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The prediction of binding sites (peak calling) is a common
task in the data analysis of methods such as crosslinking
or chromatin immunoprecipitation in combination with high-
throughput sequencing (CLIP-Seq, ChIP-Seq). The predicted
binding sites are often further analyzed to predict sequence
motifs or structure patterns as an example. However, the ob-
tained peak set can vary in their profile shapes because of the
used peakcaller method, different binding domains of the pro-
tein, protocol biases, or other factors. Thus, a tool is missing
that evaluates and classifies the predicted peaks based on their
shapes. We hereby present StoatyDive, a tool that can be used
to filter for specific peak profile shapes of sequencing data such
as CLIP and ChIP. StoatyDive therefore fine tunes downstream
analysis steps such as structure or sequence motif predictions
and acts as a quality control.

With StoatyDive we were able to classify distinct peak profile
shapes from CLIP-seq data of the histone stem-loop-binding
protein (SLBP). We show the potential of StoatyDive, as a qual-
ity control tool and as a filter to pick different shapes based on
biological or methodical questions.

StoatyDive is open source and freely available under GLP-3
at https://github.com/BackofenLab/StoatyDive and at bioconda
https://anaconda.org/bioconda/stoatydive.
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Introduction

The biological function of a protein is determined by its inter-
action partners and the mode of interaction. Studying these
interactions broadens our horizon about the cellular mech-
anisms such as alternative splicing and post-transcriptional
regulation. Crosslinking, or chromatin immunoprecipitation
in combination with high-throughput sequencing (CLIP-Seq,
ChIP-Seq) are methods to fathom these interactions. CLIP-
Seq investigates all interactions between an RNA binding
protein (RBP) and its target RNAs (1). CLIP-Seq thus scruti-
nizes the post-transcriptional regulation by RBPs. Prediction
of binding regions (peak calling) is a crucial step in the data
analysis of methods such as CLIP-Seq, or ChIP-Seq. Typi-
cally before the peak analysis there is no evaluation and clas-
sification of the peak characteristics. Yet, the obtained peak
set from a peakcaller might have different peak profiles that
are worth to filter to refine a downstream analysis. The differ-
ent peak shapes are the result of several biological and tech-
nical problems.

Jankowsky and Harris (2) have discussed the characteristics
of RNA-protein interactions and the potential problems. An

RBP can have different bindings domains, or be part of a pro-
tein complex. Thus, the protein might have disparate binding
sites with different affinities (mechanisms) ranging from spe-
cific to unspecific. Factors such as the affinity of the protein
for the RNA site, the concentration of the protein and RNA
influence the binding specificity of the different protein bind-
ing domains. For example, they describe mRNA export fac-
tors that have the ability to bind several RNAs. Something
not mentioned is the possibility that the protein type might
also manifest in different peak profiles. A helicase might
have different peak profiles compared to a transcription fac-
tor.

In addition, technical biases might change the peak profile
landscape. Errors during the read library preparation might
introduce unspecific bindings. Protocol biases, for example,
PAR-CLIP biases that are introduced by endonuclease and
photoactivatable nucleoside (3), might also affect the binding
site predictions. On top, the peakcaller itself might gener-
ate specific peak profiles and false positives, which the user
might not want to have in their data.

That is why, many questions occur in the data analysis of
binding sites. Does my protein of interest bind generally
more specific (Figure la) or more unspecific (Figure 1b)?
Does my RBP of interest have more than one binding site?
Does my experiment have some quality issues, meaning, does
my reads come from unspecific bindings because of library
preparation errors? Does my protocol generate biases? Do
I have false positives in the set of predicted peaks from my
peakcaller of choice? An initial clustering approach was done
by Cremona et al. (4), but only for ChIP-Seq data and only
on predefined features.

We hereby present StoatyDive, a tool to evaluate and classify
peak profiles to help to answer the aforementioned questions.
StoatyDive uses the whole peak profiles as well as predefined
features to do a peak shape clustering for sequencing data. In
this paper, we will test StoatyDive on CLIP data of the eCLIP
protocol from the histone stem-loop-binding protein (SLBP)
(5). SLBP has been reported to be a histone mRNA export
and translation factor (6). StoatyDive delivers several plots
and a table to assess the different binding profiles of a pro-
tein. The tool assists to select specific and unspecific binding
sites and to find similar shaped peak profiles. Thus, we try
to refine the obtained peaks of the SLBP data to find more
specific sites of SLBP. It also helps as a quality assessment
to validate a CLIP-Seq, or any other binding experiment.
StoatyDive  (https://github.com/BackofenLab/StoatyDive;
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https://anaconda.org/bioconda/stoatydive) comes with some
test data and a quick installation guide.
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Fig. 1. Often the peaks from a peakcaller are further inspected and evaluated
based on their biological and technical reasoning. Searching for more (a) specific
and more (b) unspecific binding events (peak profiles) is often done on a handful of
selected peaks, because a general tool is missing. Thus, evaluating and classifying
peaks is an open problem in binding site prediction to filter and thus refine down-
stream analysis tasks for data such as CLIP or ChIP. StoatyDive assists to find and
distinguish peaks like (a) and (b).

Algorithm

Peak Correction, Extension and Coverage Calculation.
StoatyDive was implemented in python (>= 3.6) and R (>=
3.4.4). The tool needs three files: the predicted binding re-
gions of a peak calling algorithm in bed6 format, a bam or
bed file that was used for the peak calling (experiment or
control), and a tabular file of the chromosome size of the ref-
erence genome (Figure 2).

First, StoatyDive checks if a peak profile needs to be cen-
tered (peak correction). In the default mode, the profiles are
centered by a convolution with a standard normal distribu-
tion. The maximum value of the convolution gives the nu-
cleotide shift of the peak profile to center the peaks. So the
window with the peak length is shifted to the center of the
peak (Figure 2 step 1). With this approach we retain the con-
text and take care of two problems. Problem one, peakcallers
often produce peaks that are not correctly centered. Problem
two, dimensional reduction methods, such as uniform man-
ifold approximation and projection for dimension reduction
(uUMAP) (8), are not translation invariant. Thus, two profiles
with the same shape but in different position might end up in
different locations in the new dimensional space.

After the peak correction, StoatyDive extents the peaks by
default to the maximal peak length of the given peak set (Fig-
ure 2 step 2). This removes the peak length as a potential
feature for the evaluation and classification. StoatyDive then
calculates the read coverage (Figure 2 step 3) for each posi-
tion inside a peak with the help of bedtools (7).

Evaluation of Peak Profile. With the results of bedtools,
StoatyDive evaluates every peak ¢ from the total set of &
peaks. StoatyDive will estimate the read count for every peak
as a negative binomial X; ~ NB(r;,p;) with the hyperparam-
eters r; (number of hits) and p; (probability of a hit). It then
calculates the coefficient of variation (CV) for every peak. A
simple estimation of the variance is not enough because the
profile depends on the read coverage. Thus, to be able to
compare each peak profile we have to normalize for the ex-
pected number of reads to adjust the variance. So the CV for

each peak,
]_ —m-
ov; = —2, M

ri
is calculated with the estimated hyperparameters. In the last
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step, StoatyDive normalizes the CV score by the max and
min of all scores,

v = CV;— min(YCV) . @

max(VCV) —min(VCV)

At the end, our defined CV score will range from CV; =
[0,00] and the normalized score from C'V/ = [0,1], with a
CV;! = 0 for a more unspecific binding and CV; =1 for a
more specific one.

Classification of Peak Profile. StoatyDive classifies the
peak profiles in an unsupervised manner using uMAP (8)
and k-means clustering (9). Yet before clustering, StoatyDive
processes the peak profiles. First, the profiles are normalized
based on the individual maximum and minimum read count,
since we are only interested in the shape of the profiles and
not in the absolute read counts (Figure 2 step 4). So assuming

each peak X; has x1,22,%;...,7, nucleotides, we normal-

ized the peaks by z; = #% Second, the peak

profiles are smoothed (Figure 2 step 4) with a spline regres-
sion (10). The step reduces the noise for each profile and dis-
tributes the data more uniformly on the current manifold. The
latter is important since it is the data assumption of uMAP.
StoatyDive further adds curve specific features to the pro-
cessed peak profiles including: the number of maximal val-
ues, the area under the curve, and the arc length. StoatyDive
applies uMAP to the final data with 5,000 epochs, 2 com-
ponents (dim = 2), a minimum distance of 0.01 and a size
of the local neighborhood of 5. The dimensional reduction
was optimized with some test data comprising four different
sets of distributions: a uniform distribution, a linear distribu-
tion, an unimodal Gaussian distribution, and a bimodal Gaus-
sian distribution. Subsequently, StoatyDive applies k-means
clustering to the new data with 100 initializations, and maxi-
mal 10,000 iterations. The number of clusters k is found by
convergence of the total within-cluster sum of squares and
checked with the Akaike information criterion (AIC) (11).
We also tested other dimensional reduction methods such as
principal component analysis (PCA), t-Distributed Stochas-
tic Neighbor Embedding (t-SNE), and a self-organizing map
(SOM). However, none of them came close to the results of
uMAP (Supplementary Information: Figures 6, 7, and 8).

Output of StoatyDive. For the peak evaluation, StoatyDive
generates a plot of the CV (Equation 1) and normalized CV
(Equation 2) distribution (Figure 2). The user receives a first
impression of the binding specificity of the protein of interest
from the CV distribution. An unspecific binder has a CV
distribution close to zero. A more specific binder has a CV
distribution equal to or higher than one. The CV distribution
can also be used as a quality control to compare control and
signal experiments. A quality breach might have occurred if
the distributions of the control and signal experiment almost
look identical. A control experiment should normally have a
CV distribution close to zero, with only a very few binding
sites showing higher CVs.

The normalized CV distribution helps to evaluate the peaks
based on the individual experiments. An empirical threshold
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Fig. 2. StoatyDive assists to find peaks like figure 1a or figure 1b. It has two modules: the evaluation and the classification of peak profiles. The user has to provide reads (or
events), peaks and a chromosome size file. StoatyDive then shifts the peaks to their correct center (peak correction), extents the peaks to a common length (maximal peak
length of peak set or user defined value), and calculates the coverage with bedtools (7). The peak correction can be turned off. In the evaluation, StoatyDive then estimates
the read coverage as a negative binomial. From the hyperparameters it calculates the coefficient of variation (CV) and normalizes it (Equations 1 and 2). The normalized CV
can then be used to divide the peaks into specific and unspecific sites. Furthermore, the CV distribution acts as a quality control between control and signal experiments. In
the classification, StoatyDive first normalizes the peak profiles to remove the intensity as a feature. Then it smooths the profiles to support the data assumptions of uMAP (8)
and to remove some noise. After that, it adds curve specific features to the data. The higher dimension of the data is then reduced with uMAP. StoatyDive then clusters the
new data with k-means (9). The user then obtains several plots and a table to investigate the different peak profile clusters.

is set at a normalized CV of 0.5 (Equation 2). Binding sites
with a CV < (0.5 are more unspecific than binding sites that
have a normalized CV >= 0.05. The user can change the
threshold. Keep in mind, the threshold for the normalized
CV is relative in accordance to the individual experiment.
For the peak classification, StoatyDive generates a plot of the
k-means optimization and a plot of the dimensional reduction
with uMAP, which can be used to readjust the number of %
clusters if this is actually needed. The user also receives a set
of example peak profiles and smoothed peak profiles of each
cluster, which can be used to investigate the identified shapes.
For a general trend, StoatyDive delivers average profiles for
each cluster.

The final output of StoatyDive is a CV sorted table of the
whole peak set, from the highest to the lowest CV. Each peak
is labeled with 0, for more specific binding sites, and 1, for
more unspecific sites. The table also lists for each peak the
cluster number (group number) of the peak profile shape.

Important Options of StoatyDive. The peak correction
(Figure 2 step 1) can be turned off. The user can also
change the translocation scheme of the peak profiles to shift
them based on the maximal value (summit). The maxi-
mum translocation scheme is useful for nucleotide specific
events such as truncation events in the case of eCLIP data
(5). StoatyDive has also the option for a different CV score
that penalizes peaks within broad plateaus. StoatyDive then
adjusts the CV score of peaks that are covering a small ap-
pendage of a read stack. Furthermore, the user can provide
a maximal score to StoatyDive to normalize the CV distri-
bution (Equation 2). This option helps to compare the CV
distribution between experiments in accordance to their dis-
parate peak sizes and total amount of reads. StoatyDive also
has a threshold for the normalized CV score to divide the
peaks into more specific and more unspecific binding sites,
which the user can change.
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StoatyDive has two major parameters for the peak profile
classification (Figure 2 step 6). First, the user can adjust the
maximal amount of potential peak clusters identified by the
k-means clustering. Yet, the final number of peak clusters
will be optimized by StoatyDive. The parameter is an upper
bound. However, the user has the option to force StoatyDive
to use k specific clusters. The smoothing (Figure 2 step 4)
of the peak profiles can also be adjusted by the user. The
default was optimized with different test sets. Increasing the
parameter (> default) might underfit the smoothing and thus
lead to fewer peak clusters. A lower value (< default) might
overfit and so lead to more clusters. The smoothing can also
be turned off, but it is recommended to turn it on.

Results and Discussion

Data Preparation of SLBP and Analysis. We used
eCLIP data of the histone stem-loop-binding protein (SLBP;
ENCSR483NOP; GSE91802) (5). The data comprised two
CLIP replicates and one size-matched input control from
immortalised myelogenous leukemia cells (K562). We
processed the data with the snakemake pipeline SalamiS-
nake (https://github.com/BackofenLab/SalamiSnake, v0.0.1)
for eCLIP data. SLBP has been reported to be cytoplas-
mic and be present in the nucleus (6). Thus, we mapped
the reads against hg38 genome with STAR (12), but also
taking the transcriptome into account. We predicted poten-
tial binding sites of SLBP with PureCLIP (13), which we
ran for each CLIP replicate separately, taking the input con-
trol into account. We extended the predicted binding re-
gions by 20 nucleotides left and right because PureCLIP
often underestimates the binding region. We further fused
the predicted peaks from each CLIP replicate with bedtools
(7) to get a robust set of predicted binding sites. We exe-
cuted StoatyDive with the length normalization, the penalty
for broader plateaus, and the peak profile smoothing. The
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complete call was: StoatyDive.py -a peaks.bed -b reads.bam
-c hg38.chrom.sizes.txt --peak_correction --scale_max 10
--border_penalty --sm.

CV Results Reveal Potential Quality Breach in SLBP
Data. Both the CV distribution of the input control and repli-
cate one of the SLBP data contain a lot of regions with a CV
close to zero (Figure 3). In contrast, the CV distribution of
replicate two is different since it had more peaks with a higher
CV and thus more specific bindings such as peak 529 (Fig-
ure la, C'V & 5.3). Yet, some potential binding sites were
more unspecific with a CV closer to zero such as peak 805
(Figure 1b, C'V = 0.006).

The CV distribution of the input control was expected, be-
cause ideally the control experiment contains no real bind-
ing events. But, the CV distribution of replicate one did not
match the assumptions. The distribution is an indicator for a
possible quality breach in replicate one. This is also striking
when we compared the distribution of replicate one and two.
For a downstream analysis, for example the prediction of se-
quence motifs, it is worth to either exclude replicate one or
to investigate, why the CV distribution of replicate one was
very different to replicate two. Thus given the inspection of
StoatyDive, the user can now decide to investigate the unspe-
cific binding sites of replicate one and compare them with the
input control or replicate two. This helps to assess if SLBP
might have protein domains that bind to RNA in an unspe-
cific manner. The user can also test if the unspecific peak
805 might be a false positive of PureCLIP.

Control SLBP Replicate 1 SLBP Replicate 2

10

Coefficient of Variation of the Peak Profiles

0

Fig. 3. Evaluating the peak profile shapes is a quality control. (a) The distribution of
the coefficient of variation of the peak profiles of the input control and replicate one
of the SLBP CLIP-Seq experiment are very different to the distribution of replicate
two. Thus, a quality breach might have occurred in replicate one. The user can
subsequently inspect with StoatyDive more specific, sharp profiles (Figure 1a) and
more unspecific, broader profiles (Figure 1b). Perhaps only one of the replicates is
informative for specific patterns.

Seven Different Peak Shapes in the SLBP Data. For
a more detailed analysis, we classified the peaks of repli-
cate one and two with the help of StoatyDive (Figure 4).
StoatyDive finds seven distinguishable peak profiles for repli-
cate one and two. Because we assumed more unspecific sites
in replicate one, we looked deeper into the profiles of repli-
cate two (Figure 4b). Cluster two and five were clearly dis-
parate. Groups one, three, four and six were much closer
together than group two and five. Especially cluster four and
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six were similar. All four groups had profiles with mountain-
like shapes. In contrast, cluster two and five are plateau
shaped profiles. The mountains in the profiles became more
broader and fuzzier from cluster three to one and then to six
and four. The average, centered profiles (Supplementary In-
formation: Figure 5 b1-7) reflected the trend of the ensemble
of the individual profiles in each cluster (Figure 4 b1-7). To
return to our initial examples (Figure 1), peak profile 529 was
classified by StoatyDive as a small, centered mountain (Fig-
ure 4 b3), whereas peak profile 805 was a very broad profile
(Figure 4 b4).

It is to mention that the number of clusters depend on the opti-
mization of StoatyDive, or the user defined value. Other pro-
teins, experimental conditions, and methods might have dif-
ferent peak profile groups. Even in our example it is worth to
investigate if cluster four and six of replicate two can be sepa-
rated more distinctly. At this point, one could run StoatyDive
again, but only with the peaks of cluster four and six.

The high distance between cluster two and five might re-
sult from the difference between the profile borders (compare
Figure 4 b2 and b5). Where cluster two had profiles with lots
of values in the left or right side of the peak profile, cluster
five occupies the center of the peak profile.

A broader and fuzzier profile might not necessarily mean that
it is an unspecific site. Perhaps some of them are just a collec-
tion of several specific peak profiles that are merged together.
This could have happened because of the peakcaller model or
the peak correction and extension of StoatyDive. It is worth
to take these profiles and reduce the extension, and in addi-
tion run a peak deconvolution.

It is important to note that peaks shaped like plateaus might
be false positives. These peaks most likely correspond to
PCR duplicates that are not real binding sites. We have re-
moved PCR duplicates during the preprocessing of the read
library, but some duplicates might be still in the data. Se-
quencing errors in the unique molecular identifiers (UMI) are
a common reason.

SLBP has been reported as an mRNA export and translation
factor (6). Thus, it is worth to investigate if peaks like 529
are more informative for a translation factor than peaks like
805. That is to say, 529 might be more suited for sequence
and structure predictions than peak 805. Therefore, a deeper
inspection of group one, three, four and six seems promising.

Information from Peak Profile Shapes. We made the as-
sumption that replicate one might have more unspecific and
less distinguishable profiles than replicate two based on the
different CV distributions (Figure 3). Thus, we counted the
number of peaks in each cluster for replicate one and two (Ta-
ble 1). From 899 peaks, in replicate one we had 171 peaks
being a sharp mountain shape (Figure 4 a4 and a6), 481 being
a broader mountain (Figure 4 al, a2 and a5), 51 peaks with
plateaus (Figure 4 a3), and 196 constant shaped peaks (Fig-
ure 4 a7). Replicate two, on the other hand, had 265 sharp
mountain shaped peak profiles (see Figure 4 bl and b3), so
94 more than replicate one. This corroborates the assump-
tion that replicate one has more broader and unspecific sites.

Heyl etal. | StoatyDive
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Fig. 4. We applied StoatyDive to the SLBP data (ENCSR483NOP; GSE91802) (5). StoatyDive found seven different peak profile shapes in the data of replicate one a1-7
and two b1-7 of SLBP. One example profile of each cluster is shown with the number of peaks in each cluster in the title. The first plot shows the peak profiles in the lower
dimension, when we applied uMAP. For replicate one, shape one is a broad peak profile. Shape two is a thin, spiky mountain, but with additional peaks surrounding it. Shape
three is a flat plateau. Shape four is a mountain broader than shape six but thinner than shape one. Shape five is a very broad profile (cordillera). Shape six is a very thin
and specific mountain. Shape seven is a constant profile. For replicate two, shape one is a small steep mountain with some small peaks surrounding it. Shape two is a very
broad plateau. Shape three is a very thin and specific mountain such as peak 529 (Figure 1a). Shape four is a very broad profile (cordillera) such as peak 805 (Figure 1b).
Shape five is a clear, unvarying plateau. Shape six is a broad profile with two or more clear peaks in close proximity. Shape seven is a constant profile.

Thus, replicate two had only 444 broad peak profiles (Fig-
ure 4 b4 and b6), and only 2 constant peak profiles (Figure 4
b7). Yet, replicate two had 188 peaks with plateaus (Figure 4
b2 and b5).

We further investigated the biological function of different
peak profiles of replicate two. Since SLBP targets histone
mRNA (6), we intersected known annotated mRNAs of his-
tones (hg38, Ensembl) with the summit of the different peak
profiles (Table 1). From the 899 peaks, only =~ 14% (128
peaks) of replicate two overlapped with mRNAs of histones.
Yet, of these 128 peaks almost all come from group one,
three, four, and six. These groups are either spiky, or broader
mountain shaped peak profiles. Only 4 peaks intersected with
histone mRINAs that had a profile shaped like a plateau (Fig-
ure 4 b5). This endorses the assumption that peak profiles
shaped like plateaus are mainly PCR duplicates that are less
informative. The observation also suggests that broader pro-
files are still informative, because some of them overlapped
with histone mRNAs. At this point, it is worth to inves-
tigate for downstream peak analysis tasks, such as binding
sequence motif detection, how much noise each individual
mountain shaped profile encompasses.

Table 1. Number of peaks of SLBP for different shape groups.

Total Sharp Broad Plateau Constant
Rep. 1 | 899 171 481 51 196
Rep. 2 | 899 265 444 188 2
Peak Summits in Histone mRNAs
Rep. 1 | 125 19 97 8 1
Rep,2 | 128 44 80 4 0
Heyl etal. | StoatyDive

Conclusion

StoatyDive is a powerful tool that can evaluate and classify
peak profiles. It can be used in any sequencing data analysis
that involves the prediction of binding sites such as CLIP-
Seq, or ChIP-Seq. Within this work, we provided an ex-
ample for SLBP to show the usability of StoatyDive. First,
it is possible to assess the quality of an experiment such
as CLIP. Second, StoatyDive assists to evaluate the binding
specificity of the protein. The user should check for the nor-
malized CV distribution. A protein that binds very specific
will have a distribution concentrated around a normalized CV
of one. A protein with a lot of unspecific bindings will have
a normalized CV distribution around a value of zero. Third,
StoatyDive helps to filter for specific and unspecific binding
sites to investigate if the protein has multiple protein domains
that have different binding mechanisms. A finer distinction
can be made with the classification mode of StoatyDive. This
helps to identify peak profiles with a specific shape and fil-
ter them based on the corresponding biological question and
function of the protein. For example, a transcription factor
might have more specific bindings (more spiky mountains),
than a protein complex or a helicase (more broader moun-
tains). Fourth, the results of StoatyDive can be used to val-
idate a peakcaller (e.g., PureCLIP), that is to say, one can
assess how many false positives are in the peak sets based on
the shape. Different peakcaller might result in disparate peak
sets and consequently different peak profile shapes.

StoatyDive is a very powerful, well documented, and easy to
apply tool that refines the binding site detection in the data
analysis such as CLIP-Seq. Nevertheless, StoatyDive is a
very general tool. It can be used with different types of peak
calling outputs and peak data types of sequencing data (e.g.,
ChIP-Seq, ATAC-Seq, Ribo-Seq, and others). It serves as
a quality control and filtering step to select specific binding
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profiles, which therefore allows to improve other binding site
prediction tools such as DeepBind (14), or any other subse-
quent analysis tasks, to increase the accuracy for the predic-
tion.
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Supplementary Note 1: Average Peak Profiles
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Fig. 5. The average, centered profiles of the SLBP data of replicate one and two

profiles.

Supplementary Note 2: PCA on SLBP Data
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Fig. 6. Principal component analysis (PCA) on the data that is also used for uMAP. There are no clear clusters visible after the
dimensional reduction for both replicates. uUMAP can clearly separate the data into more defined clusters.
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Supplementary Note 3: t-SNE on SLBP Data
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Fig. 7. t-Distributed Stochastic Neighbor Embedding (t-SNE) on the data that is also used for uMAP. There are no clear clusters visible
after the dimensional reduction for both replicates. uMAP can clearly separate the data into more defined clusters.

Supplementary Note 4: SOM on SLBP Data
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Fig. 8. Using an optimized self-organizing map (SOM) delivers a feature layer with some high activated hidden units for replicate one
and only one very high activated hidden unit for replicate two. It is hard to see any distinct clusters from the counts (activation) of each
hidden unit. uMAP can clearly separate the data into more defined clusters. Furthermore it is much easier to interpret the results of
UMAP, whereas an artificial neural network, such as a SOM, generates a feature layer (hidden layer) that is hard to grasp.
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