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Abstract1

Rapid phenotypic adaptation is often observed in natural populations and selection experi-2

ments. However, detecting the genome-wide impact of this selection is difficult, since adaptation3

often proceeds from standing variation and selection on highly polygenic traits, both of which4

may leave faint genomic signals indistinguishable from a noisy background of genetic drift.5

One promising signal comes from the genome-wide covariance between allele frequency changes6

observable from temporal genomic data, e.g. evolve-and-resequence studies. These temporal7

covariances reflect how the change in neutral allele frequency at one timepoint is predictive of8

the changes at later timepoints when there is heritable fitness variation in the population, as9

neutral alleles can remain associated with selected alleles over time. Since genetic drift does not10

lead to temporal covariance, we can use these covariances to estimate what fraction of the vari-11

ation in allele frequency change through time is driven by linked selection. Here, we reanalyze12

two Drosophila simulans evolve-and-resequence studies, and one artificial selection experiment13

in mice, to quantify the effects of linked selection over short timescales using covariance among14

time-points and across replicates. We estimate that at least 17% to 37% of allele frequency15

change is driven by selection in these experiments. Against this background of positive genome-16

wide temporal covariances we also identify signals of negative temporal covariance corresponding17

to reversals in the direction of selection for a reasonable proportion of loci over the time course18

of a selection experiment. Overall, we find that in the three studies we analyzed, linked selection19

has a large impact on short-term allele frequency dynamics that is readily distinguishable from20

genetic drift.21

1 Introduction22

A long-standing problem in evolutionary genetics is quantifying the roles of genetic drift and selec-23

tion in shaping genome-wide allele frequency changes. Selection can both directly and indirectly24

affect allele frequencies, with the indirect effect coming from the action of selection on correlated25

loci elsewhere in genome e.g. linked selection (Maynard Smith and Haigh 1974, Charlesworth et al.26

1993; Nordborg et al. 1996; see Barton 2000 for a review). Previous work on this question has27

mostly focused on teasing apart the impacts of drift and selection on genome-wide diversity us-28

ing population samples from a single contemporary timepoint, often by modeling the correlation29
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between regional recombination rate, gene density, and diversity created in the presence of linked30

selection (Cutter and Payseur 2013; Sella et al. 2009). This approach has shown linked selection has31

a major role in shaping patterns of genome-wide diversity across the genomes of a range of sexual32

species (Andersen et al. 2012; Andolfatto 2007; Begun et al. 2007; Beissinger et al. 2016; Cutter33

and Choi 2010; Elyashiv et al. 2016; Macpherson et al. 2007; Sattath et al. 2011; Williamson et al.34

2014), and has allowed us to quantify the relative influence of positive selection (hitchhiking) and35

negative selection (background selection; Andolfatto 2007; Elyashiv et al. 2016; Hernandez et al.36

2011; Macpherson et al. 2007; McVicker et al. 2009; Nordborg et al. 2005). However, we lack an37

understanding of how genome-wide linked selection acts over time.38

There are numerous examples of rapid phenotypic adaptation (Franks et al. 2007; Grant and39

Grant 2006, 2011; Reznick et al. 1997) and rapid, selection-driven genomic evolution in asexual40

populations (Baym et al. 2016; Bennett et al. 1990; Good et al. 2017). Yet the polygenic nature of41

fitness makes detecting the impact of selection on genome-wide variation over short timescales in42

sexual populations remarkably difficult. This is because the effect of selection on a polygenic trait43

(such as fitness) is distributed across loci in proportion to their effect sizes. This can lead to subtle44

allele frequency shifts on standing variation that are difficult to distinguish from background levels of45

genetic drift and sampling variance. However, increasingly genomic experimental evolution studies46

with multiple timepoints, and in some cases multiple replicate populations, are being used to detect47

large effect selected loci (Turner and Miller 2012; Turner et al. 2011) and differentiate modes of48

selection (Barghi et al. 2019; Burke et al. 2010; Therkildsen et al. 2019). In addition these temporal-49

genomic studies have begun in wild populations, some with the goal of finding variants that exhibit50

frequency changes consistent with fluctuating selection (Bergland et al. 2014; Machado et al. 2018).51

In a previous paper, we proposed that one useful signal for understanding the genome-wide impact of52

polygenic linked selection detectable from genomic studies with multiple timepoints is the temporal53

autocovariance in allele frequency changes (Buffalo and Coop 2019). These covariances are directly54

estimable from temporal genomic data and are created when the loci that underly heritable fitness55

variation perturb the frequencies of linked neutral alleles; in contrast, when genetic drift acts56

alone in a closed population, these covariances are zero in expectation. Mathematically, temporal57

covariances are useful because it is natural to decompose the total variance in allele frequency change58

across a set of time intervals into the variances and covariances in allele frequency change among59

time intervals. Furthermore, biologically, these covariances reflect the extent to which neutral allele60

frequency changes in one generation predict changes in another due to a shared selection pressures61

and associations to selected loci.62

Here, we provide the first empirical analyses to quantify the impact of linked selection acting over63

short timescales (tens of generations) across two evolve and re-sequence studies (Barghi et al. 2019;64

Kelly and Hughes 2019), and an artificial selection experiment (Castro et al. 2019). We repeatedly65

find a signal of temporal covariance, consistent with linked selection acting to significantly perturb66

genome-wide allele frequency changes across the genome in a manner that other approaches would67

not be able differentiate from genetic drift. We estimate the lower bound on the proportion of68

total variation in allele frequency change caused by selection, and the correlation between allele69

frequency changes between replicate populations caused by the response to convergent selection70

pressures. Overall, we demonstrate that linked selection has a powerful role in shaping genome-71

wide allele frequency changes over very short timescales.72
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Study Species Selection Replicates Pop. Size Gens. Timepoints
Kelly and Hughes (2019) D. simulans lab adaptation 3 ∼1100 14 2
Barghi et al. (2019) D. simulans lab adaptation 10 ∼1000 60 7

Castro et al. (2019) M. musculus tibiae length
control

2
1

32
28 20 2

Table 1: A summary of the main selection studies we analyzed.

2 Results73

We first analyzed Barghi et al. (2019), an evolve-and-resequence study with ten replicate popula-74

tions exposed to a high temperature lab environment and evolved for 60 generations, and sequenced75

every ten generations. Using the seven timepoints and ten replicate populations, we estimated the76

genome-wide 6× 6 temporal covariance matrix Q for each of the ten replicates. Each row of these77

matrices represent the temporal covariance Cov(∆10ps,∆10pt), between the allele frequency change78

(in ten-generation intervals, denoted ∆10pt) in some initial reference generation s (the row of the79

matrix), and some later timepoint t (the column of the matrix). We corrected these matrices for80

biases created due to sampling noise, and normalize the entries for heterozygosity (see Supplemen-81

tary Materials Sections 1.1.2 and 1.1.4). These covariances are expected to be zero when only82

drift is acting, as only heritable variation for fitness can create covariance between allele frequency83

changes in a closed population (Buffalo and Coop 2019). Averaging across the ten replicate tempo-84

ral covariances matrices, we find temporal covariances that are statistically significant (95% block85

bootstraps CIs do not contain zero), consistent with linked selection perturbing genome-wide allele86

frequency changes over very short time periods. The covariances between all adjacent time inter-87

vals are positive and then decay towards zero as we look at more distant time intervals (Figure 188

A), as expected when directional selection affects linked variants’ frequency trajectories until ulti-89

mately linkage disequilibrium and the additive genetic variance for fitness associated with neutral90

alleles decays (Buffalo and Coop 2019). The temporal covariances per replicate are noisier but91

this general pattern holds; see Supplementary Figure S6. Barghi et al. (2019)’s design means that92

the covariances we see in adjacent time intervals are on average ten generations apart, and given93

the temporal decay in covariance we see, the covariances on shorter time-scales (e.g. if adjacent94

generations had been sequenced) may well be higher yet (see Supplementary Material Section 1.1.595

for more details).96

One concern is that these covariances reflect the localized impact of a few large-effect loci97

rather than selection on a polygenic trait. Since our covariances are essentially averages over loci,98

the covariance estimate can be strongly affected by a single outlier region. To test whether large99

outlier regions drive the genome-wide signal we see in the Barghi et al. (2019) data, we calculate100

the covariances in 100kb windows along the genome (we refer to these as windowed covariances101

throughout) and take the median windowed covariance, and trimmed-mean windowed covariance,102

as a measure of the genome-wide covariance robust to large-effect loci. These robust estimates103

(Supplementary Table S1 and Supplementary Figure S7) confirm the patterns we see using the104

mean covariance, confirming that genomic temporal covariances are non-zero due to the impact of105

selection acting across many genomic windows.106

While the presence of positive temporal covariances is consistent with selection affecting allele107

frequencies over time, this measure is not easily interpretable. We can calculate a more intuitive108

measure from the temporal covariances to quantify the impact of selection on allele frequency109
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Figure 1: A: Temporal covariance, averaged across all ten replicate populations, through time from the
Barghi et al. (2019) study. Each line depicts the temporal covariance Cov(∆ps,∆pt) from some reference
generation s to a later time t which varies along the x-axis; each line corresponds to a row of the upper-
triangle of the temporal covariance matrix with the same color (upper right). The ranges around each point
are 95% block-bootstrap confidence intervals. B: The proportion of the total variance in allele frequency
change explained by linked selection, G(t), as it varies through time t along the x-axis. The black line is the
G(t) averaged across replicates, with the 95% block-bootstrap confidence interval. The other lines are the
G(t) for each individual replicate, with colors indicating what subset of the temporal-covariance matrix to
the right is being included in the calculation of G(t).

change: the ratio of total covariance in allele frequency change to the total variance in allele110

frequency change. We denote the change in allele frequency as ∆pt = pt+1−pt, where pt is the allele111

frequency in generation t. Since the total variation in allele frequency change can be partitioned112

into variance and covariance components, Var(pt−p0) =
∑t−1

i=0 Var(∆pi)+
∑t−1

i̸=j Cov(∆pi,∆pj) (we113

bias correct these for sequencing depth), and the covariances are zero when drift acts alone, this is114

a lower bound on how much of the variance in allele frequency change is caused by linked selection115

(Buffalo and Coop 2019). We call this measure G(t), defined as116

G(t) =

∑t−1
i̸=j Cov(∆pi,∆pj)

Var(pt − p0)
(1)

which estimates the effect of selection on allele frequency change between the initial generation 0117
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and some later generation t, which can be varied to see how this quantity grows through time.118

Since Barghi et al. (2019) experiment is sequenced every ten generations, in the numerator for119

the covariance we use the allele frequency changes between adjacent timepoints, which are ten120

generations apart. Consequently, this leads our measure G(t) to be strongly conservative, since the121

temporal covariances within each ten-generation block are not directly observable, and thus are not122

included in the numerator of G(t). Still, we find a remarkably strong signal. Greater than 20% of123

total, genome-wide allele frequency change over 60 generations is the result of selection (Figure 1124

B).125

Additionally, we looked for a signal of temporal autocovariance in Bergland et al. (2014), a study126

that collected Drosophila melanogaster through Spring-Fall season pairs across three years. If there127

was a strong pattern of genome-wide fluctuating selection, we might expect a pattern of positive128

covariances between similar seasonal changes, e.g. Spring-Fall in two adjacent years, and negative129

covariances between dissimilar seasonal changes, e.g. Spring-Fall and Fall-Spring in two adjacent130

years. However, we find no such signal over years; we discuss this in more depth in Supplementary131

Materials Section 1.5.132

The replicate design of Barghi et al. (2019) allows us to quantify another covariance: the co-133

variance in allele frequency change between replicate populations experiencing convergent selection134

pressures. These between-replicate covariances are created in the same way as temporal covari-135

ances: neutral alleles linked to a particular fitness background are expected to have allele frequency136

changes in the same direction if the selection pressures are similar. Intuitively, where temporal137

covariances reflect that neutral alleles associated with heritable fitness backgrounds are predictive138

of frequency changes between generations, replicate covariances reflect that heritable fitness back-139

grounds common to each replicate predict (under the same selection pressures) frequency changes140

between replicates. We measure this through a statistic similar to a correlation, which we call the141

convergent correlation: the ratio of average between-replicate covariance across all pairs to the142

average standard deviation across all pairs of replicates,143

cor(∆ps,∆pt) =
EA̸=B (Cov(∆ps,A,∆pt,B))

EA̸=B

(√
Var(∆ps,A)Var(∆pt,B)

) (2)

where A and B here are two replicate labels, and for the Barghi et al. (2019) data, we use ∆10pt.144

We’ve calculated the convergent correlation for all rows of the replicate covariance matrices.145

Like temporal covariances, we visualize these through time (Figure 2 A), with each line representing146

the convergent correlation from a particular reference generation s as it varies with t (shown on147

the x-axis). In other words, each of the colored lines corresponds to the like-colored row of the148

convergence correlation matrix (upper left in Figure 2 A). We find these convergent covariances149

are relatively weak, and decay very quickly from an initial value of about 0.1 (95% block bootstrap150

confidence intervals [0.094, 0.11]) to around 0.01 (95% CIs [0.0087, 0.015]) within 20 generations.151

This suggests that while a reasonable fraction of the initial response is shared over the replicates,152

this is followed by a rapid decay, a result consistent with the primary finding of the original Barghi153

et al. (2019) study: that alternative loci contribute to longer term adaptation across the different154

replicates.155

A benefit of between-replicate covariances is that unlike temporal covariances, these can be156

calculated with only two sequenced timepoints and a replicated study design. This allowed us to157

assess the impact of linked selection in driving convergent patterns of allele frequency change across158
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B C

A

Figure 2: A: The convergence correlation, averaged across Barghi et al. (2019) replicate pairs, through
time. Each line represents the convergence correlation cor(∆ps,∆ps) from a starting reference generation s
to a later time t, which varies along the x-axis; each line corresponds to a row of the temporal convergence
correlation matrix depicted to the right. We note that convergent correlation for the last timepoint is an
outlier; we are unsure as to the cause of this, e.g. it does not appear to be driven by a single pair of replicates.
B: The convergence covariance between individual pairs of replicates in the Kelly and Hughes (2019) data.
C: The convergence covariance between individual pairs of replicates in (Castro et al. 2019) data, for the
two selection lines (LS1 and LS2) and the control (Ctrl); gray CIs are those using the complete dataset, blue
CIs exclude chromosomes 5 and 10 which harbor the two regions Castro et al. (2019) found to have signals
of parallel selection between LS1 and LS2.

replicate populations in two other studies. First, we reanalyzed the selection experiment of Kelly159

and Hughes (2019), which evolved three replicate wild populations of Drosophila simulans for 14160

generations adapting to a novel laboratory environment. Since each replicate was exposed to the161

same selection pressure and share linkage disequilibria common to the original natural founding162

population, we expected each of the three replicate populations to have positive between-replicate163

covariances. We find all three pairwise between-replicate covariances are positive and statistically164

significant (Figure 2 B. We estimate the convergent correlation coefficient across these replicates165

as 0.36 (95% CI [0.31, 0.40]). Similarly, we can calculate the proportion of the total variance in166

allele frequency change from convergent selection pressure analogous to G where the numerator is167

is the convergent covariance and the denominator is the total variance (see Supplementary Material168
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1.3). We find that 37% of the total variance is due to shared allele frequency changes caused by169

selection (95% CI [29%, 41%]; these are similar to the convergence correlation, since the variance170

is relatively constant across the replicates.171

Next, we reanalyzed the Longshanks selection experiment, which selected for longer tibiae length172

relative to body size in mice, leading to a response to selection of about 5 standard deviations over173

the course of twenty generations (Castro et al. 2019; Marchini et al. 2014). This study includes174

two independent selection lines, Longshanks 1 and 2 (LS1 and LS2), and an unselected control line175

(Ctrl). Consequently, this selection experiment offers a useful control to test our between-replicate176

covariances: we expect to see positive between-replicate covariance in the comparison between the177

two Longshanks selection lines, but not between the two pairwise comparisons between the control178

line and each of the two Longshanks lines. We find that this is the case (gray confidence intervals in179

Figure 2 C), with the two Longshanks comparisons to the control line not being significantly differ-180

ent from zero, while the comparison between the two Longshanks lines is statistically significantly181

different from zero (CIs [0.0129, 0.0400]).182

One finding in the Longshanks study was that two major-effect loci showed parallel frequency183

shifts between the two selection lines: a region harboring the gene Nkx3-2 known to be involved184

in limb development, and another region containing six other candidate genes. We were curious185

to what extent our genome-wide covariances were being driven by these two outlier large-effect186

loci, so we excluded them from the analysis. Since we do not know the extent to which linkage187

disequilibrium around these large-effect loci affects neighboring loci, we took the conservative pre-188

caution of excluding the entire chromosomes these loci reside on (chromosomes 5 and 10), and189

re-calculating the temporal covariances. We find excluding these large effect loci has little impact190

on the confidence intervals (blue confidence intervals in Figure 2 C), indicating that these across-191

replicate covariances are indeed driven by a large number of loci. This is consistent with a signal of192

selection on a polygenic trait driving genome-wide change, although we note that large-effect loci193

can contribute to the indirect change at unlinked loci (Robertson 1961; Santiago and Caballero194

1995).195

The presence of an unselected control line provides an alternative way to partition the ef-196

fects of linked selection and genetic drift: we can compare the total variance in allele frequency197

change of the control line (which excludes the effect of artificial selection on allele frequencies)198

to the total variance in frequency change of the Longshanks selection lines. We can partition199

the allele frequency change between the two timepoints (20 generations apart) for a Longshanks200

line as ∆pt,LS1 = ∆Dpt,LS1 + ∆Upt,LS1 + ∆Spt,LS where these terms are the decomposition in201

the allele frequency change due to drift in Longshanks replicate 1 (∆Dpt,LS1), selection unique to202

the LS1 replicate (∆Upt,LS1), and selection response shared between the two Longshanks repli-203

cates (∆Spt,LS) respectively (and similarly for the Longshanks two line, LS2). By construction we204

will assume that each of these terms are uncorrelated within replicates, and that only the shared205

term covaries between the replicates. Assuming that we can approximate the contribution of ge-206

netic drift in the LS lines as the variance in allele frequency change observed in the control, i.e.207

Var(∆pt,Ctrl) = Var(∆Dpt,LS2) = Var(∆Dpt,LS2), then we can estimate the increase in variance in208

allele frequency change due to selection as (Var(∆pt,LS1)+Var(∆pt,LS2))/2−Var(∆pt,Ctrl) and the209

shared effect of selection across selected lines as Cov(∆pt,LS1,∆pt,LS2) (see Supplementary Material210

Section 1.3 for more details). We estimate at least 32% (95% CI [21%, 48%]) of the variance in211

allele frequency change is driven by the effects of selection, of which 14% (95% CI [3%, 33%]) is212

estimated to be unique to a selection line, and 17% (95% CI [9%, 23%]) is the effect of shared213
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selection between the two Longshanks selection lines (and the value of the convergence correlation214

between the Longshanks lines, a related statistic, is 0.18, 95% CI [0.0743, 0.254]).215

Finally, we observed that in the longest study we analyzed (Barghi et al. 2019), some genome-216

wide temporal covariances become negative at future timepoints (see the first two rows in Figure217

1 A). This shows that alleles that were on average going up initially are later going down in218

frequency, i.e. that the average direction of selection experienced by alleles has flipped. This must219

reflect either a change in the environment or the genetic background, due to epistatic relationships220

among alleles altered by frequency changes or recombination breaking up selective alleles. Such221

reversals of selective dynamics could be occurring at other timepoints but the signal of a change222

in the direction of selection at particular loci may be washed out when we calculate our genome-223

wide average temporal covariances. To address this limitation, we calculated the distribution224

of the temporal covariances over 100kb windowed covariances (Figure 3 shows these distributions225

pooling across all replicates; see Supplementary Figure S9 for individuals replicates). The covariance226

estimate of each genomic window will be noisy, due to sampling and genetic drift, and the neutral227

distribution of the covariance is complicated due to linkage disequilibria (which can occur over228

long physical distances in E&R and selection studies, Baldwin-Brown et al. 2014; Nuzhdin and229

Turner 2013). To address this, we have developed a permutation-based procedure that constructs230

an empirical null distribution by randomly flipping the signs of the allele frequency changes per-231

genomic window. This destroys the systematic covariances created by linked selection and creates a232

sampling distribution of the covariances spuriously created by neutral genetic drift while preserving233

the complex dependencies between adjacent loci created by linkage disequilibrium. This empirical234

neutral null distribution is conservative in the sense that the variances of the covariances are wider235

than expected under drift alone as they include the effect of selection on the allele frequency236

change within a time-interval, just not between time-intervals. We see (Figure 3 A and B) that237

windowed temporal covariances between close timepoints are skewed positive (a heavy right tail),238

while between more distant timepoints these windowed temporal covariances tend to shift to become239

more negative (a heavy left tail). We quantified the degree to which the left and right tails are240

inflated compared to the null distribution as a function of time, and see excesses in both tails in241

Figure 3 C. This finding is also robust to sign-permuting allele frequency changes on a chromosome-242

level, the longest extent that gametic linkage disequilibria can extend (Supplementary Figure S12).243

We see a striking pattern that the windowed covariances not only decay towards zero, but in fact244

become negative through time, consistent with many regions in the genome having had a reversed245

fitness effect at later timepoints.246

3 Discussion247

Since the seminal analysis of Maynard Smith and Haigh (1974) demonstrating that linked neutral248

diversity is reduced as an advantageous polymorphism arises and sweeps to fixation, over four249

decades of theoretical and empirical research has enriched our understanding of linked selection.250

One under-used approach to understand the genome-wide effects of selection on standing variation,251

e.g. selection on an infinitesimal polygenic trait, stems from an early quantitative genetic model of252

linked selection (Robertson 1961) and its later developments (Santiago and Caballero 1995, 1998;253

Woolliams et al. 1993; Wray and Thompson 1990; see also Barton 2000 for a comparison of these254

models with classic hitchhiking models). Implicit in these models is that autocovariance between255

allele frequency change is created when there is heritable fitness variation in the population, a signal256
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Figure 3: A, B: The distribution of temporal covariances calculated in 100kb genomic windows from the Barghi
et al. (2019) study, plotted alongside an empirical neutral null distribution created by recalculating the windowed
covariances on 1,000 sign permutations of allele frequency changes within tiles. The histogram bin number is 88,
chosen by cross validation (Supplementary Materials S8). In subfigure A, windowed covariances Cov(∆pt,∆pt+k)
are separated by k = 2× 10 generations and in subfigure A the covariances are separated by k = 4× 10 generations;
each k is an off-diagonal from the variance diagonal of the temporal covariance matrix (see cartoon of upper-triangle
of covariance matrix in subfigures A and B, where the first diagonal is the variance, and the dark gray indicates
which off-diagonal of the covariance matrix is plotted in the histograms). C: The lower and upper tail probabilities of
the observed windowed covariances, at 20% and 80% quintiles of the empirical neutral null distribution, for varying
time between allele frequency changes (i.e. which off-diagonal k). The confidence intervals are 95% block-bootstrap
confidence intervals, and the light gray dashed line indicates the 20% tail probability expected under the neutral null.
Similar figures for different values of k are in Supplementary Figures S10.
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that may be readily detected from temporal genomic data (Buffalo and Coop 2019). Depending257

on how many loci affect fitness, such a strong effect of linked selection may not be differentiable258

from genetic drift using only single contemporary population samples or looking at at temporal259

allele frequency change at each locus in isolation. In this way, averaging summaries of temporal260

data allows us to sidestep the key problem of detecting selection from standing variation: that the261

genomic footprint leaves too soft of a signature to differentiate from a background of genetic drift.262

In fact we find that the temporal covariance signal is detectable even in the most extremely difficult263

to detect soft sweep case: polygenic selection on highly polygenic traits (Buffalo and Coop 2019).264

It is worth building some intuition why temporal covariance allows us to detect such faint signals265

of polygenic linked selection from temporal genomic data. Each variant is subject to both variance266

in allele frequency due to drift and sampling noise, which at any locus may swamp the temporal267

covariance signal and creates spurious covariances. However, these spurious covariances do not268

share a directional signal whereas the covariances created by linked selection do; consequently,269

averaging across the entire genome, the temporal signal exceeds sampling noise.270

Our analyses reveal that a sizable proportion of allele frequency change in these populations is271

due to the (indirect) action of selection. Capitalizing on replicated designs, we characterized the272

extent to which convergent selection pressures lead to parallel changes in allele frequencies across273

replicate populations, and found that a reasonable proportion of the response is shared across short274

timescales. These likely represent substantial under-estimates of the contribution of linked selection275

because the studies we have reanalyzed do not sequence the population each generation, preventing276

us from including the effects of stronger correlations between adjacent generations. Furthermore,277

our estimation methods are intentionally conservative, for example they exclude the contribution278

of selection that does not persist across generations and selection that reverses sign; thus they can279

be seen as a strong lower bound of the effects of selection.280

These estimates of the contribution of selection could be refined by using patterns of LD and281

recombination which would allow us to more fully parameterize a linked-selection model of temporal282

allele frequency change (Buffalo and Coop 2019). The basic prediction is that regions of higher283

linkage disequilibrium and lower recombination should have greater temporal autocovariance than284

regions with lower LD and higher recombination. However, one limitation of these pooled sequence285

datasets is that none of the studies we reanalyzed estimated linkage disequilibria data for the286

evolved populations. While there are LD data for a natural population of D. simulans (Howie et al.287

2018; Signor et al. 2018), we did not find a relationship between temporal covariance and LD. We288

believe this is driven by the idiosyncratic nature of LD in evolve-and-resequence populations, which289

often extends over large genomic distances (Kelly and Hughes 2019; Nuzhdin and Turner 2013).290

Future studies complete with LD data and recombination maps would allow one to disentangle the291

influence of closely linked sites from more distant sites in causing temporal autocovariance, and292

allow the fitting of more parametric models to estimate population parameters such as the additive293

genetic variation for fitness directly from temporal genomic data alone (Buffalo and Coop 2019).294

Our primary focus here has been on evolution in laboratory populations. It is unclear whether295

we should expect a similar impact of selection in natural populations. In some of these experiments,296

selection pressures may have been stronger or more sustained that in natural populations (Hairston297

et al. 2005; Hendry and Kinnison 1999). Conversely, these lab populations were maintained at very298

small effective population sizes, estimated at 300, 450, and 45 for the Barghi et al. (2019), Kelly and299

Hughes (2019), and Castro et al. (2019) studies respectively, which will amplify the role of genetic300

drift. The advantage of lab experiments is that they are closed populations, in natural populations301
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temporal covariance could also arise from the systematic migration of alleles from differentiated302

populations. Adapting these methods to natural populations will require either populations that303

are reasonably closed to migration, or for the effect of migration to be accounted for possibly either304

by knowledge of allele frequencies in source populations or the identification of migrant individuals.305

While it challenging to apply temporal methods to natural populations there is a lot of promise306

for these approaches (Bergland et al. 2014; Machado et al. 2018). Efforts to quantify the impact of307

linked selection have found obligately sexual organisms have up to an 89% reduction in genome-wide308

diversity over long time periods (Comeron 2014; Coop 2016; Corbett-Detig et al. 2015; Elyashiv309

et al. 2016; McVicker et al. 2009) Thus linked selection makes a sizeable contribution to long-term310

allele frequency change in some species, and there is reason to be hopeful that we could detect this311

from temporal data, which would help to resolve the timescales that linked selection act over. In our312

reanalysis of the Barghi et al. (2019) study, we find evidence of complex linked selection dynamics,313

with selection pressures flipping over time due to either environmental change, the breakup of314

epistatic combinations or advantageous haplotypes. Such patterns would be completely obscured315

in samples only from contemporary populations. Thus, we can hope to have a much richer picture316

of the impact of selection as temporal sequencing becomes more common, allowing us to observe317

the effects of ecological dynamics in genomic data (Hairston et al. 2005).318

Furthermore, understanding the dynamics of linked selection over short timescales will help to319

unite phenotypic studies of rapid adaptation with a detectable genomic signature, to address long-320

standing questions concerning linked selection, evolutionary quantitative genetics, and the overall321

impact selection has on genetic variation.322
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Supplementary Material461

1.1 Estimator Bias Correction462

1.1.1 Correcting variance bias with a single depth sampling process463

Following Waples (1989), we have that the variance in allele frequency change at a locus in the464

initial generation, which is entirely due to the binomial sampling process, is Var(p0) = p0(1−p0)/d0465

where d0 is the number of binomial draws (e.g. read depth). At a later timepoint, the variance in466

allele frequency is a result of both the binomial sampling process at time t and the evolutionary467

process. Using the law of total variation we can partition the variation from each process,468
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Var(p̃t) = E(Var(p̃t|pt)) + Var(E(p̃t|pt)) (3)

=
pt(1− pt)

dt︸ ︷︷ ︸
generation t sampling noise

+ Var(pt)︸ ︷︷ ︸
variance due to evolutionary process

. (4)

Under a drift-only process, Var(pt) = p0(1 − p0)
[
1−

(
1− 1

2N

)t]. However, with heritable469

variation in fitness, we need to consider the covariance in allele frequency changes across generations470

(Buffalo and Coop 2019). We can write471

Var(pt) = Var (p0 + (p1 − p0) + (p2 − p1) + . . .+ (pt − pt−1)) (5)
= Var (p0 +∆p0 +∆p1 + . . .+∆pt−1) (6)

= Var(p0) +

t−1∑
i=0

Cov(p0,∆pi) +

t−1∑
i=0

Var(∆pi) +

t−1∑
0≤i<j

Cov(∆pi,∆pj). (7)

Each allele frequency change is equally like to be positive as it is to be negative; thus by472

symmetry this second term is zero. Additionally Var(p0) = 0, as we treat p0 as a fixed initial473

frequency. We can write,474

Var(pt) =
t−1∑
i=0

Var(∆pi) +
t−1∑

0≤i<j

Cov(∆pi,∆pj). (8)

The second term, the cumulative impact of variance in allele frequency change can be partitioned475

into heritable fitness and drift components (Buffalo and Coop 2019; Santiago and Caballero 1995)476

Var(pt) =
t−1∑
i=0

Var(∆Dpi) +
t−1∑
i=0

Var(∆Hpi) +
t−1∑

0≤i<j

Cov(∆pi,∆pj). (9)

where ∆Hpt and ∆Dpt indicate the allele frequency change due to heritable fitness variation and477

drift respectively. Then, sum of drift variances in allele frequency change is478

t−1∑
i=0

Var(∆Dpi) =

t−1∑
i=0

pi(1− pi)

2N
(10)

replacing the heterozygosity in generation i with its expectation, we have479

t−1∑
i=0

Var(∆Dpi) = p0(1− p0)

t−1∑
i=0

1

2N

(
1− 1

2N

)i

(11)

= p0(1− p0)

[
1−

(
1− 1

2N

)t
]

(12)
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which is the usual variance in allele frequency change due to drift. Then, the total allele frequency480

change from generations 0 to t is Var(p̃t − p̃0) = Var(p̃t) + Var(p̃0) − 2Cov(p̃t, p̃0), where the481

covariance depends on the nature of the sampling plan (see Nei and Tajima 1981; Waples 1989).482

In the case where there is heritable variation for fitness, and using the fact that Cov(p̃t, p̃0) =483

p0(1−p0)/2N for Plan I sampling procedures (Waples 1989), we write,484

Var(p̃t − p̃0) = Var(p̃t) + Var(p̃0)− 2C Cov(p̃t, p̃0) (13)

=
pt(1− pt)

dt
+

p0(1− p0)

d0
+ p0(1− p0)

[
1−

(
1− 1

2N

)t
]
+ (14)

t−1∑
i=0

Var(∆Hpi) +
t−1∑

0≤i<j

Cov(∆pi,∆pj)−
Cp0(1− p0)

2N
(15)

Var(p̃t − p̃0)

p0(1− p0)
= 1 +

pt(1− pt)

p0(1− p0)dt
+

1

d0
−
(
1− 1

2N

)t

+ (16)

t−1∑
i=0

Var(∆Hpi)

p0(1− p0)
+

t−1∑
0≤i<j

Cov(∆pi,∆pj)

p0(1− p0)
− C

N
(17)

where C = 1 if Plan I is used, and C = 0 if Plan II is used (see Waples 1989, p. 380 and Figure485

1 for a description of these sampling procedures; throughout the paper we use sampling Plan II).486

Rearranging, we can create a bias-corrected estimator for the population variance in allele frequency487

change, and replace all population heterozygosity terms with the unbiased sample estimators, e.g.488
dt

dt−1 p̃t(1− p̃t),489

d0 − 1

d0

Var(p̃1 − p̃0)

p̃0(1− p̃0)
− (d0 − 1)

d0(d1 − 1)

p̃1(1− p̃1)

p̃0(1− p̃0)
− 1

d0
+

C

N
=

Var(∆Hp0)

p0(1− p0)
+

1

2N
(18)

1.1.2 Correcting variance bias with individual and depth sampling processes490

Here, we extend the sampling bias correction described above to handle two binomial sampling491

processes: one as individuals are binomially sampled from the population, and another as reads492

are binomially sampled during sequencing. (see also Jónás et al. 2016). Let Xt ∼ Binom(nt, pt)493

where Xt is the count of alleles and nt is the number of diploids sampled at time t. Then, these494

individuals are sequenced at a depth of dt, and Yt ∼ Binom(dt,Xt/nt) reads have the tracked allele.495

We let p̃t = Yt/dt be the observed sample allele frequency. Then, the sampling noise is496

Var(p̃t|pt) = E(Var(p̃t|Xt)) + Var(E(p̃t|Xt)) (19)

= pt(1− pt)

(
1

nt
+

1

dt
− 1

ntdt

)
(20)
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Var(p̃t − p̃0) = pt(1− pt)

(
1

nt
+

1

dt
− 1

ntdt

)
+ p0(1− p0)

(
1

n0
+

1

d0
− 1

n0d0

)
(21)

− Cp0(1− p0)

N
+ p0(1− p0)

[
1−

(
1− 1

2N

)t
]
+

t−1∑
i=0

Var(∆Hpi) (22)

+

t−1∑
0≤i<j

Cov(∆pi,∆pj) (23)

Through the law of total expectation (see Kolaczkowski et al. 2011 Supplementary File 1 for a497

sample proof), one can find that an unbiased estimator of the half the heterozygosity is498

ntdt
(nt − 1)(dt − 1)

p̃t(1− p̃t). (24)

Replacing this unbiased estimator for half of the heterozygosity into our expression above, the total499

sample variance is500

Var(p̃t − p̃0) =
ntdtp̃t(1− p̃t)

(nt − 1)(dt − 1)

(
1

nt
+

1

dt
− 1

ntdt

)
+

n0d0p̃0(1− p̃0)

(n0 − 1)(d0 − 1)

(
1

n0
+

1

d0
− 1

n0d0

)
+ (25)

n0d0p̃0(1− p̃0)

(n0 − 1)(d0 − 1)

[
1−

(
1− 1

2N

)t
]
− C

N

n0d0p̃0(1− p̃0)

(n0 − 1)(d0 − 1)
+

t−1∑
i=0

Var(∆Hpi) +
t−1∑

0≤i<j

Cov(∆pi,∆pj).

(26)

As with equation (18), we can rearrange this to get a biased-corrected estimate of the variance in501

allele frequency change between adjacent generations, Var(∆pt).502

1.1.3 Covariance Correction503

We also need to apply a bias correction to the temporal covariances (and possibly the replicate co-504

variances if the initial sample frequencies are all shared). The basic issue is that Cov(∆p̃t,∆p̃t+1) =505

Cov(p̃t+1− p̃t, p̃t+2− p̃t+1), and thus shares the sampling noise of timepoint t+1. Thus acts to bias506

the covariance by subtracting off the noise variance term of Var(p̃t+1), so we add the expectation507

of this bias, derived above, back in. We discuss this in more detail below in deriving the bias508

correction for the temporal-replicate variance covariance matrix.509

1.1.4 Temporal-Replicate Covariance Matrix Correction510

In practice, we simultaneously estimate the temporal and replicate covariance matrices for each511

replicate, which we call the temporal-replicate covariance matrix. This needs a bias correction; we512

extend the bias corrections for single locus variance and covariance described in Supplementary513
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Material Sections 1.1.1, 1.1.2, and 1.1.3 to multiple sampled loci and the temporal-replicate covari-514

ance matrix here. With frequency data collected at T +1 timepoints across R replicate populations515

at L loci, we have multidimensional arrays F of allele frequencies, D of sequencing depths, and N516

of the number of individuals sequenced, each of dimension R× (T +1)×L. We calculate the array517

∆F which contains the allele frequency changes between adjacent generations, and has dimension518

R× T × L. The operation flat(∆F) flattens this array to a (R · T )× L matrix, such that rows are519

grouped by replicate, e.g. for timepoint t, replicate r, and locus l such that for allele frequencies520

pt,r,l, the frequency change entries are521

flat(∆F) =


∆p1,0,0 ∆p2,0,0 . . . ∆p1,1,0 ∆p2,1,0 . . . ∆pT,R,0

∆p1,0,1 ∆p2,0,1 . . . ∆p1,1,1 ∆p2,1,1 . . . ∆pT,R,1
...

... . . . ...
... . . . ...

∆p1,0,L ∆p2,0,L . . . ∆p1,1,L ∆p2,1,L . . . ∆pT,R,L

 (27)

where each ∆pt,r,l = pt+1,r,l − pt,r,l. Then, the sample temporal-replicate covariance matrix Q′522

calculated on flat(∆F) is a (R·T )×(R·T )matrix, with the R temporal-covariance block submatrices523

along the diagonal, and the R(R − 1) replicate-covariance submatrices matrices in the upper and524

lower triangles of the matrix,525

Q′ =


Q′

1,1 Q′
1,2 . . . Q′

1,R

Q′
2,1 Q′

2,2 . . . Q′
2,R

...
... . . . ...

Q′
R,1 Q′

R,2 . . . Q′
R,R

 (28)

where each submatrix Q′
i,j (i ̸= j) is the T × T sample replicate covariance matrix for replicates526

i and j, and the submatrices along the diagonal Q′
r,r are the temporal covariance matrices for527

replicate r.528

Given the bias of the sample covariance of allele frequency changes, we calculated an expected529

bias matrix B, averaging over loci,530

B =
1

L

L∑
l=1

hl

2
◦
(

1

dl
+

1

2nl
+

1

2dl ◦ nl

)
(29)

where ◦ denotes elementwise product, and hl, dl, and nl, are rows corresponding to locus l of531

the unbiased heterozygosity arrays H, depth matrix D, and number of diploids matrix N. The532

unbiased R× (T + 1)× L heterozygosity array can be calculated as533

H =
2D ◦N

(D− 1) ◦ (N− 1)
◦ F ◦ (1− F) (30)

where division here is elementwise. Thus, B is a R×(T+1) matrix. As explained in Supplementary534

Material Section 1.1.2 and 1.1.3, the temporal variances and covariances require bias corrections,535

meaning each temporal covariance submatrix Qr,r requires two corrections. For an element Qr,t,s =536
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Cov(∆pt,∆ps) of the temporal covariance submatrix for replicate r, Qr,r, we apply the following537

correction538

Qr,t,s =

{
Q′

r,t,s − br,t − br,t+1, if t = s

Q′
r,t,s + br,max(t,s), if |t− s| = 1

(31)

where br,t is element in row r and column t of B.539

1.1.5 Barghi et al. (2019) Temporal Covariances540

Since each replicate population was sequenced every ten generations, the timepoints t0 = 0 genera-541

tions, t1 = 10 generations, t2 = 20 generations, etc., lead to observed allele frequency changes across542

ten generation blocks, ∆pt0 ,∆pt1 , . . . ,∆pt6 . Consequently, the ten temporal covariance matrices543

for each of the ten replicate populations have off-diagonal elements of the form Cov(∆pt0 ,∆pt1) =544

Cov(pt1−pt0 , pt2−pt1) =
∑10

i=0

∑20
j=10Cov(∆pi,∆pj). Each diagonal element has the formVar(∆pt0) =545 ∑t0

i=0Var(∆pi) +
∑t0

i̸=j Cov(∆pi,∆pj), and is thus a combination of the effects of drift and selec-546

tion, as both the variance in allele frequency changes and cumulative temporal autocovariances547

terms increase the variance in allele frequency. With sampling each generation, one could more548

accurately partition the total variance in allele frequency change (Buffalo and Coop 2019); while549

we cannot directly estimate the contribution of linked selection to the variance in allele frequency550

change here, the presence of a positive observed covariance between allele frequency change can551

only be caused linked selection.552

1.2 Block Bootstrap Procedure553

To infer the uncertainty of covariance, convergence correlation, and G(t) estimates, we used a554

block bootstrap procedure. This is a version of the bootstrap that resamples blocks of data points,555

rather than individual data points, to infer the uncertainty of an statistic in the presence of un-556

known correlation structure between data. With genome-wide data, linkage disequilibria between557

sites creates complex and unknown dependencies between variants. The estimators used in this558

paper are predominantly ratios, e.g. temporal-replicate covariance standardized by half the het-559

erozygosity, G(t) which is the ratio of covariance to total variance, and the convergence correlation560

(equation (2)). In these cases, we can exploit the linearity of the expectation to make the bootstrap561

procedure more computationally efficient, by pre-calculating the statistics of the ratio’s numerator562

and denominator, N(xi) and D(xi), on the data xi for all blocks i ∈ {1, 2, . . . ,W} in the genome.563

Then we draw W bootstrap samples with replacement, and compute the estimate for bootstrap564

sample b with an average weighted by the fraction wi of total loci contained in each block,565

θ̃b =

∑W
i=1wiN(xi)∑W
i=1wiD(xi)

(32)

Note that computing the ratio of averages rather than the average of a ratio is a practice common566

for population genetic statistics like FST (Bhatia et al. 2013). With these B bootstrap estimates,567

we calculate the α/2 and 1−α/2 quantiles, which we use to estimate the 1−α = 95% pivot confidence568

intervals (p. 33 Wasserman 2006, p. 194 Davison and Hinkley 2013) throughout the paper,569
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Cα =
(
2θ̂ − q1−α/2, 2θ̂ − qα/2

)
. (33)

where θ̂ is the estimate, and qx is bootstrap quantile for probability x.570

1.3 Replicate G and Partitioning the Variance in Allele Frequency571

We define a statistic similar to G for estimating the proportion of allele frequency change common572

between two replicate populations due to linked selection. Covariance in allele frequency change573

between two replicate populations is due to convergent selection pressure selecting haplotypes574

shared between the two replicate populations, which acts to perturb linked neutral variation in575

parallel way.576

GR(t) =
EA̸=B(

∑t
i̸=j Cov(∆pi,A,∆pj,B))

ER(Var(pt,R − p0,R))
(34)

where EA̸=B indicates that the expectation is taken over all ordered pairs of replicates (e.g. sum-577

ming all off-diagonal elements replicate covariances), and ER indicates taking expectation over578

all replicates. This measures the fraction of variance in allele frequency change (averaged across579

replicates) due to shared selection pressure.580

Extending our theoretic work in Buffalo and Coop (2019), we can partition the allele frequency581

change in two replicates into drift, and shared selection and replicate-specific selection components582

of allele frequency change. For two replicates, A and B,583

∆pt,A = ∆Dpt,A +∆Upt,A +∆Spt (35)
∆pt,B = ∆Dpt,B +∆Upt,B +∆Spt (36)

where ∆Dpt,A is allele frequency change due to drift (this is specific to a replicate, and equal to584

∆Npt,A +∆Mpt,A in the notation of Buffalo and Coop 2019), ∆Upt,A is the allele frequency change585

from indirect selection specific to replicate A (and likewise with ∆Upt,A for replicate B), and ∆Spt586

is the allele frequency change from indirect selection shared across the replicates A and B (this term587

lacks a replicate subscript since by construction it is identical between replicates). By construction,588

each of these terms is uncorrelated, so the variance and be written as:589

Var(∆pt,A) = Var(∆Dpt,A) + Var(∆Upt,A) + Var(∆Spt) (37)
(38)

The shared effects of indirect selection can be quantified from the observed allele frequency590

changes, since the covariance in allele frequency change across replicates is the covariance of the591

shared term by construction,592

Cov(∆pt,A,∆pt,B) = Cov(∆Spt,∆Spt) = Var(∆Spt) (39)
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In artificial selection studies with a control (non-selected) line, such as the Castro et al. (2019)593

study, this allows us to estimate the contribution of the effects of shared and unique indirect594

selection. In the case of this study, we can estimate the drift, unique selection effect, and shared595

selection effect terms using the fact that,596

∆pt,LS1 = ∆Dpt,LS1 +∆Upt,LS1 +∆LSpt (40)
∆pt,LS2 = ∆Dpt,LS2 +∆Upt,LS2 +∆LSpt (41)
∆pt,Ctrl = ∆Dpt,Ctrl. (42)

Note that since the control replicate does not undergo artificial selection, we assume that its597

allele frequency changes are determined entirely by genetic drift. With free mating individuals598

(such as in a cage population), this may not be the case, and sequencing adjacent generations599

would allow one to differentiate the effects of selection and drift.600

We assume that we can approximate the contribution of genetic drift in the Longshanks se-601

lection lines with the observed variance in the control line, or Var(∆pt,Ctrl) = Var(∆Dpt,LS1) =602

Var(∆Dpt,LS2). Then, the combined effects of selection can be estimated by averaging the variances603

of the two Longshanks selection lines, and subtracting the variance in allele frequency change in604

the control line, which we treat as driven by drift alone (since matings are random). Note that each605

variance is bias-corrected according to the methods described in Supplementary Materials 1.1.4,606

and the average sequencing depths between lines are nearly identical. Thus, we have607

(Var(∆pt,LS1) + Var(∆pt,LS2))/2−Var(∆pt,Ctrl) = Var(∆Upt,LS) + Var(∆LSpt) (43)

where the bar indicates values averaged both Longshanks selection lines. Additionally, use the fact608

that609

Cov(∆pt,LS1,∆pt,LS2) = Var(∆LSpt) (44)

we can also separate out the unique and shared components by subtracting off this covariance,610

Var(∆Upt,LS) = (Var(∆pt,LS1) + Var(∆pt,LS2))/2−Var(∆pt,Ctrl)− Cov(∆pt,LS1,∆pt,LS2). (45)

Finally, we can divide each of these values by the total variance to get the proportion of total611

variance drift, and unique and shared effects of selection contribute towards the total. To derive612

confidence intervals for the estimates of unique and shared effects of selection, we use a block613

bootstrap procedure as described in Supplementary Materials Section 1.2.614

1.4 The Empirical Neutral Null Windowed Covariance Distribution615

To detect an excess of genomic regions with unusually high or low covariances, we need to compare616

the distribution of observed windowed covariances to a null distribution of windowed covariances617

that we would expect under no selection. While we could construct a theoretic sampling distribution618

of the spurious covariances created by neutral genetic drift at particular site, the unknown linkage619
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disequilibrium between sites would mean that this is not an adequate null model for the distribution620

of windowed covariances in our data.621

To address this limitation, we construct a neutral null model by sign-permuting the observed622

allele frequency changes. This destroys the covariances built up by selection, mimicking a neutral623

allele’s frequency trajectory. This approach is conservative, since selection also acts to increase624

the magnitude of allele frequency changes (see equation 1 of Buffalo and Coop 2019), but this625

magnitude is not affected by the sign-permutation procedure. Consequently, the resulting empirical626

null distribution has higher variance than would be expected under neutrality alone.627

Still, we wanted to ensure that LD between sign-permuted blocks, which will affect the variance628

of the empirical null distribution, does not impact our primary finding that the distribution of629

temporal covariances becomes increasingly negative in the Barghi et al. (2019) dataset through630

time. To address this, we also sign-permuted at the whole chromosome level finding we recapitulate631

the same pattern (Supplementary Figure S12).632

1.5 Bergland et al. (2014) Re-Analysis633

We also applied our temporal covariance approach to Bergland et al. (2014), which found evidence634

of genome-wide fluctuating selection between Spring and Fall seasons across three years Drosophila635

melanogaster. As described in Buffalo and Coop (2019), if fluctuating selection pressure among636

time-periods are the dominant genome-wide pattern, we might expect positive covariances between637

like seasons changes (e.g. Spring 2010 to Fall 2010 and Spring 2011 to Fall 2011), and negative638

covariances between dislike seasonal changes (e.g. Fall 2009 to Spring 2010 and Fall 2010 to Spring639

2011). However, while we find temporal covariances that are non-zero, we find only weak support640

for a seasonal fluctuating model driving these covariances. In Supplementary Figure S1, we show641

the temporal covariances from varying reference generations, across seasonal transitions that are642

alike (e.g. the covariance between the allele frequency changes between Fall 2009 and Spring643

2009, and frequency changes between Fall 2010 and Spring 2010), and dislike (e.g. the covariance644

between the allele frequency change between Fall 2009 and Spring 2009, and the frequency changes645

between Spring 2010 and Fall 2009). The first row of temporal covariance matrix is consistent646

with fluctuating selection operating for two timepoints, as the first covariance is negative, and the647

second is positive, and later covariances are not statistically differentiable from zero (which could648

occur if LD and additive genetic variance decay). However, all other temporal covariances do not649

fit the pattern we would expect under genome-wide fluctuating selection.650

We wanted to establish that our temporal-covariance matrix bias correction was working cor-651

rectly. We find that it corrects the relationship between depth and both variance and covariance652

(Supplementary Figure S4) as expected.653

It is unclear how strong the fluctuations would have to be to generate a genome-wide average654

signal of fluctuating selection from temporal covariances. For example, many loci could still show655

a signal of fluctuating selection, but the average signal could be overwhelmed by other signals of656

other selection. To investigate whether there was a genome-wide excess of loci showing evidence657

of fluctuating selection we reanalyzed the data of (Bergland et al. 2014) using the same seasonal658

fluctuating model as the original paper. This model is a Binomial logit-linked GLM fit per-locus,659

where the frequencies are regressed on the Spring/Fall seasons are encoded as a dummy variable.660

We use the same binomial weighting procedure as Bergland et al. (2014), where the weights are661

determined by the effective number of chromosomes, Neff = (2ntdt − 1)/(2nt + dt) (nt and dt662

are the number of diploid individuals and the read depth at timepoint t, respectively). We fit663
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S-F, F-S
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F-S, S-F F-S, F-S

F-S, S-F

S-F, F-S

Fall 09
Spring 10
Fall 10
Spring 11

F-S, F-S

Figure S1: Temporal covariances from the Bergland et al. (2014) study, from varying reference genera-
tions (e.g. rows along the temporal covariance matrix). Each covariance is labeled indicating whether the
covariance is between two like seasonal transitions (e.g. the covariance between allele frequency changes
from fall to spring in one year, and fall to spring in another) or two dislike seasons (e.g. the covariance
between fall to spring in one year, and spring to fall in another year). Covariances between like transitions
are expected to be positive when there is a genome-wide effect of fluctuating selection (and these labels are
colored blue), while covariances between dislike transitions are expected to be negative (and these labels
are colored red). 95% confidence intervals were constructed by a block-bootstrapping procedure where the
blocks are megabase tiles.

A B

Figure S2: A: Scatterplot of the original unadjusted p-values from Bergland et al. (2014) and the p-values
from our reanalysis of the same data using the same statistical methods; the minor discrepancy is likely
due to software version differences. B: The histograms of the p-values of our reanalysis and the original
Bergland et al. (2014) data; again the minor discrepancy is likely due to software differences. Overall, our
implementation of Bergland et al.’s statistical methods produces results very close to the original analysis.
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this model on all loci marked as used in the VCF provided with the Bergland et al. (2014) study664

(doi:10.5061/dryad.v883p). Overall, our p-values for the Wald test for each locus closely match665

those of the original paper (Pearson correlation coefficient 0.98, p-value < 2.2 × 10−16; see Sup-666

plementary Figure S2 A), and the histograms of the p-values are nearly identical (Supplementary667

Figure S2 B). Bergland et al. (2014) find loci with a significant association with season after a668

Benjamini and Hochberg FDR p-value adjustment (Benjamini and Hochberg 1995), however, the669

null hypothesis of the Wald test does not give us an idea of the expected number of variants that670

may spuriously fit the pattern of seasonal fluctuating selection as it does not account for genetic671

drift or other forms of hitchhiking.672

A B

Figure S3: A: Histogram of original Bergland et al. (2014) seasonal p-values and p-values creating by
randomly permuting the seasons at each locus. B: Histogram of original Bergland et al. (2014) p-values
alongside all unique permutations (ignoring symmetries that lead to identical p-values).

To investigate whether there is a genome-wide evidence of an enrichment of fluctuating selection673

we created an empirical null distribution by randomly permuting the season labels and re-running674

the per-locus seasonal GLM model, as proposed by Machado et al. (2018). We find, regardless of675

whether we permute at the locus-level or the permutation replicate-level, that the observed seasonal676

p-value distribution Bergland et al. (2014) is not enriched for significant p-values beyond what we677

would expect from the permutation null. In fact, there appears there is more enrichment for low678

p-values when seasonal labels are randomly permuted (Supplementary Figure S3, suggesting by679

random chance we might expect more variants with a seasonal fluctuating pattern than found in680

the original Bergland et al. (2014) study. While surprising, this could be explained by the presence681

of temporal structure across the samples not consistent with seasonal fluctuating selection. Some682

fraction of the permutations happen to fit this structure well, leading to an enrichment of small683

p-values. This non-seasonal temporal structure is also evident in our temporal covariances (Sup-684

plementary Figure S1), where we see strong evidence of selection (non-zero temporal covariances),685

yet the pattern does not follow that of seasonal fluctuating selection.686
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Figure S4: The variance and covariances from the Bergland et al. (2014) study, calculated in 100kb
genomic windows plotted against average depth in a window before and after bias correction. Each panel
has a least-squares estimate between the variance and covariance, and the average depth. The bias correction
procedure is correcting sampling bias in both the variance and covariance such that the relationship with
depth is constant. Colors indicate the different chromosomes of D. melanogaster; we have excluded the X
chromosome (yellow points; chromosome 4 was not in the original study) from the regression due to large
differences in average coverage.

Supplementary Figures687

1.6 Bias Correction for Barghi et al. (2019)688

We have investigated the effectiveness of our correction on real data by exploiting the relationship689

between sampling depth and the magnitude of the variance and covariance biases, and comparing690

the observed variances and covariances before and after correction. We plot the variance and691

covariance (between adjacent timepoints) before and after the bias correction against the average692

sample depth in 100kb genomic windows in Figure S5. Overall, we find the biased-correction693

procedure removes the relationship between variance and covariance and depth, indicating it is694

working adequately.695
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Figure S5: The variance and covariances from the Barghi et al. (2019) study, calculated in 100kb genomic
windows plotted against average depth in a window before and after bias correction. Each panel has a least-
squares estimate between the variance and covariance, and the average depth. Overall, the bias correction
corrects sampling bias in both the variance and covariance such that the relationship with depth is constant.
Colors indicate the different chromosomes of D. simulans; we have excluded the X chromosome (yellow
points) and chromosome 4 points (green points to far right) from the regression due to large differences in
average coverage.
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1.6.1 Barghi et al. (2019) Temporal Covariances Per Replicate696
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Figure S6: The temporal covariances from the Barghi et al. (2019) study, for each replicate individually.
As in Figure 1, each line follows the temporal covariances from some initial reference generation through
time, which represent the rows of temporal covariance matrix.
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s t median median 95% CI trimmed mean trimmed mean 95% CI
0 10 1.629 [1.532, 1.738] 1.874 [1.777, 1.969]
0 20 0.371 [0.276, 0.465] 0.491 [0.403, 0.585]
0 30 0.479 [0.4, 0.589] 0.516 [0.434, 0.602]
0 40 0.059 [−0.012, 0.15] 0.027 [−0.05, 0.099]
0 50 -0.204 [−0.271,−0.125] -0.259 [−0.329,−0.187]
10 20 1.549 [1.427, 1.659] 1.722 [1.617, 1.83]
10 30 0.438 [0.339, 0.539] 0.506 [0.399, 0.609]
10 40 0.233 [0.149, 0.328] 0.254 [0.159, 0.343]
10 50 -0.355 [−0.454,−0.289] -0.319 [−0.401,−0.237]
20 30 1.981 [1.856, 2.095] 2.195 [2.084, 2.302]
20 40 0.792 [0.698, 0.894] 0.903 [0.815, 0.999]
20 50 0.123 [0.042, 0.207] 0.221 [0.141, 0.309]
30 40 1.296 [1.208, 1.425] 1.385 [1.287, 1.483]
30 50 0.07 [−0.037, 0.183] 0.116 [0.023, 0.21]
40 50 1.36 [1.271, 1.446] 1.513 [1.427, 1.601]

Table S1: Table of median of windowed covariance estimates (Cov(∆ps,∆pt) × 100) between generations
t and s and the trimmed mean windowed covariance which excludes the lower and upper 5% windows with
the highest covariance.

1.7 Barghi et al. (2019) Trimmed Window Covariances697

Here we report median and trimmed mean of the windowed covariances (Supplementary Table S1).698

We note that the median covariance is also limiting result of a trimmed mean that symmetrically699

excludes the upper and lower α tails to calculate the trimmed average windowed covariance. As700

α increases to 0.5, the trimmed covariance converges to the median windowed covariance (by the701

definition of the median; see Supplementary Figure S7). Thus our genomic temporal covariances702

are non-zero due to the impact of selection on many genomic windows.703
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Figure S7: The genome-wide covariance (Cov(∆p0,∆p10) pooling all replicates) averaged (red line) and
the median windowed covariance (blue) for the Barghi et al. (2019) dataset. The trimmed average window
covariance, excluding the α lower and upper tails, converges to the median windowed covariance. This
indicates that genome-wide covariance are not being overly dominated by a large-effect loci in few windows.
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1.8 Barghi et al. (2019) Empirical Null and Windowed Covariance Distributions704
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Figure S8: We chose number of bins used in the histograms of Figure 3 via an analytic expression for
the cross-validation risk, based on the equation 6.16 of (Wasserman 2006, p. 129). Above, we plot the
cross-validation risk for various numbers of bins, for each of the four off-diagonals of the temporal covariance
matrix that we analyze. Overall, because the number of data points is large, oversmoothing is less of a
problem, leading the cross-validation risk to be relatively flat across a large number of bins. Each gray
point indicates the minimal risk for a particular off-diagonal, and the dashed line indicates the best average
binwidth across off-diagonals.
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Figure S9: The distribution of windowed temporal covariances alongside the empirical neutral null for five
randomly sampled replicates (columns), for k = 2 (first row) and k = 5 (second row). The main figure of
the paper pools all replicate window and empirical neutral null covariances; we show here the windowed
temporal covariances tend to shift from being positive (a heavier right tail) to become more negative (a
heavier left tail) through time within particular replicates.
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Figure S10: The distribution of temporal covariances calculated across 100kb genomic windows from Barghi
et al. (2019)’s study (orange) and the block sign permuted empirical neutral null distribution of the windowed
covariances (blue). Each panel shows these windowed covariances and the empirical null distribution for
covariances Cov(∆pt,∆pt+k), k is the number of generations between allele frequency changes.
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1.9 Barghi et al. (2019) Tail Probabilities for Windowed Covariances Distribu-705
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Figure S11: Barghi et al. (2019) tail probabilities compared to sign-permuted empirical null distribution
for various α levels.
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Figure S12: The 20% lower and upper tail probabilities for the observed windowed covariances from the
Barghi et al. (2019) study, based on sign-permuting at the chromosome level. This permutation empirical null
is robust to long-range linkage disequilibrium acting over entire chromosomes (see Supplementary Material
section 1.4).
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