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1. Abstract 

At ultra-high field, fMRI voxels can span the sub-millimeter range, allowing the recording of 

blood oxygenation level dependent (BOLD) responses at the level of fundamental units of neural 

computation, such as cortical columns and layers. This sub-millimeter resolution, however, is 

only nominal in nature as a number of factors limit the spatial acuity of functional voxels. 

Multivoxel Pattern Analysis (MVPA) may provide a means to detect information at finer spatial 

scales that may otherwise not be visible at the single voxel level due to limitations in sensitivity 

and specificity. Here, we evaluate the spatial scale of stimuli specific BOLD responses in 

multivoxel patterns exploited by linear Support Vector Machine, Linear Discriminant Analysis 

and Naïve Bayesian classifiers across cortical depths in V1. To this end, we artificially 

misaligned the testing relative to the training portion of the data in increasing spatial steps, then 

investigated the breakdown of the classifiers’ performances. A one voxel shift led to a significant 

decrease in decoding accuracy (p<.05) across all cortical depths, indicating that stimulus specific 

responses in a multivoxel pattern of BOLD activity exploited by multivariate decoders can be as 

precise as the nominal resolution of single voxels (here .8 mm isotropic). Our results further 

indicate that large draining vessels, prominently residing in proximity of the pial surface, do not, 

in this case, hinder the ability of MVPA to exploit fine scale patterns of BOLD signals. We argue 

that tailored analytical approaches can help overcoming limitations in high-resolution fMRI and 

permit studying the mesoscale organization of the human brain with higher sensitivities. 

 

Keywords: Ultra-High Field, High spatial resolution, Cortical depth dependent fMRI, MVPA, 

Univariate, Multivariate. 
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2. Introduction 

Largely due to the ability to achieve relatively high spatial and temporal resolution functional 

images simultaneously across the whole brain, functional magnetic resonance imaging (fMRI) 

has become one of the most powerful tools to study the human brain non-invasively over the last 

25 years. At ultra-high field (UF, 7 Tesla and above), functional voxels span the sub-millimeter 

range, measuring 0.8 mm isotropic (e.g. Muckli et al., 2015; for review see Lawrence et al., 

2017), 0.65 mm isotropic over small regions (Heidemann et al., 2012); or even 0.45 mm using 

super resolution techniques (e.g. Vu et al., 2018). These high-resolution images allow the 

recording of blood oxygenation level dependent (BOLD, Ogawa et al., 1992) responses at the 

level of cortical layers and columns. UF fMRI therefore provides the unique opportunity to 

investigate the organizing principles of the human cortex at the mesoscale level, narrowing the 

gap between invasive animal electrophysiology and human neuroimaging (De Martino et al., 

2018). 

 

However, this sub-millimeter resolution is only nominal in nature, because a number of factors 

limit the point spread function of gradient echo (GE) BOLD responses and, ultimately, the 

sensitivity to fine-grained functional structures. These factors include voxel blurring along the 

phase encoding direction and proximity to large draining blood vessels. Studies investigating the 

point spread function of GE BOLD responses at 7 T have shown that it spreads beyond the 

millimeter range, with an upper limit of approximately 2 mm (Shmuel et al., 2007; Uludağ and 

Blinder, 2017). More recently though, it has been argued that these estimates fail to account for 

the spread of the neuronal response as it relates to the size of receptive fields and their 

scatteredness in V1 (Chaimow et al., 2018). Chaimow et al. (2018) suggest that when 
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minimizing the contribution of macroscopic vessels, the point spread at 7 T for GE BOLD 

acquisitions is closer to 1mm than 2mm, approaching the nominal resolution of single voxels (in 

this case 0.8 mm isotropic).  

 

Moreover, large veins also significantly modulate BOLD amplitude, leading to an increase in 

signal towards the pial surface, especially for GE recordings (e.g. Goense and Logothetis, 2006; 

Goense et al., 2007; Ress et al., 2007; Polimeni et al., 2010; Koopmans et al., 2010; Koopmans 

et al., 2011).  

 

The implementation of appropriate analytical strategies may help to circumvent the impact of 

large draining vessels on biasing BOLD signal responses to outer cortical layers. For example, 

differential mapping techniques, along with the presence of pseudo- periodic functional 

structures (Yacoub et al. 2007), can permit the mapping of orientation preference columns with 

high field spin echo (SE) fMRI, despite the limited spatial resolution and/or functional precision.  

 

For the highly desirable GE BOLD signal, however, it remains to be determined whether and 

how neuroscientists can fully exploit the high spatial resolution data achievable at UF, in order to 

investigate functional profiles of human cortical columns and layers. To this end, analyzing the 

information contained in voxel populations using multivoxel pattern analysis (MVPA) as 

opposed to average response amplitudes may represent an appealing analytical strategy to 

maximize fMRI sensitivity to fine-grained cortical features (Kriegeskorte et al., 2007). Kamitani 

and Tong (2005) employed MVPA to successfully decode orientation tuning in human V1 at 3 

Tesla, with a voxel resolution that spanned well beyond the millimeter range (see also Haynes 
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and Rees, 2005). With the promise of retrieving information that would otherwise remain 

inaccessible, MVPA, such as linear support vector machines (SVM), have become widely used.  

 

This account has been challenged recently, and the nature and spatial scale of the information 

exploited by the MVPA called into question. A number of studies have argued that orientation 

decoding may rely on coarser global maps that co-vary with micro-scale features (e.g. Sasaki et 

al., 2006; Mannion et al., 2010; Freeman et al., 2011; Op de Beeck, 2010). An example of such a 

coarse-scale organization that could account for orientation decoding in V1 is radial-preference 

retinotopic maps (Sasaki et al., 2006). The somewhat unresolved debate sparked by these 

opposing views has motivated several neuroimaging studies to assess whether MVPA is sensitive 

to fine or coarse spatial patterns of multivoxel BOLD activity (e.g. Mannion et al., 2010; 

Seymour et al., 2010; Alink et al., 2013; Op de Beeck, 2010; Freeman et al., 2011; Chaimow et 

al., 2011), with the possibility that orientation decoding could be underpinned by both coarse as 

well as fine scale structures.  

 
With the growing availability of UF scanners, the question of whether MVPA decoding relies on 

fine-grained spatial information becomes topical for the neuroimaging community. As 

mentioned above, GE BOLD is limited in spatial specificity, casting doubts on the spatial 

integrity of sub-millimeter fMRI maps. However, a demonstration that, unlike univariate 

amplitudes, MVPA effectively exploits finer grained information from GE-BOLD data, taking 

full advantage of the sub-millimeter resolutions, stands to increase the utility of high field high 

resolution GE BOLD. Within the context of this paper, we define univariate BOLD as the 
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average BOLD response (or the contrast of the average BOLD responses elicited by 2 conditions) 

across all voxels within a given region of interest (ROI).   

In this work, we re-analyzed feedforward and feedback cortical depth dependent data previously 

acquired 7 T GE EPI with 0.8 mm isotropic functional voxels (Muckli et al., 2015, Figure 1) to 

determine the spatial scale of stimulus specific responses to which MVPA is sensitive.  

 

To this end, we artificially misaligned the pattern structure in increasing spatial steps and 

investigated the breakdown of the classifier performance. We reasoned that if the spatial scale of 

stimulus specific responses to which decoding is sensitive is that of a single voxel, even a 1 

voxel misalignment should lead to a significant decrease in decoding accuracy. To test this 

hypothesis, we first ran a simulation on synthetic data generated with realistic signal-to-noise 

(SNR) properties. 

We then tested the performance of 3 classifiers: linear SVM; Linear Discriminant Analysis 

(LDA); and Naïve Bayes Classifier (NBC) on real data.  Moreover, to gain insights into whether 

venous-related amplitude increases also affect the magnitude of univariate differences and 

decoding accuracy, we directly assessed the relationship of these measures and univariate BOLD 

across cortical depths by means of correlational analyses.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2019. ; https://doi.org/10.1101/798306doi: bioRxiv preprint 

https://doi.org/10.1101/798306
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

3. Methods 

3.1 Subjects 

We reused data acquired from 4 subjects at the Center for Magnetic Resonance Research 

(CMRR, Minneapolis, MN, USA) and described in Muckli et al. (2015). All subjects were 

healthy volunteers with normal or corrected visual acuity. Subjects gave written informed 

consent and received financial compensation for their participation. The institutional review 

board for human subject research at the University of Minnesota approved the study.   

 

3.2 Stimuli 

Stimuli are described in the original study (see Muckli et al., 2015). In summary, subjects viewed 

three visual scenes (‘car on street’, ‘people at market’, ‘ship in harbor’, Figure 1). We controlled 

the images for global luminance, contrast and energy, using matlab shine-toolbox (Willenbockel 

et al., 2010). Scenes were presented in full (‘feedforward’ condition) or masked with an occluder 

over the lower right visual field (‘feedback’ condition). We presented a set of contrast-reversing 

checkerboard mapping stimuli for ‘target’ and ‘surround’ regions in each run, and in a separate 

localizer run. The surround checkerboards mapped the outer 2 degrees of the white occluder and 

the target mapped the remaining inner section of the occluder (Figure 1). The design of the 

experiment was comparable to our previous study (Smith and Muckli, 2010), but with the visual 

stimuli reduced in size by 20% to fit the smaller MRI bore due to the use of a head gradient 

insert (see below). We kept the width of the ‘surround’ mapping stimulus at 1 degree of visual 

angle and added an additional 1-degree border between the ‘surround’ stimulus and the edge of 

the ‘target’ stimulus region. We conducted a separate phase-encoded retinotopic mapping 

experiment (Petro et al., 2013; Sereno et al., 1995; Muckli and Petro, 2013). Stimuli consisted of 

a wedge-shaped (22.5 degrees) checkerboard rotating slowly (64s for full 360-degree rotation) 
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around the fixation point in the middle of the screen. A white ‘spider web’ configuration was 

presented in the background to stabilize fixation together with a center fixation color change task 

(Schira et al., 2009). 

 

 

Figure 1. (A) Example stimulus for the ‘‘feedback’’ condition, in which the lower right quadrant was occluded by a 
white mask. The ‘‘feedforward’’ condition comprised the full image (not shown). (B) ‘‘Target’’ and ‘‘surround’’ 
checkerboards (presented individually during scanning) to locate voxels responding to the lower right visual field. 
(C) Left hemisphere inflated cortical reconstruction of a subject, overlaid with a contrast of target response greater 
than surround response in V1, V2 and V3. (D) Example of cortical depths (purple, close to white matter and red, 
close to the pial surface) overlaid onto GE-EPI images. (E) White transparent wireframe shows cortical surface 
reconstruction along the grey-white matter boundary with the superimposed iso-surface cortical depth grids (inner in 
purple, to outer in red) of a representative subject’s left occipital cortex (sagittal view). The visual activation map 
results from the contrast ttarget > tsurround ∩ ttarget > 0 ∩ tfull-stimulus > toccluded-stimulus. Figure reproduced and adjusted with 
permission from (Muckli et al. 2015). 

 

3.4 Paradigm 

As described in Muckli et al. (2015), the experiment comprised four functional runs of 350 

volumes each. An experimental condition was presented for 6 volumes (12s), and each of 6 

experimental conditions was presented in a randomized order within a block followed by 12 

volumes (24s) of baseline (6x12s+24=96s per block). Mapping blocks consisting of 2 conditions 

(‘target’, ‘surround’) were presented for 6 volumes (12s) interleaved with 6 volumes (12s) of 

baseline in between conditions and 12 volumes (24s) at the end of the block 

(2x12s+12s+24s=60s). A functional run consisted of 6 experimental blocks and 2 mapping 

blocks and an additional baseline of 2 volumes (4s) at the start of the run (6x96s + 2x48s + 4s = 
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700s = 350 volumes). Therefore, each experimental condition was presented 24 times across four 

runs. 

The retinotopic mapping run comprised of 12 repetitions of a full rotation lasting 32 volumes 

(64s), with an extended baseline of 10 volumes (20s) at the beginning and 12 volumes (24s) at 

the end of the run (resulting in 406 volumes: 12x64s+20s+24s=812s). An additional localizer run 

comprised 12 repetitions of ‘target’ and 12 repetitions of ‘surround’ mapping, with 25 baseline 

periods in between, all of which lasted for 6 volumes (12s), resulting in 294 volumes 

((12+12+25)x12s=588s). 

Subjects viewed the visual stimuli on a projection screen mounted to the rear end of the head coil 

using a head-coil mounted mirror. A video projector combined with a mirror projected the 

stimuli onto the screen. Stimuli were presented using Presentation software (Neurobehavioral 

Systems, CA, USA) for the experiments, and for retinotopic mapping with StimulGL (custom-

built stimulation software, Maastricht University, Maastricht, NL). We instructed the subjects to 

keep fixation to the center of the screen and to perform a color-change detection task at the 

center of the screen, during both the experimental runs and retinotopic mapping. 

 

3.5 MRI Acquisition 

MRI data for the first experiment was conducted on an ultra-high magnetic field (7 Tesla, 90cm 

bore, Magnex Scientific, Abingdon, UK) at the CMRR in Minneapolis (MN, USA). The scanner 

was driven with a Siemens console (Erlangen, Germany) and used a head gradient insert with a 

6-channel receive (1 Tx) array RF coil that covered only the visual areas. 

Functional scans were recorded using GE-EPI at high resolution (nominal resolution, isotropic 

0.8 mm3, TE = 17ms, maximum flip angle (determined by a flip angle map) = 85°, slices = 38, 
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TR = 2000ms, FOV = 128 x 128 mm2, matrix: 160 x 160, IPAT = 2, partial Fourier = 6/8, pixel 

bandwidth = 1375 Hz/pixel). Anatomical scans were acquired at 1mm3 using a MPRAGE 

sequence optimized for T1-weighted (3D MPRAGE) and proton density (PD)-weighted contrast 

(176 slices, FOV = 136x256 mm2, matrix = 1366x56, voxel size = 1x1x1 mm3).  

 

3.6 Anatomical data analysis - cortical depth sampling 

All data were analyzed with BrainVoyager QX 2.8. Proton density scans with identical slice 

positioning were used to remove spatial intensity inhomogeneities from T1 scans by dividing the 

T1 by the PD images (Van de Moortele et al., 2009). We manually adjusted inner and outer grey 

matter boundaries along the local intensity values to eliminate pial blood vessels and to correct 

for GE-EPI distortions. We used relative cortical depth values to create Laplace-based 

equipotential grid-lines (i.e. solving the Laplace equation to obtain a smooth vector field and 

then create smooth meshes directly within the grey matter boundaries – e.g. Kemper et al., 2018) 

at six depths (from inner to outer 90%, 74%, 58%, 42%, 26%, and 10% depths, Figure 1). The 

gridlines were calculated smoothly at a highly up-sampled spatial coordinate system (De Martino 

et al., 2014). In a subsequent step, we used smooth gridlines to assign voxels to a respective 

cortical depth. Individual voxels were allowed to belong to adjacent depths. The depth gridlines 

covered the cortical representation of the occluded image section in the lower right visual field 

quadrant of retinotopic area V1d (Figure 1). We saved the layered regions of interest as 

BrainVoyager QX VOI files (volume of interest).  

 

3.7 Functional data analysis 
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We pre-processed the fMRI data using slice scan timing corrections (sinc interpolation), 3D rigid 

body motion correction (sinc interpolation), intra-session alignment to the functional data of the 

last run, and temporal high pass filtering of 4 cycles. We aligned functional data to anatomical 

data with manual adjustments and iterative optimizations. We used activation maps of 

retinotopic mapping to optimize segmentation and alignment. Specifically, after T1 based 

segmentation, the grey matter boarders were projected into EPI space and locally optimized 

according to the mean EPI image, which provides additional information regarding the spatial 

location of grey and white matter boundaries and outer pial surface. To further asses the quality 

of alignment and segmentation, we projected the activation maps from the retinotopic mapping 

runs to the segmented cortical ribbon. We visually inspected the quality of alignment and 

segmentation and optimized either or both accordingly. We implemented this procedure on the 

assumption that activity originates in the grey matter.  

Analysis of functional data included general linear model (GLM) estimation of averaged 

conditions and single trials. We generated design matrices by the convolution of a double gamma 

function with a “boxcar” function (representing onset and offset of the image stimuli). 

Independently per voxel and functional run, we implemented a classic general linear model 

(GLM) analysis (least squared minimization stress) to estimate the activation triggered by each 

single image block (i.e. single trial estimation modeling). We computed design matrices by 

convolving a double gamma function with a “boxcar” function (representing onset and offset of 

the image stimuli). Each design matrix thus consisted of 350 rows, representing the runs’ 

temporal dimension (i.e. volumes), and 41 columns, one per each visual stimulation trial plus the 

intercept term. Of 40 visual trials, 36 represented our experimental conditions: 6 trials x 2 

experimental conditions (i.e. full and occluded images) x 3 visual scenes; and 4 represented the 
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mapping stimulus: 2 trials x 2 mapping conditions (i.e. ‘target’ and ‘surround’ checkerboard 

stimuli). Methods up to this point are described in Muckli et al. (2015).  

 

3.8 General Decoding procedure 

Linear support vector machine (SVM) decoding analysis was performed using SVM algorithms 

as implemented by the LIBSVM toolbox (Lin, 2011), with default parameters (notably C = 1). 

Linear discriminant analysis (LDA) was implemented using the “fitcdiscr” and “predict” 

functions inbuilt in Matlab’s statistic toolbox (Matlab, The Mathworks Inc, 2014). Naïve Bayes 

classifier was implemented using the function Classify from Matlab’s statistic toolbox with the 

‘diaglinear’ option. Note that, before being input to the classifiers, the activity of each voxel was 

scaled using the same scaling factors for training and testing sets (Lin, 2011). Firstly, the training 

portion of the data was normalized within a range of -1 to 1. This normalization was achieved by 

subtracting from the training data set its minimum value (to set the minimum to 0), dividing the 

resulting data set by its maximum (to scale the data between 0 and 1), multiplying by 2 and 

subtracting 1 (to scale the data between -1 and 1).  The testing portion of the data was then scaled 

with the same procedure, but using scaling factors obtained from the training portion of the data 

(Lin, 2011). All decoding analyses were performed only on voxels responding to target more 

than to surround (defined by the contrast ttarget > tsurrond ∩ ttarget > 0). We have described the 

decoding analyses in more detail previously (Smith and Muckli, 2010). 

In brief, we trained all classifiers (linear pattern) to map between activation patterns from three 

scenes (full feedforward images in experiment 1) or between occluded scenes. We tested the 

trained classifiers on independent data (leave one run out cross validation). We measured the 

classifier performance of each cortical depth independently and we tested the single trial 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2019. ; https://doi.org/10.1101/798306doi: bioRxiv preprint 

https://doi.org/10.1101/798306
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

classification for significance using permutation testing (10000 iterations of randomly assigned 

labels). To determine the empirical chance level, we implemented the following procedure. 

Independently per subject cortical depth, signal and misalignment extent, we randomly shuffled 

the labels of the classifiers’ input prior to the training phase. We then performed training and 

testing with shuffled labels. We repeated this procedure 10000 times to produce a null 

distribution of decoding accuracy. We therefore sorted the label shuffled accuracy scores and 

selected the 95% largest score as the empirical chance level. Statistical significance was inferred 

when the low confidence interval of the unshuffled decoding accuracy (computed across cross-

validated folds) was larger than empirical chance (i.e. p<.05). 

 

 

3.9 Artificial misalignment 

To directly measure whether MVPA is capable of relying on stimulus specific fine scale 

responses, we developed a simple data driven approach that builds upon the impact of 

misalignment between training and test ROIs on decoding accuracy. Independently per cortical 

depth, we trained a classifier on the original ROI and tested its accuracy/performance on a 

number of misaligned sites. 

We parametrically shifted the test site 0 (i.e. no misalignment) to 5 voxels relative to the training 

site.  

 

To determine whether the drop in decoding accuracy following misalignment can be directly 

related to the spatial precision of stimulus specific responses, we generated synthetic sets of data 
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while parametrically varying the precision of 3D patterns of simulated BOLD activity via 3D 

convolution (Figure 2). 

 

 

Figure 2. Synthetic data generation procedure. 

 

For each subject and cortical depth, we generated synthetic data mimicking the BOLD activation 

triggered by 2 visual conditions (see Figure 2). We began by estimating mean betas and variance 

across runs and trials. We then generated 2 (i.e. one per visual condition) 3D pseudo-random 

high-resolution patterns of normally distributed white noise with mean of 0 and variance of 1 

(using the “randn” function in matlab). These 2 3D textures represent the true (i.e. no noise) 
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multivoxel pattern of our synthetic conditions. We therefore added the previously estimated 

betas mean to each condition to attain comparable mean activation. Next, we generated patterns 

of noise. Using a comparable procedure, we proceeded to produce as many normally distributed 

high-resolution white noise patterns (with mean 0 and variance of 1) as the total number of 

experimental trials (in this case 48 – i.e. 6 trials x 4 runs x 2 conditions). We therefore used the 

previously estimated variance to scale the noise patterns so that the variance across the 24 3D 

noise textures of each image was comparable to that estimated for our real data set. We added 

each scaled noise texture to the signal patterns, producing 24 trials per condition with the same 

underlying spatial structure and different amounts of noise. We then smoothed the 3D multivoxel 

patterns of each simulated trial by convolving it with a 3D Gaussian kernel with a full-width 

half-max (FWHM) of 0 (i.e. no smoothing), 1, 2, 3 and 4 voxels, to simulate voxel resolutions 

of .8, 1.6, 2.4, 3.2 and 4 mm isotropic respectively. We finally added the noise and signal texture 

patterns to our baseline. 

This process led to the generation of 2 synthetic multivoxel patterns of betas per simulated voxel 

resolution with comparable means and distinct spatial patterns of activation, faithfully 

reproducing the activation profile of our real data. We then carried out our misalignment 

approach on the synthetic data sets.  

 

We then proceeded to implement this analysis to our data. We used two different, yet 

complementary, approaches: 1) volumetric driven and 2) surface grid driven misalignment. 

While misalignment was performed in volume space in both approaches, unlike the volumetric 

misalignment, the surface grid driven approach ensured that all spatial offsets of the training ROI 

were confined within a given cortical depth (Figure 3, see below for more details). 
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All misalignments were performed in Matlab. We imported the data in Matlab using the BVQX 

toolbox and used a number of in-house tools to misalign the test site relative to the training site. 

 

3.9.1 Volumetric misalignment. This approach consists of shifting the test ROI 0 to 5 voxels 

along the 3 axes (i.e. x, y and z) and 2 directions (i.e. positive and negative). Volumetric 

misalignment can be conceptualized by thinking of the training site as denoting the “origin” of a 

three-dimensional discrete Cartesian space, while the test site represents a point within said space 

whose coordinates differ from the origin along one of the 3 dimensions. Starting on the x axis, 

for example, we moved the test ROI 1 voxel in one direction (e.g. positive relative the origin). 

We then tested the accuracy of the classifiers, trained on the original ROI, with the misaligned 

site and stored that value. We then moved the test site again (by one additional voxel) along the 

same dimension and direction, and tested the accuracy of the classifiers’ models on this newly 

shifted ROI. We repeated this procedure for all other dimensions (i.e. y and z) and directions (i.e. 

positive and negative) to reach a total of 5 voxel shifts for all axes and directions. This approach 

led to a set of 6 (shifts i.e. 5 misaligned plus the original site) by 3 (dimensions) by 2 (directions) 

accuracy scores for each subject. We then computed the mean across dimensions and directions 

independently per voxel shift, leading to 6 accuracy scores (one per voxel shift). Importantly, 

misaligning the test site in volumetric space allows the inclusion of voxels belonging to 

neighboring layers in the shifted ROI. 

 

3.9.2 Surface grid driven misalignment. As the title suggests, we used the spatial coordinates of 

Laplace-based equipotential grids to spatially guide the misalignment of the test site in volume 

space. First, we identified the voxels belonging to a single cortical depth as indicated by the 3D 
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coordinates of the Laplacian grids. We then removed up to 5 voxels per grid row at the medial 

most edge of the representation of the occluded quadrant. This procedure was implemented to 

allow shifting of the test site up to 5 voxels while still remaining within the boundaries of the 

representation of the occluded quadrant within each cortical depth, and ensuring that the number 

of voxels remained constant across misaligned ROIs. We trained the classifiers and tested their 

performance on the original ROI and on its shifted versions. As in the volume-based 

misalignment, the test ROI was shifted 1 to 5 voxels. Importantly, to ensure that the misaligned 

test ROI only included voxels within a given cortical depth, misalignment only occurred in one 

direction, specifically away from the medial portion of the occluded quadrant. This procedure 

ensured that displacement of the test ROI remained confined within the retinotopic 

representation of the occluded quadrant, to avoid potential confounds in our decoding results 

related to the inclusion of BOLD activity elicited by the stimulated portion of V1.  
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Figure 3. Volumetric and Surface Grid Driven Misalignment. 2-dimensional cartoon representation of the 2 types of 
artificial misalignments implemented. The curved black lines represent a portion of the cortical sheet. The largest 
gray curved line, tangential to the cortical sheet, represents a large vessel on the pial surface; while the other curved 
gray line represents a penetrating draining vessel. The thinner wavy gray lines represent smaller vessels such as 
capillaries. The pale red, green and blue colored squares symbolize voxels belonging respectively to inner, mid and 
outer layers, and the solid green squares represent voxels in the middle layers belonging to the retinotopic 
representation of the occluded bottom right hand quadrant of the visual field (i.e. the ROI that will be misaligned). 
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Note that while we segmented the cortical sheet into 6 layers, this figure, for simplicity, only shows 3 layers. Panel a) 
depicts the original, unshifted ROI. Panel b) shows the effect of 1 voxel volumetric misalignment. The arrows on the 
top right corner represent all possible directions along which misalignment occurs. The yellow arrow indicates the 
dimension along which misalignment has occurred (in this case to the right along the x axis). Panel c) is identical to 
panel b) apart from the dimension along which the training ROI was misaligned (i.e. downwards along the y axis). 
Panel d) portrays an example of 1 voxel surface grid driven misalignment. In panel d) there is only one yellow arrow 
on the top right corner because surface grid driven misalignment only occurs along a given layer. Note that: 1. in 
volumetric misalignment, only the misaligned ROI will include voxels from neighboring layers (panels b and c); 2. 
during volumetric misalignment, the training ROI can be shifted along large penetrating vessels that are orthogonal 
to the cortical surface (panel c); and 3. the distance between neighboring voxels within a layer is variable: it is equal 
to .8 mm (i.e. the length side of a voxel) if the voxels lie on the same plane, and 1.13 (i.e. the length of the diagonal 
of a voxel) if they do not. Within the surface grid driven regime therefore, a 1 voxel shift can lead to a misalignment 
that is greater than the nominal voxel resolution. 

 

3.10 Univariate analyses 

To test whether the 3 different images elicited different univariate BOLD amplitudes (defined as 

the mean activity across all voxels within a given cortical depth), we carried out the following 

statistical tests. We performed a 2 (signals) by 3 (images) by 6 (cortical depths) Linear Mixed 

Model (Matlab, The Mathworks Inc, 2014) with the mean BOLD response as a dependent 

variable. We combined the data from 4 runs and 4 participants (i.e. using 16 data points). 

Random variation across runs within each subject was accounted for by considering the subjects 

as random effects. This was implemented in Matlab using the following equation: 

 

Data~Signals*Shifts*Layers+(1|Sbj) 

We estimated our fixed effects coefficients by means of maximum likelihood estimation. We 

computed hierarchical 95% bootstrap confidence intervals post hoc on significant main effects 

and interactions on the difference between the accuracies of the original ROI and its misaligned 

counterparts. We constructed a bootstrap distribution as follows: first, for a given subject, we 

computed the difference between the accuracies estimated on the unshifted ROI and those 

estimated for e.g. 1 voxel shift for all runs. For each bootstrap iteration, we then sampled with 
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replacement these differences over the runs, computed the mean across the sampled runs and 

stored the value. We repeated this procedure for the remaining subjects, leading to 4 mean values 

(one per subject). We then sampled with replacement subjects and computed the mean, this time 

across subjects. We repeated this operation 2000 times. This procedure allowed us to construct a 

bootstrap distribution that is not limited by the factorial of N (number of subjects), as the same 

random sample of subjects would produce different bootstrap mean values due to the different 

runs sampled. We therefore computed the 95% confidence interval (Bonferroni corrected by 

adjusting the alpha threshold by the number of comparisons, in this case 5 – i.e. the number of 

voxels shifts) for these bootstrapped differences. Statistical significance was inferred when 95% 

bootstrap confidence interval did not overlap with 0. Only differences between the accuracies on 

the unshifted ROI and those on its displaced version were computed.  

 

3.11 Univariate vs. Multivariate.  

To assess the relationship between univariate differences, univariate amplitudes and decoding 

accuracies across cortical depths, we performed a Spearman correlation analysis amongst these 5 

measures (i.e. 3 decoding accuracies, univariate differences and univariate amplitudes) on the 

feed-forward signal for the original un-shifted ROI. To quantify the differences in activation 

across conditions, we computed univariate differences as follows: for each subject, run, image 

and trial, we computed the mean across the beta weights of each voxel (representing BOLD 

percent signal change, or PSC, amplitude). We then L2 normalized these values as follows: for 

each subject we put runs, images and trials in a vector and computed the L2 norm according to 

the following equation:  
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where n represents the length of vector  (i.e. 3 images x 4 runs x 6 trials). We divided the values 

of each subject by the L2 norm and computed the mean across trials. This procedure was 

implemented because we were interested in the differentials pattern across cortical depths, 

regardless of the raw differences in PSC BOLD amplitude across subjects. We then calculated 

the root square differences (RSD) of these normalized measures between each pair of images 

according to the following equation: 

 

where imgi and imgj represent the L2 normalized activity elicited by 2 given images. We 

calculated the mean across the differences for all runs and image pairings. We choose RSD to 

quantify univariate differences in amplitude elicited by the 3 image stimuli because we wanted a 

measure that was insensitive to the sign of the difference, thus allowing averaging to quantify the 

mean difference across all image pairs.  

We therefore computed Spearman correlation coefficients between: a) the 6 accuracy scores (i.e. 

one per cortical depth) for each of the tested classifiers and the 6 average univariate differences; 

b) the 6 accuracy scores for each of the tested classifiers and the 6 average univariate amplitudes; 

and c) the 6 average univariate amplitudes and the 6 average univariate differences. 

Moreover, to assess the relationship between univariate amplitude and decoding accuracies and 

determine whether the former can explain the pattern of accuracies across cortical depths and 

misalignment extents, we carried out further correlational analyses. Independently, signal and 

layer, we calculated the mean across voxels, conditions, runs and trials for the original ROI and 
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all its misaligned versions. We thus compared the resulting 6 (layers) by 6 (shifts) univariate 

amplitude matrices with the 6 by 6 matrices of the SVM accuracy scores, with the 6 by 6 

matrices of the LDA accuracy scores, and with the 6 by 6 matrices of the NBC accuracy scores. 

To quantify the similarity between the decoding accuracies of all classifiers and univariate 

BOLD activation, we computed Spearman correlation coefficient between the accuracy scores 

and the univariate BOLD matrices.   

 

3.12 Inferential statistic on decoding accuracies 

For each of the 3 classifiers, to test the main effects and interactions between signals 

(feedforward and feedback), misalignment extents (1 to 6) and cortical depths (1 to 6), we 

performed a 2 (signals) by 6 (cortical depths) by 6 (voxel shifts) Linear Mixed Model (Matlab, 

The Mathworks Inc, 2014) with the accuracy scores as a dependent variable, as explained above. 

Moreover, we computed hierarchical 95% bootstrap confidence intervals post hoc on significant 

main effects and interactions as also described above.  
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4. Results 

4.1 Univariate analysis 

The 2 (signals) by 6 (cortical depths) by 3 (images) linear mixed model performed on BOLD 

amplitude averaged across all voxels within a given ROI cortical depth showed a significant 

main effect (p< .01) of signal (F(1,552)=14.554) driven by larger amplitudes elicited by 

feedforward stimulus conditions compared to feedback; and a significant (p< .05) interaction 

between signal and cortical depths (F(5,552)=2.342), driven by the fact that different cortical 

depths elicit significantly different amplitudes (increasing as we approach the pial surface) for 

the feedforward but not the feedback condition (see Figure 4A). Importantly, this analysis did not 

reveal significant differences between univariate BOLD elicited by the 3 different images. No 

additional significant main effects or interactions were observed. 
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Figure 4. A) Univariate BOLD response for feed-back (top panel) and feed-forward (bottom panel) signals elicited 
by each image for all cortical depths. Errorbars represent the standard error across subjects. B) Mean univariate 
responses across images for the feed-forward signal. Errorbars represent the standard error across subjects. C) Mean 
univariate differences across images for the feed-forward signal. Errorbars represent the standard error across 
subjects. D) SVM decoding accuracy for the feed-forward signal. Errorbars represent the standard error across 
subjects. E) LDA decoding accuracy for the feed-forward signal. Errorbars represent the standard error across 
subjects. F) NBC decoding accuracy for the feed-forward signal. Errorbars represent the standard error across 
subjects. 
 

We further report a strong positive Spearman correlation (rho(5) = .94; p=.0167) across cortical 

depths between feed-forward univariate averages (i.e. mean across images, trials and voxels), 

amplitudes and differences (figure 4B and 4C); no significant correlations (p>.05) were observed 

between feed-forward decoding accuracies (figure 4D, E and F) and either univariate amplitudes 

or average differences. 
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4.2 Decoding analysis 

As previously reported (see Muckli et al., 2015), for the decoding analyses on the original un-

shifted ROI, single-block classification was significant at each depth for each classifier and each 

subject (permutation tested at 5%; no corrections) during feedforward stimulation of V1. For the 

feedback condition (i.e. the occluded images), only the superficial outermost depth (10%) was 

significant in all four subjects and classifiers. The second-most outer depth (26%) was significant 

in three of four subjects for all classifiers, and the mid-depth (42%) was significant in two of four 

for SVM and LDA, and for 1 out of 4 for NBC. No subjects showed significant above chance 

decoding at the 58% mid-depth across all classifiers. 

 

 

4.3 Misalignment on synthetic data 

The results of the simulations are shown in figure 5.  

 

Figure 5. Impact of misalignment on multivoxel patterns with different spatial precision for data generated by 
injecting the synthetic multivoxel pattern to demeaned epi volume. Different colors portray different simulated 
cortical depths. Errorbars represent standard errors across simulated subjects. 
 

We found that the resolution of the mutlivoxel pattern significantly modulates the impact of 

misalignment on SVM decoding accuracy: bonferroni corrected 95% bootstrap confidence 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2019. ; https://doi.org/10.1101/798306doi: bioRxiv preprint 

https://doi.org/10.1101/798306
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

intervals show that with no smoothing, a one voxel misalignment completely destroys the highly 

specific spatial structure of the patterns, rendering the model computed on the original ROI (i.e. 

training phase) redundant and causing decoding accuracy to immediately drop to baseline. 

Misaligning a mutlivoxel pattern smoothed with a 3D Gaussian kernel with a FWHM of one 

voxel required a 2 voxel shift to impair decoding accuracy; patterns smoothed with a FWHM of 

2 voxels required a 3 voxel shift; FWHM of 3 voxels, a 4 voxel shift and a FWHM of 4 voxels 

required a 5 voxel misalignment to significantly impair decoding accuracy (figure 5).  

 

4.4 Misalignment on real data 

Artificial misalignment either led to a decrease or to no significant change in the accuracies of all 

classifiers for all layers, signals, and misalignment scenarios (see sections below). 

While we carried out a fully parameterized linear mixed model, we were specifically interested 

in the 3-way interaction between cortical depths, signals, and voxel shifts. In the following 

sections, F values for all significant main effects and interactions captured by the model are 

reported; however, a more in-depth discussion of these numbers is outside the scope of this work. 

We focus on the interactions amongst cortical depths, signal and voxel shifts, and the related 

post-hoc bootstrap tests. 

 

4.4.1 Volumetric misalignment 

The 2 (signals) by 6 (cortical depths) by 6 (voxel shifts) linear mixed model carried out on SVM 

accuracy showed significant main effects (p< .01) of signals (F(1,1080)=289.04) and depths 

(F(5,1080)=24.806) as well as significant (p< .01) interactions between signals and cortical 

depths (F(5,1080)=12.995), signals and voxel shifts (F(5,1080)=37.749), cortical depths and 
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voxel shifts (F(25,1080)=3.2061)  and signals, cortical depths and shifts (F(25,1080)=1.7484, 

p< .05). 

 

The same analysis carried out on LDA accuracies, showed significant main effects (p< .01) of 

signals (F(1,1080)=241.92) and depths (F(5,1080)=24.69) as well as significant (p< .01) 

interactions between signals and cortical depths (F(5,1080)=16.067), signals and voxel shifts 

(F(5,1080)=30.983), cortical depths and voxel shifts (F(25,1080)=3.252)  and signals, cortical 

depths and shifts (F(25,1080)=2.1793, p< .01). 

 

The linear mixed model for NBC also showed significant main effects (p< .01) of signal 

(F(1,1080)=175.92) and depths (F(5,1080)=15.715) as well as significant (p< .01) interactions 

between signal and cortical depths (F(5,1080)=8.756), signal and voxel shifts 

(F(5,1080)=19.865), and signals, cortical depths and voxel shifts (F(25,1080)=1.8607). 

 

For the feed-forward signal, post-hoc 95% bootstrap confidence interval (btCI) revealed that a 

one voxel shift produces a significant decrease in decoding accuracies of all classifiers for all 

cortical depths (Figure 7). Conversely, for the feedback signal, 95% btCI showed that for the 

outermost cortical depth (i.e. 10%) a 2 voxel shift is required before observing a significant 

decrease in decoding accuracies for all classifiers; for LDA, a 2 voxel shift also led to a 

significant drop in decoding accuracy for the second and third outermost depths (i.e. 26% and 

42%) (Figure 7). 
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Spearman coefficients were computed to quantify the similarity between decoding accuracies 

and univariate BOLD activation (Figure 6), by correlating decoding accuracies for all classifiers 

and univariate BOLD responses at all misalignment extents independently per cortical depth and 

signal. We observed no significant correlations (q>.05 FDR corrected). 

 

In table 1, we report the total number of voxels independently per subject and cortical depth, 

after performing the contrast ttarget > tsurround ∩ ttarget > 0 ∩ tfull-stimulus > toccluded-stimulus. 

 

 

Volumetric ROIs       
        
cortical depths: 90% 74% 58% 42% 26% 10% 
Subject 1   194  voxels 194  voxels 160  voxels 135  voxels 78  voxels 42  voxels 
Subject 2   350  voxels 321  voxels 268  voxels 217  voxels 180  voxels 122  voxels 
Subject 3   174  voxels 190  voxels 172  voxels 162  voxels 156  voxels 122  voxels 
Subject 4   309  voxels 326  voxels 332  voxels 328  voxels 322  voxels 303  voxels 

        
Surface driven ROIs       
        
cortical depths: 90% 74% 58% 42% 26% 10% 
Subject 1   172  voxels 174  voxels 146  voxels 126  voxels 77  voxels 42  voxels 
Subject 2   298  voxels 253  voxels 195  voxels 141  voxels 107  voxels 91  voxels 
Subject 3   157  voxels 158  voxels 144  voxels 136  voxels 122  voxels 100  voxels 
Subject 4  264  voxels 272  voxels 276  voxels 270  voxels 277  voxels 261  voxels 

 

Table 1. Table 1 reports the number of voxels included in each cortical depth for the ROIs used for the volumetric 
and surface driven misalignment.  
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Figure 6. Volumetric univariate BOLD amplitude vs. volumetric SVM, LDA and NBC accuracies across 
misalignment extents (x-axis) and cortical depths (y-axis) for the feed-forward (top panels) and feed-back (bottom 
panels) signals.  
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Figure 7. Volumetric misalignment. Decoding accuracy as a function of voxel misalignment for the feed-forward 
(left panels) and feed-back (right panels) signals for SVM, LDA and NBC. Different colors represent different 
cortical depths as indicated in the figure legend. Error bars show the 95% bootstrap confidence interval. 

 

 

4.4.2 Surface grid driven misalignment 

The 2 (signals) by 6 (cortical depths) by 6 (voxel shifts) linear mixed model carried out on SVM 

accuracy showed significant main effects (p< .01) of signal (F(1,1080)=131.1) and depths 

(F(5,1080)=10.291), as well as significant (p< .01) interactions between signal and cortical 

depths (F(5,1080)=7.635), signal and voxel shifts (F(5,1080)=18.302), cortical depth and voxel 

shift (F(25,1080)=1.989),  and signal, cortical depths and shift (F(25,1080)=1.886, p< .01). 
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The same analysis carried out on LDA accuracies, showed significant main effects (p< .01) of 

signal (F(1,1080)=98.074) and depths (F(5,1080)=8.606) as well as significant (p< .01) 

interactions between signal and cortical depths (F(5,1080)=9.585), signal and voxel shifts 

(F(5,1080)=12.651), cortical depth and voxel shift (F(25,1080)=2.539)  and signal, cortical 

depths and shift (F(25,1080)=2.513, p< .01). 

 

The linear mixed model for NBC also showed significant main effects (p< .01) of signal 

(F(1,1080)=112.17) and depths (F(5,1080)=6.854) as well as significant (p< .01) interactions 

between signal and cortical depths (F(5,1080)=6.665), signal and voxel shifts (F(5,1080)=14.653) 

and signal, cortical depths and shift (F(25,1080)=1.663, p< .05). 

 

For the feed-forward signal, post-hoc 95% bootstrap confidence interval (btCI) revealed that one 

voxel shift produced a significant decrease in decoding accuracies of all classifiers for all cortical 

depths (Figure 9). For the feedback signal, 95% btCI showed that for the 2 outermost cortical 

depths only (i.e. 10% and 26%), a 1 voxel shift produced a significant decrease in SVM 

accuracies (Figure 9); for LDA accuracy, a 1 voxel shift led to a significant decrease for the 2nd 

outermost depth only (i.e. 26%), while for the outermost depth, a 2 voxel shift was necessary to 

significantly impair decoding accuracy; for NBC accuracy, a 2 voxel shift led to a significant 

decrease for the outermost depth only (i.e. 10%). 

 

We further carried out Spearman correlations to quantify the similarity between the MVPA 

decoding accuracy and univariate BOLD activation (Figure 8). Spearman coefficients, computed 

independently per cortical depth and signal by correlating decoding accuracies and univariate 
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BOLD response at all misalignment extents, revealed no significant correlations (q>.05 FDR 

corrected). 

The total number of voxels after performing the contrast ttarget > tsurround ∩ ttarget > 0 ∩ tfull-stimulus > 

toccluded-stimulus independently per subject and cortical depth are reported in table 1. 

 

 

 
Figure 8. Iso-surface grid driven univariate BOLD amplitude vs. volumetric SVM, LDA and NBC accuracies across 
misalignment extents (x-axis) and cortical depths (y-axis) for the feed-forward (top panels) and feed-back (bottom 
panels) signals. 
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Figure 9. Iso-surface grid driven misalignment. Decoding accuracy as a function of voxel misalignment for the 
feed-forward (left panels) and feed-back (right panels) signals for SVM, LDA and NBC. Different colors represent 
different cortical depths, as indicated in the figure legend. Error bars show the 95% bootstrap confidence interval. 
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5. Discussion 

The ability to exploit the sub-millimeter resolution achievable with UF fMRI is critical for 

advancing cortical depth dependent functional investigations in humans. This is particularly true 

for the widely used GE BOLD contrast, which has high signal-to-noise ratio, but limited spatial 

acuity. We measured whether MVPA is capable of relying on stimulus specific fine scale 

responses. 

With previously collected data from Muckli et al. (2015), we parcellated the cortical sheet into 6 

equally spaced depths, ranging from 10% to 90% distance from the pial surface. We analyzed 

feed-back and feed-forward signals triggered by images of natural scenes in V1 (Muckli et al., 

2015) independently per cortical depth. 

To assess whether MVPA relies on fine scale stimulus specific responses we systematically 

misaligned voxels between the training and test ROI. We trained decoding algorithms (linear 

Support Vector Machine (SVM), Linear Discriminant Analysis (LDA) and Naïve Bayes 

Classifier (NBC)) on a given cortical depth and tested their performances on a ROI that was 

misaligned anywhere from 0 to 5 voxels relative to the training site. This approach allowed us to 

assess whether information decoded with MVPA is at least as precise as the nominal resolution 

of single voxels. We hypothesized that a negligible decrease in decoding accuracy following the 

spatial offset of the test ROI relative to the training ROI would suggest that the exact 

correspondence of spatial structures is not necessary to achieve the highest decoding accuracy, 

indicating that the multivoxel pattern is blurred and/or the information decoded exists at a scale 

coarser than the tested offset. Conversely, a significant decrease in decoding accuracy following 

a 1 voxel misalignment would indicate that the exact correspondence of spatial structures is 

necessary to achieve the highest decoding accuracy, suggesting that the scale of responses 
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exploited by multivoxel decoders and associated with the tested stimuli is at least as precise as 

the nominal resolution of single voxels (here 0.8 mm isotropic). The results of our simulation on 

synthetic data support our hypothesis, suggesting that the spatial scale of the multivoxel pattern 

of BOLD activation modulates the drop in decoding accuracy and, therefore, that our method 

does measure stimulus specific scale of BOLD responses.   

When we applied the misalignment approach to real data we found that as little as a one voxel 

misalignment led to a significant decrease in decoding accuracy across all cortical depths. We 

argue that multivoxel activity patterns carry a substantial amount of spatially precise information 

at the nominal resolution of single voxels. Our result suggests that multivoxel decoding can 

enhance the relevance of voxels that are not corrupted by reduced specificity, thereby increasing 

the sensitivity of the multivoxel approach to fine-grained spatial responses. 

 

5.1 Distinguishing different sources of spatial resolution 

We first briefly distinguish the related, yet different sources of spatial resolution of interest. We 

identify two sources of spatial resolution: 1) those related to acquisition, including the nominal 

resolution of BOLD images and the functional resolution of single voxels (for example, as 

measured by PSF); and 2) those related to post-processing or analytical operations, such as the 

resolution of the multivoxel pattern exploited by MVPA. 

 

Our focus is to measure the resolution exploited by multivoxel decoders, and to understand 

whether MVPA profits from the nominal resolution afforded by UF fMRI (here .8 mm isotropic). 

The question was partly motivated by the observation that point spread measurements of GE 

BOLD recordings suggest that the point spread function of GE BOLD responses is above the 
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millimeter range (e.g. Shmuel et al., 2007; see “Relation to BOLD PSF” below). These reports 

not only challenge the feasibility of imaging human cortical layers and columns, but also 

question the usefulness of recording BOLD images with nominal sub-millimeter resolution. But 

is the resolution of the multivoxel pattern of BOLD activity exploited by multivariate decoding 

also impacted by the limited precision of BOLD measurements? Here we show that this is not 

the case, and argue that multivariate decoders exploit fine-grained information contained in 

multivoxel patterns of activity. Our finding that a 1 voxel shift leads to a significant impairment 

in decoding accuracy indicates that: 1) the resolution of the multivoxel pattern of BOLD 

responses exploited by MVPA is finer than that of single functional voxels as measured by PSF; 

2) while BOLD PSF results render the investigation of the mesoscale organization of the human 

cortex in the sub-millimeter range challenging at best, alternative analytical strategies, such as 

MVPA or differential maps (e.g. Yacoub et al., 2007), seem to  permit this submillimeter scale; 3) 

unlike univariate BOLD amplitude, which is limited in spatial acuity, using MVPA we can fully 

exploit the nominal resolution of functional voxels (here .8 mm isotropic); and 4) decoding of 

complex image stimuli, containing a mixture of low and high spatial frequencies, relies both on 

fine and coarse patterns of multivoxel activity. These arguments are now discussed in more 

detail. 

 

5.2 Relation to BOLD PSF 

As suggested by studies measuring the GE BOLD point spread function (PSF) of single voxels at 

7 T (e.g. Shmuel et al., 2007; Chaimow et al., 2018; Parkes et al., 2005), the spatial specificity of 

individual functional voxels extends beyond the millimeter range, despite their nominal 

resolution. The GE BOLD PSF for a single condition in humans has been reported to have an 
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upper limit of 2 mm when avoiding large vessels (Shmuel et al., 2007; but see Chaimow et al., 

2018). If we take this measurement at face value, shifting the multivoxel pattern of activity by 

0.8 mm (i.e. one voxel) should have a negligible impact on decoding accuracy. This is because, 

despite the 0.8 mm nominal resolution, neighboring voxels should yield highly correlated signals, 

effectively decreasing the functional resolution of the voxel population. Our results demonstrate, 

however, that a one-voxel misalignment significantly impacts decoding accuracy, indicating that 

MVPA decoding operates at a resolution that is at least as precise as the nominal voxel size 

(i.e. .8 mm isotropic), thus fully exploiting the increase in spatial resolution affordable with GE 

sequences at 7 T, and further motivates the need for sub-millimeter GE recording. These results 

are somewhat in line with those reported by Chaimow et al. (2018), who estimate a PSF of 1.02 

mm for GE BOLD. This however is not to say that the BOLD information content is at the same 

spatial precision, as a number of factors, for example vascular heterogeneity, may be 

contributing to the pattern of results observed here. 

 

5.3 Pulse sequence limitations in high-resolution fMRI  

It is well known that spatial specificity of the BOLD response is strongly modulated by large 

draining vessels (Bandettini et al., 1994; Boxerman et al., 1995; Constable et al., 1993; Duong et 

al., 2002; Duong et al., 2003; Duyn et al., 1994; Frahm et al., 1994; Kim et al., 1994;  Lai et al., 

1993; Lee et al., 1995; Menon et al., 1995; Menon et al., 1993; Segerbath et al., 1994; Shmuel et 

al; 2007; Song et al., 1996; Ugurbil et al., 1999; Uludag et al., 2009; Yacoub et al., 2007; Yacoub 

et al., 2005; Yacoub et al., 2003; Yacoub et al., 2001). This modulation is, to an extent, 

dependent on the type of contrast used. Spin echo (SE) based acquisitions are less susceptible to 

large veins and thus less affected by venous artifacts compared to gradient echo (GE) sequences 
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(Yacoub et al., 2007; Yacoub et al., 2005; Yacoub et al., 2003) and therefore seemingly represent 

the ideal choice to maximize BOLD spatial specificity. However, SE based acquisitions are 

limited in terms of coverage, SNR, and CNR. In this respect, GE acquisitions represent an 

appealing choice for high resolution fMRI at high fields. However, the high sensitivity of GE 

BOLD data are related to the impact of large draining veins (Duyn et al., 1994; Frahm et al., 

1994; Kim et al., 1994; Lai et al., 1993; Lee et al., 1995; Menon et al., 1993; Segebarth et al., 

1994; Shmuel et al; 2007; Song et al., 1996; Ugurbil et al., 1999; Uludag et al., 2009; Yacoub et 

al., 2007; Yacoub et al., 2005; Yacoub et al., 2003; Yacoub et al., 2001). Venous BOLD signal, 

demonstrated in both humans (Krings et al., 1999; Lee et al., 1995) and animals (Keilholz et al., 

2006; Silva et al., 2007), produces a larger response compared to that of tissue (Gati et al., 1997; 

Yacoub et al., 2001). Moreover, the vascular architecture of the human cortex, characterized by a 

higher concentration of large draining veins in proximity of the pial surface, represents an 

additional challenge in imaging layers using GE sequences. The typical GE laminar BOLD 

response is characterized by a ramping-like profile with larger amplitude, SNR, and CNR in 

outer layers (e.g. Goense and Logothetis, 2006; Goense et al., 2007; Ress et al. 2007; Polimeni et 

al., 2010; Koopmans et al., 2010; Koopmans et al., 2011). Such a bias makes investigating depth 

dependent functional responses challenging, especially when only evaluating mean univariate 

amplitudes. At the multivoxel level, however, we found that decoding accuracy in human 

primary visual cortex does not co-vary with univariate BOLD amplitude and amplitude 

differences. We observed that decoding accuracy, at least for the feed-forward signal, peaks over 

the mid layers, while the univariate BOLD response and its differences peak in the outer depths. 

To further evaluate this uncoupling, we directly compared the relationship between univariate 

amplitude and MVPA decoding accuracy by correlating these 2 metrics for all cortical depths 
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and misalignment extents (Figures 6 and 8). We observed no significant correlation across layers 

and signals. Differential mapping can help to avoid the effects of larger vessels and overcome the 

lack of high spatial specificity typically observed in GE data (e.g. Cheng et al., 2001; Dechent 

and Frahm, 2000; Goodyear and Menon, 2001; Menon et al., 1997; Yacoub et al., 2007). We 

therefore wanted to assess whether the impact of large draining vessels on mean univariate 

differences is comparable to that observed on mean univariate BOLD amplitudes. Large vessels, 

prominently distributed on the pial surface, are known to increase BOLD response, giving rise to 

the widely observed ramping pattern of BOLD amplitudes across cortical depths (i.e. larger at 

the outer compared to the inner depths). As indicated by a strong positive correlation between 

univaritate differences and average amplitudes, we report a comparable, albeit shallower, profile 

of the average univaritate differences magnitudes and BOLD amplitudes across cortical depths, 

both peaking in the outer depths. Conversely, no correlation was observed between mean 

univariate amplitudes or their differences and MVPA decoding accuracy, with the latter peaking 

over the mid cortical depths. Moreover, as mentioned, large vessels compromise the spatial 

specificity of GE BOLD. Yet, for the feedforward signal, a 1 voxel misalignment on decoding 

accuracy always leads to a significant decrease in decoding accuracy across all depths, in spite of 

the diverse distribution of vein across the cortical ribbon. These results indicate a comparable 

spatial precision of multivoxel patterns of activity across depths.  

Taken alone, the layer profile observed for decoding accuracy (peaking in the mid, rather than 

outer depths) may reflect hypersensitivity of MVPA to physiological vascular noise, prominent 

in outer depths due to the high concentration of large vessels. Such noise may limit the 

performance of MVPA in outer depths. While this still represents a plausible scenario, the 

decoding layer profile, together with the comparable impact of misalignment across depths, 
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suggest that ,unlike univariate analyses, MVPA is relatively less contaminated by the effects of 

large vessels. It is worth noting that univariate differences as computed here, although 

comparable, are not the same as differential mapping. The latter does not imply spatial averaging, 

preserving the spatial structure of the BOLD response. Differential mapping, like MVPA, thus 

exploits the pattern of activation, as opposed to its average, and could therefore be less 

susceptible to the effect of large vessels (Yacoub et al., 2007).  While the debate regarding the 

optimal sequence choice to study layers and columns is not yet settled, we argue that clever post-

processing and analytical tools represent a viable path to overcome sequence-based resolution 

and specificity issues.  

 

5.4 Univariate amplitude vs. multivoxel decoding accuracy 

The feed-forward pattern of decoding accuracy observed here, peaking over the mid cortical 

depths, together with the observation that a 1 voxel shift equally impacts MVPA decoding 

accuracy across depths, demonstrate that univariate BOLD amplitude does not (in this case) 

modulate mulitvoxel decoding accuracy.  This result is in line with a previous report showing 

that, while macroscopic vessels can carry neuronal-specific information, their contribution to 

mulitvoxel decoding accuracy may be redundant (Shmuel et al., 2010; Yao et al., 2017). 

Moreover, we report that standard univariate contrast, defined as the average BOLD amplitude 

across all voxels within a given cortical depth, does not show significant differences between the 

amplitudes elicited by different images for either the feed-forward or the feed-back conditions 

(Figure 4). We argue that this result stems from the fact that different images elicit differently 

retinotopically distributed maps of activation, and that these differences are obscured following 
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voxels averaging (for a review of the differences between multivariate and univariate analysis 

see Davis et al., 2014).  

   

5.5 Finer vs. Coarser scale information in MVPA 

Importantly, while misaligning the test ROI by 1 voxel negatively impacts decoding accuracy, as 

demonstrated by the volumetric approach, significant above chance decoding can still be 

achieved with as many as three voxel shifts. This result indicates that the multivoxel pattern of 

activity carries both coarser- and finer- grained information.  

Several approaches have estimated whether MVPA relies on stimulus specific fine scale 

responses, ranging from smoothing (Op de Beeck, 2010) or spatially filtering (Swisher et al., 

2010) the activation maps in order to degrade the resolution of the information, to shifting the 

slice positioning by 1 mm (i.e. half a voxel) during the acquisition (Freeman et al. 2013). While 

spatial filtering is a generally useful strategy, we argue that, within the context of this work, it 

does not represent a straightforward advantage over misalignment for a number of reasons. Low 

pass filtering, for example, increases SNR and decreases run to run variation (e.g. Alakorkko et 

al., 2017), potentially boosting cross validated decoding accuracy (see Figure S3). Additionally, 

smoothing introduces artificial, spurious correlations across voxels (e.g. Korhonen et al., 2017) 

and this effect and its impact on cross-validated decoding accuracy is difficult to quantify. 

Moreover, in light of the observed reliance of decoding on both finer and coarser spatial 

information, together with the afore mentioned low-pass filtering induced increase in SNR, 

down-sampling the input pattern will not necessarily lead to a drop in accuracy, even if 

multivoxel decoding does rely on spatially precise patterns of activation. The complex and 
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poorly understood interplay of these forces would therefore render down-sampling related 

modulations on cross-validated multivoxel decoding accuracy difficult to interpret.   

The approach implemented by Freeman’s et al. (2013), although different as the misalignment 

occurred in the acquisition phase, is conceptually comparable to the approach adopted here. 

Freeman et al. (2013), however, did not find the 1 mm misalignment to significantly decrease 

decoding accuracy. A number of differences between Freeman’s study and the current one may 

explain the apparent discrepancy. First, Freeman et al. used 3 T fMRI with a nominal voxel 

resolution of 2 mm isotropic. Not only are the magnitude of the detected signal changes and the 

spatial scale different compared to this 7 T study, but the vascular contributions are as well 

(Ugurbil, 2016). Further, the data analyzed here come from a block design experiment, while 

Freeman et al. used a fast temporal encoding paradigm. Fast temporal-encoding paradigms have 

been shown to artificially enhance the impact of coarse global maps on MVPA (Pratte et al., 

2016). Moreover, Freeman et al. used highly controlled low-level visual stimuli (i.e. spiral 

gratings), while here we used images of visual scenes, rich in both low and high spatial 

frequencies. As such, the findings reported here provide intuitions into the sensitivity of 

multivoxel decoding to high and low spatial frequency information when the input stimuli 

contain both low and high spatial frequencies, which is not guaranteed to be the same as when 

low or high spatial frequency stimuli are presented in isolation. A recent study by Alink et al. 

(2017) implemented an analysis strategy comparable to the one adopted here to assess the spatial 

scale of information exploited by MVPA during orientation decoding in V1. They spatially offset 

the testing relative to the training set by 1, 2, 4, and 6 mm and measured the impact on decoding 

accuracy. Alink et al. found that a 1 mm shift significantly impaired orientation decoding 

accuracy. These results are somewhat comparable to the ones reported here. It is worth pointing 
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out though that a number of important differences exist between Alink’s and our work. Their 

data were recorded at 3 T with 2 mm isotropic voxels and their functional images were 

interpolated offline to 1 mm isotropic before the misalignment was performed. Moreover, Alink 

et al., like Freeman, used a tailored, low-level stimulus set to directly test orientation decoding in 

V1. All these studies, regardless of the results, debate whether MVPA can retrieve finer-grained 

information than what is observable via conventional univariate analyses. Here, instead, we use 

our approach to test whether the finer spatial scale of information observed with a multivoxel 

pattern of activity persists when the functional voxels are sampled with sub-millimeter isotropic 

voxels and where the BOLD sensitivity and PSF are expected to be the limiting factors in the 

ability to observe such information. In light of the limited spatial acuity of GE functional voxels, 

the usefulness of the super-high resolution achievable with GE sequences can be questionable. 

One may ask if there is an advantage in acquiring sub-millimeter images, if voxels’ amplitudes 

are highly correlated, effectively decreasing the functional resolution of the data. We claim that 

by using MVPA, we can fully exploit sub-millimeter resolution of GE BOLD fMRI at UF and 

that MVPA therefore represent a viable strategy to study the mesoscale organization of the 

human cortex.  

It is worth making one more consideration regarding the performance of the different classifiers 

implemented here. All classifiers led to very similar results, with only minor differences. The 

most obvious difference is that NBC led to overall lower decoding accuracy compared to SVM 

and LDA. This is probably due to the fact that NBC assumes orthogonality amongst the variables 

within a class (i.e. zero off-diagonal covariance) and it is thus less flexible than SVM and LDA. 

However, the impact of misalignment on decoding accuracies led to consistent results for all 3 
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classifiers, demonstrating that the results are likely to be a property of the resolution of the 

multivoxel pattern exploited by MVPA rather than specific to a classification algorithm. 

 

5.6 Differences between volume and surface based misalignments 

We implemented artificial misalignment using 2 approaches: 1) volume-based misalignment, in 

which the test ROI was misaligned along all dimensions and directions, thus allowing trespassing 

into neighboring cortical depths; and 2) surface grid-driven misalignment, in which 

misalignment occurred only within a given cortical depth (Figure 4). While both approaches 

show that a single voxel misalignment leads to a significant decrease in decoding accuracy, we 

observe differences between the 2 techniques. Volumetric misalignment yields a smoother 

function of accuracy across space or voxel shifts (Figures 7 and 9), taking at least 3 shifts before 

decoding accuracy drops to chance level. Conversely, grid-driven misalignment yields a sharper 

function, where, across layers and signals, one voxel shift leads to a drastic decrease in decoding 

accuracy. We hypothesize that the difference between the approaches is related to: 1) a sparser 

voxel sampling for the grid compared to the volumetric-based misalignment; and 2) by 

constraining the spatial offset of the training ROI within a given depth we effectively avoid large 

penetrating draining vessels perpendicular to the cortical surface. The sparser sampling is a direct 

outcome of constraining the misalignment within a layer. As depicted in figure 4, for the 

volumetric misalignment the distance between neighboring voxels is invariant and equates to the 

width of a voxel (in this case 0.8 mm), whereas for the surface grid driven approach, the distance 

between 2 voxels can be greater in at least 2 scenarios: 1) when 2 voxels that are adjacent to one 

another in volume space belong to different depths, therefore introducing a one voxel “gap” 

between 2 neighboring voxels within a cortical depth; and 2) when 2 adjacent voxels belonging 
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to the same depth do not lie on the same plane, rendering the distance between them to be equal 

to the square root of the sum of their squared edge length (i.e. the voxel’s diagonal).  Sparser 

sampling leads to a greater impact of one voxel shift on decoding accuracies because when only 

considering activity within a given layer, voxels are spatially farther apart and thus less 

correlated. Spatially offsetting the test relative to the training ROI would therefore lead to greater 

misalignment for the grid-driven compared to the volumetric approach. Moreover, given that 

during surface grid-driven misalignment the spatial offset of the training relative to the test ROI 

only occurs within a depth (see figure 4) and therefore tangentially to the cortical surface, this 

approach is less affected by the effect of large penetrating vessels that contribute to blurring 

single voxels’ functional specificity. We further observe that volumetric misalignment has a 

lesser impact on decoding the feedback compared to the feedforward signal, requiring a two-

voxel shift before significantly decreasing feedback accuracy. As previously argued (Muckli et 

al., 2015), this observation could suggest that the feed-back signals from higher-level regions 

with larger receptive fields carry information that is more abstract and therefore spatially coarser 

than its feed-forward counterpart. While this claim is supported by a recent study directly 

investigating the contribution of spatial frequencies to feedback signal (Revina et al., 2018), as 

indicated by the size of the error bars, this finding could simply be related to noisier signal rather 

than an apparent coarser resolution. Moreover, as previously mentioned, we observed that 

decoding accuracy is differentially modulated by misalignment for feedback and feedforward 

signals. Unlike feedforward, for the feedback signal decoding accuracy shows no significant 

decrease following a one voxel shift. The differential modulatory impact of misalignment on 

feedback and feedforward signals represents a further indication that our results are not a mere 
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property of decoding analyses (or else we would expect a comparable pattern of accuracy 

decrease across signals, see also figure S1 in the supplementary section).  
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6. Conclusion  

We showed that the multivoxel pattern of activity exploited by MVPA decoding carries 

information about the visual experimental condition on a finer scale, one that here is not visible 

with a mean univariate analysis. This finding is promising for future fMRI studies of cortical 

layers and columns, as it indicates that, when the spatial precision of mean univariate amplitude 

is corrupted by macroscopic biases such as, for example, large draining vessels or blurring in the 

phase encoding direction, MVPA can potentially circumvent sensitivity and specificity limits of 

the GE BOLD signal. While there are several pulse sequence variants that could reduce the large 

vessel biases present in high field GE BOLD data, such as SE or VASO, they are costly in terms 

of efficiency and sensitivity. As an alternative, intelligent analysis strategies provide benefits in 

enhancing the spatial precision of the information in fMRI signals.  
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