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Abstract

Advances in genetic sequencing and accompanying methodological approaches have resulted in
pathogen genetics being used in the control of infectious diseases. To utilise these methodologies for
malaria we first need to extend the methods to capture the complex interactions between parasites,
human and vector hosts, and environment. Here we develop an individual-based transmission model
to simulate malaria parasite genetics parameterised using estimated relationships between
complexity of infection and age from 5 regions in Uganda and Kenya. We predict that cotransmission
and superinfection contribute equally to within-host parasite genetic diversity at 11.5% PCR
prevalence, above which superinfections dominate. Finally, we characterise the predictive power of
six metrics of parasite genetics for detecting changes in transmission intensity, before grouping them
in an ensemble statistical model. The best performing model successfully predicted malaria
prevalence with mean absolute error of 0.055, suggesting genetic tools could be used for monitoring

the impact of malaria interventions.
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Molecular tools are increasingly being used to understand the transmission histories and phylogenies
of infectious pathogens . Using phylodynamic methods it is now possible to estimate the historic
prevalence of infection directly from molecular data, even in organisms with relatively complex
lifecycles 2. However, these tools typically rely on pathogens having an elevated mutation rate and not
undergoing sexual recombination, which allows for the application of coalescent theory 3.
Consequently, these techniques are yet to be adapted for the study of P. falciparum malaria, which is
known to undergo frequent sexual recombination. In addition, malaria transmission between both the
human and the mosquito hosts involves a series of population bottlenecks #°, which combined with
the brief sexual stage involving a single two-step meiotic division ¢, have marked effects on the
population genetics of P. falciparum 72. This is extenuated by evidence of cotransmission of multiple

10,11

clonally related parasites °, which combined with host mediated immune and density-dependent

12,13

regulation of superinfection result in a complicated network of processes driving the genetic

diversity of the parasite population within an individual host.

Despite this substantial complexity, an increasingly nuanced understanding of the processes shaping
parasite genetic diversity is appearing, with multiple genetic metrics proving promising for inferring
transmission intensity >, For example, measures of the multiplicity of P. falciparum infections have
been shown to be useful for identifying hotspots of malaria transmission 7. The spatial connectivity
of parasite populations has also been shown to be well predicted by pairwise measures of identity-by-
descent 1% More recently, it has been shown that malaria genotyping could be used to enhance
epidemiological surveillance 2°, however, two main challenges have been identified before molecular
tools could be used in an operational context. The first is that our understanding of the relationship
between transmission intensity and within-host parasite genetic diversity is incomplete. Combined
models of both population genetics and malaria epidemiology would allow us to develop a more
detailed view of both processes, yet these two approaches are largely explored separately. Recent
efforts have been made to incorporate both modelling scales within one framework %!, with the
concomitant modelling of resistance evolution both within and between hosts yielding important
insights into the evolution of drug resistance 22. However, the realism of either the transmission
process or the genetic evolutionary process has been limited in these models, with the representation
of recombination and the parasite lifecycle within the mosquito often simplified. This makes the
generalisability of using molecular tools for surveillance difficult. More realistic models are
subsequently needed that capture both processes. These models could answer previous

2324 3bout how transmission intensity alters the rate at which superinfection events and

hypotheses
cotransmission of genetically related parasites shape the parasite genetic diversity observed within

humans. The second challenge is to understand in what situations molecular tools will offer
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advantages over traditional surveillance. In addition, power calculations need to be carried out to
understand how many samples are required for reliable inference and what types of genomic data are

most informative.

Here we use mathematical transmission modelling to address these challenges. We extend a

| 2, which now allows parasite populations to be

previously published malaria transmission mode
followed explicitly through the parasite’s obligate sexual life cycle by the inclusion of individually
modelled mosquitoes. The new model is fitted to parasite single nucleotide polymorphism (SNP)
genotype data to capture the observed relationship between an individual’s age and their complexity
of infection (COI), defined as the total number of genetically distinct parasite strains in an individual.
Using the fitted model, we characterise how six measures of parasite genetic diversity respond to
changes in transmission intensity. We continue by conducting a power analysis, assessing the ability
of each metric to detect changes in transmission intensity as a function of the number of available
samples. We conclude by building an ensemble statistical model, which demonstrates how routinely

collected clinical genotype samples could be used for accurate prediction of malaria prevalence using

as few as 200 SNP genotyped samples.


https://doi.org/10.1101/793554
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/793554; this version posted October 8, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

84  Results

85  Complexity of Infection Data

86 First, we used THE REAL McCOIL % to estimate the COl from SNP genotyped samples collected
87 previously from individuals with evidence of asexual parasitemia by microscopy from regions in Kenya
88 and Uganda. (Figure 1) These two datasets were selected as they recorded both the age of the sampled
89 individuals and SNP intensities at sufficiently large number of loci, enabling the relationship between
90 COIl and age to be estimated. After excluding SNP loci with more than 20% missing data and
91 subsequently removing samples with more than 25% missing SNP data from further analysis, the COI
92  was estimated for 2419 samples from 95 primary schools in Western Kenya (1363 from Nyanza
93 province and 1056 from Western province) and 584 samples from representative cross-sectional
94  household surveys in three sub-counties in Uganda (462 from Nagongera in Tororo District, 74 from
95 Kihihi in Kanungu District, and 48 Walukuba in Jinja District). Distribution of COI varied between each
96 region, ranging between 1 — 21 and broadly peaking in children aged six years old before decreasing

97  with increasing age of the individual sampled.

98 Fitted Model

99  We developed an extended version of a previously published individual-based model of malaria
100  transmission %. Briefly, the model was extended to include individual mosquitoes, enabling parasite
101 populations and their genotypes to be tracked throughout the full lifecycle, enabling the potential
102 formation of multiple oocysts from an infectious event and multiple genetically distinct sporozoites to
103 be onwardly transmitted. Male and female gametocytes are sampled from the infecting human with
104  the probability proportional to relative densities of each genotype. The resultant oocyst is able to
105 produce up to four new parasite genotypes resulting from a two-step meiotic division. The extensions
106  require use to define the proportion of sporozoites from an infectious bite that survive to found a
107  blood stage infection, which we define as . This process will ultimately affect the level of new parasite
108  genetic diversity introduced and consequently we parameterised our developed model (see Materials
109 and Methods and Supplementary methods) through fitting to the earlier estimated relationships
110 between COIl and age in the five regions across Uganda and Kenya (Figure 1a). We estimate that 20%
111 of sporozoites onwardly transmitted within an infectious bite successfully progress to a blood-stage
112 infection and produce gametocytes that may contribute to future mosquito infections. The model
113 captures the observed peak in COl observed at age 7-8 (Figure 1a); however, the comparatively fewer
114  samples at higher ages make it difficult to confirm that this is the true peak in COI. Additionally, this
115 observed peak in COl also likely reflects the limits of detection, with more accurate model predictions

116 occurring under the assumption that parasite strains that would not be detected by PCR do not
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117  contribute to the estimated COI (Figure 1b). Model fitting also showed that sensitivity of the model fit
118  to the percentage of sporozoites that survive is negligible between values of 15-20%, with the
119 confidence intervals for the most likely parameter value of ¢ overlapping intervals for values of ¢

120  ranging from 0.1 to 0.29.
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Figure 1: Modelled estimates of the relationship between complexity of infection against age. a) One
realisation of the model predicted relationship between complexity of infection (COIl) and age compared to
the observed relationship estimated using THE REAL McCOIL. Each point represents an individual, with a local
regression fit plotted in red. The relationship shown represents the selected best model fit, which estimates
that 20% of sporozoites successfully progress to blood-stage infection in an individual with no immunity. In
b) the results of the model fit are shown, with each point representing the mean Kullback-Leibler divergence
and the whiskers representing the 95% confidence interval. Results of model fitting are shown for the
assumption that all infections are detected (red) or only those that are PCR-detectable (blue). In ¢) the model
predicted relationship between COl measured by msp2 genotyping and PCR prevalence is shown in red, with

the point-ranges showing observed values of COl by msp2 genotyping from the literature review.
121

122  To further assess the fitted model, we wanted to incorporate estimates of COIl based on msp2

123 genotyping, which is more commonly measured, however, it does underestimate COIl in individuals
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124  with high COI, with COIs > 7 difficult to resolve. We updated a previous literature review ' of paired
125  estimates of msp2 COl and parasite prevalence by PCR, which yielded 91 paired measures of msp2 COI
126  and PCR prevalence. The fitted model predicts an increase in msp2 COIl with increasing malaria
127 prevalence in agreement with the data collected within our literature search (Figure 1c). However,
128  there are notably larger uncertainties in the recorded msp2 COIl at higher prevalence ranges in the

129 studies found.

130 Contribution of cotransmission events to within-host parasite diversity

131 Using the fitted model, we explored the relationship between the proportion of within-host parasite
132 strains that are highly-related, which we define as being more than 50% IBD with other parasites and
133 thus indicative of cotransmission events, and transmission intensity. The model-predicted proportion
134  of within-host parasite diversity that is due to cotransmission events was shown to increase at lower
135 transmission intensities (Figure 2a). We predict that at PCR prevalence less than 11.5%, more than
136 50% of strains within polygenomically infected individuals of all ages result from cotransmission
137  events, rather than superinfection. This is based on the assumption that highly related parasites have
138  originated from a recent common ancestor, and as such reflects the proportion of within-host genetic
139  diversity that is due to cotransmission events rather than superinfection. We also predict this
140 relationship is dependent on the age of individuals sampled, with parasites within younger individuals
141 more likely to be more highly related. This reflects the increased chance that younger individuals will
142 be treated after an initial infection due to their lower acquired immunity increasing the probability of
143  developing clinical symptoms from an infection. Subsequently, younger individuals will be less able to
144  accrue parasites from superinfection events, which increases the likelihood that any polyclonal
145 individuals are the result of a cotransmission event. In Figure 2b, the model-predicted relationship
146 between mean IBD in mixed infections and the fraction of mixed infections is shown, and is well
147 described by an exponential trend line fit to this data. The model-predicted relationship is comparable
148  to estimates of IBD from whole genome sequence data collected from sites across Africa and Asia as
149 part of the Pf3k study 2’. However, the model predicts significantly lower mean IBD in settings with a
150 high fraction of mixed infections compared to the estimates based on the whole genome sequencing
151 data, with samples from sites in Ghana, Malawi, Mali and the Democratic Republic of the Congo

152 exhibiting higher mean IBD than predicted by the model.
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Figure 2: Contribution of superinfection and cotransmission to within host parasite relatedness. In a) the
model predicted relationship between the mean within host proportion of highly identical parasite strains
(>50% of loci comparisons are identical by descent (IBD)) against PCR prevalence. The relationship is shown
for all ages and for three age groups: 0-5 years, 5-15 years and 15+ years, with error bars showing 1 standard
error of the mean. In b) the mean IBD in mixed infections (COI > 1) is shown against the proportion of mixed
infections. Results from model simulations are shown with empty circles with an exponential regression
shown with the black curve. The model estimates are compared to estimates of IBD from whole genome
sequence data collected in sites across Africa and Asia, which were estimated previously in Zhu et al %,
Populations are coloured by continent, with size reflecting sample size and error bars showing +1 standard
error of the mean. Abbreviations: SN-Senegal, GM-The Gambia, NG-Nigeria, GN-Guinea, CD-The Democratic
Republic of Congo, ML-Mali, GH-Ghana, MW-Malawi, MM-Myanmar, TH-Thailand, VN-Vietnam, KH-
Cambodia, LA-Laos, BD-Bangladesh.

153

154  The impact of intervention strategies on parasite genetic diversity

155 Using our parameterised model, we first modelled how a reduction in transmission would affect four
156  genetic metrics as the prevalence of malaria declined due to the scale up of interventions (Figure 3).
157  The genetic metrics explored were: 1) the population mean complexity of infection (COl), 2) the % of
158  samples that are polygenomic (COI > 1), 3) the % of unique parasite 24-SNP barcodes and 4) the
159  coefficient of uniqueness (COU) (Figure 3). COU is a new measure of genetic relatedness within
160 samples and is equal to 0 when all barcodes within a sample are identical, and is equal to 1 when all

161 barcodes within a sample are unique (a multi-locus analogue of homozygosity).

162  The model was initiated at 70% PCR prevalence with no interventions in place. Three levels of
163 intervention scale-up were simulated, representing a low, medium and high reduction in prevalence

164 resulting in a final PCR prevalence of ~45%, ~20% and ~5% respectively after ten years. We predict


https://doi.org/10.1101/793554
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/793554; this version posted October 8, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

165  that all four metrics decline proportionally with declining malaria prevalence (Figure 3a). The model
166  predicts that the specific relationship depends on the population chosen for genetic testing
167 (Supplementary Figure 1a). For example, COl is predicted to be higher in older age categories. The
168 percentage of unique samples varied greatly depending on the on the sub-population sampled,
169 reflecting difference in the absolute numbers of individuals that fall within each sub-population.
170 Samples taken from individuals with asymptomatic infections were predicted to have the highest COI
171 and percentage of polygenomic samples. Across the scenarios simulated, metrics based on the
172 complexity of infection (COl and % Polygenomic) showed a higher level of correlation with changes in
173 the prevalence of malaria than measures based on the uniqueness of samples (COU and % Unique)
174 (Table 1). In addition, samples collected only from patients with symptomatic malaria led to metrics
175 that were the least correlated with reductions in prevalence, resulting from the decreased number of
176 available samples. This effect was most noticeable when assessing the percentage of unique
177  genotypes within clinical samples, which had a correlation coefficient of 0.24 with PCR prevalence

178  (Table 1).

179  We also assessed measures of parasite genetic diversity based on comparisons of the number of loci
180  that are identical-by-descent (IBD), which included the within-host pairwise mean proportion of loci
181  thatareIBD (ilIBD) and the population pairwise mean proportion of loci that are IBD (pIBD). We predict
182  that both metrics increase in response to declines in prevalence, however, we predict that pIBD only
183 increases substantially at PCR prevalences less than 15% (Figure 3b). Consequently, metrics based on
184  IBD were explored at a lower starting prevalence of 35% PCR prevalence before the scale up of
185 interventions. The shape of the increase in iIBD was predicted to be dependent on the population
186 sampled (Supplementary Figure 1a), with iIBD increasing quicker in symptomatic individuals. ilBD,
187 however, becomes less informative as transmission intensity declines, with individuals less likely to be

188 infected with multiple strains due to the lower rates of superinfection.
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Figure 3: Impact of changes in transmission intensity upon genetic metrics of transmission intensity. In a)
the top plot shows the change in PCR prevalence after the introduction of 3 different levels of intervention
scale up, with both the 10 individual stochastic realisations and the mean local regression smoothed
relationship shown. The following four plots show the population mean percentage of the population that are
polygenomically infected, the complexity of infection (COl), the percentage of samples that are genotypically
unique (% unique) and the coefficient of uniqueness (COU) for the prevalence declines seen in the first row. In
b) the top plot shows the change in PCR prevalence, which starts at a lower starting prevalence of 35%
compared to 70% in a). The following row shows the within-host identity-by-descent (ilBD) mean across the
24 identity loci considered, and the population mean pairwise measure of IBD (pIBD). In all plots the vertical
dashed black line shows the time from which the scale up of interventions starts (Time = 0 years).
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Table 1: Kendall rank correlation coefficients between genetic diversity metrics and parasite
prevalence. Coefficients are bound between -1 and 1, with 1 indicating perfect ranked positive
correlation and -1 indicating perfect ranked negative correlation.

Sampled % Polygenomic Col % Unique Ccou iIBD pIBD
All 0.97 0.96 0.83 0.93 -0.89 -0.86
0-5 0.96 0.96 0.73 0.93 -0.80 -0.86
5-15 0.97 0.96 0.83 0.93 -0.86 -0.86
15+ 0.97 0.96 0.83 0.92 -0.84 -0.86
Clinical 0.87 0.91 0.24 0.75 -0.64 -0.85
Asymptomatic 0.97 0.96 0.83 0.93 -0.89 -0.86

190 Power Analysis

191  Toevaluate the performance of each metric for detecting annual changes in the prevalence of malaria,
192 we calculated the statistical power for each metric at different sample sizes, focussing on samples
193 collected from children aged between 5-15 years old. We estimate that after 5 years of intervention
194  scale up, corresponding to an absolute decrease in malaria prevalence by PCR of 20%, no more than
195 350 samples are required for each metric explored (except for iIBD) to detect the change in
196  transmission intensity 80% of the time (Figure 4). The predictive power, however, declined across all
197 metrics when the effect size, i.e. the decrease in prevalence, decreased. With 600 samples, each
198 metric had less than 40% power to detect the decrease in prevalence after 1 year. The performance
199 of each metric was additionally dependent on the starting prevalence, with metrics based on the
200  uniqueness of samples (COU and % Unique) predicted to be more powerful at lower starting
201 prevalences compared to higher prevalences (Figure 4b). Metrics based on measures of IBD were
202  overallless powerful, with the predictive power of iIBD being less than 80% across all years and sample
203  sizes (Figure 4c). pIBD only exhibited a predictive power greater than 80% when detecting the largest

204  change in prevalence between 22.5% and 8%, requiring over 225 samples.

205  The power of COU, % Unique and pIBD were noticeably worse when it was assumed that samples from
206  polygenomically infected individuals could not be phased (Supplementary Figure 2). Under this
207  assumption we assume that we are unable to observe the genotype of each strain and consequently
208  only the major haplotype within an individual is available, i.e. calling the most abundant allele at each
209 locus of the barcode, which negates our ability to measure an individual’s iIBD. Across the full range
210 of malaria prevalence simulated, measures of COl and COU were consistently predicted to be the most

211 powerful, with % unique samples and IBD metrics demonstrating increased power to detect changes
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212 in transmission in areas with lower baseline transmission intensities where we predict the genetic

213 variation to be lower.
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Figure 4: Predictive power of six metrics of parasite genetic diversity with respect to sample size. The
distribution of sample means of six metrics of parasite genetic diversity were compared for five years following
the initiation of the scale up of intervention coverage. For each sample size, the power is defined as the
proportion of 100 subsamples comparing year 0 and years 1-5 for which a significant difference in the mean
was observed, estimated using one-tailed Monte Carlo p-values generated by 100 permutations of the years
samples were collected in. In a) the metrics assessed are the percentage of samples that are polygenomic, the
complexity of infection (COI), the percentage of barcodes within samples that are unique, and the coefficient
of uniqueness (COU). The power of each metric was compared across five years in which a 20% absolute
decrease in parasite prevalence from 45% was observed. The same information is shown in b), but for a 14.5%
absolute decrease in prevalence from 22.5% over 5 years. In c) the metrics considered are the mean within-
host identity-by-descent (ilBD) and the population mean pairwise measure of IBD (pIBD). In each plot 80%

214 power is shown with the horizontal dashed line.
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Statistical model for predicting transmission intensity

In order to translate the information we have characterised into an effective tool for assisting
surveillance programs, a statistical model was created to predict malaria prevalence using genomic
metrics derived from parasite SNP genotyping (see Materials and Methods). Due to the difficulty in
phasing high complexity infections, we assumed that all collected samples were unphased and as such

we did not focus on metrics based on IBD when building our data set for training our statistical model.

The fitted ensemble model performed well on out-of-sample simulation datasets, and was able to
identify the underlying model behaviour used to generate the training dataset (Figure 5a). The best
performing model provided accurate predictions of malaria prevalence when tested on SNP genotype
data from the five administrative regions, with an observed mean absolute error equal to 0.055 for
these five locations. The performance of the model was enhanced when sample metadata was
available (Figure 5b), with the ensemble model trained and tested using data with no age or clinical
status information consistently performing worse. Similar patterns were also observed when assessing
the performance of each of the level 1 models in the ensemble model (Supplementary Table 1). As in
the power analysis, across the range of malaria transmission intensities assessed, measures of COl and
COU were observed to be the most informative metrics (Supplementary Figure 3). Model predictors

based on the age and clinical status of individuals sampled contributed 28% towards the total model

importance.
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Figure 5: Ensemble statistical model predicted malaria prevalence vs observed malaria prevalence. In a) the
performance of the trained ensemble statistical model is shown, with the model predicted prevalence in red
showing the predictions for the out-of-sample test dataset composed of model simulations held back from
model fitting. The blue points show the predicted prevalence for the 5 administrative regions considered
earlier. In b), the performance of the ensemble model is shown under different assumptions about the
availability of patient metadata within simulated data.
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234 Discussion

235  The substantial reduction in the cost of generating genomic datasets over the last ten years and the
236 establishment of scientific networks committed to generating and sharing genomic data has resulted
237 in an abundance of sequenced Plasmodium falciparum genomes. This effort has resulted in the
238 identification of loci associated with emerging drug resistance mechanisms® and assisted in
239 developing putative novel drug targets %°. Another potential use of malaria sequencing efforts is
240 understanding how malaria genomes can be used to study transmission. Simple population genetics
241 principles predict that in a closed population a reduction in transmission intensity will typically be
242 accompanied by a reduction in parasite genetic diversity, resulting from reduced opportunities for
243 outcrossing to occur within the sexual stages of the parasite’s life cycle. However, there is as yet no
244 consensus in the use of parasite genetics for inferring transmission intensity. There is a need to
245 understand the contribution of superinfection and cotransmission towards the within-host parasite
246  genetic diversity, which is often highlighted within critiques of early attempts to utilise modelling

247 approaches for transmission intensity inference 3°.

248 In this study we have extended a previously developed model of malaria transmission to include
249 individual mosquitoes and discrete parasite populations. The percentage of sporozoites that are
250 successful within an infectious bite was estimated to be 20% (95% Cl 10%-29%), and was estimated
251 by fitting our model to 3002 measures of the complexity of infection and age of individuals in 5 sites
252  across Kenya and Uganda. The fitted model was used to initially estimate the proportion of the within-
253 host parasite genetic diversity that is the result of cotransmission events resulting in the acquisition
254  of highly identical parasite strains, as opposed to strains acquired through superinfection events. We
255 predict that for malaria prevalence greater than 11.5%, the majority of genetic variation within-hosts
256 is generated through superinfection events. To our knowledge this is the first attempt to characterise
257  this relationship across the full transmission intensity spectrum seen within sub-Saharan Africa and
258 represents a move towards standardising which genomic metrics should be used at different

259 transmission ranges.

260  We predict that IBD within samples decays exponentially as the proportion of samples is increasingly
261 polygenomic. This exponential relationship was similar to findings in a recent study of IBD, which used

262 whole genome sequence data to explore this relationship 7.

However, the model predicted
263 significantly lower IBD at higher transmission settings (settings with a higher fraction of mixed
264 infections) than observed in the data presented in Zhu et al. There are a number of reasons for this.
265 Firstly, the whole genome sequence data was collected from individuals of unknown age as part of a

266 convenience sample. If the samples were collected exclusively from younger individuals, the results in
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267 Figure 2a would suggest that the mean IBD would be higher than if the samples were collected across
268  all ages. Secondly, in the study by Zhu et al, the estimated COIl across all sites was less than 2, which is
269 significantly lower than COI estimates from the sites in Kenya and Uganda in Figure 3.3. Given that
270 some of the African study sites in Zhu et al are in areas of high transmission intensity, it seems likely
271  that the convenience sampling scheme used has selected for individuals with lower COls. One
272 explanation could be that the individuals chosen for sequencing receive treatment more regularly,
273 which reduces the probability of parasite strains from superinfection events being present at the time
274  of sampling. This could be due to their age, or due to their enrolment in the study that resulted in
275 them being selected for sequencing. Ultimately, without this information it is challenging to draw
276 strong conclusions about the validity of the model predictions in Figure 3.2b, although the broad

277 similarity is encouraging.

278 Our newly defined measure of parasite diversity, the coefficient of uniqueness (COU), alongside COI
279  were consistently powerful statistical tools for detecting changes in malaria prevalence. This is hardly
280 surprising, as we should consider that the % unique samples and the % of polygenomic samples are
281 simply the extreme cases of these metrics, and so we would expect them to contain less information.
282 Additionally, the power analysis conducted was under the assumption that all samples that could be
283  detected by PCR can be effectively phased. This is an overly ambitious assumption, and it is more
284  correct to assess these metrics under the assumption that polygenomic samples cannot be phased
285 (Supplementary Figure 2). However, the increase in statistical power when we are able to phase
286  samples should highlight a need within the research field for methods to compare unphased parasite
287 samples, with the majority of samples at higher transmission intensities predicted to have a COI

288  greater than 1.

289 In the absence of being able to phase polyclonal samples, however, the observed genomic metrics
290  were still informative within the ensemble statistical model developed to translate parasite genetic
291 information into estimates of malaria prevalence. For example, variable importance was observed for
292 each predictor variable (Supplementary Figure 3), however, COU and COI accounted for nearly half
293 the variance explained. There is also a degree of compensation afforded between metrics, i.e. where
294  one metric becomes less informative, another metric becomes more predictive. For example, at PCR
295 PfPR less than 10%, COIl and the % of samples that are polygenomic will become substantially less
296 informative, whereas IBD measures will start being more informative. This is further demonstrated by
297 only needing 200 samples within our statistical ensemble model to produce accurate predictions of
298  the prevalence of malaria, with the addition of individual level metadata yielding further gains in
299 model performance (Figure 4b). As more samples are added only modest improvements in model

300 predictive performance are observed (Supplementary Figure 4). The importance of meta data,
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301  specifically the age of individuals, is highlighted in the findings of the model predicted COIl between
302  age groups. In Figure 3, we compared the COIl between asymptomatic and symptomatic individuals,
303 in which we predicted across all ages that asymptomatic individuals have higher COl. However, this
304 finding does not hold when we compare the COIl between symptomatic and asymptomatic individuals
305 at different age groups and across different transmission intensities. For example, in the model fitting
306 in lower transmission areas younger children who are symptomatic are predicted to have higher COI
307 than asymptomatic younger children (Supplementary Figure 5). This finding is reversed, however, at
308 higher transmission intensities reflecting the interaction between acquired clinical immunity and rates

309 of superinfection.

310  This study has some important limitations. Firstly, we assumed there is only one parameter detailing
311 the percentage of sporozoites that successfully progress to a blood-stage, which is the same for all
312 study sites considered. This is likely a simplification, but our observation of 20% sporozoites surviving
313 from an individual mosquito feed is comparable to Bejon et al’s observation of 25% (14 sporozoites
314  surviving from an assumed total of 55 sporozoites resulting from five mosquito bites) of sporozoites
315 successfully progressing to blood-stage infection 3. It is, however, higher than estimates based on
316  transmission efficacy studies 32. The model fitting, however, revealed that the sensitivity to this
317  parameter was low, with the confidence intervals for a value of { equal to 0.20 overlapping intervals
318  for values of {ranging from 0.1 to 0.29. This is highlighted when we re-examined the model predicted
319 relationship between msp2 COIl and prevalence with these values, which showed only slight changes
320 tothe predicted COI (Supplementary Figure 6). The fitted estimate was also based on model fits to the
321 administrative mean prevalence as opposed to the recorded prevalence in the specific study sites. For
322 example, the study site in Jinja District, Walukuba, was observed to have the lowest parasite
323 prevalence of all three study sites in Uganda . If we had used this prevalence value as opposed to
324  the administrative prevalence value, the parameterised model would have failed to predict the
325 pattern of COl in Walukuba (Supplementary Figure 7), which may suggest that this study site exhibits
326 higher heterogeneity in the force of infection. However, the fact that the model-predicted COI closely
327 matches the observed data when using the administrative region’s prevalence may suggest that
328 parasite genetic metrics are more representative of the prevalence at larger spatial scales, which in
329  turn may reflect human mobility between areas of differing transmission intensity and parasite
330 genetic diversity. This may also be of benefit from a surveillance point of view, with 200 samples being
331  able to give accurate measures of malaria prevalence within a large area. This could be of particular
332 utility in areas where community surveillance is not feasible, in which samples collected from
333  symptomatic patients attending public health facilities could provide additional information in helping

334  totranslate clinical incidence into measures of parasite prevalence.
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335  Secondly, we did not explicitly model the scale-up of vector based interventions, instead incorporating
336 the effects of insecticide treated nets and indoor residual spraying through their impact on the
337 average age of the mosquito population and the rate of anthrophagy. This assumption will cause each
338 individual to experience the same relative reduction in molecular force of infection, i.e. the number
339 of new P. falciparum clones acquired over time. Consequently, model predictions are likely to
340 underestimate the variance in the reduction of within-host parasite genetic diversity resulting from
341 vector based interventions. This effect would lead to a decrease in the statistical power of the genetic
342 metrics considered and subsequently the sample sizes presented within the power analysis are likely

343  onthe lower end of the sample sizes required for a given predictive power.

344  Thirdly, while the developed statistical model provided accurate estimates of malaria prevalence
345 overall for the five regions, the prediction for Jinja was noticeably worse, which reflects the high COI
346 observed in that region given its comparatively low prevalence. While we were able to replicate the
347 COlI age relationship for this region during model parameterisation, this was largely due to the fact
348  that the historic prevalence for the region was much higher. For this reason, the model predicts that
349 individuals in the region will have higher acquired immunity and will subsequently be able to harbour
350 more infections before developing a fever and potentially being treated and thus clearing infections.
351  The developed statistical model, however, did not include any covariates for historic prevalence or
352  genetic diversity. Subsequently, predictions made by this model largely reflect the mean diversity
353  expected for a given prevalence and will suffer when making predictions for regions that have
354  experienced a recent and large decline in prevalence. Recent declines in prevalence will cause
355 individuals in the region to possess higher immunity than predicted based solely on the region’s
356 current prevalence, which has been shown to manifest in clear patterns in the size of the
357 submicroscopic reservoir 3*. From a genetic perspective, increased immunity may either lead to a
358 reduction in within-host genetic diversity due to more infections being suppressed. Alternatively,
359 increased immunity may increase within-host genetic diversity if the higher immunity decreases the
360 frequency with which people develop clinical symptoms, which in turn reduces the likelihood that an
361 individual has recently been treated and subsequently has cleared all parasite strains. The latter may
362 be a possible explanation for the comparatively high COI observed in the Walukuba study site in
363 Uganda compared to its malaria prevalence. Consequently, as more genetic data is collected over time
364  we will be able to extend the methods presented here to better handle recent changes in prevalence
365 and incorporate historic measures of genetic diversity for more accurate predictions of malaria
366  prevalence. Alternatively, the modelling framework presented here could be extended to incorporate

367 alternative data sources, such as longitudinal measures of clinical incidence from passive surveillance.
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368 In our model we have only considered neutral genetic markers that are unlinked. While these loci are
369 informative for capturing standing genetic diversity, we have not considered how selective events may
370 shape the genetic diversity. For example, if drug resistance were to spread quickly through an area it
371 is likely that this would cause a decrease in genetic diversity in neighbouring regions *°. However, the
372 precise impact that this will have on the metrics explored in this study will depend on both how quickly
373 recombination will result in linkage disequilibrium decay and the strength of the selective sweep.
374  Although these were not assessed in this paper, it would be possible to adapt our model to consider
375 loci under selection and simulate how known factors that affect the speed of selection, such as
376  transmission intensity, importation of resistance, treatment rates and the metabolic costs associated
377  with resistance, impact genetic metrics. Lastly, the model could also be extended to better capture
378 importation and spatial dynamics. The current model employs a continent-island assumption, where
379  the genotypes of imported parasites are drawn from a population with a fixed population-level allele
380 frequency. This could be extended to consider populations within a metapopulation, where
381 importations are sampled from connected populations. This would have the benefit of better
382  capturing dynamics between different populations and could incorporate different data sources such
383 as mobile phone records and travel surveys, which have been used to give a greater resolution to the

384  spatial dynamics of malaria transmission 367,

385  The 2018 world malaria report shows that the reductions in the global burden of malaria made since
386 2000 may be stalling, with 2 million more cases of malaria estimated in 2017 compared to 2016 3,
387 These declines have necessitated the development of new tools to enhance current surveillance
388 efforts. In this study, we have shown that that malaria genetic metrics could provide an additional
389  toolkit for operational surveillance. In particular, a combination of metrics focussed on the complexity
390 of infections, the frequency and uniqueness of genotyped barcodes and measures of identity-by-
391 descent could be used for inferring the prevalence of malaria across the current range of malaria
392 prevalence. It is important to highlight that there is still a need to understand the cost-effectiveness
393 of these tools compared to current surveillance methods. In many endemic areas, clinical incidence
394  data provides a temporally and spatially rich measure of malaria transmission. However, it is reliant
395 on the accuracy of estimates of the population size. In situations where this is not possible, such as
396 migratory populations and clinics with unknown health facility catchment areas. Consequently, there
397 may be a niche for parasite genetics to complement measures of malaria incidence in as well as in
398 areas in which the spatial coverage of surveillance data is poor. It is hoped that these findings, in
399  particular the importance of sample metadata and quantifying the contribution of cotransmission and
400  superinfection events have in shaping genetic diversity, can guide future efforts by the wider

401  community for utilising malaria genotyping for epidemiological surveillance.
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402 Methods

403  P. falciparum transmission model

404  An individual-level stochastic model was developed to simulate the transmission dynamics of
405 Plasmodium falciparum. The model is based upon previous modelling efforts 2>3°*, however with
406 extensions to now include individual mosquitoes as well as humans, and with parasites now modelled
407 as discrete populations associated with individual infection events. Each parasite population is
408 identified by a 24-SNP barcode, with sexual stages represented by two barcodes to characterise the
409 female and male gametes within the vector and allow recombination to be explicitly modelled. An
410  overview of the original model is given here before describing the changes made to the model, with

411 the full methods detailed in the Supplementary Methods.

412 People exist in one of six infection states, with individuals beginning life susceptible to infection. At
413 birth, individuals possess a level of maternal immunity that decays exponentially over the first 6
414 months. Each day individuals experience a force of infection that depends on their level of immunity,
415 biting rate and the abundance of infectious mosquitoes. Infected individuals, after a 12-day latent
416  period, develop either clinical disease or asymptomatic infection dependent on their level of acquired
417  immunity from previous infections. Individuals that develop disease have a fixed probability of being
418 effectively treated. Treated individuals enter a protective state of prophylaxis, before returning to
419  susceptible. Individuals that did not receive treatment recover to a state of asymptomatic infection.
420  Asymptomatic individuals progress to a subpatent infection, before clearing infection and returning
421  to susceptible. All infected individuals that are not in the prophylactic state are also susceptible to

422 superinfection.

423  The adult stage of mosquito development is modelled individually, with adult mosquitoes beginning
424 life susceptible to infection. Mosquitoes seek a blood meal on the same day they are born and every
425 3 days after that until they die. Infected mosquitoes pass through a latent infection stage that lasts 10
426 days before becoming onwardly infectious to humans. The introduction of vector based interventions
427 leads to a decrease in the average age of the mosquito population throughout the duration of the
428 intervention due to the increased mortality rate. A decrease in anthrophagy is also observed reflecting
429 mosquitoes that are repelled as a result of interventions but do not die. The daily rate of change to
430 these parameters in response to insecticide treated nets (ITN) and indoor residual spraying (IRS) is
431 calculated using an equivalent deterministic version of the earlier model that included interventions

432 %5 before being introduced as a time-dependent variable within the stochastic model.

433
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434 Parasite genetics

435 Parasites are modelled as discrete populations that result from an infection event associated with a
436 mosquito or a human (Supplementary Methods for full description). Each asexual parasite is
437 characterised by one genetic barcode, which contains information relating to 24-SNPs distributed
438 across the parasite genome. In simulations modelling identity-by-descent (IBD), the barcode is
439 modified to contain 24 integer values that uniquely index an individual in the starting population,
440 enabling ancestry to be tracked over time and hence IBD rather than identity-by-state (IBS) to be
441 modelled. Sexual stages of the parasite lifecycle within the mosquito are represented by both a female
442 and male barcode, thus defining the range of recombinants that could be produced. During a
443  successful human to mosquito infection event, multiple oocysts may develop within the mosquito.
444  The number of oocysts formed is drawn from a zero-truncated negative binomial distribution with

) “27%, with required gametocytes sampled

445 mean equal to 2.5 and shape equal to 1 (95% quantile: 1-9
446  from the human according to the relative parasitemias of the gametocytogenic strains. During a
447 successful mosquito to human transmission event, multiple sporozoites may be onwardly transmitted,
448  with the genotypes the result of recombination events from ruptured oocysts. Recombination is
449 simulated at this stage, and generated recombinants stored within the mosquito and associated with
450  the oocyst from which it originated. The number of sporozoites passed on is drawn from a zero

451  truncated geometric distribution with a mean of 10 (95% quantile: 1-29) 3¥%5, with the percentage of

452 sporozoites that survive estimated within model fitting.

453 Model Fitting

454  Our extensions to the transmission model introduced a new parameter, ¢, which determines the
455 percentage of the total sporozoites passed on within a feeding event that survive to yield a blood-
456 stage infection and subsequently produce gametocytes. To fit this parameter we compared the model-
457  predicted relationship between the complexity of infection (COl) and age utilising previously SNP
458  genotyped samples from five sites across Kenya®® and Uganda %, collected between 2008-2010 and
459  2012-2013 respectively. In brief, dried blood spots were collected, and samples taken from individuals
460  with evidence of asexual parasitemia by microscopy were selected for Sequenom SNP genotyping.
461 Genotyping was conducted using the Sequenom MassARRAY iPLEX platform, yielding minor and major

462  allele frequencies.

463  We applied THE REAL McCOIL proportional method to the SNP genotyped samples to estimate each
464  individual’s COI 26, Samples were filtered first by excluding loci with more than 20% missing samples,
465 followed by samples with more than 25% missing loci. We performed thirty MCMC repetitions for

466  each sample, with a burn-in period of 10* iterations followed by 10° sampling iterations, with
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467  genotyping measurement error estimated along with COI and allele frequencies, and a maximum
468  observable COI equal to 25. Default priors were assigned for each parameter, and we used standard

469  methodology to confirm convergence between chains %,

470  The observed relationship between COIl and age was compared to the model-predicted relationship
471  for each administrative region studied. The model-predicted relationship was generated by
472  conducting simulations calibrated to estimates of the administrative malaria prevalence from 2000 to
473 2015 %8, exploring 50 values of { between 0.5% - 50%. For each region, 10 stochastic realisations of
474 100,000 individuals were simulated with a burn-in period of 50 years to ensure both an
475  epidemiological and genetic equilibrium was reached by year 2000. For each of the five administrative
476 regions of interest, we incorporate the historical scale up of insecticide treated nets and indoor
477 residual spraying between 2000 and 2015, using data previously collated for the World Malaria Report
478 %, and estimates for the coverage of treatment modelled using DHS and MICS survey data *°.
479 Seasonality for each region was included by altering the total number of mosquitoes using annually
480 fluctuating seasonal curves fitted to daily rainfall data from 2002 to 2009 °!. Lastly, we introduced
481 rates of importation of infections that were calculated for each year between 2000 and 2015 using a
482 fitted gravity model of human mobility >2. These sources represent infections acquired from individuals
483  travelling out of the region and returning with an infection, and also mosquitoes being infected by

484 individuals travelling from outside into to the region of interest.

485  We calculated the “distance” between our model predictions and the observed data using the
486 Kullback-Leibler (KL) divergence >3. Using an individual’s age and estimated COI, the distance between

487  the observed and predicted distributions of COI for each age is given by:

25
B B pCOL(S)
488 1Q) = I(pCOIi(f),OCOIi)—C;ﬂpcoh‘(f)ln( oCO, )

489  where 0COI; is the observed distribution of COI at age i and pCOI;({) is one realisation of the model-
490  predicted distribution of COIl at age i for a given frequency of successful sporozoites { (with only
491 parasites that would have been detected by PCR being assumed to be detected by SNP genotyping).

492  The total distance for a given value of {is subsequently given by:
RO

493 Z <1TH>
po Zi Wi r

494  where w; is the weight for age i, and n; is the total number of unique sampled ages in administrative

495 region r. This can be interpreted as the sum of the weighted KL divergence means within a region,
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496  with weights equal to the number of observations at each age. Each region thus contributes equally

497  to the total distance, despite the difference in the number of individuals in each region.

498 Further model fit validation was conducted by incorporating a comparatively larger collection of
499  estimates of the COIl estimated using msp2 genotyping, which is more commonly referred to as
500 multiplicity of infection (MOI). msp2 genotyping is known to known to underestimate COI in
501 individuals with very high COls, with COls > 7 difficult to observe. Consequently, to distinguish these
502 estimates we refer to these as msp2 COl. We compiled P. falciparum malaria MOI data where there
503 were estimates of both the malaria prevalence and the MOI of study participants. This was conducted
504 by updating a previous review ', using the same search terms of “falciparum multiplicity infection
505 prevalence msp2”. Analogous relationships were predicted using the fitted model, with the model
506 predicted msp2 COIl estimated by assuming that any individual with a model predicted COI greater
507  than 7 results in an msp2 COIl of 7, which reflects the limits of resolution when using msp2 genotyping

508 4.

509 Contribution of superinfection and cotransmission events towards within-host genetic diversity

510 The parameterised model was used to characterise the relative contribution of cotransmission events
511 and superinfection events towards within-host parasite genetic diversity. Ten stochastic realisations
512 of 100,000 individuals were simulated for 50 years at 15 different transmission intensities. The
513 proportion of highly identical parasite strains (>50% of loci are IBD in pairwise comparison) within
514  simulations was recorded and used to estimate the proportion of within-host genetic diversity that is

515 due to cotransmission events rather than superinfection.

516 Impact of changes in transmission intensity upon measures of parasite genetic diversity

517  The effect of declines in transmission intensity on four measures of within-host genetic diversity was
518  explored. The four measures considered were: 1) the mean COI, 2) the percentage of polygenomic
519 infections (% Polygenomic), 3) the percentage of unique barcode genotypes (% Unique), and 4) a

520 newly defined metric, the coefficient of uniqueness (COU), which is given by:

Erxd -5
521 Col=1-————,0<cCoU <1

1
(1-2)
522 where X; is the frequency at which barcode i occurs within a sample of sizen. COU = 0 when all

523 barcodes within a sample are identical, and COU = 1 when all barcodes within a sample are unique.

524  Ten stochastic realisations of 100,000 individuals were simulated for 50 years with an initial parasite
525 prevalence measured by PCR equal to ~70% and a fixed importation rate to ensure both a genetic and

526 epidemiological equilibrium. Once at equilibrium, three differing levels of intervention scale-up (low,
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527  medium, high) were introduced that lead to an absolute reduction in parasite prevalence from 70% to
528  45%, 20% and 5% after 10 years. The scale-up of interventions resulted in an increase in the coverage
529 of ITNs (maximum after 10 years: 30%, 60%, and 90%), IRS (maximum after 10 years: 20%, 40% and
530 60%) and treatment (maximum after 10 years: 15%, 30%, 45%). For all simulations, the monthly mean
531 for each genetic marker was recorded for the whole population as well as within three age ranges (0-
532 5 years old, 5-15 years old and over 15 years old), and within individuals who were asymptomatic or

533 symptomatic at the time of sample collection.

534  An identical analysis was conducted at a lower starting prevalence, with maximum reductions in
535 parasite prevalence by PCR from 35% to 20%, 2% and ~0% after 10 years, in order to assess the change
536  in two measures of identity-by-descent (IBD), pIBD and ilIBD. The population mean IBD (pIBD) we
537 define as the mean number of loci in pairwise comparisons between samples that are identical across
538 all loci in terms of their 24-locus identity barcode (focusing on genotypes that could be detected by
539 microscopy only), i.e. it is the mean proportion of shared ancestry between samples. The individual
540 mean IBD (iIBD) is the mean number of identical loci of the 24-locus identity barcode within individuals
541 who are polygenomically infected. If all sampled individuals are monogenomic, then ilBD is set equal

542 to 1.

543 Statistical power analysis of parasite genetic measures

544  To evaluate the utility of the considered measures of parasite genetic diversity, we conducted an
545  analysis to characterise the predictive power of each metric for detecting changes in transmission
546  intensity, and their sensitivities to the sample size chosen. In an analogous design to earlier
547 simulations, we measured sample mean measures of the COIl, % Polygenomic, % Unique, COU, ilIBD
548 and pIBD at yearly intervals for the first five years after the initiation of the ten-year scale-up of

549 interventions.

550 Sensitivity to the sample size of each metric was assessed by sequentially sampling subsets of the data
551 and comparing the mean difference in metrics. Sample sizes between 10 and 600 individuals were
552 explored, with 100 samples drawn from a stochastic realisation at years 0, 1, 2, 3, 4 and 5, and
553 comparisons made between years 1-5 and year 0, i.e. 0-1, 0-2, ... 0-5. All samples were collected from
554 individuals aged between 5-15 years old. One-tailed Monte Carlo p-values were generated for each
555 subsample by 100 permutations of the years that samples were collected from. The power of each
556  metric was defined as the proportion of subsamples for which 95% of the permuted mean differences
557  were greater or less than the observed mean difference, with the direction of the tail dependent on
558  whether the metric is expected to decrease or increase respectively in response to a decrease in

559  transmission intensity. The overall power for each metric was calculated as the mean power of ten
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560  stochastic realisations, and repeated at two different starting parasite prevalence by PCR (~60% and
561  ~30%). Metrics based on comparisons of IBD were only assessed for the lowest starting parasite
562 prevalence. The performance of each metric was also explored under the assumption that it was not
563 possible to phase all genotypes within the samples collected, and that only the dominant genotype

564 was able to be called.

565 Statistical modelling of the predictive performance of malaria genomics for surveillance

566 A statistical model was constructed to predict malaria prevalence using the genomic metrics explored
567  thus far, with three different assumptions about the availability of patient metadata (no metadata,
568 patient age only, and both patient age and symptomatic status of infection). To assess the utility of
569  such a model for surveillance, samples of 200 individuals were taken from a range of simulations that
570  span the transmission, seasonality and intervention coverage range seen in sub-Saharan Africa. We
571 used the sampled mean measures of the genomic metrics discussed, and where available summaries
572  of the age and clinical status of samples to create our model simulated datasets. 25% of simulated
573 datasets were held back for out-of-sample testing. Three different statistical models (gradient boosted
574  trees, elastic net regression model and random forests) were fit to the model simulated data. The
575 predictions of these level 1 models were subsequently used to train an ensemble model using a linear
576 optimisation based on the root mean squared error (RMSE) of the level 1 models. When training both
577  the level 1 models and the ensemble, K-fold cross validation sets were performed 25 times and
578 subsequently averaged to reduce any bias from the cross validation set chosen. The averaged cross
579 validation results were used to assess the performance of the ensemble model on the testing dataset
580 by comparing the RMSE, mean absolute error (MAE) and the correlation under the different
581 assumptions about the availability of patient metadata. The predictors of the ensemble model were
582  assessed for their contribution to the overall model performance. Variable importance was calculated
583  for each level 1 model, before reporting their overall importance as the weighted mean importance,
584  with the weight equal to the level 1 model weights in the ensemble model. Lastly, the trained
585 ensemble model was used to predict the prevalence of malaria for the study sites considered within

586 Uganda and Kenya.
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Supplementary Figure 1: Age and sampling dependent impact of changes in transmission intensity upon
genetic metrics of transmission intensity. In a) the top plot shows the change in PCR prevalence after the
introduction of 3 different levels of intervention scale up, with both the 10 individual stochastic realisations
and the mean local regression smoothed relationship shown. The following four rows show the population
mean percentage of the population that are polygenomically infected, the complexity of infection (COI), the
percentage of samples that are genotypically unique (% Unique) and the coefficient of uniqueness (COU) for
the prevalence declines seen in the first row. The metrics are stratified into columns by the sampling scheme
chosen. In b) the top plot shows the change in PCR prevalence, which reaches <1% in the highest intervention
arm. The following rows show the within host identity-by-descent (ilBD) mean across the 24 identity loci
considered, and the population mean pairwise measure of IBD (pIBD). In both the same sampling stratification
is used asin a). In all plots the vertical dashed black line shows the time from which the scale up of interventions

starts (Time = 0 years).
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Supplementary Figure 2: Predictive power of six metrics of parasite genetic diversity with respect to sample
size under the assumptions that samples are unable to be phased. The same methods as those detailed in the
main text were used, with the only difference being that samples could not be phased and only the major
haplotype could be called for an individual. iIBD is unable to be measured if samples cannot be phased and is
subsequently crossed out. For pIBD, % Unique and COU it was assumed that the highest parasitaemia barcode
was detected from each polygenomically infected individual. Lastly, there was no assumed difference in the
ability to detect polygenomic samples or estimate the COl with unphased samples.
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Supplementary Figure 3: Mean Importance of each predictor variable within the trained ensemble model for
predicting malarial prevalence. The newly defined measure, the coefficient of uniqueness (COU), was observed
to be the most important metric, with the six metadata variables (age and clinical status) being the least
important. They do, however, contribute 28% of the total model importance, which highlights why the inclusion
of this metadata resulted in better model predictions.
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Supplementary Figure 4: The predictive performance of the ensemble model under different assumed sample
sizes. Measures of the model error, root mean squared error (RMSE) and root mean error (MAE) as well as 1 —
R? are shown for sample sizes between 10 and 400. Model performance improves quickly over sample size
ranges between 10 and 100, before slowing, with only very modest increases seen in model performance for
sample sizes larger than 200.
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Supplementary Figure 5: Age and symptomatic status stratified COl from model predictions during the model
fitting. Each plot shows the mean COl and 95% confidence interval for the study sites used in the model fitting.
COl is stratified by age group and symptomatic status, showing that on the whole COl is higher in asymptomatic
individuals, however, in lower transmission areas COl is higher in symptomatic young children.
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Supplementary Figure 6: Model predicted relationship msp2 COl and PCR prevalence. The blue solid line shows
the relationship for the fitted value of  equal to 0.20. The dashed lines above and below this in blue show the
relationship for values of T equal to 0.29 and 0.10 respectively. The point-ranges in black show the observed
values of COl by msp2 genotyping from the literature review.
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Supplementary Figure 7: The fitted model-predicted relationship between COI and age for Walukuba, if the
prevalence simulated was assumed to be equal to the prevalence within the sub-county surveyed, rather than
the prevalence for the administrative region. Model fitting conducted in Figure 1 in the main text used the
administrative region prevalence as estimated by the Malaria Atlas Project, which resulted in good agreement
between COIl and prevalence.
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Supplementary Table 1: Statistical Model Performance.

Meta Data Model RMSE* MAE* R2*

None Elastic Net 0.0276 (157.71%) 0.0225 (173.08%) 0.9935 (99.61%)
None Gradient Boosted Trees 0.0214 (122.29%) 0.0159 (122.31%) 0.9961 (99.87%)
None Random Forest 0.0211 (120.57%) 0.0151 (116.15%) 0.9962 (99.88%)
None Weighted Mean Ensemble 0.0204 (116.57%) 0.0151 (116.15%) 0.9965 (99.91%)
Age Elastic Net 0.0311 (177.71%) 0.0245 (188.46%) 0.9921 (99.47%)
Age Gradient Boosted Trees 0.02 (114.29%) 0.0152 (116.92%) 0.9967 (99.93%)
Age Random Forest 0.0197 (112.57%) 0.0143 (110%) 0.9968 (99.94%)
Age Weighted Mean Ensemble 0.0195 (111.43%) 0.0144 (110.77%) 0.9969 (99.95%)

Age and Clinical Status

Age and Clinical Status

Age and Clinical Status

Age and Clinical Status

Elastic Net

Gradient Boosted Trees

Random Forest

Weighted Mean Ensemble

0.0278 (158.86%)

0.0178 (101.71%)

0.0178 (101.71%)

0.0175 (100%)

0.0219 (168.46%)

0.0141 (108.46%)

0.013 (100%)

0.013 (100%)

0.9934 (99.6%)

0.9974 (100%)

0.9973 (99.99%)

0.9974 (100%)

* Absolute value (% relative to best performing model)
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Supplementary Methods:
P. falciparum Transmission Model

An individual-based stochastic model with a fixed daily time step was developed to simulate the transmission
dynamics of Plasmodium falciparum. Both the human and adult mosquito stages are modelled at an individual
level, whereas parasites are modelled as discrete populations with each population relating to an infection
event. The human transmission model is based upon previous modelling efforts 1, which is described in its
deterministic framework first, before detailing the human acquisition of immunity and the full set of equations
detailing its stochastic implementation. The deterministic model described within the methods has been
included as its equilibrium solution is used for model initialisation. Additionally, we developed a deterministic
version of the earlier 2016 Griffin et al. model ! that incorporates interventions, which is used to indirectly
incorporate the effects of intervention strategies as these are not modelled explicitly within the individual
model. (The deterministic implementation of interventions has not been included within the deterministic

model described below to ensure clarity related to our indirect handling of interventions).

We continue to describe the mosquito transmission model, which is again based on earlier modelling efforts 1~
4 before describing the stochastic equations detailing the new implementation of the adult mosquito stage at
an individual-based level. Extensions detailing how the parasite populations are incorporated follow, by first
describing the genetic barcode that each parasite population possesses. We continue by describing the within
host parasite populations, which includes considerations surrounding the contribution of coinfection and
superinfection towards the model’s dynamics of within-host multiplicities of infection, and how these relate to
the probabilistic uptake of specific gametocyte strains by mosquitoes. This is followed by detailing the within-
mosquito parasite populations, which explores the derivation of the distribution describing the model-predicted

oocyte intensities, and describes how recombination within the sexual stage is explicitly modelled.
Human transmission model

Individuals begin life susceptible to infection (state S) (Diagram 1). At birth, individuals possess a level of
maternal immunity that decays exponentially over the first 6 months. Each day individual i is probabilistically
exposed to infectious bites governed by their individual force of infection (4;). 4; is dependent on their pre-
erythrocytic immunity, exposure to bites (dependent on both their age and their individual relative biting rate
due to heterogeneous biting patterns by mosquitoes) and the size of the infectious mosquito population.
Infected individuals, after a latent period of 12 days (dg), develop either clinical disease (state D) or
asymptomatic infection (state A). This outcome is determined by their probability of acquiring clinical disease
(¢;), which is dependent on their clinical immunity. Individuals that develop disease have a fixed probability (f7)
of seeking treatment (state T). Treated individuals are assumed to always recover, i.e. fully-curative treatment,
and then enter a protective state of prophylaxis (state P) at rate rr, before returning to susceptible at rate ;.
Individuals that did not receive treatment recover to a state of asymptomatic infection at rate rp. Asymptomatic
individuals progress to a subpatent infection (stage U) at rate r,, before clearing infection and returning to

susceptible at rate ry. Additionally, superinfection is possible for all individuals in states D, A and U. Superinfected
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individuals who receive treatment will move to state T. Individuals who are superinfected but do not receive
treatment in response to the superinfection will either develop clinical disease, thus moving to state D, or
develop an asymptomatic infection and move to state A (except for individuals who were previously in state D,

who will remain in state D).

o

S "

................ U AP ry

AD >

—

A(-®) | | A(-D)
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v
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Diagram 1: Transmission Model. Flow diagram for the human component of the transmission model, with
dashed arrows indicating superinfection. S, susceptible; T, treated clinical disease; D, untreated clinical disease;
P, prophylaxis; A, asymptomatic patent infection; U, asymptomatic sub-patent infection. All parameters are
described and referenced within Table 1.

The movement between the human components of the transmission model is summarised with the following

partial differential equations describing each compartment (t represents time and a represents age):

g—f + g—i = —A(t—dg)S+ Pd(;) + Ud(;)

ot T 4t = dp) (SO + D + A + U(E) — 2

Jat  da dr

2+ 2 1= f)A(E - d) (SO + A + U®) — 2

ot  0Oa @

O = (1= AU~ d) (S + U@ + %? M= %)
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When an individual enters a new infection state a waiting time is sampled from an exponential distribution for
when the individual will move out of that infection state (except when individuals move into S). With the
introduction of a fixed daily time-step, the day on which an individual transitions from state X to Y occurs is given

by:

Day(X - Y) ~ floor(Exp(D) + tnow + 1

where t,,,,, is the current day, i.e. the day that the individual moved into state A, and A is the transition rate.

The set of state transitions for individuals and their associated transition rates are given below.

Process Transition Transition Rate
. . - . 1
Progression of untreated disease to asymptomatic infection D->A Tp = N
D
. - : . . 1
Progression of asymptomatic infection to subpatent infection A->U Ty = T
A
. . . . 1
Progression of subpatent infection to susceptible U->S Ty = i
U
. . ) . . 1
Progression of treated disease to uninfected prophylactic period T->P rr = T
T
. . . . . 1
Progression from uninfected prophylactic period to susceptible P->S Tp = N
P

We assume that each person has a unique biting rate, which is the product of their relative age dependent biting

rate, 1;, given by
(@) = Z—izl;pi(a) (1 - pexp@)

and an assumed heterogeneity in biting patterns of mosquitoes, ¢, which we assume persists throughout their

lifetime and is drawn from a log-normal distribution with a mean of 1,
—0?
log({) ~ N (T,sz>

where 1 — pis the relative biting rate at birth when compared to adults and a, represents the time-scale at
which the biting rate increases with age. The product of these biting rates is subsequently used to calculate the
proportion of the whole population’s bites that person i receives on a given day, m;. Their daily entomological
inoculation rate (EIR), €;, is thus calculated by multiplying by the number of infectious mosquitoes taking a blood

meal from a human that day, which in turn yields their force of infection, which are given by:
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T = (i,
€ = IM_FeedingT[i
A = €;b;

where Iy reeqing is the size of the feeding infectious mosquito population, and b; is the probability of infection

given an infectious mosquito bite.

The inclusion of individual mosquitoes results in the following stochastic implementation of infection. On any
given day the number of infectious mosquitoes taking a blood meal from a human (Iy_geeqing) Will result in the
same number of infectious bites. These bites are allocated by sampling from the multinomial distribution using
the conditional binomial method,® where sample weights are equal to 7;. Upon receiving an infectious bite, an
individual will move to an untracked infection state, /, which leads to either clinical disease (D), treated clinical

disease (T) or asymptomatic infection (A). This leads to the following transition rates related to infection below.

Process Transition Transition Rate
Infection S->1 A (t —dg)
D=1

Super-infection from  untreated
clinical  disease, asymptomatic A -1 A (t —dg)

infection or subpatent infection
P U=

The probabilities of progressing from state / to D, T or U are determined an individual’s probability of clinical
disease, ¢;, and the treatment coverage:

Prob(Clinical Disease) = ¢;
Prob(Treated Clinical Disease | Clinical Disease) = fr

The human population was assumed to have a maximum possible age of 100 years, with an average age of 21
years within the population yielding an approximately exponential age distribution typical of sub-Saharan
countries. The day on which a human dies is thus allocated at birth by sampling from an exponential distribution
with a mean equal to 21 years. When an individual dies, they are replaced with a new-born individual with the

same individual biting rate due to heterogeneity in biting patterns.
Immunity and Detection Functions
We model 3 stages at which immunity may impact transmission, as in the existing Griffin et al model:

1.  Pre-erythrocytic immunity, Iz; reduction in the probability of infection given an infectious mosquito bite.
2. Acquired and Maternal Clinical Immunity, I, and I, respectively; reduction in the probability of clinical
disease given an infection due to the effects of blood stage immunity.

3.  Detection immunity, Ip; reduction in the probability of detection and a reduction in the
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Maternal clinical immunity is assumed to be at birth a proportion, Py, of the acquired immunity of a 20 year-old

and to decay at rate di. The remaining three types of immunity are described by the following partial
M

differential equations, which describe how immunity increases due to exposure from zero at birth and decreases

over time:
o Oy _c Iy
Jat da eug+1 dj
0lcy 0lgy A Ica
at da Auc+1 B E
al, 0dlp A Ip

—_—t —== - =
Jat da Aup+1 dp
where each u term represents the time during which immunity cannot be boosted further after a previous boost

and each d term represents the duration of immunity.

The probabilities of infection, detection and clinical disease are subsequently created by transforming each

immunity function by Hill functions. An individual’s probability of infection, b;, is given by

1_b1

()

b; = by by +

where b is the maximum probability due to no immunity, byb; is the minimum probability and Iz, and kg are

scale and shape parameters respectively.
An individual’s probability of clinical disease, ¢;, is given by
1-¢

1+ (ICA;C‘OICM)KC

$i=do| P11+

where ¢ is the maximum probability due to no immunity, ¢, ¢, is the minimum probability and I, and k. are

scale and shape parameters respectively.

An individual’s probability of being detected by microscopy when asymptomatic, g;, is given by

d, + 1= d
G =di+| ————
I D

1+ (72
(IDO) fo

where d; is the minimum probability due to maximum immunity, and Iy, and kp are scale and shape

parameters respectively. f;, is dependent only on an individual’s age is given by

%21_ 1— fno
da 1+(%)VD

where fj, represents the time-scale at which immunity changes with age, and aj and y;, are scale and shape

parameters respectively.
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The probability that an infected individual infects a mosquito upon being bitten is proportional to both their
infectious state and their probability of detection, with a lower probability of detection assumed to correlate
with a lower parasite density. Individuals who are in state D (clinically diseased), state U (sub-patent infection)
and state T (receiving treatment) contribute to an onward infection within a mosquito with probabilities cp, ¢y
and cy. In state A, contribution to an onward infection within a mosquito occurs with probability ¢4, and is given
by ¢y + (cp — cy)q"" where q is the probability of being detected by microscopy when asymptomatic, and y; is

a parameter that controls how quickly infectiousness falls within the asymptomatic state.
Human Stochastic Model Equations

Given the definitions above, the full stochastic individual-based human component of the model can be formally
described by its Kolmogorov forward equations. As before, let i index individuals in the population. Then the
state of individual i at time t is given by {j, k, t, [, t;, m, t,,, a, t}, where a is age, j represents infection status
(S,D,A,U,T or P), kis the level of infection-blocking immunity and ¢, is the time at which infection blocking
immunity was last boosted. Similarly, [ and t; denote the level and time of last boosting of clinical immunity,
respectively, while m and t,,, do likewise for parasite detection immunity. Let 6, ; denote the Kronecker delta
(85,4 = 1if p = q and O otherwise) and 6(x) denote the Dirac delta function. Defining P;(j, k, ty, , t;, m, t;,, a, t)
as the probability density function for individual i being in state {j, k, t, [, t;, m, t,,, a, t} at time ¢, the time
evolution of the system is governed by the following forward equation:

aPi(j' k’ tk’ l’ tl’ m! tm: al t) + aPL (j: kl tk! l; tl; ml tm; a; t) _
ot da B

8 slrePi(P k, ty, L t, m, ty, a,t) + 1y Py (U, k, ty, L t, m, ty, a, )]
+68; 4lrpPi(D, ke, ty, L t;, m, ty, a, )]
+68; y[raP (A ke, ty, L t, m, ty, a, )]
+8; plrrPi(T, k, ty, L, t,m, tpy, a, t)]

+(1 = b)e(t — dp)[8js + 8ip + Sja + 8u]0p © Pi(, K, ty, L £, m, 1, 0 )
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j'e{s,AU}

+blhl(t - dE) Ob 4 OC o Od ° Pi(D, k, tk, l, tl,m, tm, a, t)

d d d ]
+ [erﬁ + 14l 3 + r,Dm%] P.(j, k, ty,, L, t;,m,t,,, at)

+1 8(@)8(ty + Tpig)S(tr + Tpig)8 (6m + Thig)8; 56k001,00m,0 Z Pi(j' k, ty, L t, m, t,, a, t)
]'I

- |:ﬂ + TPSj,P + TU6j,U + TDSj,D + TA6j,A + rT(Sj,p
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Here O, , O, and 0, are commutative integral operators with the following action on a density

(j, k, tk' l, tl, m, tm, a, t) .

t—tg

Opof=8(t—t) f fGk—1Lt—ug—1lt,mt,at)dr+ 9( )f(j,k,tk,l,tl,m,tm,a,t)
0

Up

*© t—t
Oy0f = S(t—tl)f fG, k t,l —1,t —uc; —t,m, t,, a,t)dr + 9( ucl
0

)f(i’ k’ tk; ll tl’ m, tm’ a, t)

t—tn

O40f = S(t—tm)f G,k t,Lty,m—1,t —up —7,a,t)dt + 0( )f(j,k,tk,l,tl,m,tm,a,t).
0

D

Finally, 8(x) is an indicator function such that 8(x) = 1if x < 1 and 0 otherwise.

For simulation, a discrete time approximation of this stochastic model was used, with a time-step of 1 day. For
each individual k, [ and m are set to zero at birth, while ty, t; and t,,, are set to a large negative value —Tj;, (to
represent never having been exposed or infected, i.e. their immunity will always be boosted upon their first
exposure or infection event). Each immunity term increases by 1 for an individual whenever that individual
receives an infectious bite (k), or is infected (I and m), if the previous boost to k, [ and m occurred more

than ug, uc and uy days earlier, respectively. Immunity levels decay exponentially at rate 1y, -4 and 1p,

1 1 1 .
where 1, 14 and 17 are equal to — ,— and — respectively.
dp “dca dip

Mosquito Population Dynamics

The adult stage of mosquito development was modelled individually and is similarly described in its deterministic
framework before exploring its stochastic implementation. Adult mosquitoes will begin life susceptible to
infection (Sy), and will seek a blood meal on the same day they are born and every 3 days after that until the
mosquito dies. Each feeding day, mosquito i will be exposed to a force of infection, A,;, depending on the
infection status and immunity of the human the mosquito is feeding on. The overall force of infection towards
the mosquito population on a given day, Ay, is thus represented by the sum of the onward infection

contributions from each infected human, delayed by d;, delay due gametocytogenesis, which is given by

Zp Zr Za Zy
Ay = a,Qy Z m;Cp + m;cr + Z TiCy + Z TiCy (t - dg)
i=1 i=1 i=1 i=1

where a; is the daily rate at which a mosquito takes a blood meal, Q, is the proportion of bites that are on
humans (anthropophagy) and d, represents the delay from emergence of asexual blood-stage parasites to
sexual gametocytes that contribute towards onward infectivity. Infected mosquitoes then pass through a latent
infection stage (Eyn) that will last 10 days representing the extrinsic incubation period for the parasite (dew),
before becoming infectious to humans (/). Infectious mosquitoes remain infectious until they die. Whenever a
mosquito dies, it is replaced with a new susceptible adult mosquito. Analogously to the human model, when a
new adult mosquito emerges, the day on which it dies is drawn from an exponential distribution with a transition

rate of uy = 0.132 days. The differential equations summarising the adult stage of mosquitoes are given by
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dt = tmMy — Sy — Ay Sy
dEy ua
ar AySy — umEy — Ay (t — dgy) Sy (¢ — dgy)exp™#MEM

L Ay (t = dga) Sy (t — dgy)exp™#MIEM — iy Iy

where p, is the daily death rate of adult mosquitoes, and M, is the total mosquito population, i.e. Sy + Ey + .
Mosquito Stochastic Model Equations

As with the human transmission model, the full stochastic individual-based mosquito component of the model
can be formally described by its Kolmogorov forward equations. As before, let i denote each mosquito in the
population, and j denote their infection status. Let 6, ; denote the Kronecker delta function such that it equals
1if p = q and 0 otherwise. Defining P;(j, t) as the probability density function for mosquito i being in state {j, t}

at time t, the time evolution of the system is governed by the following forward equation:

aP,(j,
za(i t) _ 8 g [ Ami (PeCSi )] + 815, [Ami (¢ = dea) (Pi(Sus )]

+ aj,SMnuM[Pl'(SM! t) + Pi(EM! t)+PL(IM’ t)]

- P(j,t) [.UM + Ayl 85, + Api (€ — dEM)[5j,sM]]
Seasonality and Intervention Strategies

In simulations in which no seasonality is assumed, M,, remains constant throughout, i.e. whenever a mosquito
dies it is always replaced. When seasonality is incorporated, the maximum value that M,, can be oscillates with
a period of 365 days. This corresponds to a change in the birth rate of mosquitoes that reflects an assumed
impact upon the seasonal carrying capacity of the environment as a result of rainfall patterns upon mosquito
larval stage development. In these simulations, when a mosquito dies, it will only be replaced if the current total
number of mosquitoes is less than the maximum value that M,, can be. In simulations designed to replicate
regional settings, a rainfall curve, R(t), was estimated from rainfall data from 2002 to 2009 for the related first-
administrative unit using the first three frequencies of the Fourier-transformed data.® The seasonal total

mosquito population size, M,,(t), is thus given by

M,(t) = Mvo %

Where R is the mean annual rainfall, and M, represents the seasonal harmonic mean population size.

The computational constraints introduced by modelling individual mosquitoes and parasite population genetic
dynamics necessitated modelling intervention strategies indirectly. This was handled by assuming that an
introduction of intervention leads to a decrease in the average age of the mosquito population throughout the
duration of the intervention due to an increased mortality rate. As a result, the average age reflects a new
composite mortality rate due to both interventions and external causes. Similarly it leads to an increase in Q to
reflect mosquitoes that are repelled as a result of interventions but do not die. The daily rate of change to these

parameters in response to ITN and IRS coverage is calculated using an equivalent deterministic version of the
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earlier model that included interventions, before being introduced as a time-dependent variable within the

stochastic model.
Parasite Dynamics

Parasite Genetic Barcode

Parasites are modelled as discrete populations as a result of an infection event associated with a mosquito or a
human. Each asexual parasite is characterised by one genetic barcode, which contains information relating to
24-SNPs distributed across the parasite genome. These SNPs represent an increasingly used general SNP-based
molecular barcode that has been used for the identification and tracking of P. falciparum clones.” Sexual stages
of the parasite lifecycle within the mosquito are represented by both a female and male barcode, thus defining
the range of recombinants that could be produced. The within human parasite dynamics and model
considerations are discussed first before exploring the within mosquito parasite life cycle and associated

modelling implications. A schematic overview of the modelled parasite lifecycle stages is shown in Diagram 2.

In simulations modelling identity-by-descent (IBD), we extend the barcode to consider 24 “identity-loci”. An
identity loci can take any integer value required, allowing true identities to be compared. In the SNP-loci barcode,

each loci can only be 0 or 1, representing the minor and major allele for that barcode loci.
Within Human Parasite Dynamics

During a successful mosquito to human infection event, a number of asexual parasite barcodes are introduced
into the human, which may be observed in the ensuing gametocyte genotypes when considering onward
infectiousness from humans to mosquitoes. If the individual’s pre-erythrocytic immunity was boosted in the last
ug days no new parasite barcodes will be passed to the individual, otherwise more than one different asexual
parasite barcode that will be observed in the ensuing gametocyte genotypes may be introduced during an
infection event, representing cotransmission of genetically related parasites (if the mosquito was infected with
more than one sporozoite genotype). The precise distribution describing the number of genotypes is unknown,?
but the mean number of sporozoites within an inoculation event is well characterised by a geometric distribution
with mean equal to 10. The geometric mean will then be used to estimate the proportion of sporozoites that
are successful, &, which yields the maximum number of successful sporozoites in an individual with no pre-
erythrocytic immunity. If this number is less than 1, then a new total number of sporozoites is drawn until the
maximum number of sporozoites after incorporating ¢ is greater than 0. The observed number of successful
sporozoites is then calculated by conducting Bernoulli trials for all but one of the successful sporozoites (as we
assume one has to survive to found the infection) to see if they are successful, calculated using the individual’s

probability of infection, b;. In summary this can be written as:
Totalg,, ~ Geom(pspz)

Maxgp,, = round (Totalspz. E)
Maxspz—1

Observedg,, =1+ Z bernoulli(b;)
1
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There is no assumed maximum number of parasites, with individuals assumed to clear strains on the day that
they would have moved from a subpatent infection to susceptible for the strain considered, i.e. each acquired
strain follows an assumed trajectory in parasitaemia representative of a normal infection cycle, i.e. with a mean
duration of infectiousness equal to d4 + dy. Acquired strains can thus move “infection state” independently of
the human’s infection state. For example, a given individual is infected on day 0 and develops an asymptomatic
infection. The individual is scheduled to become subpatent on day 200, but they were bitten on day 150 and
developed clinical symptoms and moved to state D. When this happens, the parasite density of the strain
acquired on day 0 does not change and this strain will become a subpatent strain on day 200. After day 200, its
probability of being onwardly transmitted is thus equal to cy. After the parasite has moved to become a
subpatent strain, the day at which the strain would have been cleared, i.e. the individual would have moved
from state U to S if they had not been superinfected, is drawn and assigned to the parasite. On this drawn day
the subpatent parasite strain is assumed to have been cleared. By tracking parasites in this way we are able to
track the relative parasitemias of each acquired strain, enabling more accurate sampling of within host parasite
genetic diversity when passing on gametocytes to mosquitoes as well as enabling an equilibrium between
clearing old strains and acquiring new strains, which represents the multiplicity of infection. This is shown in the

schematic below (Diagram 2), which also details the key features of the barcode.
Within mosquito parasite dynamics

When a mosquito is infected, we sample from a zero-truncated negative binomial distribution that describes the
distribution of oocysts that form from a feeding event. The choice of a zero truncated negative binomial
represents the increasingly identified zero-inflated negative binomial that describes the relationship between
oocyst prevalence and mean oocysts per mosquito in SMFA studies.>*! The related negative binomial

distribution for the distribution of oocysts is given by

Xoocysts ~NB (Slzeoocysts: Shapeoocysts)

where X;,cy5ts represents the number of oocysts that will be formed, with mean equal to 2.5 and a shape equal
to 1, which captures the mean and range of oocysts observed in natural P. falciparum infections %2 For each
oocyst formed, two barcodes are sampled from the infected host representing the female and male gametes
that led to the oocysts formation. These two barcodes will result in up to 4 different potential genotypes
(reflecting the immediate two step meiotic division that takes place after zygote formation) represented within
the sporozoite population within the oocyst. When an infectious mosquito seeks a blood meal and leads to an
onward infection, a value for Observedsy, is sampled. The oocyst source for each onward infection within a
coinfection is sampled from oocysts that have ruptured, i.e. the infection event that led to the oocyst occurred
more than 10 days earlier. At this point recombination is simulated by randomly choosing either the male or
female allele at each SNP position in the barcode. The random sampling in this represents the assumed
independent segregation events resulting from the absence of genetic linkage between barcode SNP positions.
Once a recombinant has been simulated it is stored and associated with the oocyst from which it came. If the
same oocyst is chosen to lead to an additional infection, then the previously generated recombinant has a 25%

chance of being onwardly transmitted and there is a 75% chance that a new recombinant is generated and
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subsequently saved. This process will continue in ensuing onward infection events that result from this oocyst
until four recombinants have been simulated, at which point they each have a 25% chance of being onwardly
transmitted. The above thus introduces an assumption that sporozoites will remain onwardly-transmissible for
the remainder of the mosquito’s life, with no effect upon their relative probability of being onwardly transmitted

in relation to sporozoites that resulted from a more recently ruptured oocyst.

F[ Parasite Genetic Life Cycle within Mosquito} \
SUSCEPTIBLE EXPOSED (~10 days) INFECTIOUS
Blood meal s * .
containing haploid Diploid Zygote Ookinete Development Ookinete Oocyst Ruptured Oocyst
parasite gametocytes Midgut Epithelium
N 2N 2x2N 4xN 4xN ~1000s N*

Gamete -
Qg
[ Production Interphase 2 StDei?l i’:iz:mc
[T & Fertilization
(DI

*Up to 4 different
*More than one haploid genotypes in

zygote may form resultant sporozoites
\ 7
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10000000B0RC0N0N0N0N000 2nd infection: o o o e ey and cesrom ey
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Diagram 2: Parasite Dynamics within the transmission model. Individual mosquitoes are tracked, which allows
for recombination to be modelled explicitly. Populations of parasite clones are tracked, and multiple oocysts are
able to be formed from a feeding event, as well as multiple genetically distinct sporozoites onwardly transmitted.
A "barcode" is associated with each parasite clone and can either represent biallelic SNPs, or unique identities
that allow IBD to be calculated.

Importation Rate

The non-spatial, closed population nature of the model will result in the eventual fixation of a single genetic
barcode. As such, when conducting simulations designed to replicate regional settings, an estimate of the
importation rate was calculated, yielding to a daily probability that an infection is due to an imported case. The

importation rate represents the sum of two different flows of infection into a regional setting:
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A. Individuals who are infected outside the region while travelling to and from other areas

B. Visiting travellers from outside the region who infect mosquitoes within the admin unit

These two process are incorporated at the same stage within the model, whereby there is a temporally

dependent daily probability that a generated recombinant genotype is due to an importation as follows
Prob(Importation) = Simpores(t)

where §impores(t) is the population proportion of new infections resulting from importations on a given day.
This parameter changes over time to reflect changes in regional seasonality (both within the region and
neighbouring regions), and different rates of change in malaria prevalence across neighbouring regions.*? If the
recombinant is due to an importation, then a random barcode is produced and passed on. This barcode will also
be stored and associated with an oocyst within the mosquito considered if it was probabilistically determined
to be due to the second flow of importation defined above (B), determined by the ratio of these two flows of
infection. Predicted rates of the two flows of infection above are calculated for each year between 2000 and

2015 using a fitted gravity model of human mobility.**
Model Parameter Values

Table 1: Parameter estimates used within the model were taken from Griffin et al. 2014, 20152 and 2016

Parameter Symbol Estimate

Human infection duration (days)

Latent period dg 12
Patent infection dy 200
Clinical disease (treated) dr 5
Clinical disease (untreated) dp 5
Sub-patent infection dy 110
Prophylaxis following treatment dp 25

Treatment and Importation Parameters

Probability of seeking treatment if clinically diseased fr Variable

Importation Rate Simports 0.01

Infectiousness to mosquitoes

Lag from parasites to infectious gametocytes dy 12 days
Untreated disease p 0.0680 day™
Treated disease cr 0.0219 day™
Sub-patent infection cy 0.000620 day™*
Parameter for infectiousness of state A Y1 1.824

Age and heterogeneity

Age-dependent biting parameter p 0.85

Age-dependent biting parameter a, 8 years
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Daily mortality rate of humans u 0.000180

Variance of the log heterogeneity in biting rates o? 1.67

Immunity reducing probability of infection

Maximum probability due to no immunity b, 0.590
Maximum relative reduction due to immunity b, 0.5
Inverse of decay rate dg 10 years
Scale parameter Ipo 43.879
Shape parameter Kg 2.155
Duration in which immunity is not boosted ug 7.199

Immunity reducing probability of clinical disease

Maximum probability due to no immunity bo 0.791
Maximum relative reduction due to immunity b1 0.000737
Inverse of decay rate dca 30 years
Scale parameter Ico 18.0237
Shape parameter K¢ 2.370
Duration in which immunity is not boosted Uc 6.0635
New-born immunity relative to mother’s Py 0.774
Inverse of decay rate of maternal immunity dy 67.695

Immunity reducing probability of detection

Minimum probability due to maximum immunity d, 0.161
Inverse of decay rate dip 10 years
Scale parameter Ipo 1.578
Shape parameter Kp 0.477
Duration in which immunity is not boosted Up 9.445
Scale parameter relating age to immunity ap 21.9 years
Time-scale at which immunity changes with age foo 0.00706
Shape parameter relating age to immunity Yo 4.818

Mosquito Population Model

Daily mortality of adults Uy 0.132
Daily biting rate ap 0.333
Anthropophagy Qo 0.92
Extrinsic incubation period dewm 10 days

Negative Binomial shape parameter for distribution of oocyst frequencies upon

infection ShapegucyStS 25
Negative Binomial size parameter for distribution of oocyst frequencies upon infection | sizeyocysts 1
Human Parasite Parameters

Geometric distribution of total sporozoites in an infectious bite probability Pspz 1/10

Percentage of sporozoites successfully reaching blood-stage & 20% (fitted)
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