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Abstract 
In interphase, the human genome sequence folds in three dimensions into a rich variety of 
locus-specific contact patterns. Here we present a deep convolutional neural network, Akita, 
that accurately predicts genome folding from DNA sequence alone. Representations learned by 
Akita underscore the importance of CTCF and reveal a complex grammar underlying genome 
folding. Akita enables rapid in silico predictions for sequence mutagenesis, genome folding 
across species, and genetic variants. 

Main text 
Recent research has advanced our understanding of the proteins driving and the sequences 
underpinning 3D genome folding in mammalian interphase, including the interplay between 
CTCF and cohesin1, and their roles in development and disease2. Still, while disruptions of 
single bases can alter genome folding, in other cases genome folding is surprisingly resilient to 
large-scale deletions and structural variants3,4. As follows, predicting the consequences of 
perturbing any individual CTCF site, or other regulatory element, on local genome folding 
remains a challenge.   
  
Previous machine learning approaches have either: (1) relied on epigenomic information as 
inputs5–7, which does not readily allow for predicting effects of DNA variants, or (2) predicted 
derived features of genome folding (e.g. peaks8,9), which depend heavily on minor algorithmic 
differences10. Making quantitative predictions from sequence poses a substantial challenge: 
base pair information must be propagated to megabase scales where locus-specific patterns 
become salient in chromosome contact maps. 
 
Convolutional neural networks (CNNs) have emerged as powerful tools for modelling genomic 
data as a function of DNA sequence, directly learning DNA sequence features from the data. 
CNNs now make state-of-the-art predictions for transcription factor binding, DNA accessibility, 
transcription, and RNA-binding11–14. DNA sequence features learned by CNNs can be 
subsequently post-processed into interpretable forms15.  Recently, Basenji16 demonstrated that 
CNNs can process very long sequences (~131kb) to learn distal regulatory element influences, 
suggesting that genome folding could be tractable with CNNs.  
  
Here we present Akita, a deep CNN to transform input DNA sequence into predicted locus-
specific genome folding. Akita takes in ~1Mb (220 bp) of DNA sequence and predicts contact 
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frequency maps for all pairs of ~2kb (2048bp) bins within this region. Crucially, this allows Akita 
to predict the effects of mutating single base pairs. We trained Akita with five of the highest-
quality Hi-C and Micro-C datasets as targets (Table 1), focusing on the locus-specific patterns 
evident in log(observed/expected) maps, minimizing the mean squared error (MSE) between 
predictions and targets. 
 
The Akita architecture consists of a ‘trunk’ based on the Basenji16,17 architecture to obtain 1D 
representations of genomic sequence, followed by a ‘head’ to transform to 2D maps of genome 
folding (Fig. 1a, Methods). In the ‘head’, we first averaged the representations of genomic bins i 
and j. Averaging produced slightly better generalization accuracy relative to several alternatives, 
including concatenation (Supplemental Fig. 1, Supplemental Note). As genomic distance can 
impact regulatory element communication, we appended a positional encoding of the distance 
between bins. Drawing inspiration from CNNs used in image processing, we computed multiple 
layers of dilated residual 2D convolutions, re-symmetrizing after each block. Finally, we 
compared the upper triangular regions of target and predicted maps. We reasoned the trunk 
would enable Akita to learn DNA motifs and how they combine into a grammar for genome 
folding. In turn, the head would recognize relationships between these features and propagate 
this information across the map, while accounting for the dependencies between neighboring 
bins. 
 
Akita learned a predictive representation of genome folding from DNA sequence (overall 0.14 
MSE, 0.61 Pearson, 0.56 Spearman on held-out test data). On a region-by-region basis, Akita 
captured the variety of patterns seen experimentally (Fig. 1b,c) and displayed a bimodal 
distribution of correlations. Many of the lower correlations represented correct predictions for 
featureless experimental maps, indicating that correlations, while interpretable, underestimated 
model performance on this task. Indeed, Akita’s predictions also captured the strength of locus-
specific folding seen experimentally (Supplemental Fig. 2). By simultaneously training on all 
five datasets in a multi-task framework, Akita has greater accuracy for each dataset compared 
to models trained on that dataset alone (Supplemental Fig. 3). Still, Akita predicted limited cell-
type-specific differences (Supplemental Fig. 4). We hypothesize this was constrained by the 
extent of cell-type specific differences currently ascertainable in experiments. Even the dramatic 
cellular transformation of cardiomyocyte differentiation displayed minimal differences upon exit 
from the ESC state and mainly similarities thereafter via Hi-C18,19. Unless noted, we thus 
focused our following analyses on Akita’s predicted outputs for HFF Micro-C20, the training 
dataset with the strongest locus-specific folding.  
 
Akita predicted more prominent patterns in regions with greater CTCF binding and DNAse 
hypersensitivity (Supplemental Fig. 2). Visually, salient patterns in predicted maps often 
aligned with CTCF ChIP-seq peaks (Fig. 2b). However, CTCF motifs were too prevalent to 
observe a correspondence at the bin level (Supplemental Fig. 5). Fortunately, Akita enabled us 
to ascertain their influence via in silico mutagenesis; while training Akita was computationally 
intensive, effects of sequence changes can be predicted in seconds. Akita predicted greatly 
diminished locus-specific patterns upon CTCF motif mutagenesis (Fig. 2e). Still, Akita predicted 
some patterns would persist, and these often aligned with DNase hypersensitive sites that 
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lacked evidence of strong CTCF binding. Inverting all CTCF motifs produced very different 
predictions, redistributing rather than abrogating contact patterns (Fig. 2d, Supplemental Fig. 
6). This indicated that Akita learned sequence features specifying an orientation-specific 
grammar of the CTCF sites most crucial for genome folding.  
  
To explore the role of CTCF for Akita’s predictions genome-wide, we mutagenized the CTCF 
motifs in each region of the test set. The majority of mutagenized regions showed weaker locus-
specific patterns (Fig. 3a), reminiscent of changes seen experimentally following acute CTCF 
degradation21,22. Performing a similar mutagenesis for each motif in the JASPAR transcription 
factor database23 revealed that CTCF had the strongest impact. The second largest effect was 
for CTCFL, which binds a very similar motif to CTCF but is typically inactive in somatic cells. For 
the remaining motifs, mutagenesis either imperceptibly disrupted genome folding or the 
predicted impact directly tracked the number of overlaps with CTCF motif positions 
(Supplemental Fig. 5). These results argue that no other transcription factor with a known motif 
plays as large of a role as CTCF for genome architecture, and that CTCF-independent aspects 
of genome architecture emerge from a combinatorial interplay between different DNA-binding 
factors. 
 
We next investigated Akita’s ability to predict how genetically engineered mutations alter 
genome folding. As Akita makes predictions for 1Mb sequences and is not influenced by 
information beyond this window, we sought an example where a <100kb variant had a dramatic 
effect on genome folding. At the Lmo2 locus in HEK293T cells24, two domains are separated by 
a boundary positioned at a cluster of three CTCF-bound sites (Fig. 3C). In cells with a ~25kb 
deletion encompassing this boundary, the two domains merge. Making the same deletion in 
silico recapitulated this effect in the predicted Hi-C map (Fig. 3C). Leveraging Akita’s ability to 
rapidly assay sequence perturbations, we examined a combinatorial set of in silico deletions in 
the Lmo2 locus (Supplemental Fig. 7). We found that deleting any individual CTCF site 
minimally altered predictions. Our model thus predicts this boundary is formed by redundant 
CTCF sites, a phenomenon observed experimentally in other genomic locations3,4. 
 
Given similar overall human and mouse genome folding25, we reasoned the mouse genome 
could provide evolutionarily perturbed sequences to further test Akita (Fig. 3B). Using mouse 
DNA sequences as input, we compared predictions from our human-trained model (hESC 
output) with mESC Hi-C data26. These cross-species predictions generally recapitulated mouse 
genome folding (Supplemental Fig. 8, median Spearman R: 0.50). Intriguingly, poorer 
predictions had more B2 SINE elements, which dramatically expanded in murid lineages and 
carry CTCF sites27. Mutagenizing B2 SINE elements improved our predictions for mouse 
genome folding (median Spearman R 0.55 vs 0.50). This suggests either the mouse genome 
specifically mitigates these elements, or Akita did not learn their true influence due to the lack of 
B2 SINEs in the human genome. These results are consistent with recent observations that the 
ChAHP complex hinders CTCF binding within murine B2-SINE elements28 and highlight 
opportunities for sequence-based modeling to uncover species-specific regulatory strategies. 
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An appealing hypothesis for future work is that neural networks with layers that better reflect the 
molecular and physical mechanisms organizing genomes will make more accurate and 
generalizable predictions. For the initial layers, convolutions naturally extend11–13 position weight 
matrix approaches for capturing the biophysics of protein-DNA interactions. The architectures 
and layers that might best reflect the process of loop extrusion, believed to organize mammalian 
interphase chromosomes,29 or other mechanisms of genome organization remain open 
questions. The near future promises exciting progress: recently, a similar CNN model, deepC, 
was posted to bioRxiv30. While deepC has a similar ‘trunk’ to Akita, it differs greatly in the 
architecture of the ‘head’, data pre-processing, and training schemes (Supplemental Note 2). 
Future work will benefit from comparing these approaches, continuing to explore the space of 
alternatives, and incorporating high quality data as it becomes available. 
 
In summary, we present Akita, a model that predicts genome folding using only DNA sequence 
as an input. In the future, we envision that end-to-end sequence-to-genome-folding approaches 
will advance our ability to design functional screens, model enhancer-promoter interactions, 
prioritize causal variants in association studies, and predict the impacts of rare and de novo 
variants. 
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Figures 

 

Figure 1: Akita makes locus-specific predictions for 3D genome folding from DNA sequence 
(caption on next page). 
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Figure 1: Akita makes locus-specific predictions for 3D genome folding from DNA sequence. 
a. Akita consists of a ‘trunk,’ based on the Basenji architecture16, followed by a ‘head’ to 
transform to 2D maps of genome folding. The trunk involves: (i) input 1Mb of 1-hot encoded 
DNA; (ii) 1D convolution trunk, where each block performs a max pool operation between 
adjacent positions to iteratively reduce to a bin size of 2048 bp (iii) dilated residual 1D 
convolutions to propagate local information across the sequence. The ‘head’ involves: (i) 
forming 2D maps from the 1D vectors by averaging each pair of vectors at positions (i, j); (ii) 
symmetric dilated residual 2D convolutions; (iii) dense layer with linear activation to predict 
log(observed/expected) chromosome contact maps. We considered 2048bp binned maps, as 
high-quality Hi-C and Micro-C datasets ascertain genome folding at this resolution with tractable 
technical variance. We compared upper triangular regions of maps cropped by 32 bins on each 
side, making symmetric predictions for 448x448 bin (~917kb) maps. We trained our model on 
regions of the genome obtained by striding along Hi-C maps, using an 80/10/10 
training/validation/test split. 
b,c. Predicted and experimental log(observed/expected) contact frequency for two 
representative regions in the test set for Human Foreskin Fibroblast (HFF) Micro-C 20. 
d. Quantification for the held-out test set: mean-squared error (MSE), which we optimize in 
model training, versus Spearman R, both calculated per region for each pair of targets and 
predictions for HFF Micro-C. Green and purple circles show regions from (b) and (c). Note 
correlations display a bimodal shape: regions with few locus-specific features have low MSE 
and low Spearman R.  
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Figure 2: Akita learns a complex grammar for genome folding. 
a. Log(observed/expected) target HFF maps for three different genomic regions in the test set, 
binned to 2048bp. 
b. Binned profiles at 2048bp for CTCF ChIP-seq fold-change over control and DNAse density, 
data downloaded from the ENCODE data portal31. 
c. Predictions for the same three regions. 
d. Predictions for inverting all CTCF motifs in each region. Note that patterns are perturbed 
relative to (c), and have greater saliency of patterns as comped with (e). 
e. Predictions for random mutagenesis of all CTCF motifs within each region, averaged over ten 
instances. Grey shading shows regions with CTCF binding that are disrupted in these maps, 
and yellow shading shows regions with high DNAse but low levels of CTCF binding that are 
boundaries of residual structures after CTCF motif mutagenesis.  
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Figure 3: Applications of Akita 

 (caption on next page) 
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Figure 3: Applications of Akita  
a. In-silico motif mutagenesis. Left: Predicted map signal strength before versus after 
mutagenizing all CTCF motifs, for each region in the test set for HFF model output. Map signal 
strength measured by< 𝑝𝑟𝑒𝑑	' >. Akita predicts that mutagenizing CTCF motifs leads to more 
uniform maps, shown by the lower dynamic range after mutagenesis, < 𝑝𝑟𝑒𝑑 )*+*,

' >. Middle: 
Change in map signal strength, measured by the difference of the mean squared values before 
versus after mutagenizing each motif in JASPAR23, < 𝑝𝑟𝑒𝑑	' > 	−	< 𝑝𝑟𝑒𝑑 )./012

' >. Positive values 
indicate lower signal after mutagenesis, as for CTCF. Right: Average disruption, measured by 
the mean-squared differences between predictions before versus after mutagenizing each motif 
in JASPAR, < 3	𝑝𝑟𝑒𝑑 − 𝑝𝑟𝑒𝑑 )./012 4

'
>. By this metric, CTCF mutagenesis is more than three 

times as impactful as mutagenesis of any other motif besides CTCFL.  
b. Predicting a genetically engineered deletion. Top: Experimental24 log(observed/expected) 
5C data in HEK293T cells for WT (left) and a CRISPR/Cas9-mediated deletion of a ~25kb 
boundary region (right) at the Lmo2 locus for a 219 bp region centered at the deleted boundary 
(chr11:33752474-34276762). In wild-type cells (left), this region displays a peak at the boundary 
(circle) between two ~130kb domains that are relatively insulated from each other (rectangle), 
separated by a boundary that overlaps a cluster of three CTCF-bound sites. In cells where this 
boundary has been deleted (right), the two domains merge and display a flare of enriched 
contact frequency (thin rectangle). Middle: CTCF profiles for HEK293T24. Bottom: 
Computational predictions for WT (left) and deletion (right) of the boundary, showing similar 
changes. 
c. Predicting mouse genome folding. To further test Akita, which we trained on human 
datasets, we considered its accuracy for predicting mouse genome folding in mESCs. We found 
Akita often made overly pronounced predictions for mouse data, and this bias correlated with 
the number of SINE-B2 elements in the region. Plots show (left) experimental mESC Hi-C data26 
and (right) computational prediction for one well-predicted region after mutagenizing SINE-B2 
elements. See Supplemental Fig. 8 for quantification across the mouse genome. 
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Supplemental Figures 
 
 
 
 

 

Supplemental Figure 1: Transforming 1D representations to 2D via averaging produces better 
models than alternative operations. 
We considered the following operations to transform 1D vector representations derived from the 
DNA sequence to 2D for Hi-C prediction, holding all other hyper-parameters constant. For every 
pair of vectors 𝑜1	and 𝑜6	for 1D sequence positions i and j, we computed vector 𝑡(𝑖, 𝑗)via: 
(1) “dot”: Element-wise multiplication between each vector position, 𝑡(𝑖, 𝑗, 𝑘) = 𝑜1(𝑘)𝑜6(𝑘). 
(2) “geo”: Addition of one to all vector values, element-wise multiplication between each 
position, square root of each position, subtraction of one from all vector values, 

𝑡(𝑖, 𝑗, 𝑘) = ?(𝑜1(𝑘) + 1)(𝑜6(𝑘) + 1) − 1. 

(3) “max”: Element-wise max between each vector position, 𝑡(𝑖, 𝑗, 𝑘) = 𝑚𝑎𝑥(𝑜1(𝑘), 𝑜6(𝑘)). 
(4) “concat”: Concatenate the two vectors, 𝑡(𝑖, 𝑗) = [𝑜1, 𝑜6]. 
(5) “avg”: Element-wise mean between each vector position, 𝑡(𝑖, 𝑗, 𝑘) = (𝑜1(𝑘)+𝑜6(𝑘))/2. 
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Supplemental Figure 2: Correlations between the strength of Akita’s predictions, strength of 
experimental patterns, CTCF, and DNAse. 
Left: Map signal strength, measured by mean of squared map values, for predictions versus 
targets. In regions with more complex features, Akita tends to make more complex predictions. 
Middle: Signal strength for predictions versus signal strength for CTCF ChIP-seq, measured by 
mean squared profile values. Akita predicts more prominent locus-specific patterns in regions 
with greater CTCF binding. 
Right: Signal strength for predictions versus DNAse-seq.  
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Supplemental Figure 3: Multi-task training improves accuracy relative to single dataset training. 
We trained Akita models for each of the five datasets alone and compared PearsonR on the test 
set to the jointly trained multi-task model. Multi-task training greatly benefitted IMR90 and 
HCT116 learning, and also boosted accuracy for the other datasets. 
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Supplemental Figure 4: Model displays limited cell-type specificity in predictions  
(caption on next page) 
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Supplemental Figure 4: Model displays limited cell-type specificity in predictions 
  
a. Predicted versus experimental log(observed/expected) values for each bin pair in every 
region of the test set, separately for each target. This shows predictions are correlated with 
experimental data across cell types. Color shows log10 number of bin pairs for each set of 
predicted versus experimental values.  
b. Considering every region in the test set across cell types, we find: Left: models make highly 
correlated predictions for different cell types. Middle: genome folding assayed experimentally is 
correlated, but less so. Right: predicted differences across cell types from our models correlate, 
albeit weakly, with observed differences. Note different scales for Spearman R. 
c. Example of a region showing largely consistent folding across cell types (chr20:50759680-
51808256) for targets and predictions. Tracks show binned CTCF ChIP-seq fold-change over 
control, and DNAse-seq density. 
d. Example of a region showing gains and losses of specific features across cell types 
(chr5:5179392-6227968) at bin ~300. 
 
While the predicted differences across cell types from models correlates with observed 
differences (b, right), our predictions are not particularly visually distinct for different cell types 
(c,d). At present, our models appear to primarily tune the dynamic range for the entire 
prediction, rather than predicting gains and losses of a subset of features (d). Also note in (d) 
that CTCF is still bound in HCT116 in this region as determined by ChIP-seq, despite the loss of 
a strong boundary around bin 300. In the future, we hypothesize that a greater number of high-
resolution genome folding datasets will enable our models to learn more cell-type specific 
representations of genome folding, as is currently possible for ATAC-seq and CAGE data 16. 
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Supplemental Figure 5: In silico mutagenesis enables rapid screening of transcription factor 
influence on genome folding.  
(caption on next page). 
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Supplemental Figure 5: In silico mutagenesis enables rapid screening of transcription factor 
influence on genome folding. 
a. Experimental HFF Micro-C target data for three regions in our held-out test dataset. 
b. Predictions for these regions. 
c. Predictions for these regions after randomly mutagenizing all CTCF motifs in these regions, 
averaged over 10 random samples. 
d. Number of CTCF motifs per 2048bp bin. CTCF motif matches obtained from JASPAR 23, and 
profiles computed separately for the number of motifs on the positive strand (>0) and negative 
strand (<0). 
e. Predictions for these regions after randomly mutagenizing all NR3C2 motifs in these regions, 
averaged over 10 random samples. NR3C2 has a similar number of base pairs per region 
perturbed as CTCF, but little impact on Akita’s predictions. 
f. Positions of positively oriented and negatively oriented NR3C2 motifs. 
g. Average disruption, mean( (pred-predmut)2), versus the average number of kb perturbed per 
region. Note that YY1, suggested to be involved in genome folding32,33, is predicted to have little 
aggregate genome-wide impact following motif mutagenesis. This suggests YY1 may operate at 
a subset of loci in certain developmental contexts32, or its influence depends on the presence of 
nearby CTCF motifs. 
h. Change in signal, mean((pred)2) - mean((predmut)2), versus the average number of kb 
perturbed per region. This reveals a trend towards negative scores for motifs with many 
occurences.  
g. Average disruption versus the total number of overlaps with CTCF motifs. This shows that the 
next highest scoring motifs after CTCFL likely have large predicted impacts due to overlapping 
CTCF binding sites, rather than independent effects.  
h. Change in signal versus the total number of overlaps with CTCF motifs.   
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Supplemental Figure 6: Akita learns an orientation-specific role for CTCF 
a. Predicted map signal strength before versus after in silico perturbations, either for 
mutagenizing all CTCF motifs (black) or inverting all CTCF motifs (blue). Points show each 
region in the test set. Signal strength quantified by mean squared map values. Inversions show 
smaller perturbations to overall signal strength.  
b. Average disruption for mutagenizing all CTCF motifs or inverting all CTCF motifs. Inversion 
disruption maps to a similar extent as mutagenesis. Jointly with (a), Akita thus predicts changing 
motif orientation largely alters the positioning of contact patterns, rather than their overall 
salience across the genome. 
c. Change in signal strength versus disruption for inverting all CTCF motifs, mean((pred)2) - 
mean((predinv-CTCF)2). Points show each region of the test set. This indicates that while motif 
inversions can greatly change the pattern of interactions (disruption), they can both increase (-) 
and decrease (+) the salience of contact map patterns.  
d. Change in signal strength versus disruption for mutagenizing all CTCF motifs in each region 
of the test set, mean((pred)2) - mean((predmut-CTCF)2). Positive changes in signal strength upon 
mutagenesis shows these perturbations largely decrease pattern strengths in predicted maps.  
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Supplemental Figure 7: Model predicts a redundant boundary at Lmo2.  
Left: Predicted genome folding for unperturbed Lmo2 locus above the CTCF ChIP-seq profile 
for the region. Predictions in this figure used hg19 sequence as input and Akita’s output for HFF 
Micro-C 20.  
Right: Numbers above maps indicate the (start,end) position of bins that were deleted, 
highlighted by purple shading on the zoomed-in CTCF ChIP-seq profile below the predicted WT 
map.  
Akita predicts that deleting bins encompassing individual CTCF peaks (top row) would only 
mildly alter genome folding, and deletion of all three (bottom right) would be more impactful than 
either pair (bottom left and middle).  
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Supplemental Figure 8: Cross-species predictions reveal impact of B2 SINE elements on 
genome folding in mouse embryonic stem cells  
(caption on next page)  
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Supplemental Figure 8: Cross-species predictions reveal impact of B2 SINE elements on 
genome folding in mouse embryonic stem cells  
a. MSE-vs spearmanR for 156 mouse regions that overlap regions syntenic to the human test 
set (mm10-syn-test). The target Hi-C data was from mouse embryonic stem cells 26, mapped to 
mm10 and processed similarly to human datasets previously. Predictions in this figure were 
made using mm10 sequence as input and Akita’s output for the H1hESC Micro-C dataset 20.  
b. (left) Signal strength of predictions versus targets, for mm10-syn-test, calculated as the mean 
squared values in each map. The model trained on human data makes many overly strong 
predictions in mouse relative to the experimental data (see Supplemental Fig. 2 for similar 
comparison with human experimental data). (right) Squared error between targets and 
predictions correlates with the number of B2-SINE elements in the region (from 
RepeatMasker34). 
c. Masking B2-SINE elements improved MSE for 93/156 predictions (left), and Spearman R for 
106/156 predictions (right). This suggests the mouse genome has ways to mitigate the impact of 
its numerous B2-SINE elements on genome architecture. 
d, e. Examples of improved predictions for two regions from the mm10-syn-test set after 
masking B2-SINEs, with the total number of B2-SINE elements per bin in the region displayed 
below each map. Initial predictions indicated in (a) with orange and green dots.  
d. chr5:106334208-107382784 (deltaCorr:0.26, corrMutB2:0.72). Rectangle highlights a feature 
that is incorrectly predicted to be absent prior to masking B2-SINEs, and is correctly predicted 
following masking B2-SINEs. 
e. chr14:61751296-62799872 (deltaCorr:0.18, corrMutB2:0.69). Rectangle highlights a feature 
that is incorrectly predicted to be present prior to masking B2-SINEs, and is correctly predicted 
following masking B2-SINEs.   
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Methods 

Code availability 
All code used for training Akita available at: https://github.com/calico/basenji/tree/tf2_hic/. 
Trained Model at: https://github.com/calico/basenji/tree/tf2_hic/manuscripts/akita. 

Training Data 
To obtain Hi-C data conducive for convolutional neural network learning, we reprocessed five of 
the highest-quality publicly available human Hi-C and Micro-C datasets to 2048bp (211 bp) bins 
using distiller (https://github.com/mirnylab/distiller-nf)35 to map to hg38 and cooler36 to perform 
genome-wide iterative correction37.  
 

Target Reference 

HFF Micro-C Krietstein et al., 201920 

H1hESC Micro-C Krietstein et al., 201920 

GM12878 Rao et al., 201438 

IMR90 Rao et al., 201438 

HCT116 Rao et al., 201739 

 
To focus on locus-specific patterns and mitigate the impact of sparse sampling present in even 
the currently highest-resolution Hi-C maps, we: adaptively coarse-grain, normalize for the 
distance-dependent decrease in contact frequency, take a natural log, clip to (-2,2), linearly 
interpolate missing bins, and convolve with a small 2D gaussian filter (sigma=1, width=5). The 
first through third steps use cooltools functions (https://github.com/mirnylab/cooltools). 
Interpolation of low-coverage bins filtered out in typical Hi-C pipelines was crucial for learning 
with log(observed/expected) Hi-C targets, greatly outperforming replacing these bins with zeros. 
 
To prepare the Hi-C data for training, we divided the human genome into large virtual contigs 
and assigned them to training, validation, and test sets with an 80/10/10 split. We broke the 
chromosomes at assembly gaps, large unmappable regions, and consecutive stretches of ≥10 
filtered-out Hi-C bins (in any target dataset). Within the contigs, we extracted 220 bp (~1Mb) 
sequences, striding by 218 bp (~262kb) for the training set and 219 bp (~524kb) for the validation 
and test sets. This procedure resulted in 7,008 training, 419 validation, and 413 test sequences. 

Model architecture 
We created a neural network architecture to predict 2D Hi-C maps from 1D DNA sequences that 
consists of two major components. First, we process the 1D DNA sequence using a ‘trunk’ that 
applies a series of convolutions, following previous work on convolutional neural networks for 
DNA sequence analysis. Second, we applied a ‘head’ that transforms the 1D representations to 
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2D for Hi-C prediction. We implemented the model using the Basenji software16,17, which is 
written in Tensorflow40 and Keras41. 
 
More specifically, the ‘trunk’ includes: 

1. Convolution with 96 filters of size 11-by-4 to transform the 1-hot encoded DNA sequence 
followed by batch normalization, ReLU, and width 2 max pooling. 

2. Convolution tower that iteratively performs convolution with 96 filters of width 5, batch 
normalization, ReLU, and width 2 max pooling to arrive at 512 vector representations of 
the sequence in 2048bp windows. 

3. Dilated residual convolution tower that iteratively performs dilated convolution with 
geometrically increasing dilation rate, adding the new representation back into the old. 
This block spreads information about relevant sequence elements and global context 
across the sequence16. 

4. Bottleneck width 1 convolution with 48 filters. 
 
To convert these 1D representations to 2D for the Hi-C ‘head’, we averaged the representations 
for every pair of genomic bins i and j. This operation transforms a tensor with dimensions [512 
length, 48 filters] to a tensor with dimensions [512 length, 512 length, 48 filters]. We also 
concatenated a positional encoding of the distance between bins, abs|i-j| and applied a (1,1) 
convolution block to finalize the transition to 2D. Next, we treat this map as a 2D image and run 
multiple layers of dilated residual 2D convolutions with geometrically increasing dilation rate, re-
symmetrizing after each step. Finally, we apply one last linear transformation to make 
predictions for the 5 datasets. 
 
Intuitively, the initial transformation to 1D to 2D should be able to recognize genomic features 
with important relationships for Hi-C prediction, such as two boundary elements, and the 
subsequent 2D convolutions serve to disseminate that recognition to the surrounding region.  
Intriguingly, similar sequence-to-map architectures have recently been successful for protein 
contact map prediction42.  

Training Approach 
We computed a mean squared error loss from the targets and predictions, considering only the 
upper triangular portion of the matrixes. We fit the model parameters using stochastic gradient 
descent with momentum for ~60 epochs, taking steps in batches of 2 sequences. 
 
Data augmentation was critical to avoid overfitting and maximize generalization accuracy to 
unseen sequences. Each time that we processes a sequence, we stochastically shifted input 
sequences by up to +/- 11 bp and reverse complemented the DNA and flipped the Hi-C map. 
 
We stopped training when validation loss had not improved for 12 epochs, and we took the 
model parameters that had achieved that minimum validation loss forward as the final model. 
We performed a search over learning rate, momentum, gradient norm clipping, dropout 
probability, and convolution filters using the Dragonfly Bayesian optimization toolkit 
[https://github.com/dragonfly/dragonfly]43. 
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Comparison with 1D features 
For comparison to 1D features of the epigenome, we downloaded processed bigWigs for the 
relevant cell types from the ENCODE data portal 31 and binned them into 2048bp profiles. 

In silico motif mutagenesis  
To perform in silico motif mutagenesis, we intersect our test set regions with motif positions 
using bedtools 44. We then generate multiple randomized sequences, where DNA sequence at 
positions of motifs with randomly generated DNA sequences of the same length. We then 
calculate the average disruption as mean( (pred - predΔmotif)2 ), and the change in signal as 
mean(pred2 ) - mean( pred2

Δmotif). Motifs names were plotted with adjustText 
(https://github.com/Phlya/adjustText)45. Maps in Fig. 2 shown as averages over 10 randomized 
sequences, JASPAR-wide analyses in Fig. 3a averaged over 3 randomized sequences. 

In silico CTCF motif inversions 
We perform in silico motif inversions similarly to motif mutagenesis for determining intersections. 
We then merge overlapping motifs and replace sequences in these intervals with their reverse 
complements. 

Predictions for mouse DNA sequences 
To test the accuracy of Akita’s predictions for mouse DNA sequences, we obtained mESC Hi-C 
data from Bonev et al., 2017 26, mapped reads to mm10, and otherwise processed the data as 
for human datasets. Positions of B2-SINE elements were downloaded from UCSC (from 
RepeatMasker34). B2-SINE mutagenesis was performed as described for motifs. 

5C data processing 
To test Akita’s ability to predict experimentally induced deletions, we obtained processed 5C 
data for the Lmo2 locus from Hnisz et al., 201624, re-binned fragments to 2048bp bins, and 
otherwise performed the same processing into log(observed/expected) maps as for Hi-C data 
above.  

In silico deletions 
As Akita makes predictions for fixed input size, to make a deletion in silico we must both remove 
the DNA sequence we hope to delete and supply the model with an equal amount of additional 
DNA sequence. Here we centered on the position of the deletion and symmetrically extended 
the start and end to maintain the size of the input.  

Supplemental Notes 

Supplemental Note 1: lessons from previous architectures 
Before arriving at the model described above, we considered various alternative designs in the 
space of possible model architectures and data pre-processing schemes.  
 
Some of our early attempts at predicting 3D genome folding from sequence involved predicting 
slices of the Hi-C matrix (‘virtual-4C’) directly from the outputs of the trunk, with the idea that 
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predicting a contact vector of length N could require fewer parameters in the ‘head’ than 
predicting a contact map of size NxN. While such virtual-4C models readily learned boundaries, 
we found they failed to learn sharp peaks. We also found that predictions of these models were 
often asymmetric (i.e. predi,j != predj,i), likely because the virtual-4C architecture we considered 
did not encode a symmetry constraint.  
 
We also tested the performance of models that replace the dilated convolution layers in the 
trunk with bidirectional LSTMs, popular layers for capturing long-range dependencies in natural 
language processing, while preserving roughly the same time per training epoch. This 
architecture performed slightly more poorly on both training and validation data, and we did not 
pursue it further. We also explored the utility of separable convolutions to reduce the number of 
parameters in the convolutional tower: we found little benefit in the rate of learning and a slight 
loss in accuracy.  

Supplemental Note 2: differences with DeepC 
In Schwessinger et al.30, the authors report successful predictions of Hi-C maps at 10kb 
resolution using a similar deep convolutional neural network approach, deepC. While deepC 
has a similar ‘trunk’ to Akita, it differs greatly in the architecture of the ‘head’, data pre-
processing, and training schemes. First, deepC uses non-linearly quantile normalized targets, 
rather than log(observed/expected) targets, which may emphasize learning peaks rather than 
insulation. Second, deepC predicts a ‘zig-zag pole’ target directly with a dense layer from the 
output of their model’s trunk, which implicitly encodes distance but requires a large number of 
parameters, rather than predicting a dense patch of a map. Third, we focused on higher-
resolution predictions (2048bp bins vs. 10kb bins). Finally, deepC currently requires pre-training 
a model on a large set of epigenomic profiles, and transferring weights to their full model. It is 
possible that strict transfer learning could limit the richness of representations that a deep CNN 
can learn for 3D genome folding; for example, a CTCF profile may not contain information about 
the directionality of motifs under its peaks, which is important for predicting genome folding.  
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