
1 

 

Cell segmentation-free inference of cell types from in situ transcriptomics data 1 

 2 

Author names 3 

Jeongbin Park1,2,3,†, Wonyl Choi4,†, Sebastian Tiesmeyer1, Brian Long5, Lars E. Borm6, Emma 4 

Garren5, Thuc Nghi Nguyen5, Bosiljka Tasic5, Simone Codeluppi6,7, Tobias Graf1, Matthias 5 

Schlesner8, Oliver Stegle3,9, Roland Eils1,10,‡,* & Naveed Ishaque1,‡,*
 6 

 
7 

Affiliations 8 

1Digital Health Center, Berlin Institute of Health (BIH) and Charité Universitätsmedizin, Berlin, 9 

Germany; 10 

2Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; 11 

3Division of Computational Genomics and System Genetics, German Cancer Research Center 12 

(DKFZ), Heidelberg, Germany; 13 

4Department of Computer Science, Boston University, Boston, the United States of America; 14 

5Allen Institute for Brain Science, Seattle, WA, USA; 15 

6Division of molecular neurobiology, Department of medical biochemistry and biophysics, 16 

Karolinska Institutet, Stockholm, Sweden; 17 

7Science for life laboratory, Stockholm, Sweden; 18 

8Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), 19 

Heidelberg, Germany; 20 

9Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany; 21 

10Health Data Science Unit, Heidelberg University Hospital, Heidelberg, Germany; 22 

 
23 

 Author List Footnotes 24 

† These authors contributed equally to this work. 25 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2020. ; https://doi.org/10.1101/800748doi: bioRxiv preprint 

https://doi.org/10.1101/800748
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

‡These authors jointly supervised the work. 26 

 27 

Contact information 28 

*Correspondence: Roland Eils (roland.eils@charite.de) and Naveed Ishaque 29 

(naveed.ishaque@charite.de) 30 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2020. ; https://doi.org/10.1101/800748doi: bioRxiv preprint 

https://doi.org/10.1101/800748
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

Abstract 31 

Multiplexed fluorescence in situ hybridization techniques have enabled cell-type identification, 32 

linking transcriptional heterogeneity with spatial heterogeneity of cells. However, inaccurate cell 33 

segmentation reduces the efficacy of cell-type identification and tissue characterization. Here, 34 

we present a novel method called Spot-based Spatial cell-type Analysis by Multidimensional 35 

mRNA density estimation (SSAM), a robust cell segmentation-free computational framework for 36 

identifying cell-types and tissue domains in 2D and 3D. SSAM is applicable to a variety of in 37 

situ transcriptomics techniques and capable of integrating prior knowledge of cell types. We 38 

apply SSAM to three mouse brain tissue images: the somatosensory cortex imaged by 39 

osmFISH, the hypothalamic preoptic region by MERFISH, and the visual cortex by multiplexed 40 

smFISH. We found that SSAM detects regions occupied by known cell types that were 41 

previously missed and discovers new cell types. 42 
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Introduction 47 

The underlying transcriptional and spatial heterogeneity of cells gives rise to the plethora of 48 

phenotypes observed in cell types, tissues, organs, and organisms. Recent technological 49 

advances1 have seen the profound adoption of single-cell sequencing to unravel transcriptional 50 

heterogeneity in healthy and diseased tissues, and have subsequently given rise to international 51 

consortia such as the Human Cell Atlas (HCA)2. Such efforts would not be possible without 52 

computational frameworks supporting the analysis of single-cell sequencing data3. Linking this 53 

transcriptional heterogeneity with spatial heterogeneity of cells is a critical factor in 54 

understanding cell identity in the context of the tissue, for example, revealing the transcriptional 55 

basis of invasive cancer regions4 and highlighting the rich diversity of neuronal subtype 56 

expression and localization5. Recently developed multiplexed fluorescence in-situ hybridization6–
57 

8 and in situ mRNA tissue sequencing techniques9–14 have enabled the simultaneous 58 

measurement of multiple mRNAs in a spatial context. 59 

 60 

Traditionally, mRNA molecules identified by in situ transcriptomics are assigned to cells and 61 

subsequently used for computing gene expression profiles of those cells15–18. Identification of 62 

cells relies on cell segmentation, a procedure demarcating the interior and exterior of the cell 63 

membranes, which relies on additional signals or landmarks obtained by staining nuclei19, cell 64 

membrane20–22, or total poly-A RNA5,6. However, accurate cell segmentation is difficult to 65 

achieve with current techniques due to tightly apposed or overlapping cells, uneven cell borders, 66 

varying cell and nuclear shapes, signal intensity variation, probe fluorescence emission 67 

efficiency variation, and tiling artifacts23. Such obstacles can result in detecting fewer cells or 68 

incorrect cell borders. Subsequent analysis would then be spatially restricted to inaccurately 69 

segmented cells and may mean that large portions of meaningful mRNA signals are discarded. 70 

This may result in incorrect cell-type signatures, incomplete cell-type maps, or missing rare cell 71 

types. Therefore, there is a need for robust cell segmentation-independent methods for 72 
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identifying cell-type signatures, cell-type organization, and tissue domains from 73 

multidimensional mRNA expression data in complex tissues. These methods could be used for 74 

datasets lacking landmarks or to validate segmentation-based approaches. 75 

 76 

Here we introduce a novel computational framework named Spot-based Spatial cell-type 77 

Analysis by Multidimensional mRNA density estimation (SSAM). In contrast to existing methods, 78 

SSAM departs from the spatial restriction of approaches based on cell segmentation and 79 

instead identifies cell types using mRNA signals in the image, without the need for prior cell 80 

segmentation. Furthermore, instead of labelling only segmented regions, our approach assigns 81 

cell-type labels to each pixel, ensuring a more complete picture of cell-type specific spatial 82 

heterogeneity. 83 

 84 

We apply SSAM to three mouse brain tissue images obtained by different techniques: the 85 

somatosensory cortex (SSp) by osmFISH, the hypothalamic preoptic region (POA) by 86 

MERFISH, and the visual cortex (VISp) by multiplexed smFISH. With all three datasets, we 87 

demonstrate the robustness of SSAM in identifying 1) cell types in situ, 2) spatial distribution of 88 

cell types, 3) spatial relationships between cell types, and 4) tissue domains (e.g., cortical layers) 89 

based on the local composition of cell types without fine-tuning of parameters. We demonstrate 90 

that SSAM 1) correctly identifies the spatial distribution of known cell types in regions missed in 91 

the SSp by cell segmentation based methods for the osmFISH data ; 2) can analyze the POA 92 

MERFISH 3D data using the same parameters as for the 2D SSp osmFISH data without any 93 

extra adjustments of the settings; 3) identifies new and rare cell types in the VISp, multiplexed 94 

smFISH data. 95 

 96 
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Results 97 

The SSAM computational framework 98 

SSAM consists of 4 major steps (Fig. 1), namely 1) mRNA signal estimation and downsampling; 99 

2) computation of cell-type signatures; 3) generation of a cell-type map; and 4) identification of 100 

tissue domains. 101 

 102 

In the first step, SSAM estimates mRNA signal intensity over the tissue image (Fig. 1A). Firstly, 103 

for each gene, mRNA signal intensity distribution is estimated by applying a Kernel Density 104 

Estimation (KDE) with a Gaussian kernel, which is then resolved to pixels in the image. The 105 

mRNA signal intensity distribution for each gene is stacked to create a gene expression vector 106 

field, which is a multichannel image where the pixels encode the expected density of mRNA 107 

count for each gene. This essentially assigns gene expression profiles to pixels in the image. 108 

 109 

In the second step, SSAM identifies cell-type gene expression signatures by clustering (Fig. 1B). 110 

Before running the clustering algorithm, SSAM downsamples gene expression vectors to reduce 111 

computational processing time. As default, SSAM performs informed downsampling by selecting 112 

pixels that are local maxima in the gene vector field (Methods). After that, both the 113 

downsampled vectors and the gene expression vector field are normalized (Methods). SSAM 114 

clusters the sampled vectors using either DBSCAN24, HDBSCAN25, OPTICS26, or the Louvain 115 

community detection method implemented in Seurat27 (Methods). The Louvain methods is the 116 

default as it has been widely utilized to analyze single cell data. After the clustering step, 117 

sampled vectors with a large distance in gene expression space to their cluster medoid are 118 

removed as outliers to ensure the quality of selected vectors (Supplementary Fig. 1B). The 119 

gene expression cluster centroids are used to represent the gene expression signature of a cell 120 

type. 121 

  122 
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In the third step, SSAM classifies each pixel in the image to create a “cell-type map” (Fig. 1C, 123 

Supplementary Fig. 2A). SSAM includes a guided mode, which assigns pixels to a labeled set 124 

of given gene expression signatures (e.g. from scRNA-seq/segmentation), as well as a de novo 125 

mode, which assigns pixels to the cell type signatures obtained in the previous clustering step. 126 

For the classification of pixels, SSAM first creates signature prototypes by averaging the 127 

signatures per cell-type class of the given signatures, then it classifies all spots in the vector 128 

field according to the maximum correlation to any of the signature prototypes. 129 

 130 

In the fourth step, SSAM identifies tissue domains that have distinct cell-type composition (Fig. 131 

1D). SSAM computes the cell-type compositions in a circular (or spherical) sliding window over 132 

the cell-type map and clusters the cell-type composition of each window using agglomerative 133 

hierarchical clustering (Supplementary Fig. 2B). The resultant clusters represent putative 134 

tissue domains. Clusters with high mutual correlation are then merged into a single tissue 135 

domain signature, and the cell-type composition of each domain is calculated. 136 

  137 

In the following sections we apply SSAM to three multiplexed FISH datasets obtained using 138 

different techniques. We reanalyze two previously published datasets, profiled by osmFISH6 and 139 

MERFISH5, to demonstrate SSAM’s strength in comparison to earlier methods. For a newly 140 

generated multiplexed smFISH dataset we demonstrate that SSAM can unravel novel biological 141 

insights into the spatial cellular organization of the brain. 142 

 143 

SSAM improves astrocyte and ventricle detection in the mouse brain somatosensory 144 

cortex (SSp) 145 

To demonstrate the utility of SSAM, we analyzed published osmFISH data, where the 146 

transcripts of 33 cell-type marker genes were localized in 2D space of the mouse brain 147 

somatosensory cortex (SSp)6 (Fig. 2, 3, Supplementary Fig. 3, 4). We compare results 148 
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obtained from SSAM against the results obtained from Poly-A segmentation from the original 149 

study. 150 

 151 

The osmFISH dataset was first analyzed using the guided mode of SSAM. Cell-type maps were 152 

generated using cell-type signatures from the prior segmentation-based approach6 and another 153 

from scRNA-seq28,29 (Supplementary Fig. 4E). 154 

 155 

To quantify the similarity between the prior segmentation and the cell-type maps generated by 156 

SSAM, we calculated a “matching score” for each cell type (Methods). The matching scores 157 

between the segmentation from the previous study and SSAM guided by both segmentation-158 

based and scRNA-seq cell-type signatures were generally high (mean and median matching 159 

score of 0.67 and 0.78 for segmentation-based, 0.60 and 0.70 for scRNA-seq-based signatures, 160 

respectively), indicating a strong agreement of the two cell-type maps as visually apparent 161 

(Supplementary Table 1, 2, Supplementary Fig. 5, 6).  162 

 163 

Next, we continued with completely de novo cell-type identification. The resulting 30 cell-type 164 

signatures (Fig. 2A, B, Supplementary Fig. 7-10) were consistent with those identified in the 165 

segmentation-based clustering and scRNA-seq based cell-type signatures6 (Supplementary 166 

Fig. 4C, D), implicating the robustness of the de novo cell-type calling by SSAM. Each of the 167 

SSAM de novo cell-type signature clusters were assigned the label of the closest correlating 168 

segmentation-based cluster. 169 

 170 

As with the guided mode analysis, we limit the comparison to the most comparable cell types, 171 

excluding cell types with low correlation in gene expression signatures (< 0.8) (Supplementary 172 

Table 3, Supplementary Fig. 11). The matching score result showed high average values 173 

(mean and median of 0.76 and 0.83, respectively) and 81% of cell types had a matching score 174 
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of greater than 0.6. Comparing marker gene expression of cell types having lowest matching 175 

score (< 0.3) (Supplementary Table 3) confirmed that the SSAM guided cell-type map is in 176 

better agreement to their marker gene expression (Supplementary Fig. 12-13). Given the low 177 

correlation of C. Plexus cell type to the corresponding osmFISH cluster, which is one of the 178 

dominant cell types in the ventricle region, high-resolution investigation of Poly-A and DAPI 179 

signals confirm the existence of both cell types in the ventricle area (Fig. 2D). Since ependymal 180 

and choroid plexus cells were small and tightly packed and exhibit relatively lower DAPI and 181 

poly-A signal, we concluded that the performance of the watershed algorithm was insufficient to 182 

identify cells in the area. Furthermore, we statistically evaluated this for each cell type by 183 

comparing the gene expression in the unique parts of the segmentation and SSAM de novo cell-184 

type map, to the overlapping parts (Methods). Gene expression of the unique part of SSAM de 185 

novo cell-type map showed higher correlation to the overlapping regions compared to the 186 

unique parts of the segmentation (Supplementary Fig. 14). 187 

 188 

We then performed domain analysis on the SSAM de novo cell-type map. Identified domains 189 

correlated well with the known cerebral cortex layers, consistent with results reported in the 190 

previous study (Fig. 3A). Laminar distribution of cell types is established 30, and can be 191 

considered as a ground truth for validating the cell type map. Cell-type assignments of 192 

excitatory pyramidal cells in the cortical layers conformed closely to known localizations 193 

(Supplementary Fig. 15). The domains identified as: layer 2/3 primarily consists of Pyramidal 194 

L2-3/L5, L2-3, and L3-4 cell types; layer 4 consists of Pyramidal L4 and L3-4 cell types; layer 5 195 

consists of Pyramidal L3-5 and L5 cell types; and layer 6 consists of Pyramidal L6 cell types. 196 

 197 

In addition, cell-type composition of the domains revealed that Mfge8 expressing astrocytes 198 

(Astrocyte Mfge8) contributed 7-14 % of each of the tissue layers (Fig. 3B), in contrast to the 199 
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significantly fewer numbers of Astrocyte Mfge8 cells called in the previous study6. Comparison 200 

of high-resolution images of DAPI and poly-A signals with Mfge8 expression densities implicates 201 

that the poly-A signal was not strong enough to discriminate the presence of astrocyte Mfge8 202 

cells from the background, while the DAPI images clearly supported the existence of Mfge8 203 

expressing astrocytes at positions identified by SSAM (Fig. 2E). The clear DAPI signal but low 204 

poly-A signal for these astrocytes Mfge8 suggested that they have a lower mRNA content 205 

compared to other cells. We compared the total counts of mRNA molecules of astrocytes and 206 

other cell types from mouse brain scRNA-seq data31 and found that astrocytes exhibited 207 

significantly less mRNA molecules than other cell classes (Supplementary Fig. 4B). Our 208 

observation reveals the inadequacy of the watershed segmentation algorithm applied to poly-A 209 

signal when not considering cells with a low total mRNA content. This implies that the original 210 

segmentation of these cell types could be less accurate than the SSAM de novo cell-type map, 211 

therefore also reducing the matching score for these cell types. 212 

 213 

SSAM confirms diversity of inhibitory and excitatory neuron cell types and their 214 

localization in the hypothalamic preoptic region (POA) in 3D 215 

To demonstrate the performance of SSAM for three-dimensional in situ transcriptomics data, we 216 

applied SSAM to previously published MERFISH data, where 135 transcripts were localized in 217 

3D space of the hypothalamic preoptic region (POA) of a mouse brain5 (Fig. 4, Supplementary 218 

Fig. 16, 18). We compare results obtained from SSAM against the results obtained from DAPI 219 

segmentation from the original study. 220 

 221 

We applied both SSAM guided mode and de novo mode. For guided mode, the previously 222 

known cell-type signatures obtained by segmentation and scRNA-seq were used. For both 223 

guided and de novo modes, SSAM analysis was performed in 3D space, generating a 3D cell-224 

type map (Fig. 4B). The resulting cell-type maps on the x-y plane at the center of slice on the z-225 
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axis (at 5μm) were visually similar to the previous study (Supplementary Fig. 17G). SSAM cell-226 

type signatures showed high expression of their marker genes (Supplementary Fig. 18-21) and 227 

a high correlation to the cell-type signatures from both the segmentation-based clusters and 228 

scRNA-seq clusters (Supplementary Fig. 17E, F). Among them, 7 inhibitory and 4 excitatory 229 

neuronal cell types showed very high correlation (>0.8) to the segmentation-based neuronal 230 

signatures, and also showed distinctive tissue localization patterns (Fig. 4D, E), similar to those 231 

previously reported (Supplementary Fig. 22). 232 

  233 

We then quantified the similarity of the SSAM cell-type maps with the cell segmentation by 234 

Moffitt et al. The SSAM guided mode cell-type map achieved high matching scores for 235 

comparable cell types (mean and median of 0.76 and 0.83 for segmentation-based, 0.88 and 236 

0.94 for scRNA-seq-based signatures, respectively), with only 6 of 76 cell-types exhibiting a low 237 

matching score (< 0.3) for segmentation-based case (Supplementary Table 4, 5, 238 

Supplementary Fig. 23, 24). Comparing the SSAM de novo cell-type map also yielded high 239 

matching scores (mean and median of 0.83 and 0.93, respectively) (Supplementary Table 6, 240 

Supplementary Fig. 25), further validating the computational approach adopted by SSAM to 241 

identify de novo cell-type signatures and generating cell-type maps. One of the most notable 242 

differences in the SSAM cell-type map was that we found a higher density of astrocytes 243 

compared to Moffit et al. A comparative analysis revealed that some astrocyte signals identified 244 

by SSAM were not found in the segmentation by Moffit et al. Note that the existence of 245 

astrocytes is clearly shown by the corresponding marker gene expression (Supplementary Fig. 246 

26). 247 

 248 

The generated tissue domain map identifies several domains consisting of regions consisting 249 

primarily of inhibitory neurons, excitatory neurons and oligodendrocytes, as well as the ventricle 250 
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structure (Supplementary Fig. 27). 251 

 252 

Finally, we reconstructed a three-dimensional cell-type map (Movie 1). While the thickness of 253 

the tissue image is limited (10 μm), we demonstrate the shape and size difference of the whole 254 

cell-type map and the cell-type specific maps for inhibitory neurons, excitatory neurons and 255 

astrocytes (Movies 2, 3, 4). 256 

 257 

Despite the difference of dimensionality between the osmFISH data (2D) and the MERFISH 258 

data (3D), SSAM was able to successfully process the data and produce meaningful results. 259 

More importantly, the analyzes in this section were performed with almost the same procedure 260 

and parameters applied to the osmFISH data. Therefore, we set these parameters as the 261 

default values to facilitate rapid and robust analysis of other multidimensional in situ 262 

transcriptomics dataset using SSAM. 263 

 264 

SSAM identifies rare cell types and novel cortical sub-layering in the adult mouse visual 265 

cortex (VISp) 266 

To further demonstrate that SSAM can be used for rapid and robust analysis of in situ 267 

transcriptomics data, we applied SSAM to unpublished multiplexed smFISH data of the mouse 268 

primary visual cortex (VISp) generated as part of the SpaceTx consortium32 (Fig. 5, 6, 269 

Supplementary Fig. 28, 29). In total, the expression of 22 genes was quantified in situ 270 

(Methods). 271 

 272 

Analysis of the tissue image was restricted to the manually defined VISp region 273 

(Supplementary Fig. 28D). SSAM was performed in both guided mode and de novo mode 274 

(Supplementary Fig. 29A). The guided mode of SSAM was performed using scRNA-seq data30. 275 

For the de novo run, the identified cell-type signature clusters were assigned the label of the 276 
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cluster in the scRNA-seq data with the highest correlation (Fig. 5A, B). Then, the tissue 277 

domains were identified based on the de novo cell-type map (Fig. 6), with the result showing the 278 

laminar structure of the VISp region. We identified two distinct layer 4 (L4) neuronal clusters. 279 

Interestingly, both of them showed the highest correlation to the single L4 IT type identified via 280 

scRNA-seq, but their spatial locations show a clear difference (Fig. 5C, Supplementary Fig. 281 

29B). We named the cluster localizing to the superficial region of layer L4 as ‘L4 IT Superficial’ 282 

(L4 IT 2). This finding adds context to the previously observed heterogeneity of the L4 IT cell 283 

type30, where we show that this heterogeneity determines superficial and deep localization in 284 

layer 4. 285 

 286 

The cell-type map generated by SSAM guided mode were visually similar to that of de novo 287 

mode, except for the cell types found in the layer 2 (L2) (Supplementary Fig. 29A). We found 288 

that the majority of cell types found in L2 were assigned to the VLMC type in SSAM guided 289 

mode. We observed that this type was actually a neuronal type in L2. This cell type showed high 290 

expression of Alcam, a marker gene of the VLMC cell type, but low expression of other genes. 291 

Due to the limited number of genes profiled in the multiplexed smFISH experiment, lack of other 292 

neuronal marker genes led to incorrect high correlation of this type VLMC. However, SSAM 293 

properly assigned the centroid to be L2 neurons in de novo mode. 294 

 295 

SSAM was also able to identify a rare cell type, Sst Chodl, which is known to be related to long-296 

range projection and sleep-active neurons33–35. In addition, we mapped the Sst Chodl cell-type 297 

signal to between layer L5 and L6 (Supplementary Fig. 29C), consistent with previously 298 

reported localization to L5 and L633. This finding was validated against its marker gene 299 

expression (Supplementary Fig. 30-32), and ultimately demonstrates SSAMs ability to identify 300 

cell-type signatures of lowly abundant and rare cell-types. 301 

 302 
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Discussion 303 

We describe a segmentation-free computational framework for processing in situ 304 

transcriptomics data and demonstrate its performance on three different adult mouse brain 305 

datasets: the somatosensory cortex (SSp) profiled by osmFISH, the hypothalamic preoptic 306 

region (POA) by MERFISH, and the visual sensory cortex (VISp) by multiplexed smFISH. We 307 

find that the cell-type signatures and maps generated by SSAM for both osmFISH and 308 

MERFISH datasets were similar to the previously reported ones, validating the underlying 309 

methodology of SSAM. Based on this, we successfully determined cell types and constructed 310 

cell-type and tissue domain maps in the multiplexed smFISH mouse VISp dataset. 311 

 312 

In the osmFISH dataset our method outperforms the original segmentation-based cell-type map 313 

reconstruction due to limitations in the segmentation process. In the MERFISH dataset we show 314 

that SSAM is able to identify diverse populations of cell types and that SSAM is scalable to 3D 315 

image data. For the VISp multiplexed smFISH dataset, SSAM identified a rare cell type and 316 

elucidated a suspected spatial heterogeneity of cell types in the cortex without segmenting a 317 

single cell. Overall, the results show that SSAM is not only a robust tool to validate 318 

segmentation-based methods, but also a reasonable alternative when segmentation is difficult 319 

or DAPI or Poly-A images are lacking. 320 

 321 

However, for some questions it is important to distinguish between cells to e.g. delineate growth 322 

arising from increasing cell size vs cell proliferation or to investigate multinucleation in 323 

cardiomyocytes or cytotrophoblast cells. In cases such as these, we recommend the use of 324 

SSAM as a complementary method to segmentation-based analysis in two ways. First, the 325 

output of SSAM can be compared to validate that the segmentation process did not introduce 326 

artifacts. Secondly, to use the SSAM output as an input for the segmentation process to refine 327 

the segmentation procedure for different domains or cell-type signals. 328 
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 329 

In terms of methodological parsimony, SSAM minimizes the number of assumptions, avoids 330 

iterative optimization and thus offers maximal transparency, interpretability and reproducibility. 331 

The lightweight nature of the algorithm typically brings a considerable runtime advantage over 332 

other available packages. SSAM is written as a Python library, with some core analysis 333 

functions wrapped up with external C functions to speed up the computation. The package is 334 

available as an easily installable Python package, and can easily be extended with existing in 335 

situ transcriptomics pipelines, e.g. starfish (https://github.com/spacetx/starfish) or Giotto36. 336 

SSAM is accompanied with a notebook outlining all the steps presented in this paper. Taken 337 

together, we present a novel, flexible and robust method for fully automated cell-type and tissue 338 

domain analysis that is readily applicable to numerous in situ transcriptomics methods. 339 

 340 

Materials and Methods 341 

 342 

Using Kernel Density Estimation to generate the gene expression vector field 343 

We used the n-dimensional KDE algorithm to estimate the density of mRNAs in 2D and 3D. To 344 

compute Gaussian KDE, we used our own implementation of the KDE algorithm for rapid 345 

computation. Spatial distribution of the probability of mRNA presence  is estimated using the 346 

kernel density estimation; 347 

 348 

 349 

 350 

where: 351 

- : a kernel function with a bandwidth  352 

5 

e 
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- : the number of data points 353 

- : location vector of the data point i (i.e. location of i-th mRNA) 354 

 355 

Here we use the Gaussian kernel: 356 

 357 

 358 

 359 

where: 360 

- : bandwidth of the Gaussian kernel 361 

- : dimension of the space where the data points reside (2 for 2D, or 3 for 3D mRNA 362 

locations) 363 

- : Euclidean norm (i.e. L2 norm) of vector  364 

Note that the integration of  all over the space is 1. Therefore the gene expression density 365 

is calculated by multiplying the number of mRNAs per gene to . 366 

 367 

Calculation of spatial gene expression 368 

The continuous estimation of gene expression density is discretized over pixels of the tissue 369 

image, which in our examples is set to a size of 1�m. The expectation value of the estimated 370 

density in a unit pixel is approximated by multiplying the area of the unit pixel to the estimated 371 

gene expression density at the location of the pixel. Finally, we stack the estimated gene 372 

expression densities of genes to define the gene expression vector field over the image. 373 

 374 

Selection of local maxima 375 

Local maxima were selected based on the L1-norm of the vectors in the vector field, which is 376 

6 
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the total size of each vector in the image. For the selection algorithm, we used scikit-image 377 

Python package to select local maxima. Briefly, 1) maximum filter is applied to dilate the original 378 

image, 2) the locations where the maximum filtered image equal to the original image are 379 

selected. The maximum filter with size 3 was used throughout the examples presented in this 380 

paper. 381 

 382 

Downsampling of the vector field 383 

For a scalable cell-type identification analysis, the vector field is downsampled to a smaller set 384 

of vectors based on local maxima selection strategy (Supplementary discussion). SSAM applies 385 

two thresholds for local maxima selection: 1) a minimum expression threshold for a single gene 386 

defined as the height of a single Gaussian kernel to avoid regions with signal from only the 387 

Gaussian tail (see Discussion section for details), which also corresponds to the position of the 388 

observable drop in the histograms of gene expression (Supplementary Fig. 3A, 17A, 28A); 2) 389 

a minimum total gene expression (i.e. L1-norm) threshold (Supplementary Fig. 3B, 17B, 28B). 390 

Furthermore, we implemented an optional “input mask” feature to limit sampling of vectors to 391 

regions of the image containing informative data, e.g. a mask outlining the informative tissue 392 

area. 393 

 394 

Comparison of local maxima and random sampling strategies 395 

The two local maxima sampling methods, 1) local maxima sampling and 2) random 396 

downsampling, were compared to justify our preference of local maxima sampling method for 397 

the downstream analysis. The osmFISH data was used for the comparison. Firstly 11,469 local 398 

maxima vectors were found in the vector field using a window size of 3, a minimal gene 399 

expression and L1 norm thresholding. For comparison, the same number of vectors were 400 

randomly sampled from the vector field, using the same thresholds used for local maxima 401 

selection. At the locations of the vectors, both the local maxima and the random sampled 402 
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locations, the classified cell types on the cell-type map guided by segmentation-based 403 

signatures are called. For each case, the Pearson’s correlation coefficients between the vectors 404 

and the signature of the cell types are calculated and plotted as a distribution (Supplementary 405 

Fig. 39). 406 

 407 

Variance stabilization of local maxima vectors and the vector field 408 

Since the gene expression profiles of local maxima vectors are representative of the 409 

transcriptomes of cells, we considered them to be analogous to the gene expression count 410 

matrix obtained from single cell RNA sequencing (scRNA-seq) using unique molecular 411 

identifiers (UMI). Therefore, we normalized the local maxima vectors of the vector field (which 412 

would be representative of single cells) using sctransform37, a normalization and regularization 413 

algorithm for UMI count data. After that, each vector of the vector field is normalized using 414 

sctransform, with the same parameters previously used to normalize the local maxima. 415 

 416 

Clustering of representative gene expression vectors 417 

The SSAM framework supports clustering via DBSCAN24, HDBSCAN25, OPTICS26 and an 418 

implementation of the Louvain algorithm equivalent to that in the R package, Seurat27. DBSCAN, 419 

HDBSCAN and OPTICS are implemented via the scikit-learn Python library. The Louvain 420 

clustering algorithm is based on the R package Seurat27 reimplemented in Python. In short, an 421 

SNN network with correlation metric is built using a python package NetworkX38. The weight of 422 

the network is calculated by a Jaccard similarity coefficient. A weight smaller than 1/15 was set 423 

to zero. Clustering was done by detecting communities in the network using a Louvain 424 

community detection algorithm implemented in Python (python-louvain, https://python-425 

louvain.readthedocs.io/). It is known that the Louvain algorithm is not sensitive in detecting small 426 

clusters39, optionally DBSCAN algorithm can be applied to subcluster each Louvain cluster. This 427 

sub-clustering strategy is conceptually similar to the “Polished Louvain” algorithm in Zeisel et 428 
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al31. 429 

 430 

Diagnostic plots 431 

After unsupervised clustering of gene expression vectors, some clusters may need to be 432 

manually merged or discarded. SSAM supports merging of clusters based on correlation of 433 

gene expression profile, however in many cases manual inspection is needed to rule out any 434 

non-trivial issues. To guide this process, SSAM generates a cluster-wise ‘diagnostic plot’, which 435 

consists of four panels: 1) location of the clustered vectors on the tissue image, 2) the pixels 436 

classified to belong the cluster signature (the cluster centroid), 3) the mean expression profile of 437 

the clustered vectors, and 4) the t-SNE or UMAP embedding. 438 

 439 

In the three datasets analyzed the clusters to be merged or removed often showed a 440 

discordance between the location of sampled vectors used to determine the cluster (panel 1) 441 

and the pixels classified to belong to that cluster (panel 2). In case of overclustering, i.e. when a 442 

cell-type signature is split over 2 clusters, the map typically does not classify the full shape of 443 

the cells but instead only fragments (panel 2), and having almost the same marker gene 444 

expression of another cluster (panel 3). Such clusters can be merged. For dubious clusters that 445 

should be removed, we observed that vectors usually originate from outside the tissue region or 446 

from image artifacts (panel 1), or that the gene expression does not show any clear expression 447 

of marker genes or similarity to expected gene expression profiles (panel 3). 448 

The remaining clusters are then annotated by comparing cluster marker genes to known cell-449 

type markers. Note that in many cases, the identity of clusters can be easily assigned by 450 

comparing the centroids of the clusters to the known cell-type signatures, e.g., from single cell 451 

RNA sequencing. To support rapid annotation of cell types to clusters, SSAM additionally shows 452 

the highest correlating known cell-type signature should this data be available in panel 3. The 453 

diagnostic plots for osmFISH, MERFISH, and multiplexed smFISH data are available online in 454 
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the Jupyter notebook uploaded to zenodo (http://doi.org/10.5281/zenodo.3478502). 455 

 456 

Statistical evaluation of cell-type mapping 457 

The accuracy of the SSAM cell-type map was validated by comparing the published osmFISH 458 

segmentation and the SSAM de novo cell-type map by two different methods. 459 

 460 

Firstly, to quantitatively compare concordance of cell-type we implemented a matching score. 461 

The matching score for any given cell type is defined as the number of segmented cells with at 462 

least 10% of matched with the SSAM guided or de novo mode cell type map of the 463 

corresponding cell type of the segment, divided by the total number of segments of the cell type 464 

which represents the ratio of segments identified by SSAM. The threshold of 10% was 465 

empirically selected to account for differences in cell location in the tissue, especially for very 466 

small cells where subtle changes in cell-type labeling can drastically reduce the overlap within 467 

the segmented area. 468 

 469 

Secondly, for evaluation of discrepancies in cell-type locations compared to the original studies, 470 

we compare the unique part of each segmentation and SSAM de novo cell-type map to the 471 

parts that are overlapping in both maps in the osmFISH dataset. The gene expression vectors 472 

originating from overlapping parts of the same cell types (Supplementary Table 3), were 473 

regarded as the ground truth set. Then, two sets of unique vectors were defined: 1) the 474 

segmentation-only set, the vectors from the regions occupied by segments excluding the 475 

overlap, and 2) the SSAM-only set, the vectors from SSAM cell-type map only regions. The 476 

distribution of the gene expression vectors in the overlapping set was then compared to the two 477 

unique parts (Supplementary Fig. 14A). To compare the accuracy of cell-type mapping of the 478 

two unique parts, Pearson’s correlation coefficient is calculated between the mean expression 479 
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of the ground truth set and the vectors in each set (Supplementary Fig. 14B). 480 

 481 

Quantification of doublets 482 

The doublet rates were evaluated by two Python packages, DoubletDetection40 and Scrublet41 483 

(Supplementary Table 8). As the two algorithms require raw counts as input, the unnormalized 484 

raw vectors at local maxima used for clustering analysis were used as input of the two 485 

algorithms, as an analogy of the raw counts. For DoubletDetection, the doublet rate was 486 

calculated by dividing the number of doublets reported by the number of total local maxima. The 487 

doublet rate quantification by both methods was consistent, and negligible in the osmFISH and 488 

multiplexed smFISH datasets (average doublet rate of <0.5% for both), and marginal for 489 

MERFISH (average doublet rate of 3%). 490 

 491 

SSAM analysis of osmFISH data 492 

KDE was performed with a bandwidth of 2.5 μm. The individual gene expression threshold and 493 

total gene expression threshold for selection of local maxima were 0.027 (the height of a single 494 

Gaussian) and 0.04, respectively (Supplementary Fig. 3A, 3B). Since the selected local 495 

maxima includes many locations outside of the tissue area, we further filtered local maxima 496 

based on their local density approximated using the k-nearest neighbor algorithm. More 497 

specifically, local maxima with a density lower than 0.002 over the closest 100 local maxima, 498 

corresponding to fewer than 100 local maxima in a 126.2 μm radius, were filtered out 499 

(Supplementary Fig. 3C). The selected local maxima vectors were passed to sctransform to 500 

determine normalization parameters, after which the whole vector field was normalized. 501 

 502 

In SSAM guided mode, the mRNA count matrix of both the previously segmented cells and the 503 

scRNA-seq data were normalized by sctransform. The centroid of each of the annotated 504 

clusters was used to classify cell types in the vector field, generating a cell-type map guided by 505 
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prior knowledge. 506 

 507 

In SSAM de novo mode, the selected local maxima vectors were clustered using the Louvain 508 

algorithm with a resolution of 0.15, resulting in 66 clusters (Supplementary Fig. 4A). Distinct 509 

clusters representing the same cell types were identified and then manually merged, and 510 

spurious clusters were removed, resulting in a total of 30 clusters (Fig. 2A, 2B). For each 511 

cluster, the vectors with insufficient correlation to its cluster medoid were excluded from the 512 

centroid calculation (Supplementary Fig. 1B). The cluster centroids were compared to that of 513 

the segmentation-based (Supplementary Fig. 4B) and scRNA-seq cell-type signatures 514 

(Supplementary Fig. 4C) using Pearson’s correlation coefficient. The de novo clusters were 515 

named after the highest correlating segmentation-based cluster. Note that clusters closest 516 

mapped to Inhibitory IC and Inhibitory CP cell types do not only appear in the internal capsule 517 

and caudoputamen, but also in the cortex. Therefore, we renamed these clusters to Inhibitory 518 

Kcnip2 (since Kcnip2 was the third most expressed gene for this cluster) and Inhibitory Rest, 519 

respectively. After classification of the local maxima, we quantified the doublet rates (Methods, 520 

Supplementary Table 8). 521 

 522 

Tissue domain analysis was performed using a sliding circular window with radius 100 μm with 523 

a step of 10 μm. The cell-type proportions from each window were clustered using 524 

agglomerative hierarchical clustering with 15 clusters as an initial estimate, subsequently 525 

merging the clusters with correlation coefficients higher than 0.8. Spatially connected clusters 526 

with a correlation coefficient higher than 0.6 were merged. The resulting domain map was 527 

resized to match the size of the cell-type map, after which the cells in different domains were 528 

colored. 529 

 530 
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Quantification of mRNA abundance in astrocytes and other brain cell types for osmFISH 531 

data interpretation 532 

The “L5_All.loom” loom object containing scRNA-seq expression data of half a million cells from 533 

the mouse nervous system31 was downloaded (http://mousebrain.org/downloads.html). The total 534 

number of mRNA molecules per cell were extracted and aggregated by their level 2 class labels 535 

(astrocytes, immune, vascular, ependymal, neuronal, peripheral glia and oligodendrocyte cells) 536 

using Python. The counts were log normalized and subsequently followed a normal distribution 537 

(tested using the Shapiro-Wilk test for normality, all p-values < 1 x 10e-4 for each class), 538 

therefore a Student’s t-test was applicable. For each of the two classes of interest 539 

(‘Astrocytes’, ’Immune’), we performed independent log-space t-tests for unequal sample sizes 540 

and unequal variance against each of the other classes. Both astrocyte and immune cell 541 

classes have significantly lower mRNA molecule counts compared to other cell types (all p-542 

values < 1 x 10e-12). While the distribution of mRNA counts in log space followed a normal 543 

distribution, the use of a Student’s t-test for large numbers may be not appropriate. Hence, we 544 

also describe the difference in their distributions. For both astrocyte and immune cell classes, 545 

more than half of the cells of each class exhibited a lower UMI count than the lowest quartile of 546 

any other cell class. 547 

 548 

SSAM analysis of MERFISH data 549 

KDE was performed with bandwidth 2.5 μm. Local maxima were filtered using a gene 550 

expression threshold of 0.0055, and then filtered with total gene expression threshold of 0.0035 551 

(Supplementary Fig. 17A, B). The selected local maxima vectors were passed to sctransform 552 

to determine normalization parameters, after which the whole vector field was normalized. 553 

 554 

In SSAM guided mode, the mRNA count matrix of both the previously segmented cells and the 555 

scRNA-seq data were normalized by sctransform. The centroid of each of the annotated 556 
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clusters was used to classify cell types in the vector field, generating a cell-type map guided by 557 

prior knowledge. 558 

 559 

For SSAM de novo mode, the selected vectors were clustered using the Louvain algorithm with 560 

a resolution of 0.15, resulting in 68 clusters (Supplementary Fig. 17C). By manual inspection of 561 

gene expression and localization, overclustering was merged, and spurious clusters were 562 

removed, resulting in a total of 50 clusters (Fig. 2A, 2B). For each cluster, the vectors that did 563 

not have high correlation to its cluster medoid were excluded from the centroid calculation 564 

(Supplementary Fig. 1B). The centroids of the clusters are compared with that of the 565 

segmentation-based clustering result and scRNA-seq result using Pearson’s correlation 566 

coefficient (Supplementary Fig. 17E, F). The SSAM de novo clusters correlating best to 567 

inhibitory and excitatory neurons were named based on the most highly expressed gene of each 568 

cluster, and the non-neuronal clusters were named based on the previous study5. After 569 

classification of the local maxima, we quantified the doublet rates (Methods, Supplementary 570 

Table 8). We noticed a number of small blobs on the cell type map, which are resultant from 571 

cells on a different plane in the 3D image (Movie 2). After classification of the local maxima, we 572 

quantified the doublet rates (Methods, Supplementary Table 8). 573 

 574 

Tissue domain analysis based on the cell-type map was performed using a sliding spherical 575 

window with radius 100 μm with a step of 10 μm. The cell-type proportions from each window 576 

were clustered using agglomerative hierarchical clustering with 20 clusters as an initial estimate, 577 

subsequently merging the clusters with correlation coefficient higher than 0.8. The resulting 578 

domain map was resized to match the size of the cell-type map, after which the cells in different 579 

domains were colored. 580 

 581 
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Comparison of localization of inhibitory and excitatory neurons 582 

For a number of inhibitory and excitatory neuronal subtypes identified in the posterior POA 583 

tissue image using SSAM de novo mode, we identified the best matching cell types based on 584 

Pearson correlation of their gene expression signatures (Supplementary Fig. 17F). We 585 

matched the following cell types: SSAM cluster 39 (C39) called Inhibitory Coch to Moffitt cluster 586 

I-12, C16 Inhibitory Arhgap36 to I-13, C45 Inhibitory Isr4 to I-15, C34 Inhibitory Calcr to I-14 , 587 

C14 Inhibitory Gda to I-23, C19 Excitatory Cbln1-Cbln2 to E-19, C42 Excitatory Omp to E-16, 588 

C25 Excitatory Necab1-Gda to E-9, C8 Excitatory Necab1 to E-14, and C36 Excitatory Col25a1 589 

to E-24. For these cell types we checked the tissue localizations reported in the previous studies 590 

figures 5a, 5c, 5e, 6b, 6d, and S175. Side-by-side comparison of the localization of these 591 

neuronal cell types revealed very similar patterns of localization computed by SSAM and the 592 

original publication (Supplementary Fig. 22). 593 

 594 

3D modelling of MERFISH cell-type maps 595 

Firstly, the connected components in 3D were determined using the python package connected-596 

components-3d (https://github.com/seung-lab/connected-components-3d). Components 597 

comprising fewer than 100 voxels were removed. After this, the voxels filling connected 598 

components were removed, and only the contours were used for the vertex of the 3D models. 599 

For each vertex, the vertex normal was calculated by simple physics simulation, assuming that 600 

the direction of a vertex normal vector is the same as the force vector when there are pulling 601 

forces between all of the contour voxels. The surface of the objects was reconstructed using 602 

screened Poisson reconstruction algorithm42,43 using default parameters. The number of 603 

vertices was reduced to 5% of the total number of vertices using the ‘vtkQuadricDecimation’ 604 

function44,45 of VTK library46. Finally, the objects were merged into a single file. Each scene of 605 

the rotating movie was created using Meshlab47. 606 

 607 
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VISP multiplexed smFISH data generation 608 

Multiplexed smFISH data of the mouse primary visual cortex (VISp) was generated as part of 609 

the SpaceTx consortium. Tissue processing was carried out as previously described48, with 610 

some modifications. 611 

 612 

Silanization of coverslips (#1.5, Thorlabs CG15KH) was performed by plasma cleaning for 30 613 

min in a Plasma-Prep III (SPI 11050-AB), followed by vapor deposition of 3-614 

aminopropyltriethoxysilane (APES, Sigma A3648) in a vacuum for 10 minutes. Coverslips were 615 

then washed in 100% methanol for 2 x 5 minutes, allowed to dry, and stored in a dust-free 616 

environment until use. 617 

 618 

Fresh-frozen mouse brain tissue was sectioned at 10 μm onto silanized coverslips, let dry for 20 619 

min at -20°C, then fixed for 15 min at 4 °C in 4% PFA in PBS. Sections were washed 3 × 10 min 620 

in PBS, then permeabilized and dehydrated with chilled 100% methanol at -20°C for 10 min and 621 

allowed to dry. Sections were stored at −80 °C until use. Frozen sections were rehydrated in 2X 622 

SSC (Sigma 20XSSC, 15557036) for 5 min, then treated 10 min with 8% SDS (Sigma 724255) 623 

in PBS at room temperature. Sections were washed 5 times in 2X SSC. Sections were then 624 

incubated in hybridization buffer (10% Formamide (v/v, Sigma 4650), 10% dextran sulfate (w/v, 625 

Sigma D8906), 200 µg/mL BSA (ThermoFisher AM2616), 2 mM ribonucleoside vanadyl 626 

complex (New England Biolabs S1402S), 1 mg/ml tRNA (Sigma 10109541001) in 2X SSC) for 5 627 

min at 37°C. Probes were diluted in hybridization buffer at a concentration of 250 nM and 628 

hybridized at 37°C for 2 h. Following hybridization, sections were washed 2 × 10 min at 37°C in 629 

wash buffer (2X SSC, 20% Formamide), and 1 × 10 min in wash buffer with 5 μg/ml DAPI 630 

(Sigma 32670), then washed 3 times with 2X SSC. Sections were then imaged in Imaging buffer 631 

(20 mM Tris-HCl pH 8, 50 mM NaCl, 0.8% glucose (Sigma G8270), 30 U/ml pyranose oxidase 632 

(Sigma P4234), 50 µg/ml catalase (Abcam ab219092). Following imaging, sections were 633 
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incubated 3 × 10 min in stripping buffer (65% formamide, 2X SSC) at 30°C to remove 634 

hybridization probes from the first round. Sections were then washed in 2X SSC for 3 × 5 min at 635 

room temperature before repeating the hybridization procedure. 636 

 637 

The multiplexed smFISH image data was collected and processed using methods previously 638 

described48, except that images from different rounds of hybridization were registered in (x, y) 639 

based on the DAPI signal. The raw images are available on request. 640 

 641 

SSAM analysis of VISp multiplexed smFISH data 642 

KDE was performed with bandwidth 2.5 μm. Local maxima were filtered using a gene 643 

expression threshold of 0.027, and then filtered with total gene expression threshold of 0.2 644 

(Supplementary Fig. 28A, B). The selected local maxima vectors were passed to sctransform 645 

to determine normalization parameters, after which the whole vector field was normalized. To 646 

identify rare cell types expected to exist in this tissue, the initial clustering result by Louvain 647 

algorithm was sub-clustered by DBSCAN (Method). Initially 49 clusters were obtained with a 648 

resolution parameter of 0.15. By manual inspection, several over-clustered cell types, including 649 

nine L2/3 IT 1, two L2/3 IT 2, six L4 IT 2, six L6 CT, and two L6 IT 2 clusters were merged, and 650 

one spurious cluster was removed, resulting in 28 clusters. The centroids of the clusters are 651 

compared with that of scRNA-seq result using Pearson’s correlation coefficient 652 

(Supplementary Fig. 28E). The clusters were named after the highest correlating scRNA-seq 653 

cluster, except the newly found ‘L4 IT Superficial’ (L4 IT 2) cluster. After classification of the 654 

local maxima, we quantified the doublet rates (Methods, Supplementary Table 8). 655 

 656 

Tissue domains were defined using a sliding circular window with radius 100 μm with step of 10 657 

μm over the cell-type map image. Cell type compositions of the windows were clustered using 658 

agglomerative clustering, initially with 20 clusters. Clusters with Pearson’s correlation higher 659 
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than 0.7 were merged to result in nine clusters. Further, two clusters were merged since they 660 

were different parts of the Pia layer, resulting in a final set of seven clusters representing tissue 661 

domains (Fig. 6). 662 

 663 

Plotting 664 

The python packages Matplotlib 3.1.049 and Seaborn 0.9.050 were used to draw 2D images, 665 

plots, and heatmaps. We include helper functions in SSAM to easily generate plots. 666 

 667 

Movies 668 

Movies were generated by using Virtualdub (1.10.4-AMD64, http://www.virtualdub.org/). The 669 

H.264 codec was used to compress videos. 670 

 671 

Software 672 

Python version 3.7.0 was used throughout. The following python packages were used: 673 

numpy, scipy, pandas, matplotlib, seaborn, scikit-learn, umap-learn, python-louvain, sparse, 674 

scikit-image. R package sctransform was used for normalization and variance stabilization of 675 

the data. 676 

 677 

Data availability 678 

The source code of SSAM is available online at https://github.com/eilslabs/ssam. A Jupyter 679 

notebook (https://github.com/eilslabs/ssam_example) outlines the commands used to download 680 

and pre-process the data, and to reproduce the results and figures of this study. The Jupyter 681 

notebooks also contain the extensive diagnostic plots used for parameter selection, and choice 682 

of removal or merging of clusters. All large files are available online from 683 

http://doi.org/10.5281/zenodo.3478502. 684 
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The osmFISH data (Codeluppi et al., 2018) used within the study is available from 686 

http://linnarssonlab.org/osmFISH/availability/. The single cell RNA sequencing data of the 687 

mouse somatosensory cortex28,29 are available from http://loom.linnarssonlab.org/. The single 688 

cell RNA sequencing data31 used to compare total mRNA molecules between cell types are 689 

available from http://mousebrain.org/. The high resolution poly-A and DAPI images of osmFISH 690 

data (Codeluppi et al., 2018) were kindly provided by Sten Linnarsson. The MERFISH data 691 

(Moffitt et al., 2018) is available from https://datadryad.org/handle/10255/dryad.192644. Mouse 692 

VISp multiplexed smFISH data are available from http://doi.org/10.5281/zenodo.3478502. 693 
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Figure 1. Schematic diagram of the SSAM computational workflow for cell type and tissue domain definition based
on gene expression data.
(A) In step 1, SSAM converts mRNA locations into a vector field of gene expression values. For this, SSAM applies a Gaussian
KDE to mRNA locations for each gene and projects the resulting mRNA density values to a square lattice which represents
coordinates in the tissue. The mRNA density estimated per each gene are stacked to produce a “gene expression vector field”
over the lattice. The gene expression vector field is analogous to a 2D/3D image where each pixel/voxel encodes the averaged
gene expression of the unit area. Further details of the application of KDE can be found in Supplementary Fig. 1A; (B) In
step 2, cell-type signatures are identified de novo. First, the gene expression profile at probable cell locations are identified
as the local regions in the gene expression vector field where the signal is highest. These downsampled gene expression
signals are identified and used for de novo cell type identification by cluster analysis. Alternatively, previously defined cell-type
signatures can be used. (C) In step 3, a cell-type map is generated. For this, the cell-type signatures are mapped onto the
gene expression vector field and cell types are assigned based on Pearson’s correlation between each cell-type expression
signature to the vector field to define cell-type distribution in situ. Further details about creating the cell-type map can be found
in Supplementary Fig. 2A; (D) In step 4, the tissue domains are identified. The tissue domain signatures are identified using
a sliding window to compute domain signatures based on the count of cell-type labels in the window. The tissue domains are
defined by clustering these signatures. Further details on creating the tissue domain map can be found in Supplementary Fig.
2B.
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Figure 2. SSAM improves astrocyte and ventricle detection in the mouse SSp region.
(A) Gene expression heatmap showing cell-type specific expression of marker genes (8,252 vectors). Rows show z-score
normalized gene expression and columns show the gene expression patterns of filtered local maxima vectors. The top anno-
tation shows the cell types and coloring based on the best correlating segmentation-based cell-type signature from Codeluppi
et al. The colors of the top annotation correspond to the cell type legend in Fig. 2B; (B) A t-SNE map of cell-type signa-
tures with distinct expression. Cell-type clusters are visualized as a 2D t-SNE embedding of filtered local maxima vectors.
Cell-type annotation and coloring are based on the best correlating segmentation-based cell-type signature from Codeluppi
et al (Supplementary Fig. 4C,D). The cell-type legend is grouped by cell-type classes labels shown in the tSNE plot, and are
based on groupings by Codeluppi et al.; (C) The SSAM de novo cell-type map showing spatial organization of the cell types
signatures in the gene expression vector field. Inset shows a zoom in of the highlighted tissue region. The colors of the cell
types correspond to the cell-type legend in Fig. 2B; (D) SSAM improves the reconstruction of the ventricle. The upper left 2
panels show the DAPI and Poly-A signal around the ventricle area, showing tightly packed cells (occlusion) and lower signal
in the ventricle structure compared to surrounding cells. The lower left 2 panels show the KDE gene expression signature
for Foxj1 (the marker for ependymal cells) and Ttr (the marker for choroid plexus cells). The upper right 2 panels show the
cell-type maps reconstructed by SSAM, showing a more complete reconstruction, and by Codeluppi et al., which misses parts
of the ventricle structure. The bottom right 2 panels show the reconstructions of only the ependymal (yellow) and choroid
plexus (teal) cell types by SSAM and Codeluppi et al.; (E) SSAM has increased sensitivity of astrocyte detection. The far left
upper and lower panels show DAPI and Poly-A signal for a region in the tissue. The middle left upper and lower panels show
the overlap of Mfge8 signal (a marker for one astrocyte) with DAPI and Poly-A signals, showing that Mfge8 signal corresponds
with low Poly-A signal, but with higher DAPI signal. The top right 2 panels show the cell-type signals for Mfge8 expressing
astrocytes by SSAM and Codeluppi et al., showing that SSAM detect much more astrocyte cell types. The bottom right 2
panels shows the overlay of Mfge8 signal with the cell-type calls by SSAM and Codeluppi et al., showing the astrocyte signals
detected by SSAM correspond well with Mfge8 signal.
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Figure 3. SSAM identifies cortical layer tissue domains in the mouse SSp cortex.
(A) Tissue domain map generated by SSAM. Tissue domain signatures were identified from clustering local cell-type compo-
sition over sliding 100 μm circular windows, and projected back onto the cell-type map. The reconstruction shows the various
cortical layers; (B) Cell-type composition within each tissue domain. The plots show that each domain consists of 7-14%
Astrocyte Mfge8 cell types, apart from the ventricle, which instead shows a majority of Choroid plexus and Ependymal cell
types.
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Figure 4. SSAM 3D cell type map confirms rich diversity of heterogeneous cells in the posterior hypothalamic POA.
(A) Gene expression heatmap showing cell-type specific expression of marker genes (4,714 vectors). Rows show z-score
normalized gene expression and columns show the gene expression patterns of filtered local maxima vectors (representative
of gene expression within a cell). The bottom row of the top annotation shows the cell types. Due to a rich diversity of various
inhibitory and excitatory neurons captured, the cell types were grouped into classes. The top row of the top annotation shows
the cell classes which are named and colored based on the best cell-type signatures and cell classes from Moffitt et al. The
colors of the cell classes top annotation correspond to the cell-type legend in Fig. 4B. The colors of the cell types are available
in Supplementary Fig. 16; (B) A tSNE map of cell-type signatures with distinct expression. Cell-type clusters are visualized as
a 2D t-SNE embedding of filtered local maxima vectors. Cell-type annotation and coloring are based on the best correlating
segmentation-based cell-type signature from Moffitt et al. The tSNEmap clearly shows the distinct cluster of different inhibitory
and excitatory cell-type signatures. Cell types are grouped into classes based on groupings by Moffitt et al.; (C) The SSAM
de novo 3D cell-type map showing spatial organization of the cell types signatures in the gene expression vector field. Below
left and right a zoom in of the highlighted tissue regions of the ventricle structure and clusters of oligodendrocyte cell types.
The colors of the cell types correspond to the cell-type legend in Fig. 4B; (D) Spatial localization of various inhibitory cell-
type signatures. We found a number of inhibitory cell types which both matched expression signature and tissue localization
described by Moffitt et al. See also Supplementary Fig. 22; (E) As panel D, but for excitatory cell types.
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Figure 5. SSAM identifies layer structure in VISp and confirms rare Sst Chodl cell type in the mouse VISp region.
(A) Gene expression heatmap showing cell-type specific expression of marker genes (4,113 vectors). Rows show z-score
normalized gene expression and columns show the gene expression patterns of filtered local maxima vectors. The top anno-
tation shows the cell types and coloring based on the highest correlating single cell RNA-seq based cell-type signature from
previous result (Tasic et al., 2018). The colors of the top annotation correspond to the cell-type legend in Fig. 5B; (B) A tSNE
map of cell-type signatures with distinct expression. Cell-type clusters are visualized as a 2D t-SNE embedding of filtered local
maxima vectors, with groupings based on the supplementary table 9 of Tasic et al. 2018. Cell-type annotation and coloring
are based on the best correlating segmentation-based cell-type signature from previous result (Tasic et al., 2018); (C) The
SSAM de novo cell-type map showing spatial organization of the cell types. Highlighted are the tissue regions of the cortex
including novel L4 IT cell type sub-layering (main panel, purple, white arrows, lower left panel, see also Supplementary Fig.
29B), and rare Sst Chodl cell type (lower right panel, yellow, see also Supplementary Fig. 29C). The colors of the cell types
correspond to the cell-type legend in Fig. 5B.
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Figure 6. Rare Sst Chodl cell type localizes to the L6-1 layer of the mouse VISp region.
(A) Tissue domain map generated by SSAM. Tissue domain signatures were identified from clustering local cell-type compo-
sition over sliding 100 μm circular windows, and projected back onto the cell-type map. The reconstruction shows the various
cortical layers within the adult mouse VISp, with very clear separation of the Pia layer, and separation of layer 4 and layer 6
into 2 sub-layers. Inset zooms into the location of the rare Sst Chodl cell type found in layer 6-1; (B) Cell-type composition
within each tissue domain.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2020. ; https://doi.org/10.1101/800748doi: bioRxiv preprint 

https://doi.org/10.1101/800748
http://creativecommons.org/licenses/by-nc-nd/4.0/

