and contralateral to the 
recorded brain hemisphere; (3&4) the final tally of ipsi/contra cue counts from the 
previous trial; (5) the navigational choice to turn right or left;  (6) the choice in the past 
trial; (7&8) whether the (past) trial was rewarded; (9) the virtual viewing angle 𝜃 (Fig. 1c); 
(10) the last value of 𝜃 in the past trial; and (11&12) treadmill velocities 𝑣  and 𝑣 ; (13) 𝑦 
spatial location in the virtual T-maze.  

To obtain neurophysiological data, we first identified the locations of visual areas per 
mouse using a retinotopic visual stimulation protocol (Fig. 1d; Methods). Then, while mice 
performed the task, we used two-photon imaging to record from either layers 2/3 or 5 
from one of six areas (Supplementary Table 1): the primary visual cortex (V1), secondary 
visual areas (V2, including AM, PM, MMA, MMP51), or retrosplenial cortex (RSC). After 
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correcting for brain motion, putative single neurons were identified using a demixing and 
deconvolution procedure52. Neural activities were estimated using fluorescence-to-
baseline ratios, and only neurons with ≥ 0.1 transients per trial were selected for analysis. 
In total, we analyzed 8,759 neurons from 145 imaging sessions. All neural-population level 
analyses were performed on datasets of simultaneously recorded neurons. 

 

Figure 1.  Neural populations across posterior cortex are sequentially active during the 
Accumulating-Towers task.  (a) Layout of the virtual T-maze in an example left-rewarded 
trial.  (b) Sigmoid curve fits to psychometric data for how frequently mice turned to the side 
ipsilateral to the recorded brain hemisphere, as a function of ipsilateral vs. contralateral cue counts.  
(c) Visual and motor task variables analyzed in this study. The virtual viewing angle 𝜃 determines 
the perspective of the virtual scene. �⃗� is the treadmill velocity.  (d) Anatomical layout and labels for 
the six posterior cortical areas in this study. V2 refers to the collection of secondary visual areas. 
Visual area boundaries were functionally identified per mouse (Methods); shown here are average 
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boundaries for 𝑛 = 5 mice.  (e) Normalized and trial-averaged activity of neurons (rows), pooling 
data across sessions for the labeled cortical area. Neurons were divided into left-/right-choice 
preferring populations, and sorted by the peak activity times in correct preferred-choice trials. 
“n.s.”: neurons with no significant choice preference according to a t-test (sorted by peak activity 
averaged across all trials, see Methods). All sorting and normalization factors were computed using 
a set of training data, whereas these plots were made using the held-out set of testing data. Error 
trials were excluded in this analysis.  (f)  Rank (normalized to [0,1]) of sorted neurons vs. the peak 
activity time for that neuron. Data were pooled across sessions for a given area (colors). RSC is 
significantly different from other regions (𝑝 ≤ 10 , K-S test).  (g) Duration of activity fields vs. 
peak activity times. The activity field is defined as the span of time-points with activity at least half 
the height of the peak above baseline, in trial-averaged data. Data were pooled across sessions for a 
given area/layer. Line: Mean across neurons. Bands: S.E.M.  (h) Distribution (kernel density 
estimate) of activation reliabilities for neurons in a given area, defined as the fraction of trials in 
which the neuron is significantly active within its putative activity field. Only neurons with ≥ 50% 
reliability were shown in (e-g). See Supplementary Fig. 1 for more statistics. Error bars: S.E.M.   

 

The neural state traverses an approximately time-ordered manifold in the 
course of a trial 

Extending previous work53, we show in a cross-validated sense (Methods) that neurons in 
all recorded areas were sequentially active vs. place/time in the trial, and could be divided 
into left- vs. right-choice-preferring subpopulations (Fig. 1e; see Supplementary Fig. 1 for 
statistics). Differences across areas were small, with RSC having more uniform tiling (Fig. 
1f) and slightly more uniform field widths (Fig. 1g) of neuronal activities vs. time. Neurons 
were reliably active, i.e. in the majority of their preferred-choice trials (Fig. 1h), albeit a bit 
less so in RSC. These observations are compatible with previous findings of place/time-
preferring (and choice-preferring) neurons in mouse cortex53–58. 

As individual neural activities could be ordered in time, we wondered if a similar concept 
could be applied to the neural manifold. We define “time order” for a manifold by analogy 
to the case of perfectly repeating sequential neural activity (Fig. 2a). In this idealized case, 
the neural state trajectory forms a ring-shaped manifold as it travels between the state-
space axes of each neuron in the sequence, returning to the first neuron as the sequence 
repeats. More generally, the neural trajectory could pass through different state-space 
locations on different trials54, and yet approximate a ring-like structure (Fig. 2b). At each 
timepoint in the trial the data across trials formed a point cloud in the neural-state space, 
and we show below that these point clouds constitute local regions of a neural manifold 
that can be ordered along a single time coordinate. This is what we call global time order 
for a manifold. 

To measure the spread of the per-timepoint point clouds relative to time-related changes, 
we projected these point clouds onto axes related to the trial-average trajectory (Methods). 
Fig. 2c shows that the spread projected along the trial-average trajectory was a small 
fraction of the total length of the trajectory. Also, two point clouds for two distal timepoints 
had little overlap along the axis between the clouds (Fig. 2d). These results indicate that the 
neural state at any one timepoint in the trial occupied a relatively small, local region of the 
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neural manifold. If these regions can be ordered in time, they should be nearby (higher 
overlap) for nearby timepoints, but far from each other (low overlap) for any two distal 
timepoints (Fig. 2e). The matrix of point-cloud overlap scores for all pairs of timepoints is 
shown in Fig. 2f. Entries near the diagonal of this matrix correspond to nearby timepoints 
and entries far from the diagonal correspond to distal timepoints, so we expect sequential 
activity to correspond to an overlap matrix where high-valued entries should be close to 
the diagonal. Fig. 2f shows approximately such structure, albeit the overlap between point-
clouds in the cue period tended to be high (cf. field widths of neurons in Fig. 1g). This could 
reflect reduced neural precision in keeping track of place/time along the stem of the T-
maze away from boundaries59,60, particularly since landmarks (cues) were randomly 
placed on every trial. Signatures of time-orderable structure were true for the neural 
manifold in all surveyed posterior cortical regions. 

The above analyses concerned the Euclidean distance between neural states. If the activity 
levels of all neurons were to be scaled by the same amount between one timepoint and the 
next, this would also present as a large change in Euclidean distance, yet there would be no 
change in the identities of active neurons. To quantify whether there is a change in active 
neurons vs. time as expected of sequential activity, we examined the angular difference 
between the centers of the per-timepoint point clouds. As illustrated in Supplementary Fig. 
2a, an overall scaling of neural activities generates zero angular difference, whereas a 90∘ 
difference is interpretable as a complete change in active neurons since activity levels are 
nonnegative (explained further in Supplementary Fig. 2b). Fig. 2g shows that at all 
timepoints, there was an above-chance rate of angular change and thus a sequence-like 
turnover in active neurons (see Supplementary Fig. 2c for all pairs of timepoints). 

We note that the neural manifold may have additional structure related to behavioral 
factors, e.g. the clear choice-specificity of neural activities (Fig. 1e) imply choice-related 
bifurcations as illustrated in Supplementary Fig. 2f. We next quantify how multiple task 
variables were reflected in the local (i.e. per-timepoint) structure of the neural manifold. 
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Figure 2.  A single time coordinate can be used to order local regions of the neural manifold, 
regardless of trial-to-trial differences.  (a) Illustration of perfectly repeating sequential activity 
(left), and the corresponding ring-shaped neural manifold (right).  (b) Illustration of sequential 
activity with some trial-to-trial differences. For a given time in the trial, the neural data across trials 
constitutes a cloud of points in the neural state space (dashed ellipses). Point clouds are local if 
their spreads are small relative to the distance between their centers across time (bottom-right 
box). This is not true if the neural-state trajectory is a random walk through time (bottom-left). This 
is also not true if neural responses are non-random but depend strongly on behavioral conditions, 
leading to highly different neural-state locations at the same timepoint across different trial types 
(bottom-middle).  (c) Normalized standard deviation of the neural-state point cloud for a given 
time 𝑡 in the trial, projected onto the axis between centers of two adjacent clouds. These centers are 
the trial-average neural states 𝐹(𝑡) and 𝐹(𝑡 + 1). The normalization factor is the total length of the 
trial-average trajectory. Shuffled: Pseudo-data with activity shuffled so as to preserve local 
temporal structure of neural activities, but destroying behavioral and neural population-level 
correlations.  (d) Distribution of neural-state point clouds for two distal timepoints, projected onto 
the axis between the centers of those clouds. In the top illustration, the timepoints are at 𝑡  in the 
delay period vs. 𝑡  in the ITI. Shuffled: As in (c).  (e) Illustration of how time-order means that 
regions nearby (far) in time should be nearby (far) in neural-state space (box), vs. alternative 
possibilities (bottom diagrams).  (f) Overlap (Methods) between two projected distributions as in 
(d), for all possible pairs of timepoints. 0 means no overlap, and 1 means that the distributions are 
identical. Each plot was averaged across imaging sessions for the stated cortical areas. Shuffled: as 
in (c).  (g) Angle between the centers of point-clouds at consecutive timepoints, divided by the 
interval between timepoints. Shuffled: as in (c). Band: S.E.M. 
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Multiple present- and past-trial task information can be uniquely decoded from 
all areas/layers 

To investigate how neural populations could represent multiple variables, we first 
established that they contained information about thirteen variables that spanned visual, 
motor, cognitive, and trial history aspects of the task. For each variable, we trained a 
different linear decoder for each timepoint in the trial, using data that were z-scored per 
timepoint  (totalling 11 timepoints ∼ 1 second apart, see Methods). All thirteen variables 
could be decoded from all six areas (Fig. 3a-b; cross-validated and corrected for multiple 
comparisons, see Methods). Choice, reward, and past-trial quantities were most accurately 
decodable from the more medial areas MMP and RSC (Fig. 3c). In contrast, the more lateral 
(i.e. visual) areas had higher decoding performance for contralateral than ipsilateral cue 
counts (Fig. 3d). These inter-area differences are consistent with an anatomical gradient 
going from a more visual role for V1 towards a more cognitive/memory role for RSC61, but 
areas were not sharply delineated by function9. 

We also asked how decoding depended on two aspects of the neural code: (1) time 
dependence of neural activities; and (2) neuron identities vs. activity levels. For (1), we 
compared the above per-timepoint decoders to when a single, time-independent decoder 
was trained per variable, treating all timepoints as if they were additional trials. Time-
independent decoders performed moderately worse for most variables (Fig. 3e, 
Supplementary Fig. 3b), with choice decoding being the least affected. Notably, 𝑦 location in 
the T-maze could not be decoded well using a single linear decoder. This is expected from 
the strongly nonlinear place/time tuning of neurons (Fig. 1e), and is the reason why we 
separately constructed linear decoding models as a function of time in the trial. For (2), we 
performed a similar comparison but to per-timepoint decoders based on binarized neural 
data (neurons “on” if above noise, or “off”). Most variables could still be decoded nearly as 
well (Fig. 3f, details vs. time in Supplementary Fig. 3b), suggesting that a combinatorial 
coding scheme62–65 underlies their decoding performance. Together, these findings allude 
to a neural code that depended little on the precise activity levels of neurons, but more on 
their identities out of a time-dependent subset of participating neurons.  

Lastly, we address whether decoding truly reflected unique neural information about all 
thirteen variables. Fig. 3g shows the number of significantly decodable variables to be 
around ten out of thirteen at any one timepoint. However, others have noted that task 
variables such as choice and view angle are highly interrelated, and can thus be confounded 
as explanations of neural activity56. To detect this, we consider each decoder as specified by 
a decoding direction in the neural state space (illustrated in Fig. 3f-left). If there is only 
neural representation of 𝑥 , but another variable 𝑥  can be indirectly decoded using 
information about 𝑥 , then the 𝑥  and 𝑥  decoding directions should be collinear. More 
generally to account for multi-way relationships, we computed the angle of a given 
decoding direction w.r.t. the subspace spanned by all other decoding directions, and looked 
for statistically near-zero angles a.k.a. degenerate directions (Methods; all recordings had 
≥ 13 neurons). This leave-one-out angle was smallest for choice and view angle decoders 
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(Fig. 3h). Nevertheless, so long as a variable could be decoded with above-chance 
performance at a given timepoint, its decoding direction at that timepoint was not 
degenerate (see Supplementary Fig. 4 for method validations). We thus conclude that the 
neural activity in all areas contained unique information about all variables as counted in 
Fig. 3g. 

  

Figure 3.  Thirteen visual, motor, cognitive, and memory-related variables can be significantly 
decoded from all areas, with related but non-degenerate directions.  (a-b) Cross-validated 
performance for decoding thirteen task variables (individual plots), vs. time in the trial. For each 
variable, a different linear decoder was trained per timepoint. For categorical variables, the 
performance measure is the classification accuracy. For continuous variables, the performance 
measure is the correlation between decoded and actual variable values. Performance was averaged 
across imaging sessions for a given area (lines), with points blanked out if < 25% of sessions had 
significant decoding performance vs. a permutation test (𝑝 ≤ 0.48 post correction for multiple 
comparisons; see Methods).  (c-d) Time-averaged summary of decoding performances in (a), vs. 
cortical area. As the reward outcome was only known to the mouse at the end of the trial, the 
reward decoding accuracy was summarized as a time-average including all the indicated timepoints 
(blue horizontal bar) in (a). Error bars: std. dev. across sessions. Rectangles: Median and S.E.M.  (e) 
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Time-average difference in decoding performance for two alternative decoding methods, relative to 
the per-timepoint decoders in (a). The “time-independent" decoding method (light gray points) 
used a single decoder for all timepoints, treating data at different timepoints like additional trials. 
The “phase-specific” decoding method (dark gray points) used two decoders for two phases of the 
trial, being all timepoints before/after the turn respectively. For comparability, performance 
differences are shown on a different scale for categorical (chance level is 0.5 accuracy) vs. 
continuous variables (chance level is 0 correlation). Error bars: std. dev. across sessions. 
Rectangles: Median and S.E.M. See Supplementary Fig. 3b-c for performance of all decoders vs. time.  
(f) Same as (e), but for per-timepoint decoders that used neural data that was set to 1 if 
significantly above noise for a given neuron, and 0 otherwise. Left plot: Illustration of how a 
combinatorial code of 1-bit neural activities can have high performance when decoding a 
continuous variable. The projected distance along an optimized decoding direction is the value that 
is read out by to predict a task variable of interest, and can be sensitive to up to 2  possible neural 
states if there are 𝑛 neurons.  (g) Number out of thirteen variables that could be significantly 
decoded at a given timepoint in the trial, with significance defined vs. a permutation test as in (a-b). 
Lines: Mean across sessions. Bands: S.E.M.  (h) Angle between a given decoding direction and the 
subspace spanned by all other decoding directions. As the directions change vs. time in the trial, the 
minimum angle over time is shown here as a summary. Error bars: std. dev. across sessions. 
Rectangles: Median and S.E.M. 

 

How decoding directions depend on encoding directions, and potentially also on 
task-variable correlations  

Our decoding studies indicated that most of the neural information about task variables 
could be extracted from the identities of active neurons, disregarding the detailed activity 
levels of individual neurons (decoding from binarized neural states in Fig. 3f). This result 
highlights two ideas. One, as multiple neurons are required to implement an identity-based 
code (at least for continuous variables, see Fig. 3f-left), the basic unit of neural encoding 
may involve a cell assembly as proposed by Hebb66. Two, although individual neurons can 
have complex and heterogeneous responses to task variables, such details can be mostly 
irrelevant when decoding these variables from the collective activities of neurons. Guided 
by these two ideas, we set out to understand the effective structure of the neural code, in 
the sense of focusing on only the aspect of neural encoding that affects decoding of task 
variables. We did this by considering how decoding directions depend on the (unknown) 
neural encoding and (known) statistics of task variables28,29,67. We give an intuitive 
explanation of this relationship below, and refer the interested reader to a more complete 
derivation in the Methods. 

Fig. 4a illustrates how at a fixed timepoint in the trial, or equivalently a local region of the 
neural manifold, trials with different evidence levels may tend to occupy different neural-
state-space locations. In keeping with the above ideas, we hypothesized that what matters 
is a population-level summary of this neural response: the evidence “encoding direction”, 
defined to be the direction of strongest change in neural state due to a change in evidence 
levels. In general, there is one encoding direction (per timepoint) for each of the task 
variables, and together they form an information-coding subspace of the neural-state 
space. Estimating these encoding directions from data corresponds to solving the system of 
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equations , where the rows of  are neural states at each trial, each column of  
corresponds to (z-scored) values of one task variable across trials, and the rows of  
are the encoding directions (Fig. 4b; Eq. 2). As before, we defined the decoding direction for 
a particular task variable 𝑥 as the direction along which the neural state best discriminates 
𝑥. This corresponds to solving a different but related system of equations , 
where now the columns of  are the decoding directions (Fig. 4c; Eq. 3). We ask: what 
are the expected values of these decoding directions, assuming that the brain responds 
noisily to task variables according to the above linear encoding scheme? The solution 
is28,29:  (Eq. 8 in the Methods; see Eq. 7 for correlated 
noise). Here,  can be thought of as the neural signal-to-noise ratio (SNR),  is 
the task-variable correlation matrix, and  is the matrix of dot 
products between pairs of encoding directions.  

The decoding directions depend on encoding directions in a way that resembles how 
sensory systems are thought to adapt to environmental stimulus vs. noise statistics68. 
Intuitively, the factors that affect decoding are: (1) unrelated neural fluctuations, which can 
be mistaken for changes in task-variables and so should be subtracted; and (2) statistical 
correlations between task-variables, which can be exploited as they contain indirect 
information. We point out some limiting cases below that show how optimal decoding 
directions switch from prioritizing (1) to prioritizing (2) depending on the neural SNR, 
which suggests how we can quantitatively compare this theory to data. 

First, whether there is just one encoded variable 𝑥  (Fig. 4d), or multiple unrelated 
variables encoded along orthogonal directions (Fig. 4e), the optimal decoding direction for 
𝑥  is parallel to the 𝑥  encoding direction. However when another variable 𝑥 is encoded 
along a non-orthogonal direction, neural state changes along the 𝑥  encoding direction can 
be in part due to 𝑥 . To isolate a purely 𝑥  signal, the optimal 𝑥  decoding direction should 
subtract any 𝑥  dependence by having a negative component along the 𝑥  encoding 
direction (Fig. 4f). Mathematically, this means that at high SNR,  approximates the 
pseudo-inverse of  (Eq. 12). However, this kind of subtraction becomes detrimental if 
neurons have too much independent noise. Instead, averaging responses across neurons 
can reduce noise, provided that the responses being averaged are compatible. 
Mathematically, this means that at low SNR , i.e. decoding directions are 
a weighted sum of encoding directions, with weights being the statistical correlation 
between the encoded variable and the variable to be decoded (Fig. 4g). 

Lastly, to understand the relative structure of the neural code, we propose to examine the 
dot products between pairs of decoding directions, . This has a 
geometrical interpretation in that the dot product of two vectors  and  is 
proportional to the cosine of the angle between these vectors: 

. Eq. 9 shows that  is only a function of ,  
and , i.e. as illustrated in Fig. 4h, the angles between pairs of decoding directions 
(abbreviated as “decoding angles” ) are related to the angles between pairs of 
encoding directions (“encoding angles” ) in a way that depends on  and . With 
increasing SNR ( ) the decoding angles become progressively less dependent on , 
eventually reaching the high-SNR limit discussed above where there is no dependence. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2019. ; https://doi.org/10.1101/801654doi: bioRxiv preprint 

https://doi.org/10.1101/801654
http://creativecommons.org/licenses/by-nc-nd/4.0/


How decoding angles depend on  can therefore tell us about the unknown neural SNR, and 
this is what we look into next. 

 

Figure 4.  At high neural signal-to-noise (SNR), optimal decoding directions cancel out the 
effects of neural encoding, but at low SNR, optimal decoding directions are a weighted sum of 
encoding directions.  (a) Illustration of how the neural manifold may have substructure related to 
a task variable such as evidence. For a fixed time within the trial (insets), the neural state for trials 
with different evidence levels occupy different sub-regions of the manifold (colored lines), and the 
gradient is called the evidence encoding direction.  (b) Illustration of the system of equations used 
to define encoding directions, at a fixed time in the trial.  is a trial-by-neuron matrix of neural 
activities,  is a trial-by-variable matrix of task variable values, and  is a variable-by-neuron 
matrix, the rows of which are the encoding directions.  (c) Illustration of the system of equations 
used to define decoding directions.  and  are as in (b), and  is a neuron-by-variable matrix, 
the columns of which are the decoding directions.  (d) If there is only one encoded variable 𝑥 , then 
the decoding direction for 𝑥  should be parallel to the encoding direction for 𝑥 .  (e) If another 
unrelated variable 𝑥  is encoded along an orthogonal direction, the optimal 𝑥  decoding direction is 
still along the 𝑥  encoding direction.  (f) If the encoding directions are not orthogonal, but  neural 
noise levels are sufficiently low (high SNR), then the optimal decoding direction for 𝑥  should aim 
to subtract fluctuations along the 𝑥  encoding direction that are driven by 𝑥 , and thus has a 
negative component along the 𝑥  encoding direction.  (g) If instead neural noise levels are high (low 
SNR), then the optimal 𝑥  decoding direction should be a weighted sum of the 𝑥  and  𝑥  encoding 
directions. The optimal weight is the correlation of the variable to be decoded (e.g. 𝑥 ) to the 
neurally encoded information.  (h) Regardless of SNR, the decoding angles are a function of 
encoding angles and have no explicit dependence on the encoding directions (but see Eq. 7 for 
when there is correlated neural noise). 

 

Angles between pairs of decoding directions track the correlation level between 
task variables 

In order to not overfit to noise, for all the following analyses we restricted the set of task 
variables to nine out of thirteen, i.e. dropping past-trial quantities for which there was 
little-to-no significant neural information in many datasets. For each timepoint in the trial, 
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we computed the matrix of decoding angles for these nine variables, and compared this to 
the task-variable correlation matrix  that was computed using the behavioral data across 
trials. We favored such an angular measure (as opposed to dot products) as it does not 
explicitly depend on the number nor activity scale of neurons, and can therefore be directly 
compared across brain areas and animals.  

Fig. 5a shows examples of how the angle between two decoding directions matched closely 
the correlation coefficient for those two decoded variables. Confirming this, the values of  
these decoding angles were very well-predicted by the first two powers of the task-variable 
correlation matrix  (Fig. 5a-insets). In fact, for most pairs of task variables the decoding 
angles depended mostly on just the first power of  (see Supplementary Fig. 5a for 
regression coefficients that show sharply decreasing dependence on higher powers of , 
and Supplementary Fig. 5b for goodness-of-fit). This close correspondence was true for all 
timepoints in the trial (Fig. 5b-d), as well as across brain regions (Fig. 5e), with better 
correspondence for imaging sessions with more recorded neurons (Fig. 5f). The 
correspondence also improved with decoding accuracy (Supplementary Fig. 6a), and was 
preserved under cross-validation, where angles were computed between decoding 
directions estimated using two different halves of trials (Supplementary Fig. 7a). These 
checks argue against a noise-induced bias69 (see Methods for further discussion). 

We were surprised by the above dominant and highly precise dependence of decoding 
angles on . This matches neither high- nor low-SNR limits of the theory that we have 
previously discussed without assuming a particular form for the encoding directions,  
. However, as explained below, our decoding observations imply that no matter the SNR, 
there is only one experimentally favored answer for the matrix of encoding angles, i.e. 

. 

To recap, at low SNR the decoding directions are predicted to be , 
resulting in decoding angles proportional to . If the encoding 
angles are , this cancels out one factor of  to yield decoding angles , as 
observed. On the other hand, at high SNR the decoding directions  approximates the 
pseudo-inverse of , which gives decoding angles  (Eq. 
13). The same choice of  means that , which is also as 
observed. We discussed limiting cases here to provide intuition of how a specific form of 
encoding angles was strongly implied by the model-agnostic observations of . The 

 hypothesis can also simply be plugged in to the full theory (Eq. 9) to show that 
in the general case, this predicts decoding directions  (from Eq. 8) and 
decoding angles  (Eq. 15). Intriguingly, this means that  is a rather 
special encoding scheme that results in optimal decoding directions and angles having no 
dependence on SNR. 
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Figure 5.  Angles between pairs of optimal decoding directions precisely track the time-
dependent behavioral correlation between that pair of decoded variables.  (a) Scatter plot of 
the cosine angle between pairs of decoding directions vs. the behavioral correlation between the 
decoded pair of task variables. Each data point corresponds to a timepoint within a recording 
session, all sessions included. Per variable, a different decoder was trained per timepoint, and task-
variable correlations were computed using the behavioral data across trials but at that timepoint in 
the trial. Insets: coefficients from an L1-regularized linear regression model for explaining the 
dependency of the cosine decoding angles on various powers of the behavioral correlation matrix 
. The goodness-of-fit of these models are shown as Pearson’s correlation coefficient 𝑟. See 
Supplementary Fig. 5 for all pairs of variables.  (b) Distribution of similarity scores (Pearson’s 
correlation) for how well the cosine decoding angles matched the behavioral . One score was 
computed per imaging session, using as data points all pairs of task variables (i.e. the upper-
triangular elements of the matrices in (c) and (d)) and all timepoints within the indicated periods in 
the trial (colored lines) that had significant decoding performances for both variables (𝑝 < 0.05 
post correction for multiple comparisons). See Supplementary Fig. 7a-b for cross-validation and 
permutation tests.  (c) Matrix of cosine angles between all pairs of decoding directions. The order of 
variables was determined using hierarchical clustering on the time-average behavioral correlation 
matrix in (d). The left plot shows the time- and session-averaged cosine angles, whereas the four 
plots on the right were averaged over imaging sessions but for various time periods in the trial.  (d) 
Same format as (c) but for the behavioral correlation matrix.  (e) Time-average cosine decoding 
angles as in (c), but for datasets in various posterior cortical regions from lateral (V1) to medial 
(RSC).  (f) Coefficients from an L1-regularized linear regression model for how strongly the 
similarity scores in (b) depended on factors like the brain area/layer and the number of recorded 
neurons. Error bars: 95% C.I. Significant factors are indicated in green. 
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Angles between pairs of encoding directions approximate a decorrelation 
operation 

Although we arrived at the encoding angles  hypothesis in a data-driven way, it 
is particularly interesting because it corresponds to a neural transformation of behavioral 
information that “undoes” the correlation  between variables. We derive this 
mathematically in the Methods, and sketch the idea and implications here. Fig. 6a 
illustrates the joint distribution of two correlated task variables. Assuming that these 
variables are linearly encoded, , then the signal covariance of the neural data is 

. If there are exactly as many neurons as encoded task variables, we 
can choose encoding directions to be , corresponding to encoding 
angles . This encoding scheme results in uncorrelated neural 
activities because then  (Fig. 6b). However, if there are more 
neurons than encoded variables, the information-coding subspace spanned by encoding 
directions can be arbitrarily oriented in the neural state space (Fig. 6c). We show in the 
Methods that only this lower-dimensional subspace of neural modes is relevant to optimal 
linear decoding of task information, and encoding angles  are sufficient to ensure 
that these neural modes are statistically uncorrelated. Notably, even though the neural 
modes are uncorrelated, individual neurons still can have a variety of nonzero signal 
correlations (Fig. 6d). Discovering encoding angles  can thus have potential 
implications on theories of efficient coding and brain function. 

To check the above in the experimental data, we fit a set of linear regression models to 
explain each neuron’s activity in terms of the nine task variables (one regression model per 
timepoint and per neuron, see Methods). These models estimate the encoding directions 

, as previously explained (Fig. 4b). About 50% of variance in single-neuron activities 
was unexplainable (Supplementary Fig. 8a), and the performance of these regression 
models was moderate (Supplementary Fig. 8b). We thus expected results involving 
encoding models to be less precise than what we obtained for decoding models. 
Nevertheless, we found fair agreement between the estimated encoding angles and the  
hypothesis (Fig. 6e, Fig. 6f vs. g; see Supplementary Fig. 8c for raw data for pairs of task 
variables). As for decoding angles, this finding held for all posterior cortical areas (Fig. 6h), 
and the agreement improved for imaging sessions with more neurons (Fig. 6i). Again 
arguing against a noise-induced bias, the correspondence between encoding angles and 

 improved with decoding accuracy (Supplementary Fig. 6b), and was highly positively 
correlated with the structure of cross-validated encoding angles (Supplementary Fig. 7c). 

In sum, both our observations for decoding and encoding angles point to the brain’s 
encoding scheme as one that decorrelates task information. As hypothesized in Fig. 6c-d, 
Supplementary Fig. 8d-g shows that signal correlations for neural modes than span the 
encoding subspace had smaller magnitudes and were centered around zero, compared to 
signal correlations between individual neurons which were large and with a prevalence of 
positive values (Supplementary Fig. 9b,e).  

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2019. ; https://doi.org/10.1101/801654doi: bioRxiv preprint 

https://doi.org/10.1101/801654
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6.  Pairwise angles between encoding directions are compatible with a decorrelation 
operation, suggesting that correlated task variables are represented by uncorrelated neural 
modes.  (a-d) Illustration of a neural encoding scheme that decorrelates the simulated neural 
response to correlated task variables, as follows.  (a) Simulated distribution of two correlated task 
variables, 𝑥  and 𝑥 , i.e. the 95% C.I. is an ellipse. (b) Simulated responses of two neurons that 
(noiselessly) encode the task variables in (a), with angle between encoding directions (brown 
arrows) proportional to . The neural activities  𝑓  and 𝑓  are statistically uncorrelated, i.e. the 
95% C.I. is a circle.  (c) As in (b), but with three neurons encoding the two task variables in (a). The 
neural activities lie within a 2-dimensional information coding subspace (blue plane) spanned by 
the encoding directions (brown arrows), and the neural modes that define this subspace are 
uncorrelated (light green 95% C.I. is a circle).  (d) The same simulated data in (c), but plotted for 
various pairs of neural axes. These pairs of neurons have nonzero signal correlations (95% C.I. are 
ellipses).  (e) Distribution of similarity scores (Pearson’s correlation) for how well the cosine 
encoding angles matched the cosine angles between columns of the inverse behavioral correlation 
matrix, . One score was computed per imaging session, using as data points all pairs of task 
variables (i.e. the upper-triangular elements of the matrices in (f) and (g)) and all timepoints within 
the indicated periods in the trial (colored lines) that had significant decoding performances for both 
variables (𝑝 < 0.05 post correction for multiple comparisons). See Supplementary Fig. 7c-d for 
cross-validation and permutation tests.  (f) Matrix of cosine angles between all possible pairs of 
encoding directions, with the same order of variables as in Fig. 5c. The left plot shows the time- and 
session-averaged cosine angles, whereas the four plots on the right were averaged over imaging 
sessions but for various time periods in the trial.  (g) Same format as (f) but for cosine angles 
between columns of the inverse behavioral correlation matrix.  (h) Time-average cosine encoding 
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angles as in (f), but for datasets in various posterior cortical regions from lateral (V1) to medial 
(RSC).  (i) Coefficients from an L1-regularized linear regression model for how strongly the 
similarity scores in (e) depended on factors like the brain area/layer and the number of recorded 
neurons. Error bars: 95% C.I. Significant factors are indicated in green. 

 

Angles between encoding directions followed slow changes in inverse task-
variable correlations despite rapid changes in encoding directions 

So far we have performed all analyses independently per timepoint in the trial, but which 
findings are actually time-dependent and which are not? First, the scale of some task 
variables depended on time in the trial, and the corresponding encoding weights of 
neurons across the population inversely followed this scale70 (Supplementary Fig. 10a; this 
motivated our use of z-scored variables in all analyses). This can be interpreted as the 
neural-population encoding performing more than decorrelation because it also 
transforms the time-dependent variance of variables to 1 (called a “whitening” operation). 
Second, correlations between task variables changed slowly as a function of time in the 
trial, and the encoding angles tracked the corresponding time-variations in the inverse 
task-variable correlation matrix  fairly well (Fig. 7a). Third, these changes in angles 
between encoding directions were  small compared to changes in the encoding directions 
themselves, which was > 50∘/𝑠 at all timepoints (Fig. 7b). Supplementary Fig. 11f shows 
that for an example pair of task variables (choice and view angle 𝜃), the rate of change of 
encoding angles was always about 5 times smaller (68% C.I.) than the rate of change of 
encoding directions. The same holds for all pairs of task variables (Fig. 7c; 68% C.I. rate of 
change of encoding angles > 4 times smaller than the rate of change of encoding 
directions).  

How can a neural population implement slow changes in encoding angles despite fast time-
variations in encoding directions? We hypothesize that this can happen when neural 
activities have factorizable task-variable vs. time dependencies. As illustrated in Fig. 7d, the 
activity of each neuron 𝑖 is hypothesized to have the form 𝑓 (𝑡) = 𝜇 (𝑡) + 𝑔 (𝑡) �⃗� ⋅ �⃗�. In this 
multiplicative time-modulation model, �⃗�  are time-independent encoding weights for task 
variables �⃗�, which are multiplied by a characteristic time-modulation function 𝑔 (𝑡) for that 
neuron; 𝜇 (𝑡) is the mean activity across trials, which does not depend on task variables. 
Fig. 7e shows that this simple model predicted single-neuron activities almost as well as 
the per-timepoint encoding models used throughout this article, where encoding weights 
can all be different at every timepoint, 𝑓 (𝑡) = 𝜇 (𝑡) +  𝑤 (𝑡) ⋅ �⃗�. Moreover, it can explain 
our observations of sequential neural activity and time-varying encoding directions, 
because the set of active neurons and therefore nonzero coordinates of the encoding 
directions change with time (Supplementary Fig. 10b-c shows that a model with additive 
time-modulations but no time-dependence of task variable responses does not explain 
time-varying encoding directions, and also fits more poorly to the neural data). If the time-
variations of (say) two encoding directions are not somehow synchronized, then the angle 
between these directions could exhibit time-variations caused by---and therefore ballpark 
as fast as---the changes in encoding directions. Intriguingly, we instead found that the 
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encoding angles tracked the slowly changing  (Fig. 7a), and this change was much 
slower than the change in encoding directions (Fig. 7c, Supplementary Fig. 11f). 

We can understand the stability of encoding angles by starting from how each neuron was 
well-characterized, in the multiplicative model, by time-independent encoding weights �⃗�  
(Fig. 7d). Across the neural population (Fig. 8a), these weights can be thought of as 
underlying set of time-independent encoding directions  in the high-dimensional 
neural state space (Fig. 8b-top). We refer to the angles between these directions as given by 

 . As illustrated in Fig. 8b-bottom, at every timepoint the observed 
encoding directions  are approximately a projection of this underlying encoding 
structure onto a low-dimensional subspace of active neurons. If the underlying  
directions are randomly oriented in the neural state space, the observed encoding angles 

 can approximate  because random projections in a high-dimensional space are 
likely to preserve relative distances between points (a constructive proof of the Johnson-
Lindenstrauss theorem71), and thus also angles (Supplementary Fig. 12a). We show via 
simulations in Supplementary Fig. 12b-g that for sufficiently large populations of 
sequentially active neurons, this  approximation becomes highly precise 
regardless of the exact shape of each neuron’s time-modulation function. Sequential 
dynamics can therefore be functionally equivalent to each neuron having a binary time-
modulation function that simply determines whether it is “on” or “off” (Fig. 8c), and where 
“on” means that the neuron has an effectively time-independent task-variable response.  

Lastly, the observed slow time-variations in  are still consistent with a constant . 
This is because different subsets of neurons are active at different timepoints in the trial, so 
a different subset of columns (neurons) of  contribute to  at the start of the trial 
than, say, the end of the trial. If we order the columns of  by the preferred activation 
times of the corresponding neurons, then relationships between rows (weights for task 
variables) that differ systematically across columns (time-ordered neurons) can be 
observed as a time-varying . Supplementary Fig. 12h-k describes a simulation where 
we constructed an example of such a systematic structure in , and shows that again for 
large, sequentially active neural populations, the “observed”  converges to the 
designed truth even with random time-modulations per neuron. Geometrically, this kind of 
systematic structure means that  is not fully randomly oriented in the high-
dimensional neural state space (see Supplementary Fig. 12l for a geometrical explanation). 
In this way, large sequentially active neural populations can use changes in encoding 
weights across neurons to allow  to stably follow  even with constant encoding 
weights per neuron. 
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Figure 7.  Encoding angles follow slow time-variations in inverse task-variable correlations, 
despite rapid changes in encoding directions.  (a) For a given pair of task variables (individual 
plots), the value of the corresponding entry in the inverse task-correlation matrix  as a function 
of time (light brown line), compared to the encoding angle vs. time (black line). Lines: mean across 
imaging sessions. Band: 68% C.I.  (b) Angular difference in encoding directions between two 
consecutive timepoints, divided by time interval, and as a function of time in the trial. All variables 
had a similar timecourse (data not shown) and were pooled together for simplicity. Lines: mean 
across imaging sessions and task variables. Band: 68% C.I.  (c) Rate of change of the angle between 
encoding angles (absolute value), vs. the rate of change of encoding directions (cf. (b); each x-
coordinate is the average of the change in 𝑥  and the change in 𝑥  encoding directions, where 𝑥  
and 𝑥  are the variables for which the encoding angle was calculated). Each data point corresponds 
to one pair of task variables and one timepoint in an imaging session, i.e. pooling data for all 
variables. See Supplementary Fig. 11f for example of one pair of task variables (choice and view 
angle). Lines: 68% C.I. of encoding-angle change (y-coordinate), calculated in bins of the direction 
change rate. This 68% C.I. rate of encoding angle changes were > 4 times less than the rate of 
direction changes.  (d) Three simulated neurons with linear dependencies on a task variable 𝑥, 
multiplied by nonlinear time-modulation functions. The encoding directions changed in time to 
point towards the more active and thus more behaviorally responsive neuron at that time (right 
plot).  (e) Cross-validated goodness-of-fit scores for the multiplicative time-dependence model in 
(d) vs. a model with fully flexible, time-dependent task-variable encoding weights. Each point is a 
score for a single neuron, being Pearson’s correlation of the predicted vs. actual neural activity. 
Inset: distribution of differences in scores for the per-timepoint vs. multiplicative models. The per-
timepoint model performed statistically better (𝑝 = 4.6 × 10 , Wilcoxon rank-sum test), but the 
two scores were close. See Supplementary Fig. 10b-c for how a model with additive time-
modulations and no time-dependence of task variable responses performed qualitatively worse 
than the multiplicatively time-modulated response model. 

Discussion 
In this work, we described some geometrical structures of neural-population activity 
across posterior cortical areas as mice performed a complex, dynamic task. How were 
neural representations of the many task-related variables organized relative to each other 
and maintained/updated through time? We answered in three parts. First, neurons were 
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sequentially active vs. place/time in the trial (Fig. 1e), and in fact had time preferences 
independent of behavioral factors (Fig. 7d-e), corresponding to a neural manifold with 
global time order (Fig. 2). Second, thirteen visual, motor, cognitive, and memory-related 
task variables could be uniquely decoded from all areas/layers (Fig. 3), with some 
anatomical differences but no evident areal specialization9. Third, encoding directions 
varied rapidly across time (Fig. 7b), yet in all areas/layers and at all timepoints, the angles 
between pairs of decoding/encoding directions (“decoding/encoding angles”) respectively 
resembled the correlation (Fig. 5) and inverse correlation (Fig. 6, Fig. 7a) matrices of the 
task variables. This supports the hypothesis that the brain’s encoding scheme performs 
decorrelation of the correlated task information. Below, we discuss some implications of 
our findings in regards to the three questions posed in the Introduction: on how neural 
populations simultaneously encode multiple variables, consequences of the encoding 
scheme on decoding, and how this neural code is dynamically coordinated and represents 
temporal context. 

Figure 8.  Conceptual summary: multiplicative neural sequences implement stable and 
efficient neural-population coding of task-specific variables.  (a)  Neurons were sequentially 
active, with approximately constant task-variable encoding weights 𝑢  multiplied by behavior-
independent time-modulation functions 𝑔 (𝑡). Vertical colored bands indicate neurons that 
contribute significantly to the 𝑥 encoding direction.  (b) At each timepoint, the observed encoding 
angles approximates a projection of a hypothesized underlying encoding structure  onto a low-
dimensional subspace of active neurons. The underlying encoding directions (black arrows) 
correspond to the set of constant encoding weights in (a), and  is the matrix of dot products 
between these directions. In high dimensions (many neurons), the observed encoding angle  
is likely to be nearly equal to the underlying .  (c) With many sequentially active neurons, the 
projection effect in (b) can be insensitive to details of single-neuron time-modulation functions (left 
traces), i.e. these time-modulations can be functionally equivalent to simple on/off functions (right 
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traces). See simulations in Supplementary Fig. 12.  (d) Local regions of the neural manifold could be 
ordered by time in the trial, and at each timepoint/local region there was a different information-
coding subspace spanned by encoding directions (brown arrows). Theoretically, optimal decoding 
directions (green arrows) should lie within this information-coding subspace.  (e) At each 
timepoint, task variables were correlated across trials (top plot), and part of the variance in neural 
states could be explained as dependence on these task variables (bottom plot).  (f) The distribution 
of neural states in (e) was approximately uncorrelated within the information-coding subspace 
(bottom plot), but can have arbitrary statistics along non-coding directions orthogonal to this 
subspace (top plot). Here “non-coding” directions refer to how optimal decoding directions should 
have no components in these directions.  (g) Since the time-modulations of neurons in (a) do not 
depend on behavioral factors, neuron identities can be used to select for neurons with particular 
time preferences.  (h) Neuron identities in (g) can be used to selectively and stably read out task 
information at specific timepoints in the trial, i.e. a simple weighted sum of upstream neural 
activities (static synapses) can produce a decoded signal that is undistorted by time-modulations of 
neurons.  (i) The union of synaptic weights for the time-specific readouts in (h) can be used to read 
out task information stably through time. 

 

How should the brain encode/decode information? Theories of efficient coding propose 
that to minimize resource usage, an efficient code should utilize statistically independent 
neural representations34,35. Our results support these theories, but with three intriguing 
distinctions. One, we did not observe that individual neurons have statistically independent 
responses (Supplementary Fig. 9), so in a strict sense our findings differ from being a fully 
efficient code, as well as the focus of a large body of related work36–44,68. Rather, we argued 
that what is relevant for decoding is an information-coding subspace spanned by encoding 
directions (Fig. 6c, Fig. 8d). The encoding angles that characterized this subspace 
approximated the inverse task-variable correlation matrix  (Fig. 6e). We showed 
mathematically that finding encoding angles  implies that the neural 
representation utilizes uncorrelated modes within the information-coding subspace (Fig. 
8e-f). This information-coding subspace can be arbitrarily oriented in a high-dimensional 
neural state space, leading to signal correlations between individual neurons (Fig. 6d; 
Supplementary Fig. 9b,e) even when the information-coding modes have much reduced 
signal correlations (Supplementary Fig. 8e,g). There can also be many non-coding modes 
(i.e. that do not affect optimal linear decoding) with arbitrary correlations (Fig. 8f-top). 
Two, even though we started with a theoretical formulation of how optimal decoding 
directions should change to account for neural noise levels28,29, the theory illuminated that 
our experimental observation of  falls into a special case where decoding 
directions do not depend on neural noise levels (assuming that noise correlations are small, 
see Supplementary Fig. 9c,f). Speculatively, the brain could utilize a  encoding 
scheme to ensure that an optimized readout circuitry would remain optimal even if neural 
noise levels were to fluctuate. Three, we report observing  for a mix of external 
and internally computed variables, which were (only) interrelated through a learned 
behavioral task. One possibility is that all our findings here arose from a learning process 
that optimized computational utility of the neural code, more so than resource-based 
criteria. For example, it has previously been pointed out that removing expected statistical 
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regularities from the neural representation permits easy detection of unexpected 
associations, as is relevant for survival26.  

As emphasized in the design of our task, another major computational challenge that brains 
face is that the information they process is not static, but changes in time depending on the 
environment and the animal’s own behavior. Despite the dynamic and nonlinear nature of 
neural responses, we could accurately decode almost all task variables with time-
independent, linear decoders (Fig. 3e,  Supplementary Fig. 3b). Except for 𝑦 location in the 
T-maze, for which the neural representation seemed highly nonlinear (cf. sequential 
place/time preferences of neurons in Fig. 1e), Supplementary Fig. 3c shows that the 
performance of decoders trained on seconds-long temporal phases of the task reached 
levels comparable to per-timepoint decoders. This is compatible with previous reports of 
long-timescale structure in neural state transitions in posterior parietal cortex72 and long-
timescale order in single-trial neural state trajectories in premotor cortex73. Our work 
extends these studies by discovering that across posterior cortices, it was specifically (but 
not necessarily only) the information encoding geometry that was stable, up to tracking 
slow changes in task variable correlations in a way that suggested a decorrelation function 
throughout time in the trial. Strikingly, this efficient-coding-like function did not seem to be 
implemented in a static way by dedicated neurons, but instead involved a sequence of 
different neurons across time. These sequential activity patterns corresponded to neural 
manifolds with a ring-like geometry74, and could be related to previous reports of low-
dimensional manifolds corresponding to rotational neural dynamics75. We introduced a 
quantitative measure for the notion of sequentiality at the neural-population level, i.e. the 
rate of angular change in the neural state. This measure showed that the set of active 
neurons changed continuously with time in the trial, albeit most slowly in the cue period 
(particularly for V1 but less so for RSC, see Fig. 2f and Supplementary Fig. 2c). 

Our observations of sequential dynamics in all areas are amongst a growing number of 
such for the mouse neocortex53–58. These phenomena are reminiscent of place76 or time77–79 
cells in the hippocampus, which are also known to jointly encode a variety of other spatial 
and nonspatial factors. An interesting idea that has arisen in that subfield concerns how 
sequential activity could act as a temporal scaffold upon which arbitrary information can 
be imprinted, i.e. multiplexing this information with timestamps to indicate when they 
occurred77,80–82. How can such multiplexing be designed so that information can be read out 
without confounding the timestamp with the imprinted information? We point out a simple 
design inspired by what we call “multiplicative neural sequences” in our data (Fig. 8a), 
where each neuron’s response to task variables was well described as a product of two 
functions, 𝑤(𝑥) 𝑔(𝑡). 𝑤(𝑥) is a behavioral response function that depends on task variables 
𝑥 but does not depend on time, and 𝑔(𝑡) is a time-modulation function that depends only 
on time 𝑡 in the trial. In other words, the nominally high-dimensional neural population 
activity of all surveyed cortical areas can be parsimoniously described by a low-
dimensional set of multiplicative factors. This type of factorizable neural responses seems 
intriguingly ubiquitous, as similar findings have been reported for mouse prefrontal cortex 
and nonhuman-primate motor cortex83. As each neuron has a characteristic time-
preference (Fig. 8g), computing a weighted sum of activities of neurons with time 
preferences around 𝑡 allows a readout circuit to detect that a behavioral signal has 
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occurred specifically at time around 𝑡 (Fig. 8h). What is particularly interesting is that for 
large, sequentially active neural populations, such a time-specific readout (with static 
synapses) can be stable in the sense of having no further dependence on neural time-
modulations, even if these time-modulations are randomly constructed. We hypothesized 
that this is because the neural time-modulations effectively project 𝑤(𝑥) onto a low-
dimensional subspace corresponding to the active neurons (Fig. 8b), and this kind of 
projection is likely to preserve geometrical properties of 𝑤(𝑥) according to the Johnson-
Lindenstrauss theorem71 (and extensions84). We showed via simulations (Supplementary 
Fig. 12) that neural time-modulations can be quite arbitrary and still be functionally 
equivalent to simple on/off functions (Fig. 8c). As each neuron has effectively time-
independent behavioral responses when “on”, task information can also be decoded in a 
time-independent way by reading out neurons with a range of time preferences (Fig. 8i), 
compatible with the high performance we observed with time-independent decoders (Fig. 
3e,  Supplementary Fig. 3b,c). The multiplicative neural sequences observed in our data 
thus suggest a form of time-behavior multiplexing that enables simple, stable readout of 
time-specific behavioral information. Furthermore, by having systematic differences in 
encoding weights across neurons with different time preferences, the neural population 
can implement a decorrelation operation that tracks changes in behavioral correlations 
across time in the trial (Fig. 7). We suggest that the above computational properties of 
multiplicative neural sequences underlies efficient coding by neural modes across 
posterior cortex, and we propose that they could in general be a useful design principle for 
temporal scaffolds. 

Online Methods 

Animals 

All procedures were approved by the Institutional Animal Care and Use Committee at 
Princeton University and were performed in accordance with the Guide for the Care and 
Use of Laboratory Animals85. We used 11 mice aged 2-16 months of both genders, and from 
two transgenic strains that express the calcium-sensitive fluorescent indicator GCamp6f86 
in excitatory neurons of the neocortex. 6 mice were of the Thy1-GP5.387 strain (Jackson 
Laboratories, stock #028280), and 5 were crosses of the Ai93-D;CaMKII𝛼-tTA88 and Emx1-
IRES-Cre89 strains (Jackson Laboratories, stocks #024108 and #005628). All the data 
analyzed in this work were from fully-trained mice as described in the following sections. 

Surgery 

Young adult mice (2-3 months of age) underwent aseptic stereotaxic surgery to implant an 
optical cranial window and a custom lightweight titanium headplate under isoflurane 
anesthesia (2.5% for induction, 1-1.5% for maintenance). Mice received one pre-operative 
dose of meloxicam subcutaneously for analgesia (1 mg/kg) and another one 24 h later, as 
well as peri-operative intraperitoneal injection of sterile saline (0.5cc, body-temperature) 
and dexamethasone (2–5 mg/kg). Body temperature was maintained throughout the 
procedure using a homeothermic control system (Harvard Apparatus). After asepsis, the 
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skull was exposed and the periosteum removed using sterile cotton swabs. A 5mm 
diameter craniotomy approximately centered over the parietal bone was made using a 
pneumatic drill. The cranial window implant consisted of a 5mm diameter round #1 
thickness glass coverslip bonded to a steel ring (0.5mm thickness, 5mm diameter) using a 
UV-curing optical adhesive. The steel ring was glued to the skull with cyanoacrylate 
adhesive. Lastly, a titanium headplate was attached to the cranium using dental cement 
(Metabond, Parkell).  

Behavioral task 

After at least three days of post-operative recovery, mice were started on water restriction 
and the Accumulating-Towers training protocol11, summarized here. Mice received 1-2mL 
of water per day, or more in case of clinical signs of dehydration or body mass falling below 
80% of the pre-operative value. Behavioral training started with mice being head-fixed on 
an 8-inch Styrofoam® ball suspended by compressed air, and ball movements were 
measured with optical flow sensors. The VR environment was projected onto a custom-
built Styrofoam® toroidal screen and the virtual environment was generated by a 
computer running the Matlab (Mathworks) based software ViRMEn90, plus custom code. 

For historical reasons, 3 out of 11 mice were trained on mazes that were longer (30cm pre-
cue region + 250cm cue region + 100-150cm delay region) than the rest of the cohort 
(30cm pre-cue region + 200cm cue region + 100cm delay region). In VR, as the mouse 
navigated down the stem of the maze, tall, high-contrast visual cues appeared along either 
wall of the cue region when the mouse arrived within 10cm of a predetermined cue 
location. These locations were drawn randomly per trial according to a spatial Poisson 
process with 12cm refractory period between consecutive cues on the same wall side. Cues 
were made to disappear after 200ms. The mean number of majority:minority cues was 
8.5:2.5 for the 250cm cue region maze and 7.7:2.3 for the 200cm cue region maze. Mice 
were rewarded with ≥ 4𝜇𝐿 of a sweet liquid reward (10% diluted condensed milk, or 15% 
sucrose) for turning down the arm on the side with the majority number of cues. Correct 
trials were followed by a 3s-long inter-trial-interval (ITI), whereas error trials were 
followed by a loud sound and an additional 9s time-out period. To discourage a tendency of 
mice to systematically turn to one side, we used a de-biasing algorithm that adjusts the 
probabilities of sampling right- vs. left-rewarded trials11. Per session, we computed the 
percent of correct choices using a sliding window of 100 trials and included the dataset for 
analysis if the maximum performance was ≥ 65%. 

Functional identification of visual areas 

We adapted methods51,91,92 to functionally delineate the primary and secondary visual 
areas using widefield imaging of calcium activity paired with presentation of retinotopic 
stimuli to awake and passively running mice. We used custom-built, tandem-lens widefield 
macroscopes consisting of a back-to-back objective system93 connected through a filter box 
holding a dichroic mirror and emission filter. One-photon excitation was provided using a 
blue (470nm) LED (Luxeon star) and the returning green fluorescence was bandpass-
filtered at 525 nm (Semrock) before reaching a sCMOS camera (Qimaging, or Hamamatsu). 
The LED delivered about 2-2.5mW/cm2 of power at the focal plane, while the camera was 
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configured for 20-30Hz frame rate and about 5-10µm spatial resolution. Visual stimuli 
were displayed on either a 32" AMVA LED monitor (BenQ BL3200PT), or the same 
custom Styrofoam® toroidal screen as for the VR rigs. The screens were placed to span 
most of the visual hemifield on the side contralateral to the mouse’s optical window 
implant. The space between the headplate and the objective was covered using a custom 
made cone of opaque material.  

The software used to generate the retinotopic stimuli and coordinate the stimulus with the 
widefield imaging acquisition was a customized version of the ISI package94 and utilized 
the Psychophysics Toolbox95. Mice were presented51 with a 20° wide bar with a full-
contrast checkerboard texture (25° squares) that inverted in polarity at 12 Hz, and drifted 
slowly (9°/s) across the extent of the screen in either of four cardinal directions. Each 
sweep direction was repeated 15 times, totaling four consecutive blocks with a pause in 
between. Retinotopic maps were computed similarly to previous work92 with some 
customization that improved the robustness of the algorithms for preparations with low 
signal-to-noise ratios (SNR). Boundaries between the primary and secondary visual areas 
were detected using a gradient-inversion-based algorithm91, again with some changes to 
improve stability for a diverse range of SNR. 

Two-photon imaging during VR-based behavior 

The virtual reality plus two-photon scanning microscopy rig used in these experiments 
follow a previous design50. The microscope was designed to minimally obscure the ∼ 270° 
horizontal and ∼ 80° vertical span of the toroidal VR screen, and also to isolate the 
collection of fluorescence photons from the brain from the VR visual display. Two-photon 
illumination was provided by a Ti:Sapphire laser (Chameleon Vision II, Coherent) operating 
at 920nm wavelength, and fluorescence signals were acquired using a 40x 0.8 NA objective 
(Nikon) and GaAsP PMTs (Hamamatsu) after passing through a bandpass filter (542/50, 
Semrock). The amount of laser power at the objective used ranged from ~40-150mW. The 
region between the base of the objective lens and the headplate was shielded from external 
sources of light using a black rubber tube. Horizontal scans of the laser were performed 
using a resonant galvanometer (Thorlabs), resulting in a frame acquisition rate of 30Hz and 
configured for a field of view of approximately 500 × 500𝜇𝑚 in size. Microscope control 
and image acquisition were performed using the ScanImage software96. Data related to the 
VR-based behavior were recorded using custom Matlab-based software embedded in the 
ViRMEn engine loop, and synchronized with the fluorescence imaging frames using the I2C 
digital serial bus communication capabilities of ScanImage. A single field of view at a fixed 
cortical depth and location relative to the functional visual area maps was continuously 
imaged throughout the 1-1.5 hour behavioral session. The vasculature pattern at the 
surface of the brain was used to locate a two-photon imaging field of view (FOV) of interest.  

Identification of putative neurons 

All imaging data were first corrected for rigid brain motion by using the Open Source 
Computer Vision (OpenCV) software library function 𝑐𝑣: : 𝑚𝑎𝑡𝑐ℎ𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒. Fluorescence 
timecourses corresponding to individual neurons were then extracted using a 
deconvolution and demixing procedure that utilizes the Constrained Non-negative Matrix 
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Factorization algorithm (CNMF52). A custom, Matlab Image Processing Toolbox 
(Mathworks) based algorithm was used to construct initial hypotheses for the neuron 
shapes in a data-driven way. In brief, the 3D fluorescence movie was binarized to mark 
significantly active pixels, then connected components of this binary movie were found. 
Each of these components arose from a hypothetical neuron, but a neuron could have 
contributed to multiple components. A shape-based matching procedure was used to 
remove duplicates before using these as input to CNMF. The “finalized” components from 
CNMF were then selected post-hoc to identify those that resembled neural somata, using a 
multivariate classifier with a manual vetting step. 

Time and task variables 

As mice appeared to learn stereotyped running patterns11, their 𝑥, 𝑦 position in the T-maze 
were highly correlated with time and the eventual right/left-turn choice. To compare data 
across mice and trials of uneven durations, we resampled the neural and behavioral data 
according to a time-like coordinate that measured progression through epochs of the task. 
In this procedure, the time-traces of behavioral variables and neural activities were 
averaged within each time-bin, but no other smoothing was applied. Different numbers of 
equally-spaced bins were used for the five qualitative epochs of the trial: (1) pre-cue 
period; (2) cue period; (3) delay period; (4) a “turn” period up to the end of the trial; and 
(5) the ITI. For Fig. 1e the time-bins were ~200ms (72 bins) and for all other analyses 
~1.1s (11 bins) in duration. 

Because it is possible for cortical responses to have laterality preferences, we consistently 
expressed all variables relative to the brain hemisphere that was recorded from for a given 
mouse. That is, we defined choice, view angle, and treadmill velocity variables such that a 
positive sign corresponds to the mouse turning to the side ipsilateral to the recorded 
hemisphere. 

Sequences 

These analyses utilize only correct trials and followed previous work53, but with cross-
validation, i.e. the following were performed using half the trials in an imaging session. A 
neuron was defined as choice-specific if the distribution of activity in active periods (trial-
average activity ≥ 25% of maximum for ~400ms) was significantly different in right- vs. 
left-choice trials (two-sample t-test, two tailed 𝑝 < 0.05). A ridge-to-background excess 
was defined using the activity averaged over only preferred-choice (if relevant) trials, as 
the maximum minus the modal value across time. A neuron was determined to have 
significantly task-localized activity if no more than 5% of 1000 null hypothesis pseudo-
datasets have a larger ridge-to-background excess. Each of these pseudo-datasets was 
generated by selecting a random time 𝑡  in the session, and then defining a pseudo activity 
time-series as [𝐹(𝑡 ), 𝐹(𝑡 + 1), . . . , 𝐹(𝑡 ), 𝐹(1), . . . , 𝐹(𝑡 − 1)] where 𝐹(𝑡)is the original 
time-series. The preferred time of a neuron was defined as when its trial-average activity 
was maximal, and its activity field was defined as all contiguous time-points around this 
that have trial-average activity ≥ 50% of the maximum. Neurons were sorted by preferred 
time to determine order in a sequence. 
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The sequence display Fig. 1e utilized the above order of neurons, but the trial-average 
activity of a given neuron was computed using the left-out half of trials. Also using left-out 
trials, the reliability index was defined as the fraction of preferred-choice trials in which 
the activity averaged in a neuron’s firing field is ≥ 3 times noise. Only significantly task-
localized neurons with reliability ≥ 50% were included in Fig. 1e-g, and only significantly 
task-localized neurons in Fig. 1h. See Supplementary Fig. 1 for additional statistics for the 
above. 

Distribution of projected neural states 

Let 𝐹(𝑡) be the trial-average neural state at time 𝑡 in the trial. We defined the projection 
axis between two timepoints 𝑡  and 𝑡  as the unit vector 𝑒(𝑡 , 𝑡 ) ≡ [𝐹(𝑡 ) −

𝐹(𝑡 )]/||𝐹(𝑡 ) − 𝐹(𝑡 )||. The neural state 𝐹(𝑡) projected onto this axis is defined as 
𝑝𝑟𝑜𝑗 → [𝐹(𝑡)] ≡ [𝐹(𝑡) − 𝐹(𝑡 )] ⋅ 𝑒(𝑡 , 𝑡 ), i.e. the origin is at 𝐹(𝑡 ). The actual distance 
along this projection axis depends on the number and activity scale of neurons, which we 
do not attempt to interpret. Thus for Fig. 2d we scale the projected distributions such that 
𝑝𝑟𝑜𝑗 → [𝐹(𝑡 )] = 0 and 𝑝𝑟𝑜𝑗 → [𝐹(𝑡 )] = 1, in order to be able to pool data across 
sessions.  

As a measure of overlap between the above projected distributions, we compute the 
Bhattacharyya coefficient97 𝛴 𝑝 (𝑖) 𝑝 (𝑖), where 𝑝 (𝑖) is the probability density of 
𝑝𝑟𝑜𝑗 → [𝐹(𝑡 )] in bin 𝑖, and analogously 𝑝 (𝑖) is the probability density of 𝑝𝑟𝑜𝑗 → [𝐹(𝑡 )] 
in bin 𝑖. 101 bins were used with 0.1 spacing was used for evaluating the density histogram 
for this metric. 

Decoding/encoding models  

All these analyses used neural and behavioral data that were z-scored per timepoint in the 
trial, i.e. the time-dependent mean was subtracted and then the data divided by the time-
dependent standard deviation. As we used linear models, this z-scoring can be easily 
“undone” because this corresponds to solving modified systems of equations (cf. Eq. 2 and 
Eq. 3): 

       (1) 

where  is a diagonal matrix with elements being the standard deviations of each column 
of . The z-scored weights  were translated back to  for Supplementary Fig. 10a 
and parts of Supplementary Fig. 11 (see caption) only. All models were constructed 
separately per timepoint, except for the time-independent decoders (Fig. 3e, 
Supplementary Fig. 3b,c) where all timepoints (or all timepoints within the stated phases of 
the trial) were included as if they were additional trials. 
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For decoding, we trained an L2-regularized Support Vector Machine classifier98 (or L2-
regularized Support Vector Regression for continuous variables) to predict a given task 
variable from the neural population state. For categorical variables, performance was 
defined as the accuracy (proportion correct) of classifying test trials, averaged across 
categories. For continuous variables, performance was defined as the Pearson’s correlation 
coefficient between predicted and actual variable values. 3-fold cross-validation was used 
to evaluate all decoder performances. The 𝑝-value (significance) of this was defined as the 
fraction of shuffled datasets (activity of neurons permuted across trials) for which the 
decoding performance was greater or equal. We then used the Benjamini-Hochberg 
procedure99 to control for false discovery rate as follows. For a given type of decoder, we 
sorted the 𝑝-values of all imaging sessions in ascending order, [𝑝 , 𝑝 , . . . , 𝑝 ], and found the 
first rank 𝑖  such that 𝑝 ≤ 𝑖 × 0.05/𝑛. The decoding performance was then considered to 
be significantly above chance for all 𝑝 ≤ 𝑝 .  

For encoding we used unregularized linear regression so as not to impose additional task-
variable-related structure, but results were qualitatively similar with L1 or L2 
regularization (data not shown). Specifically, we computed the Singular Value 
Decomposition100 (SVD) of the trial-by-variable matrix of task variables , then 
used the pseudo-inverse to solve for encoding weights  where  is the 
activity over trials for a given neuron. Singular values ≤ 10  were set to 0 in . 

Leave-one-out angle w.r.t. other decoding directions 

For a given decoding direction  and all other decoding directions (with statistically 
significant decoding performance) being the columns of , we first decomposed 

 (SVD) to obtain an orthonormal basis  for the span of , then compute the 
component within this subspace . Because  is a unit vector, the angle w.r.t.  

is simply . To evaluate statistical uncertainties, we constructed 100 bootstrap 
experiments where the data were sampled with replacement. Decoding models were 
trained and leave-one-out angles computed in the same way using these bootstrapped data, 
giving a distribution of angles as referred to in the text. 

Multiplicative/additive time-modulation models 

For the 𝑖th neuron with activity 𝑓 (𝑡) across trials, we fit two alternative encoding models 
with constrained changes in encoding weights vs. time 𝑡 in the trial. Here �⃗�(𝑡) are the 
values of nine task variables at time 𝑡, and have the time-dependent means across trials 
subtracted, but only scaled so that the standard deviation of each variable, computed 
across all timepoints as well as trials, are 1. This is in contrast to the per-timepoint 
encoding/decoding models, where the task variables were scaled differently per timepoint. 
We note that according to these models, the sensitivity of the neural-population encoding 
to the time-dependent scales of task variables (Supplementary Fig. 10a) should be ascribed 
to differences in task-variable encoding weights across individual neurons in the 
population. 
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The first, multiplicative time-modulation model (Fig. 7d-e) predicts that a neuron’s activity 
has the form 𝑓 (𝑡) = 𝜇 (𝑡) + 𝑔 (𝑡) �⃗� ⋅ �⃗�(𝑡), where 𝜇 (𝑡) is a time-dependent shift in 
baseline that does not depend on task variables, 𝑔 (𝑡) is a piecewise-constant function with 
11 free parameters for the 11 time-bins, and �⃗�  are 9 free parameters for linear 
dependencies on each of the task variables. Since �⃗�(𝑡) has zero mean across trials for a 
fixed time 𝑡, without loss of generality 𝜇 (𝑡) is just the trial-average mean activity level of 
the neuron. We estimated the 11+9 free parameters for the model by minimizing the L2-
regularized least-squares cost function in a 3-fold cross-validation setting. The goodness-
of-fit was defined as Pearson’s correlation coefficient between the predicted and actual 
neural activity, and evaluated on test-sets of the cross-validation folds. The regularization 
hyperparameter was set to a small value 10 𝑚/𝑘 where 𝑚 is the number of data points 
(trials×timepoints) and 𝑘 is the number of free parameters in the model. 

The second, additive time-modulation model (Supplementary Fig. 10b-c) simply has 
𝑔 (𝑡) = 1 for all timepoints, i.e. predicts neural activity of the form 𝑓 (𝑡) = 𝜇 (𝑡) + �⃗� ⋅ �⃗�(𝑡). 
By comparing this to the multiplicative time-modulation model in a cross-validated setting, 
we explicitly test whether a non-constant 𝑔 (𝑡) is important to explain the neural data. 

Theoretical relationship between decoding and encoding  

For a fixed time 𝑡 in the trial and assuming neuronal responses are (locally) linear, we can 
derive a simple relationship between a hypothesized underlying brain structure and the 
estimated neural encoding/decoding weights,   and  respectively. For this 
purpose we treat the neural and behavioral data as matrices with rows being individual 
trials, i.e.  is a trial-by-neuron matrix of the neural state across trials, and  is a trial-by-
variable matrix of behavioral factors across trials. Without loss of generality, we assume 
both  and  to be centered, i.e. means of each row subtracted. Then when we use linear 
regression to compute   and  from the data (neglecting regularization for 
simplicity), we solve the tightly related systems of equations: 

               (2) 

                (3) 

In the above,  is the Frobenius norm (sum of squared elements of the enclosed matrix). 
If there are 𝑚 task variables i.e. columns of , then the 𝑚 rows of  give the encoding 
directions and the 𝑚 columns of  give the decoding directions discussed in the text. 
For both encoding/decoding matrices  denotes the least-squares estimate of , and a 
derivation of the above solutions can be found in standard textbooks100. What we want to 
know is how Eq. 2 and Eq. 3 depend on the brain’s “true” encoding scheme, i.e. we assume 
that the observed neural state  arises from an underlying stochastic relationship: 

                   (4) 
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where  is the neuronal noise covariance. Note that for conciseness in the main text, we 
omitted the overhat notation for all equations, but our derivation distinguishes between 

 and related quantities, which involve the unknown (but assumed to be linear) 
encoding scheme of the brain, as opposed to  and , which are estimates computed 
from the neural and behavioral data. Our setup of the encoding/decoding system and 
solution for  are highly similar to previous studies28,29, but provided below for 
convenience. 

Given the above assumption that the brain’s response is stochastic, we derive the expected 
value of   and  across experiments (many possible neural responses ) under the 
same behavioral conditions (  is fixed and known). Indicating expectation values by , we 
plug Eq. 4 into Eq. 2 to get: 

       (5) 

The same is a little more complicated for Eq. 3: 

 

If the neural responses are not trivial ( ) and there are enough trials per 
experiment (see next section for potential concerns when otherwise), then the random 
coincidences of the neuronal noise  with the task variables  should be negligible 
compared to the signal-related pieces. That is, we can approximately drop the terms  
even within expectation values. Then defining the behavioral covariance matrix to be 

, we obtain: 

     (6) 

For the last approximate equality, we also assumed that the number of trials is large, so 
that  within an experiment. Finally, it will be convenient to rewrite the above using 
the push-through matrix identity101  , 
where ,  (the identity matrix), , and , giving: 

                (7) 

Although Eq. 7 indicates that the decoding weights should more correctly be understood 
relative to the structure of noise correlations between neurons45,102–106, it empirically 
turned out that we were able to neglect  when modeling the relationships between 
decoding directions. In particular, we approximated  and introduced 

 to obtain: 

                                                                  (8) 

This approximation also holds if neurons have noise correlations in  that are proportional 
to their signal correlations . We see this by plugging  
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into Eq. 6, which gives  
. This differs from Eq. 6 only by an overall scale 

 that does not change geometrical properties discussed below and in the text, with 
 playing the role of . Furthermore, if we consider an L2-regularized linear 

decoding model (as we use in practice), this means that instead of Eq. 3 we use the 

estimator100  for some small regularization hyperparameter . 
This is equivalent to replacing  in the derivation of Eq. 7, which if anything 
improves the  approximation.  

Assuming  (and again neglecting terms like , but see next section for caveats), 
the geometry of the estimated decoding and encoding directions are given by: 

        (9) 

 is the expected value of the matrix of dot products between pairs of columns of , 
which gives a prediction for the cosine angles between observed decoding directions ( ) 
after dividing by the vector norms of the two columns in question (i.e. the square-root of 

the diagonal entries of ). Because of this normalization, any overall scaling of  cannot 
change the predicted ; or in other words, scaling two vectors by the same factor does 
not change the angle between them. In particular, this means that the factor of  that 

multiplies all entries of  has no effect on the predicted . An identical argument can be 
made for the predicted angles between encoding directions. Together, this means that we 
can ignore  in Eq. 9 entirely and discuss the observed encoding/decoding angles as related 
through (only) the measured behavioral covariance matrix, , and the unknown “true” 
encoding structure of the brain, .  

As a scientific note that does not affect the above formulae, the neuronal data in our hands 
seemed to be better explained by z-scored behavioral factors , i.e. mean subtracted and 
divided by the standard deviation of each row, for each timepoint 𝑡 (see Supplementary Fig. 
10a and text). This means we can best model the data by taking  to be the correlation 
instead of covariance matrix, as we have done in the main text. 

When there is no signal 

In the above derivations, we assumed that the neural population has nonzero response to 
task variables, . Here we consider the case where there is little to no signal 
response, , where  is a trial-by-neuron matrix of random noise fluctuations in 
one experiment. This means that we can no longer neglect terms like  as we did to 
obtain  Eq. 5 and  Eq. 6. In particular, the angles between pairs of encoding/decoding 
directions can have nonzero expectation values because they depend on second-order 
statistics of the neural noise69: 
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      (10) 

Since  is different for every experiment and has no structure related to the behavior, we 
might expect to see high variability of encoding/decoding angle structures across 
experiments in this no-signal neural scenario. The worst case regarding false discoveries is 
when the terms involving  actually turn out to be highly similar across experiments, 
leading to a false impression of clear, behavior-related structure. We consider such a case, 
which happens under two assumptions. One,  is a matrix of dot products (a.k.a. 
similarities) between neural-noise states of various pairs of trials. If there is no across-trial 
structure of the neural noise, and there are many neurons, then each element of  is a 
sum of many random numbers. Except for the diagonal elements, this converges to zero 
according to the central limit theorem, i.e. . Two, when there are many trials then 

 even within an experiment, and we again assume . With these two 
assumptions, we obtain: 

           (11) 

Eq. 11 pose potential confounds for the interpretation of our experimental observations. In 
particular, we observed encoding angles  and decoding angles , which we wished 
to interpret as a biological statement about how the brain encoded task variables. 
Unfortunately, Eq. 11 shows that even if the neural population does not respond to task 
variables, we can still obtain these kind of encoding/decoding observations. Fortunately, 
there are several predictions of this no-signal scenario that do not match the data in our 
hands. First, the encoding and decoding predictions should be at chance levels compared to 
permutation tests where we randomized the task variables  across trials, creating a no-
signal scenario. However, Fig. 3 shows that all variables could be decoded to significantly 
above-chance levels, Supplementary Fig. 8b-right shows that for many neurons, the 
variance explained by encoding models is substantial for at least one timepoint in the trial, 
and Supplementary Fig. 10a shows that the distribution of encoding weights across 
neurons had a tail that extended to weights of large magnitudes (on the order of neural 
activity scales).  

The data did not match a no-signal scenario, but it could still be that the noise-only terms in 
Eq. 11 should have been included in Eq. 9 for interpretation of encoding/decoding angles. 

For example, retaining all -related terms when computing  yields: 

 

Assuming , we find that  is a mixture of the 
signal-related piece in Eq. 9 and the noise-only term in Eq. 10. The data could thus include 
signal responses, yet the structure of encoding/decoding angles shown in Fig. 5 and Fig. 6 
could be driven mostly by pure-noise contributions. However, if this was the case we 

should find that the  and  correspondences are better at low signal-to-
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noise (SNR), i.e. exhibit a decreasing trend w.r.t. SNR. Using the performance of task-
variable decoders as a measure of SNR at the neural-population level, we instead see in 

Supplementary Fig. 6a that the  agreement increased with SNR for all posterior 
cortical areas. Albeit the generally more noisy nature of encoding model comparisons, 

Supplementary Fig. 6b shows a similar increase of the  agreement with SNR for 
all areas. These increasing trends vs. SNR argue against a noise-induced origin. 

An even more stringent test uses a conservative cross-validation paradigm107–109, where 
two sets of decoding directions were computed separately using two disjoint subsets of the 
data. In this case, random neural fluctuations selected by (say) decoding directions 
computed using the first half of trials should have no relationship to those computed using 
the second half of trials, and we should thus find no noise-induced structure in angles 
between decoding directions computed in two different halves of the data. Mathematically, 

this means that we compute  instead of  (and actually Eq. 9 

should have more correctly be written as ). Supplementary Fig. 7a 

shows that the cross-validated  matches  nearly as well as the  
estimations used throughout the rest of the paper. Supplementary Fig. 7b shows that when 
using such a cross-validation scheme, noise does not contribute any relationship between 

 and  (a permutation test where neural activities were randomly 
shuffled across trials, breaking neuron-behavior relationships but preserving correlations 
between task variables). A similar line of reasoning applies to encoding angles, and 

Supplementary Fig. 7c shows that there is a significant trend in how well  vs. 

 match the  hypothesis, which is not present in the permutation test 

(Supplementary Fig. 7d). We note an overall reduction of  agreement in the 
cross-validated scenario, due to the higher variability of encoding directions across 
different halves of the dataset compared to decoding directions. Nevertheless, these cross-
validated results for decoding and encoding angles support that our encoding/decoding 
structure observations were driven by signal-related neural responses, and not artifacts of 
finding spurious structure in noise. 

Three possible encoding scenarios, and what they say about decoding 

From Eq. 8, the decoding weights depend on the neural noise level  through the term 
. As  specifies how strongly neurons respond to the task 

variables a.k.a. the signal strength,  can be thought of as the brain’s encoding structure 
in units of signal-to-noise (SNR). We consider here three interesting cases for what  
might be. 

In the first, high SNR scenario  is large, and in the limiting case of  we find: 

       (12) 

where we have assumed that both  and  are invertible. The rightmost formula is 
recognizable as the Moore-Penrose pseudoinverse110 of the brain’s presumed encoding 
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matrix . It follows that the angles between decoding directions are given by (up to an 
ignorable factor of : 

       (13) 

In the opposite extreme where , then , which means that the 

optimal decoding directions (columns of ) are simply the correlation-weighted sum 
of encoding directions (rows of ). More generally we define the second, low (but 

nonzero) SNR scenario as one where , as then  can be 
expanded in a Neumann series111 to obtain: 

 

If  has no special structure related to , then the above indicates that roughly speaking, 

the lowest power to which  can depend on  is , with higher powers contributing 
successively smaller corrections to the series expansion. This is explicitly so for orthogonal 
encoding , where  is a scalar that specifies the SNR: 

                                      (14) 

The third and last scenario that we consider is where , which has a simple form 
that is qualitatively different from Eq. 14: 

                                                                      (15) 

We note that this is in some sense an intermediate SNR scenario, since neither the 
 (high SNR) nor  (low SNR) criteria are fulfilled when . 

However the particular choice of  makes the decoding observations in this third 
scenario indistinguishable from the first, high-SNR scenario (Eq. 13), although there are of 
course other possibilities for  in the latter. 

Why we call  an (effectively) whitening/decorrelation operation 

Given a trial-by-variable data matrix  with arbitrary covariance matrix, and the 
transformed data , we call  a whitening transformation if the transformed 
covariance is . Below, we show that constraining  corresponds to such a 
whitening transformation for , where  is an orthonormal basis ( ) for the 
brain’s encoding matrix  (Eq. 4).  can be understood as the projection of the neural 
state  onto the information-coding subspace (spanned by basis vectors ) as discussed in 
the text. We first show that optimal linear decoding depends only on this projected neural 
state , and then show that the covariance of the projected neural state is . 
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For the following derivations, we will need the fact that applying the projection operator 
 to  does nothing: , because the columns of  are by 

construction vectors that live in the subspace spanned by . No other properties of  are 
required, i.e.  can be any orthonormal basis for the information-coding subspace. 

Recalling from Eq. 4 that the neural representation of the task variables is , the 
covariance of the neural data is  (see derivation of Eq. 6). In the 
presumably typical case where there are more neurons than encoded variables, specifying 
the variable-by-variable matrix  will not fully constrain the variable-by-
neuron matrix , and is therefore insufficient to completely whiten the neural data in 
the sense of achieving  even with neural noise covariance . However, we can 
show that the decoded information does not depend on the full high-dimensional , but 
only the neural-state values in a subspace spanned by  (assuming ). The decoded 
values are given by projecting the neural state onto the decoding vectors  (Eq. 3). 
Plugging  into Eq. 8, we see that the decoded values are 

, which depends only on the projected neural state  
and not the full . 

To understand how the encoding structure affects the covariance of , we first note that 
although the encoding directions  are vectors in the high-dimensional neural state 
space, the dot products between encoding directions ( ) depend only on the projected 
coordinates of these encoding directions in the information-coding subspace, 

 (a variable-by-variable matrix). This is because plugging in 
 to  gives . Our claim 

is that any invertible  that satisfies  will whiten  (up to an overall scale, 
which we ignore). To see this, start from , left-multiply by  and 
right-multiply by  to get . The covariance of the projected neural state is 

. Again assuming , we get 
, as claimed. In sum, we call  a whitening 

operation because it is the constraint that if exactly satisfied, will whiten . 

Effect of per-timepoint z-scoring 

As mentioned above, the per-timepoint encoding models were fit to neural data that had 
been z-scored per timepoint. If we “undo” this time-dependent scaling of neural data as 
previously explained for Eq. 1, Supplementary Fig. 11a-e shows that there is some increase 
time variation in encoding directions and angles. This in fact suggests a way for us to more 
directly gauge how much of an effect time-varying encoding directions can have on how 
well the encoding angles tracked . Note that according to the multiplicative model, 
changes in encoding directions are due to the time-modulations 𝑔 (𝑡) of each neuron. We 
can reduce these time-modulations by z-scoring the neural data per timepoint, which as 
illustrated in Supplementary Fig. 11g stabilizes task-variable responses around the peak 
activity period of each neuron. Encoding models trained with z-scored data produced 
better agreement of encoding angles with  than models without z-scoring 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2019. ; https://doi.org/10.1101/801654doi: bioRxiv preprint 

https://doi.org/10.1101/801654
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Supplementary Fig. 11h). The time-modulations 𝑔 (𝑡) of neurons a.k.a. time-variations in 
encoding directions can thus indeed add substantial variability to the encoding angles, in 
the sense of causing them to deviate from . However and most intriguingly, the effect 
of z-scoring significantly diminished for sessions with larger numbers of recorded neurons 
(Supplementary Fig. 11h-right). This trend hints at how large, sequentially active 
populations could effectively behave as if neurons had near-stable behavioral responses 
analogous to the z-scored data, for reasons hypothesized in the text. 
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Supplemental Information 
 

 Layers 2/3 Layer 5 

 V1 AM PM MMA MMP RSC V1 AM PM MMA MMP RSC 

# sessions 9 18 11 15 8 30 8 12 6 9 7 12 

# mice imaged 4 8 6 9 4 8 4 7 3 8 4 6 

Supplementary Table 1.  Number of imaging sessions and mice for various areas and layers, for 
the main experiment. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2019. ; https://doi.org/10.1101/801654doi: bioRxiv preprint 

https://doi.org/10.1101/801654
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 1.  Statistics for choice-specific sequences, and cross-strain comparison. 
(a) Percents of neurons that had significant ridge-to-background excess vs. a permutation test (left 
plot), and additionally were active within their firing fields in ≥ 50% of their (preferred-choice, if 
any) trials (middle plot), and additionally had different activity levels in right- vs. left-choice trials 
(right plot). Error bars: std. dev. across imaging sessions. Rectangles: Median and S.E.M. Stars: 
significant differences in means (Wilcoxon rank-sum test).  (b) Like (a), but comparing two strains 
of mice. Data were pooled across layers. Double-stars indicate areas for which there was a 
significant difference in means (Wilcoxon rank-sum test).  (c) Average reliability of choice-specific 
neurons in a given area/layer, defined as the fraction of trials in which the neuron was significantly 
active within its putative firing field . Error bars as in (a).  (d) Like (c), but comparing two strains of 
mice. Data were pooled across layers. Double-stars indicate areas for which there was a significant 
difference in means (Wilcoxon rank-sum test). 
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Supplementary Figure 2.  Manifold geometry metrics for all pairs of timepoints.  (a) Illustration 
of a case where the neural states across trials at time 𝑡 + 1 are an overall scaling of the neural states 
at time 𝑡 (i.e. by the same scale factor for the activity of each neuron). This results in zero angular 
difference between the centers of the two point clouds (black vs. purple arrows), because the vector 
to the center of the 𝑡 + 1 point cloud is also just a scaling of the vector to the center of the 𝑡 point 

cloud.  (b) The angle between two vectors  and  is proportional to the dot product of the 
two vectors. If all components  of these vectors are nonnegative, then the only way for the 
angle to be zero is for all terms in the sum to be zero (since there are no negative terms, so they 
cannot cancel). This means that either  or  must be zero in the sum, which can be 
interpreted as a neuron activity  switching from active at  to inactive at , or vice versa (or this 
is a silent neuron). Across all terms in the sum a.k.a. the neural population, this means that the 
identities of active neurons must completely change between  and .  (c) Angles between time-
average neural state vectors 𝐹(𝑡 ) and 𝐹(𝑡 ), for all possible pairs of timepoints 𝑡  and 𝑡 . imaging 
sessions for the stated areas were averaged for each plot. Shuffled: Pseudo-data with activity 
randomly shuffled per trial, per neuron. (d-e) Same as Fig. 2c-d, but plotted separately for trials 
with different eventual choices. The same projection axes were used regardless of trial type.  (f) 
Illustration of how manifolds with global time parameters (arrowed curves) can have strong sub-
structure in that (for example) trials of different choices bifurcate mid-trial and follow well-
separated trajectories until the end of the trial, then gradually losing this distinction in the ITI. 
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Supplementary Figure 3.  Details of decoding accuracies for different types of decoding 
methods.  (a) Time-average performance of various decoders (x-axis), shown separately for 
datasets in layer 2/3 vs. 5. Error bars: std. dev. across sessions. Rectangles: Median and S.E.M.  (b) 
Decoding performance for alternative decoding methods as discussed in the text. Lines: mean 
across imaging sessions. Band: S.E.M.  (c) Decoding performance for per-timepoint decoders used 
throughout the text and in (b), vs. phase-specific decoders (yellow lines). The phase-specific 
decoders were trained using data in 2 separate phases of the trial. The first phase included all 
timepoints from the start of the trial to the end of the delay region, and these timepoints were 
treated like additional trials when training the decoders. The second phase included the remaining 
timepoints from the start of the turn region to the end of the ITI. Decoding performances were 
evaluated at each timepoint, as usual. Lines: mean across imaging sessions. Band: S.E.M. 
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Supplementary Figure 4.  Diagnoses for degenerate decoding directions.  (a) Number of 
decoding directions vs. time that were identified as degenerate, i.e. having a near-zero angle w.r.t. 
the subspace spanned by the other decoding directions. These plots use six different angular 
thresholds (𝜃  as indicated at the top of the plots) for deciding whether the angle is “close 
enough” to zero. Lines: Mean across sessions. Bands: S.E.M.  (b) Angle between choice and view-
angle-sign decoders, vs. time in the trial. Lines: Mean across sessions. Bands: S.E.M.  (c) Same as (b) 
but for a set of thirteen variables that includes the sign of the view angle in lieu of the continuously-
valued view angle.  (d) For the modified set of thirteen variables in (c), the percent of imaging 
sessions in which the choice or view-angle-sign decoding directions were identified as being 
degenerate. 
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Supplementary Figure 5.  Dependence of decoding angles on the behavioral correlation 
matrix.  (a) Coefficients from a linear regression model of the cosine decoding angles as a function 
of powers of the behavioral correlation matrix 𝐶. This was computed separately for all pairs of task 
variables. Note the different color scales for each plot.  (b) Goodness-of-fit (Pearson’s correlation) 
for the regression model in (a). The more poorly fit variable pairs tend to involve past-trial 
quantities, which also had lower decoding performances.  (c) Same information as (a) except that 
each upper-triangular matrix entry is plotted as a point for the indicated 𝐶  dependence (i.e. as for 
insets of Fig. 5a). Lines link the three 𝐶 dependence coefficients for the same variable pair. There 
were no variable pairs with a smaller magnitude of 𝐶 than 𝐶  dependence. 
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Supplementary Figure 6.  Behavior-related structure of encoding/decoding geometry 
improves (or does not degrade) with signal-to-noise (SNR).  (a) Similarity of the matrix of 
decoding angles to the matrix of task-variable correlations (y coordinate), vs. the average 
performance of task-variable decoders (x coordinate). Each imaging session contributes 11 data 
points in each plot, i.e. one per timepoint in the trial, and the various plots (columns) are for 
recordings in the stated cortical areas. Similarity scores (y coordinates) were computed as 
Pearson’s correlation with data points being the upper-triangular elements of the two matrices, i.e. 
as in Fig. 5b. Decoding performances (x coordinates) were calculated separately for timepoint in the 
trial, as the average performance (Pearson’s correlation between predicted and actual values) 
across task variables. To avoid averaging together random chance-level accuracies, before 
computing the average the decoding performance of a given variable was set to zero if it was not 
significant vs. a permutation test (cross-validated and corrected for multiple comparisons, as in Fig. 
3).  (b) Same as (a), except that the similarity scores (y coordinates) are for between the matrix of 
encoding angles and the inverse task-variable correlation matrix. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2019. ; https://doi.org/10.1101/801654doi: bioRxiv preprint 

https://doi.org/10.1101/801654
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 7.  Observations of decoding/encoding geometry are preserved under 
cross-validation.  (a) Similarity (Pearson’s correlation) score for how well the matrix of decoding 
angles matched the task-variable correlation matrix  (as in Fig. 5b), but comparing this similarity 
score in a cross-validated scenario (y-coordinate) vs. the nominal method used everywhere else (x-
coordinate). For cross-validation, two sets of nine decoding directions were separately computed 
using two disjoint subsets of trials, so for task variable 𝑖 we obtained two independent estimates of 

its decoding direction,  and . Angles between decoding directions for variables 𝑖 and 𝑗 were 

then computed as the average of  and . Each plot (columns) 
corresponds to data from imaging sessions for the stated cortical region.  (b) Same as (a), but the y-
coordinate of each data point was computed using data where neural responses were permuted 
across trials, breaking the correspondence between neural activity and task variables while 
retaining correlations between task variables.  (c-d) Same as (a-b), but for encoding directions. 
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Supplementary Figure 8.  Additional comparisons of encoding angles to inverse behavioral 
correlation matrix.  (a) Distribution across neurons of the percent unexplainable variance. This 
was estimated per neuron as the variance of activity across trials with identical stimuli and 
behavioral outcome, relative to the variance across all trials.  (b) Distribution across neurons of the 
variance explained by a per-timepoint linear behavioral response model. The left plot shows the 
time-average variance explained, whereas the right plot shows the maximum possible variance 
explained for that neuron, i.e. taking the maximum over time.  (c) Scatter plot of the cosine angle 
between pairs of encoding directions vs. the corresponding entry in the inverse task-variable 
correlation matrix. Each data point corresponds to a timepoint within a recording session, all 
sessions included.  (d) Distribution of correlation coefficients for pairs of neural modes in the 
information-coding subspace, for various timepoints in the trial. The neural modes are defined as 
the projection of the high-dimensional neural state  onto the various orthogonal basis vectors  
for the subspace spanned by the encoding directions.  (e) Same format as (d), but for the predicted 

neural signal  instead of the full neural state , which includes noise.  (f) Color scale: 
neural mode correlations as in (d). For each pair of neural modes (matrix entries), this correlation 
was averaged across imaging sessions and timepoints within the indicated period within the trial. 
For comparability across datasets, the basis vectors  were computed using polar decomposition 
of the encoding weight matrix, so that each  was as close as possible to one encoding direction in 
the least-squares sense112. Neural modes (rows and columns) were ordered using the order of their 
nearest encoding direction in Fig. 6f.  (g) As in (f), but for the predicted neural signal as in (e). 
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Supplementary Figure 9.  Correlations between pairs of neurons.  (a) Pairwise correlation 
coefficients for the activities of neurons across trials, evaluated at a fixed timepoint at the end of the 
cue region. The various plots are for three example imaging sessions in the stated brain areas, 
selected to have the median number of neurons across all imaging sessions for that region. Neurons 
(i.e. the displayed order of rows and columns) were sorted using hierarchical clustering of this 
matrix.  (b) Same format and order of neurons as (a), but for signal correlations between neurons, 
defined as correlations between the predicted activities of neurons according to the per-timepoint 
behavioral encoding models.  (c) Same format and order of neurons as (a), but for estimated noise 
correlations between neurons, where “noise” was defined as the residual activity of neurons after 
subtracting the behavior-based prediction used in (b).  (d-f) Distributions of correlation coefficients 
as in (a-c), for neurons pooled across all sessions but restricted to the stated time periods in the 
trial. 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2019. ; https://doi.org/10.1101/801654doi: bioRxiv preprint 

https://doi.org/10.1101/801654
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 10.  Time-dependence of task-variable encoding weights and encoding 
geometry.  (a) Dependence of encoding weights on the time-dependent scale of the respective task 
variables (insets). 11 encoding models were fit separately per timepoint for each neuron, which 
yields 11 encoding weights per neuron, for a given variable. The colored lines are distributions of 
these encoding weights restricted to timepoints in the trial where the time-dependent scale 
(standard deviation) of the behavioral variable fell within the indicated bins (vertical colored bars 
in the inset plot). For comparability across neurons and task variables, encoding weights were 
expressed in units of 𝜎 /𝜎 , where 𝜎  is the standard deviation of the activity level of a given 
neuron across all timepoints in the imaging session, and 𝜎  is the standard deviation of the task 
variable again across all timepoints.  (b) Simulation of three neurons with constant linear 
dependence on a task variable 𝑥 and an additive, time-dependent baseline. Even though the neural 
activity was sequential and formed a ring-shaped manifold (right plot), there was no change in the 
encoding directions.  (c) Same as Fig. 7e, but comparing the multiplicative model in Fig. 7e vs. the 
additive model in (b). The multiplicative model performed significantly better (𝑝 ≈ 0 given 
statistics of our dataset, Wilcoxon rank-sum test). 
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Supplementary Figure 11.  Effect of per-timepoint z-scoring of neural data on encoding 
directions and angles.   (a-c) Same as Fig. 7a-c, but using “unscaled” encoding models where the 
neural data had not been z-scored per timepoint.  (d) Distribution of differences between the rate 
of angular change of encoding directions, for encoding models using z-scored neural data vs. 
unscaled neural data. Each imaging session contributes 9 × 11 = 99 points for encoding directions 
of 9 variables for each 11 timepoints.  (e) As in (d) but for the rate of change of encoding angles.  (f) 
Same as Fig. 7c, but for an example pair of task variables, i.e. the angle between choice and 𝜃 
encoding directions (absolute value), vs. the rate of change of the encoding directions (each x-
coordinate is the average of the change in the choice direction and the change in the 𝜃 direction). 
Each data point corresponds to one timepoint in one imaging session. Lines: 68% C.I. of encoding-
angle change (y-coordinate), calculated in bins of the direction change rate.  (g) Illustration of how 
z-scoring neural responses per timepoint corrects for some part of the time-modulation of 
behavioral responses, resulting in more stable encoding directions and angles around the peak 
activity time of each neuron. For this illustration, the standard deviation was computed as the 
spread across simulated responses to different 𝑥 levels (grayscale curves per neuron), plus 0.1 to 
avoid division by zero and to show the effect of non-task-related variability.  (h) Similarity scores 
(Pearson’s correlation as in Fig. 6e) for how well cosine encoding angles matched cosine angles 
between columns of the inverse task-variable correlation matrix, vs. number of recorded neurons in 
the imaging session. Blue points are for encoding models constructed using neural data that was z-
scored per timepoint as in the rest of the article, whereas black points are for alternative encoding 
models constructed using neural data that did not have this per-timepoint scaling. Right plot: the 
difference between z-scored (blue) and unscaled (black) points in the left plot, as a function of 
number of neurons. 
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Supplementary Figure 12.  Convergence of multiplicative sequential time-modulations to a 
stable per-timepoint encoding geometry, with large numbers of neurons.  (a) Illustration of two 
transformations that preserve distances (rotation) and relative distances (uniform scaling) 
between points. Also shown is an angle between two vectors (dashed lines), which remains the 
same if distances are preserved, and also if relative distances are preserved, as angles do not 
depend on lengths of vectors.  (b) Illustration of time-modulation functions for the simulations in 
(c) and (d). Each simulated neuron (rows) had a uniformly random time preference within 𝑡 =
[0,1], and time-modulation 𝑔 (𝑡) being the sum of 5 gaussian bumps randomly distributed around 
this time preference (∼ 𝑁(𝜇 = 0, 𝜎 = 0.08)). The width of each bump was drawn randomly ∼
𝑁(𝜇 = 0.06, 𝜎 = 0.03) with a minimum of 0.02, and for simplicity we selected a scale such that the 
maximum over time of 𝑔 (𝑡) is 1 for each neuron. As in Fig. 7b, these time-modulations multiply 
random, time-independent behavioral responses, so that each simulated (𝑖th) neuron’s activity has 
the form 𝑓 (𝑡) = 𝑔 (𝑡) [1 + 𝑢 ⋅ 𝑥] where 𝑢  are constant weights for encoding “task variables” �⃗�. 
The time-dependent contribution of the neuron to the population-level encoding direction for 
variable 𝑥  is 𝜕𝑓 (𝑡)/𝜕𝑥 = 𝑔 (𝑡) 𝑢 .  (c) Encoding angle vs. time for three simulated experiments 
described in (b). In each simulation with 𝑛 neurons, two underlying (constant) encoding directions 
𝑈( ) ≡ [𝑢  𝑢  ⋯ 𝑢 ]  and 𝑈( ) ≡ [𝑢  ⋯ 𝑢 ]  were generated randomly (entries 𝑢 ∼ 𝑁(𝜇 =

0, 𝜎 = 1)), but constrained to have a 135∘ angle between 𝑈( )  and 𝑈( ). The per-timepoint 
encoding directions computed using the simulated neural activities {𝑓 (𝑡)} are 𝑤( )(𝑡) =

[𝑔 (𝑡) 𝑢  ⋯ 𝑔 (𝑡) 𝑢 ] and 𝑤( )(𝑡) = [𝑔 (𝑡) 𝑢  ⋯ 𝑔 (𝑡) 𝑢 ], and have time-varying encoding 
angles as shown in this plot.   (d) Distribution of encoding angles over 100 simulated experiments 
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as in (b), as a function of the number of simulated neurons. Each simulation contributes 201 
timepoints to the distribution.  (e-g) Same as (b-d), except that 𝑔 (𝑡) of each neuron was set to 0 if 
< 0.1 × the maximum, and to 1 otherwise.  (h) Same as (c), except that the underlying encoding 
directions were generated as 𝑈( ) = [𝑢  ⋯ 𝑢 ]  being random as before, but 𝑈( ) =

[𝑣  ⋯ 𝑣 ] + [(0.5 − 1.5 𝑡 ) 𝑢  ⋯ (0.5 − 1.5 𝑡 ) 𝑢 ]  where 𝑣 ∼ 𝑁(𝜇 = 0, 𝜎 = 1) are 
random and 𝑡 ≡ 𝑎𝑟𝑔𝑚𝑎𝑥  𝑔 (𝑡) is the peak activity time of the 𝑖th neuron. The “hypothesized 
truth” for the time-dependence of encoding angles is based on the assumption that at time 𝑡, the 
neurons that contribute most to the encoding directions 𝑤( )(𝑡) and 𝑤( )(𝑡) are those with time 
preferences 𝑡 = 𝑡. Recalling that 𝑔 (𝑡 ) = 1 by construction, then under this assumption 

𝑤( )(𝑡) ≈ 𝑃  𝑈( ) where 𝑃  is a projection matrix that zeroes out the rows of 𝑈( ) for which 𝑡 ≠

𝑡 and leaves the same rows for which 𝑡 = 𝑡, and also 𝑤( )(𝑡) ≈ 𝑃 �⃗� + (0.5 − 1.5 𝑡) 𝑤( )(𝑡). 
Because both 𝑃 �⃗� and 𝑤( ) are random vectors, when there are sufficiently many neurons in the 
population (that are active at time 𝑡), then these two random high-dimensional vectors are likely to 
be orthogonal, (𝑃 �⃗� ) ⋅  𝑤( ) ≈ 0. Since the entries of �⃗� and 𝑈( ) were drawn from a normal 
distribution 𝑁(𝜇 = 0, 𝜎 = 1), their norms are likely to be |𝑃 �⃗�| ≈ 𝑛  and |�⃗�( )| ≈ |𝑃 𝑈( )| ≈ 𝑛 , 

where 𝑛  is the number of neurons with 𝑡 = 𝑡. Given all this, |�⃗�( )| ≈ |𝑃 �⃗�| + (0.5 −

1.5 𝑡)  |𝑤( )| ≈ [1 + (0.5 − 1.5𝑡) ] 𝑛 . Lastly, the cosine angle between the encoding directions is 
𝑐𝑜𝑠 ∠(𝑤( ), �⃗�( )) ≈ (0.5 − 1.5 𝑡) (𝑤( ) ⋅ 𝑤( )) / |𝑤( )| |𝑤( )| = (0.5 − 1.5 𝑡) / 1 + (0.5 − 1.5𝑡) . 
This formula for ∠(𝑤( ), �⃗�( )) is shown as the “hypothesized truth” in the plot, for comparison to 
the empirically calculated angle vs. time between 𝑤( )(𝑡) = [𝑔 (𝑡) 𝑢  ⋯ 𝑔 (𝑡) 𝑢 ] and 𝑤( )(𝑡) =
[𝑔 (𝑡) 𝑢  ⋯ 𝑔 (𝑡) 𝑢 ] for three simulated experiments (colored lines) with the stated number of 
neurons. The empirical calculation better resembles the hypothesized truth at large number of 
neurons.  (i) Distribution of the difference between the empirically calculated encoding angle and 
the hypothesized truth as explained in (h), as a function of the number of simulated neurons.  (j-k) 
Same as (h-i), but  𝑔 (𝑡) of each neuron was set to 0 if < 0.1 × the maximum, and to 1 otherwise.  (l) 
Conceptualization of how structure in the underlying constant encoding weights 

  that systematically varies e.g. with the time preference of neurons as in 
(h), can result in observed encoding angles that vary with time in the trial. We assume that there 
are 𝑛 neurons denoted 𝑓 , 𝑓  , … ,  𝑓 , which are ordered by time preference so that 𝑡 ≤ 𝑡 ≤

⋯ ≤ 𝑡 . Each subplot illustrates a subset of  in a 3-dimensional subspace, with coordinates 
being encoding weights for neurons 1-3, neurons 4-6, and so forth. The systematic differences in 
relationships between encoding weights 𝑢  and 𝑢  as a function of neuron time preference and 
therefore neuron index 𝑖 means that the angle between the subsets of  (“subspace ”) 
differs systematically across the 3 subplots. A scenario where the observed encoding directions can 
vary rapidly in time yet exhibit slow changes in encoding angles, is when 𝑔 (𝑡) are sharply peaked 
around 𝑡  whereas the abovementioned systematic differences in  vary slowly as a function 
of neuron index. In the illustration, this corresponds to  being mostly randomly oriented in 
each subplot, despite gradual changes in the projected angle  across subplots. The fast changes 
in encoding directions corresponds to 𝑔 (𝑡) acting effectively as projections of  onto the (𝑓 , 𝑓 ) 
plane, the (𝑓 , 𝑓 ) plane, and so forth as a function of time in the trial. With many neurons i.e. high 
dimensions, the projected  can be highly similar to the randomly oriented  per subplot 
according to the Johnson-Lindenstrauss theorem, but these projections will also reflect the gradual 
changes in  across subplots. 
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