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Abstract 
We introduce Trans-NanoSim, the first tool that simulates reads with technical and transcriptome-specific 

features learnt from nanopore RNA-seq data. Through benchmarking on sets of nanopore reads from 

human and mouse reference transcriptomes, we show the robustness of Trans-NanoSim in capturing the 

characteristics of nanopore cDNA and direct RNA reads. As a cost-effective alternative to sequencing 

real transcriptomes, Trans-NanoSim would facilitate the rapid development of analytical tools for 

nanopore RNA-seq data. Trans-NanoSim is freely accessible at https://github.com/bcgsc/NanoSim 

 

Background 
RNA-sequencing (RNA-seq) is a cornerstone technology that has helped study and further our 

understanding of transcriptomes [1]. Third-generation single-molecule sequencing technologies such as 

those from Oxford Nanopore Technologies (ONT, Oxford, UK) are proving invaluable for isoform-level 

analyses. For example, ONT reads, ranging from 1-100 kb long, permit identification and quantification 

of most full-length isoforms in the human transcriptome and enable various complex feature analyses [2–

5]. In recent years, there has been an increase in development of novel algorithms to leverage the power 

of this technology [6-11]. In this active field, simulated data with a known ground-truth is a cost-effective 

means to help develop, refine, and benchmark these tools.  

 

Long-read simulators have been developed for ONT genomic reads [12–13]. For example, NanoSim [12] 

utilizes statistical models to learn the characteristics of user-provided data, and then applies those models 

to simulate ONT genomic reads. DeepSimulator [13] employs a context-dependent deep learning model 

to simulate the electrical current signal, followed by base-calling. However, neither tool is specifically 

designed to simulate transcriptomic reads. Further, they do not address transcriptome-specific features 

such as transcript expression profiles and intron retention (IR) events. While transcript expression levels 
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inform about the biological state of a transcriptome, IR, as one of the main forms of alternative splicing, 

contributes to the functional complexity of eukaryotic transcriptomes [14]. ONT reads have the potential 

in capturing complex IR events involving multiple introns, thus allowing researchers to investigate IR at 

isoform-level resolution. Currently, there is an unmet need for an ONT RNA-seq simulator, which can aid 

the development of transcriptome analysis methods without the expense of sequencing experiments. 

 

Here we present Trans-NanoSim, the first ONT transcriptome read simulator, implemented within the 

NanoSim [12] package. When provided with experimental data, Trans-NanoSim first learns platform-

specific features including read length distributions and error models, and transcriptome-specific features 

including IR events and expression profiles. Then, at the simulation stage, it utilizes these profiles to 

generate in silico reads for a given reference transcriptome (Fig 1, Methods). We benchmarked the 

performance of Trans-NanoSim against DeepSimulator by generating sets of synthetic reads using 

publicly available experimental ONT cDNA and direct RNA reads describing human and mouse 

transcriptomes (Methods, Supplementary Note 1 and 2). 

 

Results and discussion 

For the human cDNA dataset, the length distribution of synthetic reads generated by Trans-NanoSim 

(mean = 853 nt) followed the empirical read length distribution (mean = 811 nt) closely (Fig. 2a). 

Through bootstrapping, the mean length of synthetic reads remained consistent with a standard deviation 

of 1 nt (Supplementary Note 3). Although we configured DeepSimulator to preserve the mean read 

length of empirical reads, the mode of synthetic read lengths was ~150 nt. We believe that this limitation 

is due to the predefined read-length distributions of DeepSimulator. Further, being a genome simulator, it 

does not associate the isoform expression levels with the lengths of constituent reads. 

 

To determine whether synthetic reads generated by both tools account for transcript isoform expression 

and usage, we used the quantify module in Trans-NanoSim to measure the transcript expression levels for 

both empirical and simulated reads from a human reference transcriptome (Methods, Supplementary 

Note 2). The coefficient of determination (R
2
) between the estimated transcript abundance of empirical 

ONT reads and the simulated reads generated by Trans-NanoSim and DeepSimulator were 0.9272 and 

0.0021, respectively (Fig. 2b). These results indicate that reads simulated by Trans-NanoSim follow the 

expression profiles of the empirical reads closely, which is a feature not available in genomic simulators.  

 

The IR modeling module of Trans-NanoSim identified 2,594 transcripts in the human cDNA dataset with 

at least one retained intron, and nearly half of them (1,238 transcripts) were expressed at over two 

Transcripts Per Million (TPM) (Methods, Supplementary Note 2). Interestingly, a transcript containing 

five retained introns (Ensembl transcript ID: ENST00000290541.7) was highly expressed (TPM = 389). 

The IR modeling module also reports the transitional probability of each intron being retained based on 

the state of previous intron, a model that the pipeline uses for read simulations. In the human cDNA 

dataset, only 0.29% of reads spanned the first intron of the represented transcript. However, given an 

intron is retained, the probability of observing the subsequent intron being retained was 10.78%. 

 

Finally, we aligned the synthetic and empirical reads to the reference transcriptome, and evaluated the 

length of consecutive match/error bases in both sets (Methods, Supplementary Notes 2). While the error 

rate of the empirical ONT reads from human cDNA dataset was 15.30%, the synthetic reads generated by 
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Trans-NanoSim and DeepSimulator were 14.10% and 9.19%, respectively (Supplementary Table 1). 

Combined with the length distribution of base-calling events, it is evident that Trans-NanoSim mimics 

error and match events more closely to the experimental data (Fig. 2c). 

 

We evaluated the computational performance of Trans-NanoSim and DeepSimulator through 

characterizing and simulating 890,503 reads describing the human reference transcriptome 

(Supplementary Note 2). Although both tools allow users to train their model with any dataset, authors 

of DeepSimulator noted that this step is computationally intensive, and advised their users against trying 

it (https://github.com/lykaust15/DeepSimulator). On the contrary, Trans-NanoSim took merely an hour to 

train. In simulation stage, Trans-NanoSim ran for 19h50m with peak memory of 990 MB while 

DeepSimulator ran for 45h02m with peak memory of 17.22 GB. Trans-NanoSim performed even faster 

(6h38m) when IR modeling is not requested (Additional information in Supplementary Table 2).  

 

We recapitulated our result by repeating all analysis presented here on human direct RNA and mouse 

cDNA sequencing data and obtained similar findings (Supplementary Figs. 1 and 2, respectively). Our 

evaluations demonstrate the robustness of Trans-NanoSim in learning and mimicking the length 

distribution and sequence error profiles of nanopore RNA-seq reads. Moreover, Trans-NanoSim provides 

a solution to the characterization of transcriptome-specific features, such as isoform expression and IR 

events, which cannot be addressed by genomic read simulators. As the first ONT RNA-seq read 

simulator, Trans-NanoSim will offer important resources to the community. We anticipate that it will 

facilitate the development of novel isoform-level analysis algorithms, including transcriptome assemblers 

and aligners that leverage the potential of long nanopore reads.  
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Figures 

 

 

Fig 1: Schematic overview of the Trans-NanoSim pipeline. The first stage (Characterization) of the 

pipeline aligns input ONT transcriptome reads against the reference transcriptome to statistically model 

the read length distribution and error modes. It also optionally detects intron retention events, and 

quantifies transcript expression. The length, error and expression profiles are then used in the second 

stage (Simulation) to generate synthetic reads, also reporting their associated error profiles. 
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Fig 2: Benchmarking Trans-NanoSim and DeepSimulator on the human cDNA dataset. a, 
Comparison of length distributions of experimental reads and simulated reads generated by Trans-

NanoSim and DeepSimulator. b, Transcript expression levels measured from simulated reads versus the 

same measured from experimental reads. c, The length of consecutive match/error bases of empirical and 

simulated reads, as indicated.  
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Methods 

Trans-NanoSim workflow 

The main workflow of Trans-NanoSim consists of two stages: (1) characterization and (2) simulation 

(Figure 1). In the characterization stage, Trans-NanoSim utilizes statistical models to profile read error 

modes, read length distribution, transcript expression patterns, and intron retention (IR). The first step in 

characterization stage is to align a set of input reads against a reference transcriptome, using minimap2 

[7] by default (see Supplementary Note 2 for version numbers and parameters used for minimap2 and 

other tools). Users have the option to use the LAST aligner [15], or can choose any aligner that generates 

outputs compliant with SAM [16] or MAF (http://genome.ucsc.edu/FAQ/FAQformat.html#format5) 

formats. Alignment data are filtered to keep the primary alignments of each read for further analysis. We 

describe the details of each analysis stages in the following sections. The simulation stage takes a 

reference transcriptome as input (FASTA/FASTQ formats). Reads will be simulated from the input 

transcriptome sequences. For each simulated read, it selects a transcript based on expression profiles 

calculated in the characterization stage. It then extracts a sequence from that transcript based on the length 

distribution model, and applies IR and error models to modify the extracted sequence. The simulation 

stage utilizes all information from the characterization step to produce in silico reads along with 

comprehensive information on introduced errors. The modularity of the Trans-NanoSim enables users to 

run it in their desired mode for detection of IR events or quantification of transcripts expression levels. 

 

Trans-NanoSim is developed in Python and is freely accessible at https://github.com/bcgsc/NanoSim 

(Licence: GPL-3). It is platform independent and requires the following python packages to work: Six, 

numpy (Tested with version 1.10.1 or above), HTSeq, scipy (Tested with verson 1.0.0), scikit-learn 

(Tested with version 0.20.0). Reading and analyzing GTF/GFF3 files requires GenomeTools [17]. 

 

Characterizing the length distribution 

NanoSim [12] utilizes an empirical cumulative density function to simulate the length distribution of 

reads. In the current version of the pipeline, we improve on that by using kernel density estimation 

(KDE), which captures important patterns in the read length distributions, and avoids overfitting. We also 

remove the binning strategy in simulating the align ratio on each reads, resulting in a smoother simulated 

read length distribution. Theoretically, nanopore transcriptome sequencing can yield reads of the same 

length as the original mRNA molecule. However, in practice, ONT reads are generally shorter than the 

reference transcript they are derived from, which is attributable in part to RNA degradation and the 

tendency of reverse transcriptase molecules to disengage before reaching the 5’ end of the template RNA 

[18-19]. Therefore, it is crucial to consider the length of the reference transcript when simulating the 

length distribution of synthetic ONT reads. In order to achieve this, we utilize a two dimensional KDE 

model, and measure the length of an ONT read relative to the length of the reference transcript. 

Furthermore, based on alignment results, soft-clipped regions at the beginning and at the end of each read 

are also considered for length distribution analysis. We refer to these regions as head and tail in this study 

and follow the same approach to separately model the length distribution of these flanking regions. 

 

We note that, the percentage of antisense sequences in cDNA and direct RNA sequences may be 

substantially different. To capture this information, Trans-NanoSim automatically calculates the 

percentage of reads that are on the positive strand with respect to the direction of transcription of the 
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reference transcript, and applies this ratio in the simulation stage to maintain the strand ratio in simulated 

reads. 

 

Intron Retention module 

The IR module of Trans-NanoSim detects and models these events using input ONT transcriptome reads. 

It uses alignments to intronic regions to calculate Markov chain transition probabilities between the states 

of spliced and retained introns, given the state of the previous intron. This feature is part of the 

characterization phase by default, and requires a reference genome and its annotation in GTF/GFF3 

format. However, users may disable this option if they desire to do so. The module outputs 

comprehensive information on the location of the detected IR events based on input ONT reads. This 

functionality can be invoked in a standalone mode (detect_ir), enabling users to only detect and model IR 

events without characterizing or simulating reads. 

 

Transcript abundance quantification 

We incorporate a pipeline (https://github.com/jts/nanopore-rna-analysis) to estimate transcript abundance 

based on reference transcriptome alignments (this functionality is provided, courtesy of Dr. Jared 

Simpson, personal communication). It relies on minimap2 [7] with -p0 flag to retain all secondary 

mappings, and then utilizes an expectation-maximization approach similar to RSEM [20], Kallisto [21], 

and Salmon [22] to handle multi-mapping reads. It is a standalone module (quantify) which outputs 

transcript abundance in TPM values. The simulation stage of our pipeline relies on expression profiles to 

produce in silico reads.  

 

Characterizing the error modes 

It was previously demonstrated that statistical modeling of error patterns in long nanopore reads can be 

useful in simulating reads mimicking the sequencing platform [12]. In Trans-NanoSim, we build on the 

same mixture models to deal with transcriptome reads as these patterns are shared between different 

library preparation methods and datasets. According to their alignment against the reference, reads are 

classified into two groups: aligned and unaligned. For each group, we consider specific characterization 

and modeling approaches. As for the aligned reads, we consider their aligned bases for further error rate 

analysis. The length of indels and mismatches are drawn from Weibull/Geometric and Poisson/Geometric 

mixture models, respectively. We also calculate the transitional probability between each two consecutive 

error types using a Markov chain model. We re-implemented the model fitting function of NanoSim in 

Python (formerly in R), and allowed multi-threading to expedite the fitting process. Unaligned reads may 

provide crucial information about the nature of ONT sequencing experiments, and thus we chose to model 

the length distribution of the unaligned reads as well. For this purpose, we extract sequences from 

reference transcripts based on their length distribution and apply an arbitrarily high error rate (90%). 

 

Datasets used for analysis 

The datasets supporting the conclusions of this article are available from following sources. ONT cDNA 

and direct RNA sequencing reads of human NA12878 transcriptome are available under RNA project of 

Nanopore WGS Consortium (https://github.com/nanopore-wgs-

consortium/NA12878/blob/master/RNA.md). ONT MinION RNA-seq of single mouse B1a cells are 

accessible by BioProject ID PRJNA339767 (https://www.ebi.ac.uk/ena/data/view/PRJNA339767) [4]. 

Please see Supplementary Note 1 for details of datasets used in this study. 
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