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Abstract1

Rapid phenotypic adaptation is often observed in natural populations and selection experi-2

ments. However, detecting the genome-wide impact of this selection is difficult, since adaptation3

often proceeds from standing variation and selection on polygenic traits, both of which may leave4

faint genomic signals indistinguishable from a noisy background of genetic drift. One promis-5

ing signal comes from the genome-wide covariance between allele frequency changes observable6

from temporal genomic data, e.g. evolve-and-resequence studies. These temporal covariances7

reflect how heritable fitness variation in the population leads changes in allele frequencies at8

one timepoint to be predictive of the changes at later timepoints, as alleles are indirectly se-9

lected due to remaining associations with selected alleles. Since genetic drift does not lead to10

temporal covariance, we can use these covariances to estimate what fraction of the variation11

in allele frequency change through time is driven by linked selection. Here, we reanalyze three12

selection experiments to quantify the effects of linked selection over short timescales using co-13

variance among time-points and across replicates. We estimate that at least 17% to 37% of14

allele frequency change is driven by selection in these experiments. Against this background of15

positive genome-wide temporal covariances we also identify signals of negative temporal covari-16

ance corresponding to reversals in the direction of selection for a reasonable proportion of loci17

over the time course of a selection experiment. Overall, we find that in the three studies we18

analyzed, linked selection has a large impact on short-term allele frequency dynamics that is19

readily distinguishable from genetic drift.20

Significance Statement21

A long-standing problem in evolutionary biology is to understand the processes that shape the22

genetic composition of populations. In a population without migration, the two processes that23

change allele frequencies are selection, which increases beneficial alleles and removes deleterious24

ones, and genetic drift which randomly changes frequencies as some parents contribute more or less25

alleles to the next generation. Previous efforts to disentangle these processes have used genomic26

samples from a single timepoint and models of how selection affects neighboring sites (linked se-27

lection). Here, we use genomic data taken through time to quantify the contributions of selection28

and drift to genome-wide frequency changes. We show selection acts over short timescales in three29

evolve-and-resequence studies and has a sizable genome-wide impact.30
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1 Introduction31

A long-standing problem in evolutionary genetics is quantifying the roles of genetic drift and se-32

lection in shaping genome-wide allele frequency changes. Selection can affect allele frequencies,33

both directly and indirectly, with the indirect effect coming from the action of selection on cor-34

related loci elsewhere in genome, e.g. linked selection (Charlesworth et al. 1993; Maynard Smith35

and Haigh 1974; Nordborg et al. 1996; see Barton 2000 for a review). Previous work has mostly36

focused on teasing apart the impacts of drift and selection on genome-wide diversity using popu-37

lation samples from a single contemporary timepoint, often by modeling the correlation between38

regional recombination rate, gene density, and diversity created in the presence of linked selection39

(Cutter and Payseur 2013; Sella et al. 2009). This approach has shown linked selection has a40

major role in shaping patterns of genome-wide diversity across the genomes of a range of sexual41

species (Andersen et al. 2012; Andolfatto 2007; Begun et al. 2007; Beissinger et al. 2016; Cutter42

and Choi 2010; Elyashiv et al. 2016; Macpherson et al. 2007; Sattath et al. 2011; Williamson et al.43

2014), and has allowed us to quantify the relative influence of positive selection (hitchhiking) and44

negative selection (background selection; Andolfatto 2007; Elyashiv et al. 2016; Hernandez et al.45

2011; Macpherson et al. 2007; McVicker et al. 2009; Nordborg et al. 2005). However, we lack an46

understanding of both how linked selection acts over short time intervals and of its full impact on47

genome-wide allele frequency changes.48

There are numerous examples of rapid phenotypic adaptation (Franks et al. 2007; Grant and49

Grant 2006, 2011; Reznick et al. 1997) and rapid, selection-driven genomic evolution in asexual50

populations (Baym et al. 2016; Bennett et al. 1990; Good et al. 2017). Yet the polygenic nature51

of fitness makes detecting the impact of selection on genome-wide variation over short timescales52

in sexual populations remarkably difficult (Kemper et al. 2014; Latta 1998; Pritchard et al. 2010).53

This is because the effect of selection on a polygenic trait (such as fitness) is distributed across54

numerous loci. This can lead to subtle allele frequency shifts on standing variation that are difficult55

to distinguish from background levels of genetic drift and sampling variance. Increasingly, genomic56

experimental evolution studies with multiple timepoints, and in some cases multiple replicate pop-57

ulations, are being used to detect large-effect selected loci (Turner and Miller 2012; Turner et al.58

2011) and differentiate modes of selection (Barghi et al. 2019; Burke et al. 2010; Therkildsen et al.59

2019). In addition these temporal-genomic studies have begun in wild populations, some with the60

goal of finding variants that exhibit frequency changes consistent with fluctuating selection (Berg-61

land et al. 2014; Machado et al. 2018). In a previous paper, we proposed that one useful signal62

for understanding the genome-wide impact of polygenic linked selection detectable from temporal63

genomic data is the temporal autocovariance (i.e. covariance between two timepoints) of allele64

frequency changes (Buffalo and Coop 2019). These covariances are created when the loci that65

underly heritable fitness variation perturb the frequencies of linked alleles; in contrast, when ge-66

netic drift acts alone in a closed population, these covariances are expected to be zero for neutral67

alleles. Mathematically, temporal covariances are useful because it is natural to decompose the68

total variance in allele frequency change across a time interval into the variances and covariances69

in allele frequency change between generations. Furthermore, biologically, these covariances reflect70

the extent to which allele frequency changes in one generation predict changes in another due to a71

shared selection pressures and associations to selected loci.72

Here, we provide the first empirical analyses to quantify the impact of linked selection acting73

over short timescales (tens of generations) across two evolve and re-sequence studies (Barghi et al.74

2019; Kelly and Hughes 2019), and an artificial selection experiment (Castro et al. 2019). These75
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Table 1: Summary of the main selection studies we analyzed

Study Species Selection Replicates Pop. Size† Gens. Timepoints
Kelly and Hughes (2019) D. simulans lab adaptation 3 ∼1100 14 2
Barghi et al. (2019) D. simulans lab adaptation 10 ∼1000 60 7

Castro et al. (2019) M. musculus tibiae length
control

2
1

32
28 17 2

†Approximate census population size during experiment.

sequencing selection experiments have started to uncover selected loci contributing to the adaptive76

response; however it is as yet far from clear how much of genome-wide allele frequency changes are77

driven by selection or genetic drift. We repeatedly find a signal of temporal covariance, consistent78

with linked selection acting to significantly perturb genome-wide allele frequency changes across the79

genome in a manner that other approaches would not be able differentiate from genetic drift. We80

estimate a lower bound of the fraction of variance in allele frequency change caused by selection,81

as well as the correlation between allele frequency changes between replicate populations caused by82

convergent selection pressures. Overall, we demonstrate that linked selection has a powerful role in83

shaping genome-wide allele frequency changes over very short timescales in experimental evolution.84

Results85

We first analyzed the dataset of Barghi et al. (2019), an evolve-and-resequence study with ten86

replicate populations exposed to a high temperature lab environment and evolved for 60 generations,87

and sequenced every ten generations. Using the seven timepoints and ten replicate populations,88

we estimated the genome-wide 6 × 6 temporal covariance matrix Q for each of the ten replicates.89

Each row of these matrices represent the temporal covariance Cov(∆10ps,∆10pt), between the allele90

frequency change (in ten-generation intervals, denoted ∆10pt) of some initial reference generation s91

(the row of the matrix), and some later timepoint t (the column of the matrix). We corrected these92

matrices for biases created due to sampling noise, and normalized the entries for heterozygosity (see93

SI Appendix, sections S1.2 and S1.4). These covariances are expected to be zero when only drift is94

acting, as only heritable variation for fitness can create covariance between allele frequency changes95

in a closed population (Buffalo and Coop 2019). Averaging across the ten replicate temporal96

covariances matrices, we find temporal covariances that are statistically significant (95% block97

bootstraps CIs do not contain zero), consistent with linked selection perturbing genome-wide allele98

frequency changes over very short time periods. The covariances between all adjacent time intervals99

are positive and then decay towards zero as we look at more distant time intervals (Figure 1 A), as100

expected when directional selection affects linked variants’ frequency trajectories until ultimately101

linkage disequilibrium and the associated additive genetic variance for fitness decays (which could102

occur as a population reaches a new optimum, and directional selection weakens) (Buffalo and103

Coop 2019). The temporal covariances per replicate are noisier but this general pattern holds; see104

SI Appendix, Fig. S23.105

Since our covariances are averages over loci, the covariance estimate could be strongly affected106

by a few outlier regions. To test whether large outlier regions drive the genome-wide signal we107

see in the Barghi et al. (2019) data, we calculate the covariances in 100kb windows along the108

genome (we refer to these as windowed covariances throughout) and take the median windowed109
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Figure 1: A: Temporal covariance, averaged across all ten replicate populations, through time from the
Barghi et al. (2019) study. Each line depicts the temporal covariance Cov(∆ps,∆pt) from some reference
generation s to a later time t which varies along the x-axis; each line corresponds to a row of the upper-
triangle of the temporal covariance matrix with the same color (upper right). The ranges around each point
are 95% block-bootstrap confidence intervals. B: A lower bound on the proportion of the total variance in
allele frequency change explained by linked selection, G(t), as it varies through time t along the x-axis. The
black line is the G(t) averaged across replicates, with the 95% block-bootstrap confidence interval. The other
lines are the G(t) for each individual replicate, with colors indicating what subset of the temporal-covariance
matrix to the right is being included in the calculation of G(t).

covariance, and trimmed-mean windowed covariance, as a measure of the genome-wide covariance110

robust to large-effect loci. These robust estimates (SI Appendix, Table S1 and SI Appendix, Fig.111

S24) confirm the patterns we see using the mean covariance, establishing that genomic temporal112

covariances are non-zero due to the impact of selection acting across many genomic regions.113

While the presence of positive temporal covariances is consistent with selection affecting allele114

frequencies over time, this measure is not easily interpretable. We can calculate a more intuitive115

measure from the temporal covariances to quantify the impact of selection on allele frequency116

change: the ratio of total covariance in allele frequency change to the total variance in allele117

frequency change. We denote the change in allele frequency as ∆pt = pt+1−pt, where pt is the allele118

frequency in generation t. Since the total variation in allele frequency change can be partitioned into119

variance and covariance components, Var(pt − p0) =
∑t−1

i=0 Var(∆pi) +
∑t−1

i=0

∑t−1
j ̸=i Cov(∆pi,∆pj)120

(we correct for biases due to sequencing depth), and the covariances are zero when drift acts alone,121

this is a lower bound on how much of the variance in allele frequency change is caused by linked122

selection (Buffalo and Coop 2019). We call this measure G(t), defined as123
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G(t) =

∑t−1
i=0

∑t−1
j ̸=i Cov(∆pi,∆pj)

Var(pt − p0)
. (1)

This estimates the impact of selection on allele frequency change between the initial generation124

0 and some later generation t, which can be varied to see how this quantity grows through time.125

When the sum of the covariances is positive, this measure can intuitively be understood as a126

lower bound on relative fraction of allele frequency change normally thought of as “drift” that is127

actually due to selection. Additionally, G(t) can be understood as a short-timescale estimate of128

the reduction in neutral diversity due to linked selection (or equivalently the reduction in neutral129

effective population size needed to account linked selection, see SI Appendix, section S7). Since130

the Barghi et al. (2019) experiment is sequenced every ten generations, the numerator uses the131

covariances estimated between ten-generation blocks of allele frequency change; thus the strong,132

unobservable, covariances between adjacent generations do not contribute to the numerator of133

G(t). Had these covariances been measurable on shorter timescales, their cumulative effect would134

likely have been higher yet (see SI Appendix, sections S2 and S8.4 for more details). Additionally,135

selection inflates the variance in allele frequency change per generation; however, this effect cannot136

be easily distinguished from drift. For both these reasons, our measure G(t) is quite conservative137

(we demonstrate this through simulations in SI Appendix, section S8.4). Still, we find a remarkably138

strong signal. Greater than 20% of total, genome-wide allele frequency change over 60 generations139

is the result of selection (Figure 1 B). This proportion of variance attributable to selection builds140

over time in Figure 1B as the effects of linked selection are compounded over the generations141

unlike genetic drift. Our G(t) starts to plateau to a constant level as the covariances from earlier142

generations have decayed and so no longer contribute as strongly (Figure 1).143

Additionally, we looked for a signal of temporal autocovariance in Bergland et al. (2014), a study144

that collected Drosophila melanogaster through Spring-Fall season pairs across three years. If there145

was a strong pattern of genome-wide fluctuating selection, we might expect a pattern of positive146

covariances between similar seasonal changes, e.g. Spring-Fall in two adjacent years, and negative147

covariances between dissimilar seasonal changes, e.g. Spring-Fall and Fall-Spring in two adjacent148

years. However, we find no such signal over years, and in reproducing their original analysis, we149

find that their number of statistically significant seasonal SNPs is not enriched compared to an150

empirical null distribution created by permuting seasonal labels; we discuss this in more depth in151

SI Appendix, section S6.152

The replicate design of Barghi et al. (2019) allows us to quantify another covariance: the co-153

variance in allele frequency change between replicate populations experiencing convergent selection154

pressures. These between-replicate covariances are created in the same way as temporal covariances:155

alleles linked to a particular fitness background are expected to have allele frequency changes in the156

same direction if the selection pressures are similar. Intuitively, where temporal covariances reflect157

that alleles associated with heritable fitness backgrounds are predictive of frequency changes be-158

tween generations, replicate covariances reflect that heritable fitness backgrounds common to each159

replicate predict (under the same selection pressures) frequency changes between replicates; we note160

that there is not a direct one-to-one correspondence between temporal and replicate covariances,161

since the latter are driven by a shared selection pressure and the stochastic genetic backgrounds162

across replicate populations. We measure this through a statistic similar to a correlation, which we163

call the convergent correlation: the ratio of average between-replicate covariance across all pairs to164

the average standard deviation across all pairs of replicates,165
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cor(∆ps,∆pt) =
EA̸=B (Cov(∆ps,A,∆pt,B))

EA̸=B

(√
Var(∆ps,A)Var(∆pt,B)

) (2)

where A and B here are two replicate labels, and for the Barghi et al. (2019) data, we use ∆10pt.166

We have calculated the convergent correlation for all rows of the replicate covariance matrices.167

Like temporal covariances, we visualize these through time (Figure 2A), with each line representing168

the convergent correlation from a particular reference generation s as it varies with t (shown on169

the x-axis). In other words, each of the colored lines corresponds to the like-colored row of the170

convergence correlation matrix (upper left in Figure 2A). We find these convergent correlation171

coefficients are relatively weak, and decay very quickly from an initial value of about 0.1 (95%172

block bootstrap confidence intervals [0.094, 0.11]) to around 0.01 (95% CIs [0.0087, 0.015]) within173

20 generations. This suggests that while a substantial fraction of the initial response is shared over174

the replicates, this is followed by a rapid decay, a result consistent with the primary finding of175

the original Barghi et al. (2019) study: that alternative loci contribute to longer term adaptation176

across the different replicates.177

A benefit of between-replicate covariances is that unlike temporal covariances, these can be178

calculated with only two sequenced timepoints and a replicated study design. This allowed us to179

assess the impact of linked selection in driving convergent patterns of allele frequency change across180

replicate populations in two other studies. First, we reanalyzed the selection experiment of Kelly181

and Hughes (2019), which evolved three replicate wild populations of Drosophila simulans for 14182

generations adapting to a novel laboratory environment. Since each replicate was exposed to the183

same selection pressure and share linkage disequilibria common to the original natural founding184

population, we expected each of the three replicate populations to have positive convergence corre-185

lations. We find all three convergent correlation coefficients between replicate pairs are significant186

(Figure 2B), and average to 0.36 (95% CI [0.31, 0.40]). Additionally, we can calculate the propor-187

tion of the total variance in allele frequency change from convergent selection pressure, analogous188

to our G(t), where the numerator is the convergent covariance and the denominator is the total189

variance (see SI appendix, section S4). We find that 37% of the total variance is due to shared allele190

frequency changes caused by selection (95% CI [29%, 41%]; these are similar to the convergence191

correlation, since the variance is relatively constant across the replicates.192

Next, we reanalyzed the Longshanks selection experiment, which selected for longer tibiae length193

relative to body size in mice, leading to a response to selection of about 5 standard deviations over194

the course of twenty generations (Castro et al. 2019; Marchini et al. 2014). This study includes195

two independent selection lines, Longshanks 1 and 2 (LS1 and LS2), and an unselected control196

line (Ctrl) where parents were randomly selected. Consequently, this selection experiment offers a197

useful control to test our convergence correlations: we expect to see significant positive convergence198

correlations in the comparison between the two Longshanks selection lines, but not between each199

of the control line and Longshanks line pairs. We find that this is the case (gray confidence200

intervals in Figure 2C), with convergence correlations between each of the Longshanks lines to the201

control not being statistically different from zero, while the convergence correlation between the202

two Longshanks lines is strong (0.18) and statistically significant (CIs [0.07, 0.25]).203

One finding in the Longshanks study was that two major-effect loci showed parallel frequency204

shifts between the two selection lines. We were curious to what extent our genome-wide covariances205

were being driven by these two outlier large-effect loci, so we excluded them from the analysis.206
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Figure 2: A: The convergence correlations, averaged across Barghi et al. (2019) replicate pairs, through
time. Each line represents the convergence correlation cor(∆ps,∆pt) from a starting reference generation s
to a later time t, which varies along the x-axis; each line corresponds to a row of the temporal convergence
correlation matrix depicted to the right (where the diagonal elements represent the convergence correlations
between the same timepoints across replicate populations). We note that convergent correlation for the
last timepoint is an outlier; we are unsure as to the cause of this, e.g. it does not appear to be driven by
a single pair of replicates. B: The convergence correlations between individual pairs of replicates in the
Kelly and Hughes (2019) data (note the confidence intervals are plotted, but are small on this y-axis scale).
C: The convergence correlations between individual pairs of replicates in Castro et al. (2019) data, for the
two selection lines (LS1 and LS2) and the control (Ctrl); gray CIs are those using the complete dataset,
blue CIs exclude chromosomes 5 and 10 which harbor the two regions Castro et al. (2019) found to have
signals of parallel selection between LS1 and LS2. Through simulations, we have found that the differences
in convergence correlation confidence interval widths between these Drosophila studies and the Longshanks
study are due to the differing population sizes.
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Since we do not know the extent to which linkage disequilibrium around these large-effect loci207

affects neighboring loci, we took the conservative precaution of excluding the entire chromosomes208

these loci reside on (chromosomes 5 and 10), and re-calculating the temporal covariances. We209

find excluding these large effect loci has little impact on the confidence intervals (blue confidence210

intervals in Figure 2C), indicating that these across-replicate covariances are indeed driven by a211

large number of loci. This is consistent with a signal of selection on a polygenic trait driving212

genome-wide change, although we note that large-effect loci can contribute to the indirect change213

at unlinked loci (Robertson 1961; Santiago and Caballero 1995).214

The presence of an unselected control line provides an alternative way to partition the effects215

of linked selection and genetic drift: we can compare the total variance in allele frequency change216

of the control line (which excludes the effect of artificial selection on allele frequencies) to the total217

variance in frequency change of the Longshanks selection lines. This allows us to estimate the218

increase in variance in allele frequency change due to selection, which we can further partition219

into the effects of selection shared between selection lines and those unique to a selection line by220

estimating the shared effect through the observed covariance between replicates (see Materials and221

Methods 1 and SI Appendix, section S4 for more details). We estimate at least 32% (95% CI222

[21%, 48%]) of the variance in allele frequency change is driven by the effects of selection, of which223

14% (95% CI [3%, 33%]) is estimated to be unique to a selection line, and 17% (95% CI [9%, 23%])224

is the effect of shared selection between the two Longshanks selection lines.225

We observed that in the longest study we analyzed Barghi et al. (2019), some genome-wide226

temporal covariances become negative at future timepoints (see the first two rows in Figure 1A).227

This shows that alleles that were on average going up initially are later going down in frequency,228

i.e. that the average direction of selection experienced by alleles has flipped. This might reflect229

either a change in the environment or the genetic background, due to epistatic relationships among230

alleles altered by frequency changes (which can occur during an optima shift; Hayward and Sella231

2019) or recombination breaking up selective alleles. Such reversals in selection dynamics could be232

occurring at other timepoints but the signal of a change in the direction of selection at particular loci233

may be washed out when we calculate our genome-wide average temporal covariances. To address234

this limitation, we calculated the distribution of the temporal covariances over 100kb windowed235

covariances (Figure 3 shows these distributions pooling across all replicates; see SI Appendix, Fig.236

S26 for individuals replicates). The covariance estimate of each genomic window will be noisy, due237

to sampling and genetic drift, and the neutral distribution of the covariance is complicated due to238

linkage disequilibria, which can occur over long physical distances in E&R and selection studies239

(Baldwin-Brown et al. 2014; Nuzhdin and Turner 2013). To address this, we have developed a240

permutation-based procedure that constructs an empirical neutral null distribution by randomly241

flipping the sign of the allele frequency changes in each genomic window (i.e. a single random242

sign flip is applied to all loci in a window). This destroys the systematic covariances created243

by linked selection and creates a sampling distribution of the covariances spuriously created by244

neutral genetic drift while preserving the complex dependencies between adjacent loci created by245

linkage disequilibrium. This empirical neutral null distribution is conservative in the sense that the246

variances of the covariances are wider than expected under drift alone, as selection not only creates247

covariance between time intervals, but also inflates the magnitude of allele frequency change within248

a time-interval. We see (Figure 3 A and B) that there are an empirical excess of windows with249

positive covariances between close timepoints compared to the null distribution (a heavier right250

tail), and that this then shifts to an excess of windows with negative covariances between more251
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Figure 3: A, B: The distribution of temporal covariances calculated in 100kb genomic windows from the Barghi
et al. (2019) study, plotted alongside an empirical neutral null distribution created by recalculating the windowed
covariances on 1,000 sign permutations of allele frequency changes within tiles. The number of histogram bins is 88,
chosen by cross validation (SI Appendix, section S25). In subfigure A, windowed covariances Cov(∆pt,∆pt+k) are
separated by k = 2 × 10 generations and in subfigure A the covariances are separated by k = 4 × 10 generations;
each k is an off-diagonal from the variance diagonal of the temporal covariance matrix (see cartoon of upper-triangle
of covariance matrix in subfigures A and B, where the first diagonal is the variance, and the dark gray indicates
which off-diagonal of the covariance matrix is plotted in the histograms). C: The lower and upper tail probabilities of
the observed windowed covariances, at 20% and 80% quintiles of the empirical neutral null distribution, for varying
time between allele frequency changes (i.e. which off-diagonal k). The confidence intervals are 95% block-bootstrap
confidence intervals, and the light gray dashed line indicates the 20% tail probability expected under the neutral null.
Similar figures for different values of k are in SI Appendix, section S27.
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Figure 4: Forward-in-time simulations demonstrate how temporal covariance, G(t) trajectories, and con-
vergence correlations arise during optima shifts of two different magnitudes, under Gaussian stabilizing
selection. (A) Trait means across 30 replicate before and after optima shifts (solid lines), for two different
magnitudes (indicated by color). The optimal trait values are indicated by the purple and yellow dashed
lines. (B) Mean temporal covariance Cov(∆p5,∆pt) across 30 simulation replicates, where t varies along the
x-axis (points), with a loess-smoothed average (solid line). (C) G(t) trajectories through time, for 30 repli-
cate simulations across two optima shifts. The solid line is a loess-smoothed average. (D) The convergence
correlations between two populations (each 1000 diploids) split from a common population, that underwent
either an optima shift in the same direction (converge) and opposite directions (diverge) at generation five.
In subfigures (B), (C), and (D), directional selection begins at generation five, when the optima shifts; this
is indicated by the vertical dashed red line (see SI Appendix Section S8.2 for details on these simulations).

distant timepoints (a heavier left tail).252

We quantified the degree to which the left and right tails are inflated compared to the null253

distribution as a function of time, and see excesses in both tails in Figure 3C. This finding is also254

robust to sign-permuting allele frequency changes on a chromosome-level, the longest extent that255

gametic linkage disequilibria can extend (SI Appendix, Fig. S29). We see a striking pattern that256

the windowed covariances not only decay towards zero, but in fact become negative through time,257

consistent with many regions in the genome having had a reversed fitness effect at later timepoints.258

Finally we used forward-in-time simulations to explore the conditions under which temporal and259

convergent correlations arise. We show a subset of our results for a model of stabilizing selection260

on a phenotype where directional selection is induced by a sudden shift in the optimum phenotype261

of varying magnitudes (Figure 4A). We find that positive temporal covariances are produced by262

such selection (Figure 4B), and that these positive temporal covariances can compound together to263

generate a large proportion of allele frequency change being due to selection (i.e. large G(t)) over264

the relatively short time periods similar to our analyzed selection datasets span (Figure 4C). The265
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magnitude of G(t) increases with the strength of selection, i.e. the variance in fitness, such that266

stronger selection generates larger proportions of allele frequency change. We find a similar picture267

of stronger convergent selection pressures generating larger convergence correlations (Figure 4D;268

see also SI Appendix, Fig. S12 for how other factors impact convergence correlations).269

Averaging across replicates, these simulation results show G(t) is relatively insensitive to the270

number of loci underlying the trait. However, if only a small number of loci influence the trait,271

the G(t) trajectories are typically much more stochastic across replicates. This reaffirms that the272

genome-wide linked selection response we see in the Barghi et al. (2019) data is highly polygenic273

(compare Figure 1B to SI Appendix, Fig. S6). Furthermore, using our simulations we find that274

sampling only every 10 generations does indeed mean that our estimates of G(t) are an underesti-275

mate of the proportional effect of linked selection as they cannot include the covariance between276

closely spaced generations (see SI Appendix, Fig. S14).277

Additionally, we explored other modes of selection with simulations. We find that the long term278

dynamics of the covariances under directional truncation selection, which generates substantial279

epistasis, are richer than we see under Gaussian Stabilizing Selection (GSS) and multiplicative280

selection (SI Appendix, Fig. S18). We also conducted simulations of purifying selection alone281

(i.e. background selection) and find that this can also generate positive temporal covariances (SI282

Appendix, Fig. S16) and under some circumstances, can even generate convergence correlations283

(SI Appendix, Fig. S17). Thus it is unlikely that the signatures of linked selection we see are284

entirely the result of the novel selection pressure the populations are exposed to, and some of this285

signature may be ongoing purifying selection. Only in the case of the Longshanks experiment, does286

the control line allow us to conclude that selection that is almost entirely due to the novel selection287

pressure.288

While none of our experiments have selected the populations in divergent directions, in our sim-289

ulations we find that such selection can generate negative convergent correlations (Figure 4D). This290

suggests that selection experiments combining multiple replicates, control lines, as well as diver-291

gent selection pressures might be quite informative in disentangling the contribution of particular292

selection pressures from genome-wide allele frequency changes.293

Discussion294

Since the seminal analysis of Maynard Smith and Haig (1974) demonstrating that linked neutral295

diversity is reduced as an advantageous polymorphism sweeps to fixation, over four decades of296

theoretical and empirical research has bettered our understanding of linked selection. One under-297

used approach to understand the genome-wide effects of selection on polygenic trait (e.g. on298

standing variation), stems from an early quantitative genetic model of linked selection Robertson299

(1961) and its later developments (Santiago and Caballero 1995, 1998; Woolliams et al. 1993; Wray300

and Thompson 1990; see also Barton 2000 for a comparison of these models with classic hitchhiking301

models). Implicit in these models is that autocovariance between allele frequency change is created302

when there is heritable fitness variation in the population, a signal that may be readily detected303

from temporal genomic data (Buffalo and Coop 2019). Depending on how many loci affect fitness,304

even a strong effect of linked selection may not be differentiable from genetic drift using only305

single contemporary population samples or looking at temporal allele frequency change at each306

locus in isolation. In this way, averaging summaries of temporal data allows us to sidestep the key307

problem of detecting selection from standing variation: that the genomic footprint leaves too soft308
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of a signature to differentiate from a background of genetic drift. In fact we find that the temporal309

covariance signal is detectable even in the extremely difficult to detect case of selection on highly310

polygenic traits (Buffalo and Coop 2019).311

It is worth building some intuition why temporal covariance allows us to detect such faint signals312

of polygenic linked selection from temporal genomic data. Variance in allele frequency change is313

subject to both drift and sampling noise, which at any single locus may swamp the temporal314

covariance signal due to selection, or create spurious covariances when selection is not acting.315

However, these spurious covariances do not share a directional signal whereas the covariances316

created by linked selection do; consequently, averaging across the entire genome, the temporal317

signal exceeds sampling noise.318

Our analyses reveal that a sizable proportion of allele frequency change in these experimental319

evolution populations is due to the (likely indirect) action of selection. Capitalizing on replicated320

designs, we characterized the extent to which convergent selection pressures lead to parallel changes321

in allele frequencies across replicate populations, and found that a substantial proportion of the322

response is shared across short timescales. These likely represent substantial under-estimates of323

the contribution of linked selection because the studies we have reanalyzed do not sequence the324

population each generation, preventing us from including the effects of stronger correlations between325

adjacent generations. Furthermore, our estimation methods are intentionally conservative, for326

example they exclude the contribution of selection that does not persist across generations and327

selection that reverses sign; thus they can be seen as a lower bound of the effects of selection, which328

we have confirmed through forward-in-time simulations. Finally, through simulation results, we329

show that for a given level of additive genetic variance, the strengths of temporal and replicate330

covariances depend on the mode of selection, the details of the populations or selection experiment,331

and the level of linkage disequilibria, yet the level of temporal covariance is relatively invariant to332

the number of loci underlying fitness, as long as fitness is sufficiently polygenic.333

These estimates of the contribution of selection could be refined by using patterns of linkage334

disequilibria (LD) and recombination which would allow us to more fully parameterize a linked-335

selection model of temporal allele frequency change (Buffalo and Coop 2019). The basic prediction is336

that regions of higher linkage disequilibrium and lower recombination should have greater temporal337

autocovariance than regions with lower LD and higher recombination. However, one limitation338

of these pooled sequence datasets is that none of the studies we reanalyzed estimated linkage339

disequilibria data for the evolved populations. While there are LD data for a natural population340

of D. simulans (Howie et al. 2018; Signor et al. 2018), we did not find a relationship between341

temporal covariance and LD. We believe this is driven by the idiosyncratic nature of LD in evolve-342

and-resequence populations, which often extends over large genomic distances (Kelly and Hughes343

2019; Nuzhdin and Turner 2013). Future studies complete with LD data and recombination maps344

would allow one to disentangle the influence of closely linked sites from more distant sites in causing345

temporal autocovariance, and allow the fitting of more parametric models to estimate population346

parameters such as the additive genetic variance for fitness directly from temporal genomic data347

alone (Buffalo and Coop 2019). Future work could refine our G(t) estimates by including selection’s348

impact on the variance in allele frequency terms (e.g. see equation 26 of (Buffalo and Coop 2019)),349

and possibly quantifying the covariances missed when sequencing is not done each generation; both350

would lead to less conservative estimates that could show a large impact of selection.351

Our primary focus here has been on evolution in laboratory populations. It is unclear whether352

we should expect a similar impact of selection in natural populations. In some of these experiments,353
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selection pressures may have been stronger or more sustained than in natural populations (Hairston354

et al. 2005; Hendry and Kinnison 1999). Conversely, these lab populations were maintained at355

relatively small census sizes (Table 1), which will amplify the role of genetic drift, and increase356

the frequency of rare deleterious alleles in selection lines due to founder effects. The advantage357

of lab experiments is that they are closed populations; in natural populations temporal covariance358

could also arise from the systematic migration of alleles from differentiated populations. Adapting359

these methods to natural populations will require either populations that are reasonably closed to360

migration, or for the effect of migration to be accounted for possibly either by knowledge of allele361

frequencies in source populations or the identification of migrant individuals.362

While it challenging to apply temporal methods to natural populations there is a lot of promise363

for these approaches (Bergland et al. 2014; Machado et al. 2018). Efforts to quantify the impact of364

linked selection have found obligately sexual organisms have up to an 89% reduction in genome-wide365

diversity over long time periods (Comeron 2014; Coop 2016; Corbett-Detig et al. 2015; Elyashiv366

et al. 2016; McVicker et al. 2009) Thus linked selection makes a sizeable contribution to long-term367

allele frequency change in some species, and there is reason to be hopeful that we could detect368

this from temporal data, which would help to resolve the timescales that linked selection acts over369

in the wild. In our reanalysis of the Barghi et al. (2019) study, we find evidence of complex370

linked selection dynamics, with selection pressures flipping over time due to either environmental371

change, the breakup of epistatic combinations or advantageous haplotypes. Such patterns would be372

completely obscured in samples from only contemporary populations. Thus, we can hope to have373

a much richer picture of the impact of selection as temporal sequencing becomes more common,374

allowing us to observe the effects of ecological dynamics in genomic data (Hairston et al. 2005).375

Furthermore, understanding the dynamics of linked selection over short timescales will help to376

unite phenotypic studies of rapid adaptation with a detectable genomic signature, to address long-377

standing questions concerning linked selection, evolutionary quantitative genetics, and the overall378

impact selection has on genetic variation.379

Materials and Methods380

Datasets Analyzed381

We used available genomic data data from four studies: pooled population resequencing (pool-382

Seq) data from Barghi et al. (2019), Kelly and Hughes (2019), and Bergland et al. (2014), and383

individual-level sequencing data from Castro et al. (2019). In all cases, we used the variants kept384

after the filtering criteria of the original studies.385

Variance and Covariance Estimates386

To remove systematic covariances in allele frequency change caused by tracking the reference or387

minor allele, we randomly choose an allele to track frequency for each locus. Then, we calculate388

the variance-covariance matrix of allele frequency changes using a Python software package we389

have written, available at http://github.com/vsbuffalo/cvtk. This simultaneously calculates390

temporal variances and covariances, and replicate covariances and uses the sampling depth and391

number of diploid individuals to correct for bias in the variance estimates and a bias that occurs in392

covariance estimates between adjacent timepoints due to shared sampling noise (see SI Appendix,393

sections S1.2, S1.3, and S1.4 for mathematical details of these estimators). We assess that our394
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bias correction procedure is working adequately through a series of diagnostic plots that ensure395

that the procedure removes the relationship between sampling depth and uncorrected variance and396

covariances (SI Appendix, Fig. S4). Through our simulations we find that our estimates can differ397

based on how fixations and losses are handled in long time-series (SI Appendix, section S8.7) but398

none of our findings in the main text are qualitatively altered by this decision (SI Appendix, Figs.399

S19 and S20).400

Estimating Uncertainty with a Block Bootstrap401

To infer the uncertainty of covariance, convergence correlation, and G(t) estimates, we used a block402

bootstrap procedure. This bootstrap procedure resamples blocks of loci, rather than individual loci,403

to infer the uncertainty of a statistic in the presence of unknown correlation between loci. As most404

estimators in this paper are ratios (e.g. covariance standardize by sample heterozygosity, G(t), and405

the convergence correlation), which we estimate with a ratio of averages, we exploit the linearity of406

expectation for efficient computation of bootstrap samples (see SI Appendix, Fig. S3 for details).407

Partitioning Unique and Shared Selection Effects in the Longshanks Study408

The unselected control line in the Longshanks experiment allows us to additionally partition the409

total variance in allele frequency change into drift, shared effects of selection, and unshared effects410

of selection between selected replicates. We begin by decomposing the allele frequency change in411

Longshanks line 1 (LS1) as ∆pt,LS1 = ∆Dpt,LS1+∆Upt,LS1+∆Spt,LS where these terms are the drift412

in Longshanks replicate 1 (∆Dpt,LS1), selection unique to the LS1 replicate (∆Upt,LS1), and selection413

response shared between the two Longshanks replicates (∆Spt,LS) respectively (and similarly for414

the Longshanks line 2, LS2). By construction, this decomposition assumes that each of these terms415

are uncorrelated within replicates, so the contribution of each term to the total variance in allele416

frequency change, Var(∆pt,LS1), is the variance of that term’s allele frequency change.417

We estimate the effects of selection by first calculating the fraction of the total variance explained418

by drift. We assume the variance in allele frequency change observed in the unselected control line419

(Var(∆pt,Ctrl)) is driven entirely by neutral genetic drift, and since an identical breeding scheme420

was used across all three replicates (except breeders for the control line were chosen at random),421

we can use this as an estimate of the contribution of neutral genetic drift in the selected lines,422

Var(∆pt,Ctrl) = Var(∆Dpt,LS1) = Var(∆Dpt,LS2). Then, we can estimate the increase in variance423

in allele frequency change due to selection as (Var(∆pt,LS1) + Var(∆pt,LS2))/2− Var(∆pt,Ctrl) and424

the shared effect of selection across selected lines as Cov(∆pt,LS1,∆pt,LS2). Finally, the covariance425

in allele change between replicates is used to estimate the shared effects of selection between lines,426

Cov(∆pt,LS1,∆pt,LS2) = Var(∆Spt,LS).427

Windowed Covariance and the Empirical Neutral Null428

Throughout the paper, we use genomic windows for the block-bootstrap procedure. For the D.429

simulans and D. melanogaster data from the Barghi et al. (2019), Kelly and Hughes (2019), and430

Bergland et al. (2014) studies, we used large megabase windows for the block bootstrap procedure,431

while we used a ten megabase window for the large mouse genome data from the Castro et al.432

(2019) study.433
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Given evidence of a reversal in the direction of selection at later timepoints in the Barghi et al.434

(2019) study, we calculated windowed temporal covariances on 10 kilobase windows and looked at435

the distribution of these covariances through time. We compare these distributions of windowed436

covariances to an empirical neutral null created by randomly permuting the sign of allele frequency437

change at the block level (to preserve the correlation structure between loci due to LD). This438

destroys the systematic covariances in allele frequency change created by linked selection, which439

emulates a frequency trajectory under drift. This approach is conservative, since heritable fitness440

variation also inflates the magnitude of allele frequency change more than expected under drift,441

but we do not change these magnitudes. Using this empirical neutral null distribution of windowed442

covariances, we calculate how much of the observed windowed covariance distribution falls outside443

of empirical null distribution for different tail probabilities. While the comparison between the444

distribution of 10 kilobase windowed covariances to the empirical neutral null created from sign-445

permuting 10 kilobase windows is most natural, we wanted to ensure that our finding that the446

shift from mostly positive to mostly negative windowed covariances through time (Figure 3) was447

robust to LD extending beyond the range of these 10 kilobase windows. We took the conservative448

approach of also sign-permuting at the chromosome-level, and found the same qualitative shift (SI449

Appendix, Fig. S29).450

Forward-in-time Simulations451

To explore how aspects of genetic architecture, models of selection, and experimental design impact452

temporal covariance, the G(t) trajectories, and convergence correlations, we ran extensive forward-453

in-time simulations using SLiM (Haller and Messer 2019); here we discuss the Gaussian Stabilizing454

Selection simulations in Figured 4, but SI Appendix, section S8 describes these simulation routines455

and others in detail.456

We simulated directional selection on a trait by first evolving each population of N = 1000457

diploids to equilibrium (we will refer to this as the burnin hereafter) under GSS for 10N genera-458

tions with the stabilizing selection variance Vs = 1 and an optima set at zero. We note that the459

small burnin population size means that these simulations should not be taken as reflecting any460

specific natural population and they are for illustrative purposes only. We simulated a polygenic461

architecture by setting the trait mutation rate to 10−8 per basepair, per generation, in addition462

to having a separate neutral mutation of 10−8 which created neutral mutations which we used to463

calculate the temporal covariances. Our simulated region was 50 megabases in length (about one464

quarter of a Drosophila chromosome), and trait alleles were randomly selected to have a ±0.01465

effect size. By tracking the trait mean through the burnin, we found it converged to the optimum466

as expected. After the burnin, the population was split into two different replicate populations,467

to capture the effect of bottlenecks in selection experiments (these population sizes varied between468

50, 500, and 1000 diploids; the later representing no bottleneck). Each population then underwent469

an optima shift of either 0.1, 0.5, or 1 on generation five, with the first four generations serving as470

a control. These optima shifts were either in the same direction (converging), different directions471

(diverging), or only one optima shifted (as a control). By tracking the trait mean, we saw that472

it converged as expected during burnin, and the trait showed the expected directional response to473

selection (SI Appendix, Fig. S7). Using the neutral population frequency data from these simula-474

tions, we calculated the temporal covariances, G(t) trajectories, and convergence correlations.475
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Data Availability476

All analysis was done in Python, using numpy, matplotlib, and Jupyter notebooks (Hunter 2007;477

Kluyver et al. 2016; Oliphant 2006; Rossum 1995); code to reproduce these analyses is available478

on Github, https://github.com/vsbuffalo/cvtk/. All data is from previous studies and avail-479

able; Barghi et al. (2019) data was downloaded from https://datadryad.org/resource/doi:10.480

5061/dryad.rr137kn, Kelly and Hughes (2019) data was downloaded from https://gsajournals.481

figshare.com/articles/Supplemental_Material_for_Kelly_and_Hughes_2018/7124963, Berg-482

land et al. (2014) data was downloaded from https://datadryad.org/stash/dataset/doi:10.483

5061/dryad.v883p, and Castro et al. (2019) data was downloaded from http://ftp.tuebingen.484

mpg.de/fml/ag-chan/Longshanks/.485
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S1 Estimator Bias Correction675

S1.1 Correcting variance bias with a single depth sampling process676

Following Waples (1989), we have that the variance in allele frequency change at a locus in the677

initial generation, which is entirely due to a binomial sampling process, is Var(p0) = p0(1−p0)/d0678

where d0 is the number of binomial draws (e.g. read depth). At a later timepoint, the variance in679

allele frequency is a result of both the binomial sampling process at time t and the evolutionary680

process. Using the law of total variation we can partition the variation from each process,681

Var(p̃t) = E(Var(p̃t|pt)) + Var(E(p̃t|pt)) (S1)

=
pt(1− pt)

dt︸ ︷︷ ︸
generation t sampling noise

+ Var(pt)︸ ︷︷ ︸
variance due to evolutionary process

. (S2)

Under a drift-only process, Var(pt) = p0(1 − p0)
[
1−

(
1− 1

2N

)t]. However, with heritable682

variation in fitness, we need to consider the covariance in allele frequency changes across generations683

(Buffalo and Coop 2019). We can write684

Var(pt) = Var (p0 + (p1 − p0) + (p2 − p1) + . . .+ (pt − pt−1)) (S3)
= Var (p0 +∆p0 +∆p1 + . . .+∆pt−1) (S4)

= Var(p0) +
t−1∑
i=0

Cov(p0,∆pi) +
t−1∑
i=0

Var(∆pi) +
t−1∑

0≤i<j

Cov(∆pi,∆pj). (S5)

Each allele frequency change is equally like to be positive as it is to be negative; thus by685

symmetry this second term is zero. Additionally Var(p0) = 0, as we treat p0 as a fixed initial686

frequency. We can write,687

Var(pt) =

t−1∑
i=0

Var(∆pi) +

t−1∑
0≤i<j

Cov(∆pi,∆pj). (S6)

The second term, the cumulative impact of variance in allele frequency change can be partitioned688

into heritable fitness and drift components (Buffalo and Coop 2019; Santiago and Caballero 1995)689

Var(pt) =

t−1∑
i=0

Var(∆Dpi) +

t−1∑
i=0

Var(∆Hpi) +

t−1∑
0≤i<j

Cov(∆pi,∆pj). (S7)

where ∆Hpt and ∆Dpt indicate the allele frequency change due to heritable fitness variation and690

drift respectively. Then, sum of drift variances in allele frequency change is691

t−1∑
i=0

Var(∆Dpi) =
t−1∑
i=0

pi(1− pi)

2N
(S8)
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replacing the heterozygosity in generation i with its expectation, we have692

t−1∑
i=0

Var(∆Dpi) = p0(1− p0)

t−1∑
i=0

1

2N

(
1− 1

2N

)i

(S9)

= p0(1− p0)

[
1−

(
1− 1

2N

)t
]

(S10)

which is the usual variance in allele frequency change due to drift. Then, the total allele frequency693

change from generations 0 to t is Var(p̃t − p̃0) = Var(p̃t) + Var(p̃0) − 2Cov(p̃t, p̃0), where the694

covariance depends on the nature of the sampling plan (see Nei and Tajima 1981; Waples 1989).695

In the case where there is heritable variation for fitness, and using the fact that Cov(p̃t, p̃0) =696

p0(1−p0)/2N for Plan I sampling procedures (Waples 1989), we write,697

Var(p̃t − p̃0) = Var(p̃t) + Var(p̃0)− 2C Cov(p̃t, p̃0) (S11)

=
pt(1− pt)

dt
+

p0(1− p0)

d0
+ p0(1− p0)

[
1−

(
1− 1

2N

)t
]
+ (S12)

t−1∑
i=0

Var(∆Hpi) +

t−1∑
0≤i<j

Cov(∆pi,∆pj)−
Cp0(1− p0)

2N
(S13)

Var(p̃t − p̃0)

p0(1− p0)
= 1 +

pt(1− pt)

p0(1− p0)dt
+

1

d0
−
(
1− 1

2N

)t

+ (S14)

t−1∑
i=0

Var(∆Hpi)

p0(1− p0)
+

t−1∑
0≤i<j

Cov(∆pi,∆pj)

p0(1− p0)
− C

N
(S15)

where C = 1 if Plan I is used, and C = 0 if Plan II is used (see Waples 1989, p. 380 and Figure698

1 for a description of these sampling procedures; throughout the paper we use sampling Plan II).699

Rearranging, we can create a bias-corrected estimator for the population variance in allele frequency700

change, and replace all population heterozygosity terms with the unbiased sample estimators, e.g.701
dt

dt−1 p̃t(1− p̃t),702

d0 − 1

d0

Var(p̃1 − p̃0)

p̃0(1− p̃0)
− (d0 − 1)

d0(d1 − 1)

p̃1(1− p̃1)

p̃0(1− p̃0)
− 1

d0
+

C

N
=

Var(∆Hp0)

p0(1− p0)
+

1

2N
(S16)

S1.2 Correcting variance bias with individual and depth sampling processes703

Here, we extend the sampling bias correction described above to handle two binomial sampling704

processes: one as individuals are binomially sampled from the population, and another as reads705

are binomially sampled during sequencing. (see also Jónás et al. 2016). Let Xt ∼ Binom(nt, pt)706

where Xt is the count of alleles and nt is the number of diploids sampled at time t. Then, these707

individuals are sequenced at a depth of dt, and Yt ∼ Binom(dt,Xt/nt) reads have the tracked allele.708

We let p̃t = Yt/dt be the observed sample allele frequency. Then, the sampling noise is709
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Var(p̃t|pt) = E(Var(p̃t|Xt)) + Var(E(p̃t|Xt)) (S17)

= pt(1− pt)

(
1

nt
+

1

dt
− 1

ntdt

)
(S18)

Var(p̃t − p̃0) = pt(1− pt)

(
1

nt
+

1

dt
− 1

ntdt

)
+ p0(1− p0)

(
1

n0
+

1

d0
− 1

n0d0

)
(S19)

− Cp0(1− p0)

N
+ p0(1− p0)

[
1−

(
1− 1

2N

)t
]
+

t−1∑
i=0

Var(∆Hpi) (S20)

+
t−1∑

0≤i<j

Cov(∆pi,∆pj) (S21)

Through the law of total expectation (see Kolaczkowski et al. 2011 Supplementary File 1 for a710

sample proof), one can find that an unbiased estimator of the half the heterozygosity is711

ntdt
(nt − 1)(dt − 1)

p̃t(1− p̃t). (S22)

Replacing this unbiased estimator for half of the heterozygosity into our expression above, the total712

sample variance is713

Var(p̃t − p̃0) =
ntdtp̃t(1− p̃t)

(nt − 1)(dt − 1)

(
1

nt
+

1

dt
− 1

ntdt

)
+

n0d0p̃0(1− p̃0)

(n0 − 1)(d0 − 1)

(
1

n0
+

1

d0
− 1

n0d0

)
+

(S23)

n0d0p̃0(1− p̃0)

(n0 − 1)(d0 − 1)

[
1−

(
1− 1

2N

)t
]
− C

N

n0d0p̃0(1− p̃0)

(n0 − 1)(d0 − 1)
+

t−1∑
i=0

Var(∆Hpi) +
t−1∑

0≤i<j

Cov(∆pi,∆pj).

(S24)

As with equation (S16), we can rearrange this to get a biased-corrected estimate of the variance in714

allele frequency change between adjacent generations, Var(∆pt).715

S1.3 Covariance Correction716

We also need to apply a bias correction to the temporal covariances (and possibly the replicate co-717

variances if the initial sample frequencies are all shared). The basic issue is that Cov(∆p̃t,∆p̃t+1) =718

Cov(p̃t+1− p̃t, p̃t+2− p̃t+1), and thus shares the sampling noise of timepoint t+1. Thus acts to bias719

the covariance by subtracting off the noise variance term of Var(p̃t+1), so we add the expectation720

of this bias, derived above, back in. We discuss this in more detail below in deriving the bias721

correction for the temporal-replicate variance covariance matrix.722
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S1.4 Temporal-Replicate Covariance Matrix Correction723

In practice, we simultaneously estimate the temporal and replicate covariance matrices for each724

replicate, which we call the temporal-replicate covariance matrix. This needs a bias correction; we725

extend the bias corrections for single locus variance and covariance described in Supplementary726

Material Sections S1.1, S1.2, and S1.3 to multiple sampled loci and the temporal-replicate covari-727

ance matrix here. With frequency data collected at T +1 timepoints across R replicate populations728

at L loci, we have multidimensional arrays F of allele frequencies, D of sequencing depths, and N729

of the number of individuals sequenced, each of dimension R× (T +1)×L. We calculate the array730

∆F which contains the allele frequency changes between adjacent generations, and has dimension731

R× T × L. The operation flat(∆F) flattens this array to a (R · T )× L matrix, such that rows are732

grouped by replicate, e.g. for timepoint t, replicate r, and locus l such that for allele frequencies733

pt,r,l, the frequency change entries are734

flat(∆F) =


∆p1,0,0 ∆p2,0,0 . . . ∆p1,1,0 ∆p2,1,0 . . . ∆pT,R,0

∆p1,0,1 ∆p2,0,1 . . . ∆p1,1,1 ∆p2,1,1 . . . ∆pT,R,1
...

... . . . ...
... . . . ...

∆p1,0,L ∆p2,0,L . . . ∆p1,1,L ∆p2,1,L . . . ∆pT,R,L

 (S25)

where each ∆pt,r,l = pt+1,r,l − pt,r,l. Then, the sample temporal-replicate covariance matrix Q′735

calculated on flat(∆F) is a (R·T )×(R·T )matrix, with the R temporal-covariance block submatrices736

along the diagonal, and the R(R − 1) replicate-covariance submatrices matrices in the upper and737

lower triangles of the matrix,738

Q′ =


Q′

1,1 Q′
1,2 . . . Q′

1,R

Q′
2,1 Q′

2,2 . . . Q′
2,R

...
... . . . ...

Q′
R,1 Q′

R,2 . . . Q′
R,R

 (S26)

where each submatrix Q′
i,j (i ̸= j) is the T × T sample replicate covariance matrix for replicates739

i and j, and the submatrices along the diagonal Q′
r,r are the temporal covariance matrices for740

replicate r.741

Given the bias of the sample covariance of allele frequency changes, we calculated an expected742

bias matrix B, averaging over loci,743

B =
1

L

L∑
l=1

hl

2
◦
(

1

dl
+

1

2nl
+

1

2dl ◦ nl

)
(S27)

where ◦ denotes elementwise product, and hl, dl, and nl, are rows corresponding to locus l of744

the unbiased heterozygosity arrays H, depth matrix D, and number of diploids matrix N. The745

unbiased R× (T + 1)× L heterozygosity array can be calculated as746

H =
2D ◦N

(D− 1) ◦ (N− 1)
◦ F ◦ (1− F) (S28)
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where division here is elementwise. Thus, B is a R×(T+1) matrix. As explained in Supplementary747

Material Section S1.2 and S1.3, the temporal variances and covariances require bias corrections,748

meaning each temporal covariance submatrix Qr,r requires two corrections. For an element Qr,t,s =749

Cov(∆pt,∆ps) of the temporal covariance submatrix for replicate r, Qr,r, we apply the following750

correction751

Qr,t,s =

{
Q′

r,t,s − br,t − br,t+1, if t = s

Q′
r,t,s + br,max(t,s), if |t− s| = 1

(S29)

where br,t is element in row r and column t of B.752

S2 Barghi et al. (2019) Temporal Covariances753

Since each replicate population was sequenced every ten generations, the timepoints t0 = 0 genera-754

tions, t1 = 10 generations, t2 = 20 generations, etc., lead to observed allele frequency changes across755

ten generation blocks, ∆pt0 ,∆pt1 , . . . ,∆pt6 . Consequently, the ten temporal covariance matrices756

for each of the ten replicate populations have off-diagonal elements of the form Cov(∆pt0 ,∆pt1) =757

Cov(pt1−pt0 , pt2−pt1) =
∑10

i=0

∑20
j=10Cov(∆pi,∆pj). Each diagonal element has the formVar(∆pt0) =758 ∑t0−1

i=0 Var(∆pi)+
∑t0−1

i=0

∑t0−1
j ̸=i Cov(∆pi,∆pj), and is thus a combination of the effects of drift and759

selection, as both the variance in allele frequency changes and cumulative temporal autocovariances760

terms increase the variance in allele frequency. With sampling each generation, one could more761

accurately partition the total variance in allele frequency change (Buffalo and Coop 2019); while762

we cannot directly estimate the contribution of linked selection to the variance in allele frequency763

change here, the presence of a positive observed covariance between allele frequency change can764

only be caused linked selection.765

S3 Block Bootstrap Procedure766

The estimators used in this paper are predominantly ratios, e.g. temporal-replicate covariance767

standardized by half the heterozygosity, G(t) which is the ratio of cumulative covariance to to-768

tal variance, and the convergence correlation (equation (2)). In these cases, we can exploit the769

linearity of the expectation to make the bootstrap procedure more computationally efficient, by770

pre-calculating the statistics of the ratio’s numerator and denominator, N(xi) and D(xi), on the771

data xi for all blocks i ∈ {1, 2, . . . ,W} in the genome. Then we draw W bootstrap samples with772

replacement, and compute the estimate for bootstrap sample b with an average weighted by the773

fraction wi of total loci contained in each block,774

θ̃b =

∑W
i=1wiN(xi)∑W
i=1wiD(xi)

(S30)

Note that computing the ratio of averages rather than the average of a ratio is a practice common775

for population genetic statistics like FST (Bhatia et al. 2013). With these B bootstrap estimates,776

we calculate the α/2 and 1−α/2 quantiles, which we use to estimate the 1−α = 95% pivot confidence777

intervals (p. 33 Wasserman 2006, p. 194 Davison and Hinkley 2013) throughout the paper,778
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Cα =
(
2θ̂ − q1−α/2, 2θ̂ − qα/2

)
. (S31)

where θ̂ is the estimate, and qx is bootstrap quantile for probability x.779

S4 Replicate G(t) and Partitioning the Variance in Allele Fre-780

quency781

We define a statistic similar to G(t) for estimating the proportion of allele frequency change common782

between two replicate populations due to linked selection. Covariance in allele frequency change783

between two replicate populations is due to convergent selection pressure selecting haplotypes784

shared between the two replicate populations, which acts to perturb linked neutral variation in785

parallel way.786

GR(t) =
EA̸=B(

∑t
i̸=j Cov(∆pi,A,∆pj,B))

ER(Var(pt,R − p0,R))
(S32)

where EA̸=B indicates that the expectation is taken over all ordered pairs of replicates (e.g. sum-787

ming all off-diagonal elements replicate covariances), and ER indicates taking expectation over788

all replicates. This measures the fraction of variance in allele frequency change (averaged across789

replicates) due to shared selection pressure.790

Extending our theoretic work in Buffalo and Coop (2019), we can partition the allele frequency791

change in two replicates into drift, and shared selection and replicate-specific selection components792

of allele frequency change. For two replicates, A and B,793

∆pt,A = ∆Dpt,A +∆Upt,A +∆Spt (S33)
∆pt,B = ∆Dpt,B +∆Upt,B +∆Spt (S34)

where ∆Dpt,A is allele frequency change due to drift (this is specific to a replicate, and equal to794

∆Npt,A +∆Mpt,A in the notation of Buffalo and Coop 2019), ∆Upt,A is the allele frequency change795

from indirect selection specific to replicate A (and likewise with ∆Upt,A for replicate B), and ∆Spt796

is the allele frequency change from indirect selection shared across the replicates A and B (this term797

lacks a replicate subscript since by construction it is identical between replicates). By construction,798

each of these terms is uncorrelated, so the variance and be written as:799

Var(∆pt,A) = Var(∆Dpt,A) + Var(∆Upt,A) + Var(∆Spt) (S35)
(S36)

The shared effects of indirect selection can be quantified from the observed allele frequency800

changes, since the covariance in allele frequency change across replicates is the covariance of the801

shared term by construction,802
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Cov(∆pt,A,∆pt,B) = Cov(∆Spt,∆Spt) = Var(∆Spt) (S37)

In artificial selection studies with a control (non-selected) line, such as the Castro et al. (2019)803

study, this allows us to estimate the contribution of the effects of shared and unique indirect804

selection. In the case of this study, we can estimate the drift, unique selection effect, and shared805

selection effect terms using the fact that,806

∆pt,LS1 = ∆Dpt,LS1 +∆Upt,LS1 +∆LSpt (S38)
∆pt,LS2 = ∆Dpt,LS2 +∆Upt,LS2 +∆LSpt (S39)
∆pt,Ctrl = ∆Dpt,Ctrl. (S40)

Note that since the control replicate does not undergo artificial selection, we assume that its807

allele frequency changes are determined entirely by genetic drift. With free mating individuals808

(such as in a cage population), this may not be the case, and sequencing adjacent generations809

would allow one to differentiate the effects of selection and drift.810

We assume that we can approximate the contribution of genetic drift in the Longshanks se-811

lection lines with the observed variance in the control line, or Var(∆pt,Ctrl) = Var(∆Dpt,LS1) =812

Var(∆Dpt,LS2). Then, the combined effects of selection can be estimated by averaging the variances813

of the two Longshanks selection lines, and subtracting the variance in allele frequency change in the814

control line, which we treat as driven by drift alone (since matings are random). Note that each815

variance is bias-corrected according to the methods described in Supplementary Materials S1.4,816

and the average sequencing depths between lines are nearly identical. Thus, we have817

(Var(∆pt,LS1) + Var(∆pt,LS2))/2−Var(∆pt,Ctrl) = Var(∆Upt,LS) + Var(∆LSpt) (S41)

where the bar indicates values averaged both Longshanks selection lines. Additionally, use the fact818

that819

Cov(∆pt,LS1,∆pt,LS2) = Var(∆LSpt) (S42)

we can also separate out the unique and shared components by subtracting off this covariance,820

Var(∆Upt,LS) = (Var(∆pt,LS1) + Var(∆pt,LS2))/2−Var(∆pt,Ctrl)− Cov(∆pt,LS1,∆pt,LS2). (S43)

Finally, we can divide each of these values by the total variance to get the proportion of total821

variance drift, and unique and shared effects of selection contribute towards the total. To derive822

confidence intervals for the estimates of unique and shared effects of selection, we use a block823

bootstrap procedure as described in Supplementary Materials Section S3.824
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S5 The Empirical Neutral Null Windowed Covariance Distribu-825

tion826

To detect an excess of genomic regions with unusually high or low covariances, we need to compare827

the distribution of observed windowed covariances to a null distribution of windowed covariances828

that we would expect under no selection. While we could construct a theoretic sampling distribution829

of the spurious covariances created by neutral genetic drift at particular site, the unknown linkage830

disequilibrium between sites would mean that this is not an adequate null model for the distribution831

of windowed covariances in our data.832

To address this limitation, we construct a neutral null model by sign-permuting the observed833

allele frequency changes. This destroys the covariances built up by selection, mimicking a neutral834

allele’s frequency trajectory. This approach is conservative, since selection also acts to increase835

the magnitude of allele frequency changes (see equation 1 of Buffalo and Coop 2019), but this836

magnitude is not affected by the sign-permutation procedure. Consequently, the resulting empirical837

null distribution has higher variance than would be expected under neutrality alone.838

Still, we wanted to ensure that LD between sign-permuted blocks, which will affect the variance839

of the empirical null distribution, does not impact our primary finding that the distribution of840

temporal covariances becomes increasingly negative in the Barghi et al. (2019) dataset through841

time. To address this, we also sign-permuted at the whole chromosome level finding we recapitulate842

the same pattern (Supplementary Figure S29).843

S6 Bergland et al. (2014) Re-Analysis844

We also applied our temporal covariance approach to Bergland et al. (2014), which found evidence845

of genome-wide fluctuating selection between Spring and Fall seasons across three years Drosophila846

melanogaster. As described in Buffalo and Coop (2019), if fluctuating selection pressure among847

time-periods are the dominant genome-wide pattern, we might expect positive covariances between848

like seasons changes (e.g. Spring 2010 to Fall 2010 and Spring 2011 to Fall 2011), and negative849

covariances between dislike seasonal changes (e.g. Fall 2009 to Spring 2010 and Fall 2010 to Spring850

2011). However, while we find temporal covariances that are non-zero, we find only weak support851

for a seasonal fluctuating model driving these covariances. In Supplementary Figure S1, we show852

the temporal covariances from varying reference generations, across seasonal transitions that are853

alike (e.g. the covariance between the allele frequency changes between Fall 2009 and Spring854

2009, and frequency changes between Fall 2010 and Spring 2010), and dislike (e.g. the covariance855

between the allele frequency change between Fall 2009 and Spring 2009, and the frequency changes856

between Spring 2010 and Fall 2009). The first row of temporal covariance matrix is consistent857

with fluctuating selection operating for two timepoints, as the first covariance is negative, and the858

second is positive, and later covariances are not statistically differentiable from zero (which could859

occur if LD and additive genetic variance decay). However, all other temporal covariances do not860

fit the pattern we would expect under genome-wide fluctuating selection.861

We wanted to establish that our temporal-covariance matrix bias correction was working cor-862

rectly. We find that it corrects the relationship between depth and both variance and covariance863

(Supplementary Figure S4) as expected.864

It is unclear how strong the fluctuations would have to be to generate a genome-wide average865

signal of fluctuating selection from temporal covariances. For example, many loci could still show866
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F-S, S-F
F-S, F-S

F-S, S-F

S-F, F-S

S-F, S-F

F-S, S-F F-S, F-S

F-S, S-F

S-F, F-S

Fall 09
Spring 10
Fall 10
Spring 11

F-S, F-S

Figure S1: Temporal covariances from the Bergland et al. (2014) study, from varying reference genera-
tions (e.g. rows along the temporal covariance matrix). Each covariance is labeled indicating whether the
covariance is between two like seasonal transitions (e.g. the covariance between allele frequency changes
from fall to spring in one year, and fall to spring in another) or two dislike seasons (e.g. the covariance
between fall to spring in one year, and spring to fall in another year). Covariances between like transitions
are expected to be positive when there is a genome-wide effect of fluctuating selection (and these labels are
colored blue), while covariances between dislike transitions are expected to be negative (and these labels
are colored red). 95% confidence intervals were constructed by a block-bootstrapping procedure where the
blocks are megabase tiles.

A B

Figure S2: A: Scatterplot of the original unadjusted p-values from Bergland et al. (2014) and the p-values
from our reanalysis of the same data using the same statistical methods; the minor discrepancy is likely
due to software version differences. B: The histograms of the p-values of our reanalysis and the original
Bergland et al. (2014) data; again the minor discrepancy is likely due to software differences. Overall, our
implementation of Bergland et al.’s statistical methods produces results very close to the original analysis.
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a signal of fluctuating selection, but the average signal could be overwhelmed by other signals of867

other selection. To investigate whether there was a genome-wide excess of loci showing evidence868

of fluctuating selection we reanalyzed the data of (Bergland et al. 2014) using the same seasonal869

fluctuating model as the original paper. This model is a Binomial logit-linked GLM fit per-locus,870

where the frequencies are regressed on the Spring/Fall seasons are encoded as a dummy variable.871

We use the same binomial weighting procedure as Bergland et al. (2014), where the weights are872

determined by the effective number of chromosomes, Neff = (2ntdt − 1)/(2nt + dt) (nt and dt873

are the number of diploid individuals and the read depth at timepoint t, respectively). We fit874

this model on all loci marked as used in the VCF provided with the Bergland et al. (2014) study875

(doi:10.5061/dryad.v883p). Overall, our p-values for the Wald test for each locus closely match876

those of the original paper (Pearson correlation coefficient 0.98, p-value < 2.2 × 10−16; see Sup-877

plementary Figure S2 A), and the histograms of the p-values are nearly identical (Supplementary878

Figure S2 B). Bergland et al. (2014) find loci with a significant association with season after a879

Benjamini and Hochberg FDR p-value adjustment (Benjamini and Hochberg 1995), however, the880

null hypothesis of the Wald test does not give us an idea of the expected number of variants that881

may spuriously fit the pattern of seasonal fluctuating selection as it does not account for genetic882

drift or other forms of hitchhiking.883

A B

Figure S3: A: Histogram of original Bergland et al. (2014) seasonal p-values and p-values creating by
randomly permuting the seasons at each locus. B: Histogram of original Bergland et al. (2014) p-values
alongside all unique permutations (ignoring symmetries that lead to identical p-values).

To investigate whether there is a genome-wide evidence of an enrichment of fluctuating selection884

we created an empirical null distribution by randomly permuting the season labels and re-running885

the per-locus seasonal GLM model, as proposed by Machado et al. (2018). We find, regardless of886

whether we permute at the locus-level or the permutation replicate-level, that the observed seasonal887

p-value distribution Bergland et al. (2014) is not enriched for significant p-values beyond what we888

would expect from the permutation null. In fact, there appears there is more enrichment for low889

p-values when seasonal labels are randomly permuted (Supplementary Figure S3, suggesting by890

random chance we might expect more variants with a seasonal fluctuating pattern than found in891

the original Bergland et al. (2014) study. While surprising, this could be explained by the presence892

of temporal structure across the samples not consistent with seasonal fluctuating selection. Some893
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Figure S4: The variance and covariances from the Bergland et al. (2014) study, calculated in 100kb
genomic windows plotted against average depth in a window before and after bias correction. Each panel
has a least-squares estimate between the variance and covariance, and the average depth. The bias correction
procedure is correcting sampling bias in both the variance and covariance such that the relationship with
depth is constant. Colors indicate the different chromosomes of D. melanogaster; we have excluded the X
chromosome (yellow points; chromosome 4 was not in the original study) from the regression due to large
differences in average coverage.

fraction of the permutations happen to fit non-seasonal structure well, leading to an enrichment894

of small p-values. We note that genetic drift is not accounted for in the model used to estimate895

the significance of seasonally fluctuations and so some of these issues from non-seasonal structure896

may be due to a poorly calibrated null model. Furthermore, non-seasonal temporal structure is also897

evident in our temporal covariances (Supplementary Figure S1), where we see strong evidence of se-898

lection (non-zero temporal covariances), yet the pattern does not follow that of seasonal fluctuating899

selection.900

S7 Approximating the Reduction in Diversity from G(t)901

To help reconcile our measure of linked selection, G(t), with familiar expressions as a reduction902

in neutral diversity, as parameterized by Ne, we develop some rough approximations here. Note,903

however, that since linked selection generates temporal covariance, the overall effect is qualitatively904

different than just a simple reduction in Ne, as drift alone cannot generate temporal covariances.905

First, we introduce some convenient notation. Let VT = Var(pt−p0) be the total observed variance906

in allele frequency, CLS =
∑t−1

i=0

∑t−1
j ̸=i Cov(∆pi,∆pj) be the contribution of all pairwise temporal907
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covariances (observable), VD be the unobservable drift-only variance in allele frequency, and VLS =908 ∑t−1
i=0 Var(∆LSpi) which is the (unobservable) effect linked selection has on the variances in allele909

frequency change. Then,910

VT = VLS + CLS + VD. (S44)

Our measure G(t) is then,911

G(t) =
CLS

VT
, (S45)

meaning we can express the fraction of total variance due to drift alone as912

VD

VT
= 1−G(t)− VLS

VT
(S46)

= 1−G(t)− ε (S47)
≤ 1−G(t), (S48)

where ε ≥ 0 since these variances are positive. Throughout this section, for convenience, we assume913

that the covariances contributing to CLS , and thus G(t), are all positive.914

Rather than expressing this relationship in terms of variances in allele frequencies, we can915

express the same relationship in terms of Ne. In a neutral Wright–Fisher population, the total916

variation in allele frequency change over t generations is917

VT = Var(pt − p0) = p0(1− p0)
[
1− (1− 1/2Ne)

t
]
. (S49)

For small t, a common temporal estimator for the variance effective population size Ne is,918

Ne ≈
tp0(1− p0)

2VT
. (S50)

Then, the drift-only Ne estimate (that is, removing the effects of linked selection) replaces the919

observable VT with unobservable VD, and uses the G(t) estimate to bound this:920

Ne,D ≈ tp0(1− p0)

2VT (1−G(t)− ε)
(S51)

≳ tp0(1− p0)

2VT (1−G(t))
(S52)

≳ Ne

1−G(t)
(S53)

Ne

Ne,D
≲ 1−G(t) (S54)
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In the linked selection literature, it is common to translate the impact of linked selection as a921

reduction in the level of neutral pairwise diversity in the absence of linked selection, π0. Under the922

coalescent, π0 = 2µE(T2) where E(T2) is the pairwise time to coalescence, which under drift alone923

in a constant population of size Ne, is E(T2) = 2N . The fraction of neutral diversity (in the absence924

of linked selection) reduced by selection is then, 1− π̄/π0, or equivalently, 1− Ne/Ne,D. Then,925

G(t) ≲ 1− Ne

Ne,D
, (S55)

which shows that our measure G(t) is a lower bound, over much shorter timescales, to the familiar926

measure 1− π̄/π0.927

Elyashiv et al. (2016) estimated that linked selection in Drosophila melanogaster had resulted928

in a 1− π̄/π0 = 77% reduction in the level of neutral diversity. Thus our estimate of G(t) ≈ 20% in929

Drosophila simulans is smaller than that seen over long timespans in a closely related species.930

S8 Simulation Results931

We conducted extensive simulations to understand how temporal covariance, G(t), and conver-932

gence correlations behave under (1) different quantitative genetic fitness models, (2) different trait933

architectures (e.g. varying levels of VA for fitness and the number of sites affecting fitness), (3)934

background selection, and (4) different sampling periods. Furthermore, we use two replicate pop-935

ulation simulations to investigate how convergence correlations depend on (1) the population sizes936

of each selection line sampled from the main population, and (2) the direction the trait is selected937

on in each line (i.e. in the same direction, differing directions, or only one lines elected).938

Due to the high computational burden of forward simulations over this wide breadth of param-939

eters, we modeled a single 50 megabase region in a population of N = 1000 diploid individuals with940

a neutral variant mutation rate of 10−8 and a recombination rate of 10−8 per basepair. This is941

roughly analogous to a quarter of an autosome of Drosophila melanogaster; however with this small942

population size and mutation rate, the population mutation rate θ for the entire region leads to far943

fewer neutral sites to calculate covariances and other statistics on than expected for a region this944

length in D. melanogaster. Since our main goal is to understand the dynamics of statistics used in945

the paper and how they are affected by different quantitative genetic fitness models, background946

selection, and trait architecture, we use population frequencies rather than sampling frequencies.947

All forward simulations were conducted using SLiM (Haller and Messer 2019) and run and948

processed using Snakemake (Köster and Rahmann 2012); all simulation routines are available in949

the Github repository https://github.com/vsbuffalo/cvtk/.950

S8.1 The Effects of the Genetic Architecture under Exponential Directional951

Selection952

We first investigated the effects of the selected trait’s genetic architecture on temporal covariances953

and G(t) by neutrally burning in a population for 10N generations, and selecting on the trait954

with an exponential fitness function (where fitness of a trait value z is w(z) ∝ exp(z)). The955

exponential fitness function corresponds to multiplicative selection across sites and so serves as the956

simplest directional selection model of a trait to understand the effects of genetic architecture on957

the statistics we have used in the paper.958
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Figure S5: The temporal covariances Cov(∆p5,∆pt) from the onset of selection (generation 5) to a later
time point t, which varies along the x-axis, across a variety of different initial trait additive genetic variances
(VA, columns) and number of sites contributing to the trait (L, rows). Each point is the temporal covariance
averaged over 50 replicate simulations; dark gray points are temporal covariances after the onset of selection,
and light gray points are before. The red line is a loess-smoothed curve through the covariances after the
onset of selection. Selection on the trait was imposed through an exponential fitness function.

During this burnin, sites were either marked as neutral (with mutation rate µneutral = 10−8 per959

gamete per generation) or contributed to the trait’s value (with mutation rate µtrait), but were not960

selected until generation 10N +5 (the five generations after burnin serve as a neutral control). The961

trait mutation rate, µtrait was set by targeting a particular architecture, the number of selected962

sites, L. Each site contributing to the trait’s value was randomly chosen to have effect size ±α with963

equal probability, where α was set to target a particular additive genetic variance for the trait, VA,964

for the target number of selected sites L.965

Overall, we again see a finding of Buffalo and Coop (2019): that the initial expected temporal966

covariance conditioned on VA, is invariant to the number of loci determining the trait’s value, L967

(Supplementary Figure S5). We do find some evidence that the decay in temporal covariance is968

faster when the trait has a monogenic basis (see the third column of Supplementary Figure S5);969

this is expected since the selection coefficients are larger for these monogenic simulations, leading970

to faster allele frequency changes and a rapid change in additive genetic variance.971

In our previous work, we did not investigate the affect of trait architecture on our measure G(t).972

Using the exponential fitness function simulations, we also calculated G(t) for each of the replicate973

simulations. We find that the G(t) trajectories can vary considerably across replicates depending974

on the number of sites (L) determining the trait’s value (Supplementary Figure S6). When a trait is975

reasonably monogenic (L ≈ 1), G(t) trajectories vary considerably across replicate lines, as certain976

lines may stochastically lose the few copies of the selected alleles (top row of Supplementary Figure977
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Figure S6: The G(t) trajectories of 50 replicate simulations, across different trait architectures (L is the
target number of sites affecting the trait’s value, and VA is the target trait additive genetic variance). The
red line is the mean trajectory across all replicate simulations. Like Supplementary Figure S5, the onset of
selection is five generations after the 10N generation burnin; this is evident by the initial flat period of the
G(t) trajectory.

S6). However, with a polygenic trait, (L ≥ 100), the G(t) trajectories across replicates are similar978

as each replicate contains an abundance of trait alleles (bottom rows of Supplementary Figure S6).979

Comparing the simulated G(t) replicate trajectories of Supplementary Figure S6 with the Barghi980

et al. (2019) G(t) trajectories in Figure 1B, we again confirm a finding of Barghi et al. (2019): that981

there is considerable genetic redundancy among beneficial alleles, meaning because of the polygenic982

architecture, there are multiple routes to adaptation. We should note that our simplified simulation983

routines are slightly different from the Barghi et al. (2019) study in that the burnin populations984

are all independent; however we expect the same qualitative result.985

S8.2 Temporal Covariances and G(t) under Gaussian Stabilizing Selection986

Additionally, we wanted to ensure that our temporal covariances andG(t) trajectories were robust to987

more complicated, but realistic fitness models. To this end, we also simulated Gaussian stabilizing988

selection (GSS) on a trait during burnin, followed by one of two optimum shift routines: (1)989

sudden optima shifts of µsudden = {0.1, 0.5, 1}, and (2) very graduate optima shifts of µgradual =990

{0.001, 0.01} per generation using the same two population simulation scheme described above991

(these shifts are in standard deviations, since VS = 1). We used a polygenic architecture for these992

simulations, with trait alleles assigned a ±0.01 effect size with equal probability, trait mutation993

rate 10−8, and the optima shift began at five generations after a 10N generation burnin. Across994

our GSS simulations, we see the expected selection response (Supplementary Material Figure S7).995

Overall, we see the same qualitative results under Gaussian stabilizing selection with optima996

shifts as under exponential directional selection. Stronger directional selection, here determined997
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Figure S7: The population mean trait value under the Gaussian stabilizing selection simulations (gray
lines) and the trait optima (dashed blue lines). The first row shows the selection response during a graduate
shift in optima per generation, while the second row shows the selection response during a sudden optima
shift.
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Figure S8: Mean temporal covariance (Cov(∆p5,∆pt), with t varying across the x-axis) across 30 replicate
simulations (light gray points are before the onset of selection; dark gray points are after selection begins),
under different Gaussian stabilizing selection with optima shift regimes. The solid red line is a loess-smoothed
average of these points.
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by larger sudden optima shifts or larger gradual shifts per generation, lead to stronger temporal998

covariances (Supplementary Materials Figure S8). Furthermore, we see a stronger effect of linked999

selection, as measured by G(t), under stronger directional selection (Supplementary Material Figure1000

S9).1001
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Figure S9: G(t) trajectories across 30 replicate Gaussian stabilizing selection with optima shift regimes.
The solid red line is a loess-smoothed average across replicates.

Additionally, we looked at the effect of the replicate population size drawn from the same1002

population has on a single population’s G(t) trajectories. These simulations had the same 10N1003

generation burnin, followed by a change in population size emulating the bottlenecks associated1004

with creating selection lines. Overall, we find that smaller population sizes lead to a reduced G(t)1005

(Supplementary Material Figure S10). This is expected, as the denominator of G(t) is Var(pt−p0),1006

which has an inverse relationship with Ne; as replicate population size is reduced, the proportion1007

of allele frequency change driven by linked selection is lower, since the rate of drift is increased.1008

To isolate the effects of varying replicate population size, we also looked at just the magnitude1009

of temporal covariances (Supplementary Material Figure S11). We find that smaller replicate1010

population sizes lead to larger temporal covariances. We then looked at the initial trait variance,1011

which as expected, does not vary with replicate population size (since all burnin populations had1012

the same size). This implies that the linkage disequilibria is higher in smaller populations, due to1013

founder effects, which has the effect inflating the temporal covariance as predicted by our theory1014

(Buffalo and Coop 2019).1015

S8.3 Convergence Correlations1016

Using the same exponential fitness function simulations described above, we also investigated how1017

the convergence correlation is impacted by (1) genetic architecture, (2) the design of the selection1018

experiment, e.g. how many individuals are selected for each line from the founding population, and1019

(3) the direction of selection across the two populations “lines”. After burning in N = 1000 diploid1020
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Figure S10: G(t) trajectories under GSS after sudden optima shift of 1 at generation five, for varying
replicate population sizes.
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Figure S11: Temporal covariance Cov(∆p5,∆pt), where t varies along the x-axis, for a sudden optima shift
of 1, for varying replicate population sizes. The reference time point is the first generation of selection; dark
gray points are the temporal covariance after selection began, and the light gray points are before.

populations for 10N generations, we simulated two equally-sized lines of sizes n = {50, 500, 1000}1021

diploids, and imposed three selection schemes across different simulation runs. First, we imposed a1022

convergent selection scheme, where the populations undergo exponential directional selection in the1023
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same direction. We expect that the convergent correlation under this convergent scheme should1024

be positive, as the two lines should share some haplotypes carrying beneficial alleles, and these1025

are selected in the same direction across the two lines. Second, we imposed divergent selection,1026

where the two lines again undergo exponential directional selection, except in different directions.1027

Here, we expect the convergence correlation to be negative, as haplotypes that increase the selected1028

trait in one population are beneficial in the upward selected line, but deleterious in the downward1029

selected line. Third, we have a control selection scheme, where one line is selected and the other1030

is not; this is akin to the control line in the Castro et al. (2019) study (see Figure 2C). In this1031

case, we expect to see no convergence correlation, as only one line is being selected. Finally, across1032

these two-line simulation studies, we expect that smaller selection line sizes should show weaker1033

convergent correlations, as the probability that the same haplotypes are selected between the two1034

lines decreases with size.1035
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Figure S12: The convergence correlations across the two population line exponential directional selection
simulations; panel rows are for differing line population sizes, and panel columns are the modes of selection
across the lines (convergent, divergent, and only a single selected line control). Line color indicates the target
genetic architecture, in number of loci affecting the trait’s value. 95% confidence intervals are also shown.
Note that selection begins at generation five, which is the reference generation; this is indicated by the split
in the lines.

Overall, our simulations confirm our hypotheses; see Supplementary Material Figure S12. We1036

also find that in simulations with a monogenic genetic architecture (i.e. the target number of1037

trait-affecting loci is L = 1), the convergence correlations are generally much weaker than those1038

under a polygenic architecture. However, this effect is mediated by the line population size; the1039

difference in convergence correlation between L = 1 and L = 1000 are more dissimilar when the1040

line population sizes are larger (compare the first column, last two rows). Like the convergence1041

correlations calculated on the Barghi et al. (2019) data, we find in simulations convergence correla-1042

tions decay through time. Additionally, populations selected in opposite directions lead to negative1043

convergence correlations, as expected. Overall, we find that the convergence correlation is affected1044
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by both genetic architecture and the size of the selected population lines.1045

We also wanted to test whether we see similar convergence correlations under Gaussian stabiliz-1046

ing selection. In these simulations, rather than targeting a particular VA, we fix the trait mutation1047

rate at 10−8 (thus region-wide θ = 2000). Like the exponential directional selection simulations, we1048

impose directional selection in the same direction across the two populations (converge), different1049

directions (diverge), and only in one population (single). We also vary the type (gradual versus1050

sudden) and magnitude of optima shifts in the two populations. Overall, simulations show conver-1051

gence correlations for the sudden optima shifts in Supplementary Figure S13. Again, optima shifts1052

in the opposite direction cause negative convergence correlations. We found that for slow moving1053

optima shifts, the convergence correlations are generally too weak to be distinguished from zero1054

reliably (not shown).1055
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Figure S13: The convergence correlations across the two population line Gaussian stabilizing selection
sudden optima shift simulations; selection line population sizes vary across rows, and panel columns are
the modes of selection across the lines (convergent, divergent, and only a single selected line control). All
simulations have a target number of loci affecting the trait of L = 1000; line color indicates the size of
the sudden optima shift in standard deviations of VS 95% confidence intervals are also shown. Note that
selection begins at generation five, which is the reference generation; this is indicated by the split in the
lines.

S8.4 Sampling in Temporal Blocks1056

In our analysis of the Barghi et al. (2019) data, we describe our statistic G(t) as a lower bound for1057

two reasons: (1) the population is sequenced every ten generations, meaning the temporal covari-1058

ances between adjacent generations cannot contribute to the numerator of G(t) but contributes to1059

the denominator, and (2) the estimate of G(t) ignores linked selection’s contribution to the per-1060

generation variance in allele frequency change. In Buffalo and Coop (2019), we define an alternative1061

estimator that includes selection’s effects on these variance terms,1062
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Figure S14: A: The G(t) averaged over 50 replicate simulations with VA = 0.01 and L = 1000. The blue
line shows G(t) calculated over ten generation blocks, similar to the calculation of temporal covariances of
the Barghi et al. (2019) study. The red line shows the average G(t) estimates when the population is sampled
every generation and all covariances can contribute to the numerator of G(t). The dashed dark gray line
indicates the G′(t) estimate, which uses the known drift effective population size of the simulations. B: The
temporal covariances calculated each generation (red line) and on ten generation blocks (blue line) using the
same simulation data.

G′(t) = 1− tE(p0(1− p0))

2NeVar(pt − p0)
, (S56)

which can be calculated when the drift-effective population size Ne can be estimated (see equation1063

26 in Buffalo and Coop 2019 for details).1064

To verify that G(t) estimated every ten generations is indeed a lower bound, we used a simula-1065

tion procedure similar to the exponential fitness function simulations (described in Supplementary1066

Material Section S8.1), and calculated the temporal covariances and G(t) both each generation, and1067

every ten generations. Unlike the simulations described in S8.1 where selection began at 10N + 51068

generations, selection starts at generation 10N here, and used trait VA = 0.01 and targeted L = 10001069

sites affecting the trait.1070

First, comparing G(t) when sampling population frequencies every generation versus every ten1071

generations, we confirm that the ten-generation block G(t) is a lower bound of the G(t) trajectory1072

when sampling is every generation (red and blue lines in Supplementary Figure S14A). Furthermore,1073

since we control the population size and reproductive sampling scheme in our simulations at N =1074

1000 diploids, we know the drift-effective population size in the absence of selection, which allows1075

us to estimate G′(t). Plugging in the drift-effective population size Ne = 1000 into the expression1076

for G′(t) and using the Var(pt − p0) calculated for different t’s, we see that G(t) calculated every1077

generation does not account for linked selection’s inflation of Var(∆pt) and underestimates the true1078

impact of linked selection as expected (dashed gray line in Supplementary Figure S14A).1079

To further understand the effects of calculating temporal covariances every ten generations1080

rather than every generation, we also compared their magnitudes and decay rates using the sim-1081

ulations described above. We find that ten generation block temporal covariances are orders of1082

magnitude larger but decay at similar rates (see Supplementary Figure S14B; note the two y-axis1083

scales are different). The larger magnitude is expected, as each ten generation block temporal1084
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covariance is the sum of 45 temporal covariances between adjacent generations (e.g.
(
10
2

)
).1085

S8.5 Background Selection1086

In our previous work, Buffalo and Coop (2019), we did not investigate whether background selec-1087

tion can lead to temporal autocovariance. Here, using forward-in-time simulations, we find that1088

background selection can indeed generate temporal autocovariance and lead to convergence cor-1089

relations when deleterious haplotypes are shared between populations and both are removed by1090

selection.1091

We simulated background selection in a 50 megabase region, where deleterious alleles are ran-1092

domly introduced by mutation. Following background selection literature (Charlesworth et al. 1993;1093

Hudson and Kaplan 1995; Hudson and Kaplan 1994; Nordborg et al. 1996), we parameterize the1094

mutation rate as the total number of deleterious mutations introduced per diploid genome, per1095

generation, and simulate values U = {0.5, 1.0, 1.5}. Note that for our 50Mb region, our choice of1096

BGS U parameters are on the higher end of the spectrum expected for Drosophila, but we wanted1097

to ensure the strength was sufficient to see a signal. Note that if U ≈ 1.6 (Elyashiv et al. 2016),1098

and the Drosophila genome is ≈ 140Mb, our region is ≈ 36% of the genome; this implies a rea-1099

sonable U for our region is U ≈ 0.57, which is close to the bottom end of our parameter range.1100

We also vary the strength of selection against the deleterious mutations, s = {0.01, 0.05, 0.1}, as1101

well as different recombination rates (rbp = {10−7, 10−8}). Like other simulations, we burnin the1102

population for 10N generations under backgrounds selection. Overall, we find background selection1103

does create temporal covariance (Supplementary Material Figure S16), which are stronger under1104

(1) higher deleterious mutation rates and (2) larger selection coefficients. This latter point initially1105

seems at odds with background selection theory, as the level of pairwise diversity in a region under1106

strong background selection is invariant with respect to the selection coefficient. However, looking1107

at the background selection G(t) trajectories, we find that over time, background selection appears1108

to trend towards an asymptote in the rBP = 10−7 subfigure, and reaches an equilibrium in the1109

rBP = 10−8 subfigure that seems reasonably invariant to the choice of s (Supplementary Material1110

Figure S15). We believe that these observations can be reconciled by Cov(∆pt, ∆pt′) being larger1111

for larger s when |t′ − t| is small, but also decaying more rapidly with |t′ − t|, such that the overall1112

contribution of selection to allele frequency variance is invariant to s (for strong background selec-1113

tion). However, further work is needed to fully explore and understand the temporal covariance1114

dynamics of background selection.1115

Additionally, we investigated whether background selection can create convergence correlations1116

between two replicate populations. Much like the exponential directional selection and Gaussian1117

stabilizing selection simulations, we burned in a population for 10N generations with background1118

selection, which continued after the population was split into two replicate populations. These1119

simulations fixed U = 1.0, rBP = 10−8, and varied the replicate population size n = {200, 1000}.1120

We find that background selection can create convergence correlations (Supplementary Material1121

Figure S17). We find the convergence correlation is weaker in smaller replicate population sizes, as1122

there are fewer shared haplotypes carrying the same deleterious alleles between the two populations.1123

Finally, we found in processing these background selection simulation results that including or1124

excluding sites fixed or lost through time can lead to differences in the estimated G(t) trajectories1125

and temporal covariance. We discuss this extensively in a subsequent section, Supplementary1126

Materials Section S8.7.1127
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Figure S15: The trajectories of G(t) through time under background selection, under different recombina-
tion rates (rBP , rows), selection coefficients (s), and deleterious mutation rates (U). The first column fixes
U = 1.0, and s varies, while in the second column s = 0.05 is held constant, and U varies. G(t) is calculated
using both including fixed sites (solid lines) and not including fixed sites (dashed lines).

S8.6 Truncation Selection1128

We also explored how directional truncation selection generates temporal covariances. In these1129

simulations we select the top 10%, 25%, or 50% of the phenotypic distribution of individuals to1130

form the next generation. We burnin these simulations using a neutral burnin routine, where1131

trait alleles are selectively neutral until directional selection is imposed. More extreme directional1132

truncation selection generated larger initial covariances (Supplementary Material Figure S18B).1133

However, weaker truncation selection generated more sustained positive covariances and so have a1134

larger long-term impact on the variance in allele frequency change. We again noticed fixation or1135

loss of sites has a strong effect on temporal covariance and G(t) under truncation selection. Here,1136

since only a (potentially small) fraction of individuals contribute to the next generation, sites can1137

fix over very short timescales. Furthermore, the small number of effective breeders contributing1138

to the next generation shrinks Ne considerably, which increases Var(pt − p0), the denominator of1139

G(t). We see both the effect of handling fixed/lost sites differently and the faster rate of drift1140

in Supplementary Materials Figure S18A, where weaker truncation selection actually has higher1141

levels of G(t). Looking just at temporal covariances, we find that stronger truncation selection1142

(e.g. a smaller tail of individuals selected) does lead to greater temporal covariances. Overall,1143

these truncation selection simulations demonstrate the value of considering both absolute measures1144

of selection’s effect on allele frequency changes, i.e. temporal covariance, as well as measures relative1145

to drift, i.e. the G(t) trajectories. While selecting a smaller tail of individuals is associated with1146

stronger selection, it also is leading to a faster rate of drift, which can distort conclusions inferred1147

from considering the G(t) trajectories alone.1148
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Figure S16: The temporal covariances, Cov(∆p50,∆pt) (where t varies along the x-axis) created by back-
ground selection, under different recombination rates (rBP , rows), selection coefficients (s), and deleterious
mutation rates (U). Unlike directional selection figures, where we choose the reference generation to be the
first generation after the onset of selection, here we choose an arbitrary reference generation (generation 50).
The symmetry of temporal covariance around the reference generation, is expected, since unlike directional
selection the level of additive genetic variance for fitness has hit mutation-selection-drift balance. Note that
the first column sets constant U = 1.0, and s varies, while the second column sets s = 0.05 constant, and
varies U .

S8.7 The Effect of Fixations in the Empirical Datasets1149

In our simulation results, we noticed the temporal covariances and G(t) statistics can differ depend-1150

ing on how allele frequencies of zero or one are handled. Generally, temporal covariances should1151

be calculated on polymorphic sites; once a site has reached fixation or loss, its allele frequency1152

change ∆pt = 0 and including these sites in the temporal covariance calculation can lead to biases.1153

However, with sample allele frequencies, rather than population frequencies, a site with observed1154

frequency zero or one may still be segregating, but by chance not sampled at a timepoint. Here,1155

we discuss the effect of including sites with frequency zero or one, and show our empirical results1156

are not qualitatively different when analyzed excluding fixed sites.1157

With empirical data calculated on sample allele frequencies, low frequency minor alleles may1158

not be sampled at some timepoints, and excluding these observations (instead of treating it as1159

a trajectory that has a 0 frequency timepoint) biases estimates of quantities such as Ne towards1160

intermediate frequency alleles. Additionally, we tried only dropping fixed or loss sites from the1161

temporal covariance calculations that were at the end or the beginning of a trajectory (e.g., as if1162

the site was created by a new mutation or fixed); while this ameliorated some of this bias it did1163

not remove all of it. Overall, we found by trying all these approaches that not removing fixed or1164

lost sites was the best way to deal with sample allele frequencies that could be missing from some1165

timepoints.1166

To ensure that our findings were robust to handling sites with a frequency of zero or one differ-1167

44

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 7, 2020. ; https://doi.org/10.1101/798595doi: bioRxiv preprint 

https://doi.org/10.1101/798595
http://creativecommons.org/licenses/by-nd/4.0/


0 10 20 30 40 50

0.04

0.02

0.00

0.02

0.04

0.06

0.08
co

nv
er

ge
nc

e 
co

rre
la

tio
n

n = 200

0 10 20 30 40 50

n = 1000

generation
Figure S17: The convergence correlation created by background selection through time, since the popula-
tion split. The replicate population size varies between the two panels. Values are averaged over 30 replicate
simulations, while the interval is a 95% confidence interval.

0 10 20 30 40 50
generation

0.4

0.2

0.0

0.2

0.4

0.6

G

A

tail = 0.1
tail = 0.25
tail = 0.5

0 10 20 30 40 50
generation

0.001

0.000

0.001

0.002

0.003

0.004

0.005

co
va

ria
nc

e

B

Figure S18: G(t) trajectories (A) and temporal covariances (B) from truncation selection simulations for
different numbers of individuals selected (line color). Dashed lines indicate G(t) trajectories and temporal
covariances calculated including fixed sites, while the solid lines exclude fixed sites. All values are averaged
over 30 replicate simulations; the lines in the right figure are loess smoothed, while points are averages. The
solid lines of the temporal covariances have been excluded in the left figure for clarity, but are similar except
they do not become negative.
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Figure S19: The effect of excluding fixed/lost sites in the calculation of the temporal covariances and G(t)
trajectories of the Barghi et al. (2019) data. Dashed lines are those including fixed/lost sites (i.e. the original
Figure 1), and solid lines are excluding fixed/lost sites.
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Figure S20: A version of Figure 3 (A) and (B) excluding fixed and lost sites. The same qualitative pattern
holds as the original figure, which did not exclude fixed and lost sites: there is an enrichment of positive
temporal covariances between near timepoints (k = 2) in the Barghi et al. (2019) study, and an excess of
negative temporal covariances at more distant timepoints (k = 2).

ently, we regenerated Figures 1 and Figure 3 but excluded frequencies of zero or one. Specifically,1168

we wanted to ensure that our finding that temporal covariances were negative at later timepoints1169
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was not spuriously caused by the way fixed or lost sites are handled. We see no qualitative differ-1170

ence (Supplementary Material Figures S19 and S20) that emerges when sites with frequency zero1171

or one are excluded.1172
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S9 Additional Figures1173

S9.1 PCA of Barghi et al. (2019) replicates1174
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Figure S21: A PCA on the centered and standardized population frequencies for each replicate (each color)
for all its sequenced timepoints (the connected series of points). All replicates start from the same source
population, and thus are overlapping in the center; as each replicate evolves independently it diverges from
the other replicates in PCA space.
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S9.2 Bias Correction for Barghi et al. (2019)1175

We have investigated the effectiveness of our correction on real data by exploiting the relationship1176

between sampling depth and the magnitude of the variance and covariance biases, and comparing1177

the observed variances and covariances before and after correction. We plot the variance and1178

covariance (between adjacent time intervals) before and after the bias correction against the average1179

sample depth in 100kb genomic windows in Figure S22. Overall, we find the biased-correction1180

procedure removes the relationship between variance and covariance and depth, indicating it is1181

working adequately.1182
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Figure S22: The variance and covariances from the Barghi et al. (2019) study, calculated in 100kb genomic
windows plotted against average depth in a window before and after bias correction. Each panel has a least-
squares estimate between the variance and covariance, and the average depth. Overall, the bias correction
corrects sampling bias in both the variance and covariance such that the relationship with depth is constant.
Colors indicate the different chromosomes of D. simulans; we have excluded the X chromosome (yellow
points) and chromosome 4 points (green points to far right) from the regression due to large differences in
average coverage.
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S9.3 Barghi et al. (2019) Temporal Covariances Per Replicate1183
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Figure S23: The temporal covariances from the Barghi et al. (2019) study, for each replicate individually.
As in Figure 1, each line follows the temporal covariances from some initial reference generation through
time, which represent the rows of temporal covariance matrix.
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s t median median 95% CI trimmed mean trimmed mean 95% CI
0 10 1.629 [1.532, 1.738] 1.874 [1.777, 1.969]
0 20 0.371 [0.276, 0.465] 0.491 [0.403, 0.585]
0 30 0.479 [0.4, 0.589] 0.516 [0.434, 0.602]
0 40 0.059 [−0.012, 0.15] 0.027 [−0.05, 0.099]
0 50 -0.204 [−0.271,−0.125] -0.259 [−0.329,−0.187]
10 20 1.549 [1.427, 1.659] 1.722 [1.617, 1.83]
10 30 0.438 [0.339, 0.539] 0.506 [0.399, 0.609]
10 40 0.233 [0.149, 0.328] 0.254 [0.159, 0.343]
10 50 -0.355 [−0.454,−0.289] -0.319 [−0.401,−0.237]
20 30 1.981 [1.856, 2.095] 2.195 [2.084, 2.302]
20 40 0.792 [0.698, 0.894] 0.903 [0.815, 0.999]
20 50 0.123 [0.042, 0.207] 0.221 [0.141, 0.309]
30 40 1.296 [1.208, 1.425] 1.385 [1.287, 1.483]
30 50 0.07 [−0.037, 0.183] 0.116 [0.023, 0.21]
40 50 1.36 [1.271, 1.446] 1.513 [1.427, 1.601]

Table S1: Table of median of windowed covariance estimates (Cov(∆ps,∆pt) × 100) between generations
t and s and the trimmed mean windowed covariance which excludes the lower and upper 5% windows with
the highest covariance.

S9.4 Barghi et al. (2019) Trimmed Window Covariances1184

Here we report median and trimmed mean of the windowed covariances (Supplementary Table S1).1185

We note that the median covariance is also limiting result of a trimmed mean that symmetrically1186

excludes the upper and lower α tails to calculate the trimmed average windowed covariance. As1187

α increases to 0.5, the trimmed covariance converges to the median windowed covariance (by the1188

definition of the median; see Supplementary Figure S24). Thus our genomic temporal covariances1189

are non-zero due to the impact of selection on many genomic windows.1190
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Figure S24: The genome-wide covariance (Cov(∆p0,∆p10) pooling all replicates) averaged (red line) and
the median windowed covariance (blue) for the Barghi et al. (2019) dataset. The trimmed average window
covariance, excluding the α lower and upper tails, converges to the median windowed covariance. This
indicates that genome-wide covariances are not being overly dominated by a large-effect loci in few windows.
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S9.5 Barghi et al. (2019) Empirical Null and Windowed Covariance Distribu-1191
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Figure S25: We chose number of bins used in the histograms of Figure 3 via an analytic expression for
the cross-validation risk, based on the equation 6.16 of (Wasserman 2006, p. 129). Above, we plot the
cross-validation risk for various numbers of bins, for each of the four off-diagonals of the temporal covariance
matrix that we analyze. Overall, because the number of data points is large, oversmoothing is less of a
problem, leading the cross-validation risk to be relatively flat across a large number of bins. Each gray
point indicates the minimal risk for a particular off-diagonal, and the dashed line indicates the best average
binwidth across off-diagonals.
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Figure S26: The distribution of windowed temporal covariances alongside the empirical neutral null for
five randomly sampled replicates (columns), for k = 2 (first row) and k = 5 (second row). The main figure
of the paper pools all replicate window and empirical neutral null covariances; we show here the windowed
temporal covariances tend to shift from being positive (a heavier right tail) to become more negative (a
heavier left tail) through time within particular replicates.
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Figure S27: The distribution of temporal covariances calculated across 100kb genomic windows from Barghi
et al. (2019)’s study (orange) and the block sign permuted empirical neutral null distribution of the windowed
covariances (blue). Each panel shows these windowed covariances and the empirical null distribution for
covariances Cov(∆pt,∆pt+k), k is the number of generations between allele frequency changes.
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S9.6 Barghi et al. (2019) Tail Probabilities for Windowed Covariances Distri-1193
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Figure S28: Barghi et al. (2019) tail probabilities compared to sign-permuted empirical null distribution
for various α levels.
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Figure S29: The 20% lower and upper tail probabilities for the observed windowed covariances from the
Barghi et al. (2019) study, based on sign-permuting at the chromosome level. This permutation empirical null
is robust to long-range linkage disequilibrium acting over entire chromosomes (see Supplementary Material
section S5).
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