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Abstract

Recent advances in multiplexed imaging technologies promise to improve the understanding
of the functional states of individual cells and the interactions between the cells in tissues. This
often requires compilation of results from multiple samples. However, quantitative integration of
information between samples is complicated by variations in staining intensity and background
fluorescence that obscure biological variations. Failure to remove these unwanted artefacts
will complicate downstream analysis and diminish the value of multiplexed imaging for clinical
applications. Here, to compensate for unwanted variations, we automatically identify negative
control cells for each marker within the same tissue and use their expression levels to infer
background signal level. The intensity profile is normalized by the inferred level of the negative
control cells to remove between-sample variation. Using a tissue microarray data and a pair of
longitudinal biopsies sample, we demonstrated that the proposed approach can remove unwanted
variations effectively and shows robust performance.

1 Introduction

Recent developments in multiplexed staining and imaging such as cyclic immunofluorescence (Cy-
CIF) [1] [2] [3], multiplexed IHC [4], CODEX [5] and other multiplexed imaging methods have
greatly expanded the palette that researchers and pathologists can use to visualize and analyze tis-
sue sections, allowing deep in situ assessment of the tumor microenvironment complexities [6–11].
Multiplexed analyses have the advantages of both highly multiplexed detection and retention of
morphological context at the level of single cell and subcellular compartments. However, integra-
tion of information from multiple samples is challenging due to the lack of normalization procedures
that can correct for technical variations in staining intensities between samples that result from
variations in fixation, antibody concentration, etc. so that biological differences between samples
can be accurately assessed [6, 12,13].

At present, the most common approach for the quantitative assessment of images of IHC- and IF-
labelled material is an analysis technique commonly referred to as ‘gating’ or ‘binary thresholding’
based on single cell features. Essentially, a particular pixel intensity level (the threshold) is manually
defined and then used to demarcate what is considered to be ‘signal’ (the immuno-labelled material
of interest) and ‘noise’ (non-specific material attributable to the immuno-labelling process). This
manual thresholding procedure can only provide genuinely valid results if one adjusts the threshold
cut-point for each individual sample to deal with such intensity variations. This approach is often
used during analysis of multiplex IHC data [4]. However, manual thresholding is subjective and
cannot be scalable by its nature. Our recent analyses of images acquired during Cyclic IF analyses
of tissue microarrays showed that tissue to tissue variation in autofluorescence and/or nonspecific
immunofluorescent staining required manual setting of individual thresholds for each tissue and
marker, creating a bottleneck and introducing bias. As an extreme example, we observed in some
cases that the intensity value of negative cells in one tissue were higher than the values of positive
cells in a separate sample. In this case, setting a global threshold was not possible. This extreme
variation also precluded taking full advantage of the quantitative nature of the fluorescence images.

Recently, unsupervised clustering approaches [14–17] have been adopted for identification of
different cell types from a continuous intensity distribution, instead of binarization. However,
the sample-to-sample intensity variations due to the technical artifacts throughout the procedure
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Figure 1: Multiplexed immunostaining intensity varies across samples; intensity profiles from three
adjacent sections (5µm) show intensity variations. t-SNE embedding of individual single cell inten-
sity features from three adjacent sections show uniformly distributed in immune cell types (bottom
half) but clustered group in cancer cell type (top half) due to the intensity variation in cytokeratin
(CK) markers.

cause cells to cluster by samples or batches, instead of their cell types. For the above example we
mentioned, applying unsupervised clustering without compensating intensity variation will yield
a mixture of positive and negative cells from two samples due to batch effects. Therefore, the
corrections of the unwanted intensity variations due to technical artifact and batch-effect within
a group of samples are required as pre-processing steps for unsupervised clustering approaches
to identify cell types. Quantile normalization in which intensity measurements that encompass
values between 1st and the 99th percentile are aligned, is often used as a preprocessing step [2] to
normalize intra-sample variations. However, if samples contain few or no positive cells for a certain
marker, different cell populations, or different intensity distributions, quantile normalization may
cause confounding variations by changing overall intensity profiles.

The general problem is that the intensity features produced by multiplexed immunostaining
have different intensity variations across markers, tissues, batches, etc. As an example, Figure
1 shows intensity variation from three adjacent sections (considered as almost technical replicates
since each section is acquired by 5µm thickness difference) where these unwanted variations may be
caused by technical issues such as batch effect, exposure time, protocols, etc., or tissue preparation.
Note that in our previous study [24], we were able to register one section (Hematoxylin and Eosin
stain) to the other section (IF imaging) based on nuclei staining (H-stain and DAPI) where they are
5µm thickness difference, which guarantees little variation in cell population within 5 µm difference.
These sections were stained on separate days using Cyclic IF for 37 proteins and phosphoproteins
identifying tumor, immune and stromal cells and functional states. Individual cells in the multiplex
images were segmented using watershed segmentation followed by morphological operation and
staining intensities were calculated for each segmented cell [3] [18]. Figure 1 (right) shows t-SNE
projection based on mean intensity profiles where each dot represents a single cell feature and red,
green and blue color indicate section 1, 2, and 3 respectively. The top region of t-SNE shows cancer
cell clusters from each section but due to intensity variation of cytokeratin (CK) markers, it shows
batch effect (i.e., red, green and blue clusters). In contrast to cancer cell types, the bottom region of
t-SNE represents immune cell types showing more a uniformly distributed pattern between samples
which we expect to see in the ideal setting, i.e., if there is no intensity variation across three adjacent
sections.

In IHC, the antibody validation reference is performed with control tissues known to contain the
antigen of interest detected by an identical staining method. For example, “sausage technique” has
been used where the entire sample has been proposed as a reference control standard [19,20]. It is
recommended that validation studies be carried out on multi-tissue control blocks containing both
known-positive and known-negative normal and tumor tissues [21]. If we consider only a few markers
in typical IHC or IF staining, it is feasible to include control tissue samples in staining/imaging
process for individual markers and address antibody validation or staining variation by determining
an appropriate transformation or normalization for each marker. Unfortunately, it is not practical
to add control tissue samples for reference of individual Cyclic IF channels since there exist tens of
markers (> 40) that may require more control tissue samples than the test sample to cover various
cell types and functional states. In addition, even though we could normalize features based on
reference samples, there still exist other uncontrollable factors causing intensity variations such as
tissue fixation, processing in a different way than the test tissue, and antibody lot-to-lot variations
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especially for large cohort study.
In parallel, computational approaches have been proposed to adjust for unwanted variation

and can be divided into two broad categories: 1) global adjustment and 2) an application specific
method [22]. As an example, quantile normalization (QN), in which intensity measurements that
encompass values between 1st and the 99th percentile are aligned, generally regarded as a self-
contained step that plays no role in the downstream analysis of the data, belongs to the first
category. In the second category, we find methods that incorporate adjustment into the main
analysis of interest. For instance, the batch effects can be handled by explicitly adding “batch
terms” to a linear model. Other linear model-based methods such as factor analysis attempt to
infer the unwanted variation from the data and then adjust for it. However, these models require
technical replicates or a priori information to identify batch effects, which is not feasible in our
case, especially because tissue biopsies are precious and are often difficult to obtain in sufficient
quantities. In addition, for needle biopsy samples, it is difficult to consider individual region of
interests (ROIs) as technical replicates due to the heterogeneity.

We now propose RESTORE for image quantification in a multiplexed imaging platform to
address these issues. A key feature in RESTORE is the recognition that some cell types defined
by reference markers in the multiplex can be safely assumed to have background or noise levels
1 for other markers in the multiplex. For example, immune cells can be assumed to have back-
ground or noise levels of cancer associated cytokeratins and vice versa. RESTORE uses these
orthogonal staining patterns to set negative staining thresholds as a guide to further image inten-
sity normalization. We then make the simplifying assumption that signals in the positive channels
can be normalized by dividing by the inferred background level. This assumption is inaccurate for
low signal levels but becomes increasingly accurate for high signals based on our simulation study
(Section 4.5). We demonstrate the feasibility of the proposed approach for intensity normalization
of multiplexed image data for robust analysis and comparison of tissue samples during analysis of
a data set comprised of Cyclic IF analyses of three adjacent sections cut from a tissue microarray
comprised of 59 cores from diverse breast cancers and stained for 37 proteins and phosphoproteins
selected to identify diverse tumor and stromal cells and functional status.

2 Results

One could consider two approaches to evaluate the proposed approach: 1) use cell classification
based on manual gating as a ground truth, or 2) use technical replicates as a ground truth. The
former approach needs manual gating for cell type classification, but it might be subjective and
time consuming to classify various cell types from many TMAs (177 total, 59× 3 adjacent sections
as shown in Figure 2 (left)). For the latter one, we can use 59 TMAs that have three adjacent tissue
sections. Since each TMA sample has three adjacent tissue samples, we could consider them as
almost technical replicates where we expect to see a similar cell type component in their population.
For instance, if there is no intensity variation across these three adjacent tissue samples, no matter
where we draw threshold line or gate, the population of those cell types should be similar across
three adjacent tissue samples. Thus, we measure the cell component as a metric and evaluate
how the proposed approach compensates intensity variation. We also compare the correlation
coefficient of cell composition between three adjacent sections with and without using the proposed
normalization technique. Finally, we illustrate a clinical use case by applying the proposed approach
to the study with longitudinal biopsies.

2.1 Application with TMAs analysis using 3 adjacent tissue sections

We compare correlation coefficient of individual cell population of three adjacent TMAs across
59 samples where rij represents correlation coefficient of cell population between the i-th and
the j-th section as shown in Figure 2 (left). We define cell population by two approaches: 1)
counting positive cell count for individual markers by inferring background signal and 2) using an
unsupervised clustering approach by changing the number of clusters.

2.1.1 Cell population comparison by inferring background signal

First, we count positive cell population across all the Cyclic IF markers by inferring background
signal. In order to illustrate intensity variations across three adjacent sections, we infer background
signal in two different approaches. For a local approach, we infer background signal for an individual
adjacent section, and for a global approach, we combine intensity features across three adjacent
sections and infer background signal. If there is no intensity variation, we expect the local and
global approaches to show similar results. With a local approach, we observe high correlation

1Herein, we consider intensity level of negative cells defined by mutually exclusive marker pairs as background or
simply noise level (interchangeably used).

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2020. ; https://doi.org/10.1101/792770doi: bioRxiv preprint 

https://doi.org/10.1101/792770
http://creativecommons.org/licenses/by-nc-nd/4.0/


#1

#2

#3

#1 #2

r12 r23

r13

#3

r12 r23 r13
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
corr coef (cell comp. based) - local

r12 r23 r13
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
corr coef (cell comp. based) - global

Figure 2: Example of three adjacent TMA sections (left, n = 59 with three adjacent sections)
and correlation coefficient based on group component using unsupervised clustering across these
samples; middle and right figures represent correlation coefficient with and without the proposed
approach (RESTORE) respectively where each dot represents single TMA core. Note that in the
result of the proposed approach, three TMA cores show poor correlation coefficient (below 0.8) but
we confirm that those three cores show technical artifacts such as segmentation or tissue loss.

of cell composition across three adjacent TMAs as shown in Figure 2 (middle). Moreover, with
a global approach, the correlation of cell composition across three adjacent sections is poor, due
to the intensity variation across samples as shown in Figure 2 (right). We note that in Figure
2 (middle, the proposed result), we found that only three cores in TMAs show poor correlation
coefficient due to the technical artifacts such as segmentation or staining issues.

Second, we compare the correlation of cell populations across individual markers (n = 18) as
shown in Figure 3. Similar to the previous result, the local approach shows better correlation
which confirms that the proposed method provides a robust cell classification result by inferring
background signal from the negative control group and compensating intensity variation.

Lastly, we use the coefficient of variation (cv = σ/µ, known as relative standard deviation
(RSD)) of positive cell count based on the inferred threshold of background signal where µ and σ
represent mean and standard deviation of positive cell counts across three adjacent TMAs respec-
tively. The coefficient of variation is a standardized measure of dispersion of a frequency distri-
bution, which is commonly used in analytical chemistry to express the precision and repeatability
of an assay. We use coefficient of variation to address the positive cell number across individual
markers. Figure 4 shows the extent of variability of positive cell count in relation to the mean
of population across individual marker. Since there exist intensity variation across IF intensity
features, the coefficient of variation of the global approach shows large variation compared to the
coefficient of variation of the local approach. For CD45 marker, although the global approach shows
slightly better performance, we note that a scale of the value is quite small compared to other cv
for different markers. Similarly, for Ki67 marker, we do not see much difference between the local
and global approach.

2.1.2 Cell population comparison with and without the proposed intensity normal-
ization by using unsupervised clustering approach

We apply an unsupervised clustering algorithm (k-means) with and without the proposed intensity
normalization method on the three adjacent sections to define cell types. If the proposed method
reduces intensity variation properly, we expect to see the identified cellular population by unsuper-
vised clustering to be similar across the three adjacent sections. We run k-means clustering with
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Figure 3: correlation coefficient based on cell component across individual markers (n = 18).
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Figure 4: Coefficient of variation (cv = σ
µ) of positive cell counts based on local (left) and global

(right) threshold values.

N = 5, 10, 15 and 20 and calculate correlation coefficient of cell populations as shown in Figure
5. The top row illustrates correlation of cell types across three adjacent sections without inten-
sity normalization and bottom row shows correlation of cell types with the intensity normalization
approach.

Since the proposed approach reduces intensity variation, the correlation coefficient based on
clustered group component shows high correlation. On the other hand, due to the intensity vari-
ation, unsupervised clustering often identifies the same cell types from each section into different
groups (i.e., one cluster originates from section 1 and the other from the other section). Thus, with-
out normalization, unsupervised clustering identifies almost batch effect, i.e., the same cell type
can be clustered into different clusters as shown in Supplementary Figure 1, and the correlation of
cell population is lower.

As the number of clusters (N) increases, the correlation decreases slightly although the pro-
posed method still improves correlation compared to no normalization. Even though we expect to
see similar populations across three adjacent sections, there are still small variations in cell popu-
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Figure 5: Correlation coefficient based on group component using unsupervised clustering across
three adjacent TMA samples (n = 59) where top figure shows the result without the proposed
approach and bottom figure shows the result with the proposed approach.
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Figure 6: Cyclic multiplexed IF Intensity distribution across Bx 1 and Bx 2: (left) heat map
shows intensity features without and with the proposed normalization and (right) intensity distri-
bution of selected markers (CK45, Ecad, CK17, HER2) (all other markers’ distribution is shown
in Supplementary Figure 2.

lations which may separate as the number of clusters increases as shown in Figure 5 (more details
shown in Supplementary Figure 1) and cause lower correlation of cell composition. As an example,
Supplementary Figure 1 (top left) shows cell population distribution when we cluster cells into five
clusters (N = 5). Without normalization, clustered ID 1 population is mainly from batch 1 (or
section 1), clustered ID 2 population is mainly from batch 2 (or section 2), and clustered ID 4 is
mainly from batch 3 (or section 3) due to the intensity variation. On the other hands, with the
proposed approach, each clustered ID shows similar distribution across three adjacent sections.

2.2 Application with longitudinal biopsies sample study

We validate the proposed approach with longitudinal biopsy sample study, from the Serial Measure-
ments of Molecular and Architectural Responses to Therapy (SMMART) trials [23] where tissue
biopsy, fixation, processing and multiplexed imaging are done at different times. Since we need to
identify cellular composition changes for comparative study from longitudinal biopsies (before/after
drug treatment), it is critical to remove unwanted variation and integrate two datasets together
for unsupervised clustering analysis. Because of the previous aforementioned aim, and because we
often observe different cell population in paired biopsies, we cannot use the quantile normalization
approach.

Figure 6 (left) shows a heat map of intensity profiles. Without normalization, if we apply any
unsupervised clustering, it will cluster cells based on their batches (i.e., Bx1 and Bx2) as we can
see huge variations. By applying the proposed approaches, intensity profiles look similar to each
other across all the markers. Figure 6 (right) shows intensity distribution changes before/after
normalization. As we can see, the proposed approach aligns intensity profiles by removing any
unwanted variation and matching the intensity level of negative control. Note that if we use
quantile normalization instead of using the proposed approach, we may generate an obscure shift
of intensity distribution depending on their cell populations as shown in CK17 and HER2 and
we expect that this causes artifact. More detailed information such as a comparison between
before/after normalization for all other markers is shown in Supplementary Figure 2.

3 Discussion

In order to infer background signal, for a given i-th marker, we need to find most mutually exclusive
marker pairs to identify negative control group. For each marker, we examine all pairs and choose
top 5 mutually exclusive marker pairs based on biologically known mutually exclusive marker and
a data-driven approach (Section 4.2). Supplementary Table 1 shows a comparison between the
data-driven approach (left) and biologically known mutually exclusive marker pairs (right). We
found that the data-driven approach identifies similar and consistent marker pairs to biologically
known mutually exclusive pairs. The red color in the data-driven approach indicates the matched
marker pairs presented in biological knowledge-based approach. Similarly the green color in the
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biological knowledge-based approach indicates the matched marker pairs presented in the data-
driven approach. To apply the proposed approach, there might be potential challenges such as non-
specific staining, inherent variable background signal, variability in mutually exclusive biomarkers
and cell types. We recommend to use both data-driven and biologically known mutually exclusive
marker pairs for validating data as quality control purpose. For instance, if there exists non-
specific staining in known biologically mutually exclusive markers, it will show positive correlation.
In this case, we can use the other mutually exclusive markers to infer background. Herein, as
we described, we use biologically known mutually exclusive markers for inferring autofluorescence
signal after visual confirmation. Moreover, one can use more than one mutually exclusive markers
to have more robust background inference.

Mutually exclusive marker identification works reasonably well in many cases and confirms that
biological known mutually exclusive marker pairs show mutually exclusiveness in our cmIF imaging
data. From data-driven approach, in general, immune markers show most mutually exclusiveness
with cytokeratin markers. Interestingly, we also observe more specific mutually exclusiveness pat-
terns, for instance, the top mutually exclusive pairs with CD20 which is B-cell marker (i.e., lymphoid
lineage immune cell with CD45+) are CD68+, a macrophage (myeloid lineage) marker, and CD31+,
an endothelial cell marker and it is consistent with biologically known mutually exclusive cell types.

We do not see CK5 in the data-driven approach. This is because staining of CK5 marker is bad
in our dataset. We also observe that a few cells often show stain in both cancer and immune markers
and thus, we need to carefully check marker staining quality for this analysis. Herein, we simply
use (fixed) biologically-driven mutually exclusive marker pairs to infer background signal, instead
of identifying the most mutually exclusive pairs for individual cores from the tissue microarrays
(TMAs) dataset and a longitudinal study.

In addition, these potential issues can be addressed mostly in quality control (QC) step. To
support this, we implement a simple visualization tool for multiplexed imaging data based on open
source platform [25] which will be useful to visually evaluate non-specific staining, inherent variable
background signal or mutually exclusive biomarkers as an alternative way to visualize data. As an
example, Supplementary Figure 3 demonstrates use-case of multi-dimensional image viewer with
selected markers (CD45 and CK19) which shows mutually exclusiveness as shown in scatter plot
(right).

4 Methods

We now propose RESTORE as a practical strategy for batch effect corrections during staining
that does not require adding control tissues or using technical replicates in staining and processing.
Our approach is composed of two parts: 1) Definition of mutually exclusive marker pairs or cell
types that are known to be positive for a given markers and negative for others based on biological
literature or data driven based, and 2) inference of background levels for specific markers in cells
that are defined to be negative for those markers based on positive identifying markers. The
positive/negative marker sets used in this study are defined in Supplementary Table 1.

For a given reference marker, we can use target marker (shown in Supplementary Table 1) which
shows mutually exclusiveness or positive-negative associations to define the background levels of
negative controls. For a given reference marker, since we expect the background levels of negative
controls should be aligned within the same ranges across tissue samples, we can normalize a reference
marker expression by the inferred background levels. Also, since we have thousands or millions of
cells in tissue and various markers to characterize different cell types, it is not difficult to find a
negative control for individual markers from the same tissue sample.

4.1 Concepts for intensity normalization

Here, we introduce the fundamental concepts for intensity normalization. For a given reference
marker, expression levels of the negative control are known a priori to be truly unassociated with
the factor of interest. On the other hand, positive control markers are those expression levels that
are known a priori to be truly associated with the factor of interest. For example, if the factor of
interest is finding immune cell, CD45 would be a positive control, and a negative control would
be any cytokeratin (CK-) markers. Since the expression of the negative control group is known to
be unassociated with the factor of interest, there is no danger in picking up any of the relevant
biology and thus we could use them to remove unwanted variations. Even though individual tissue
sample may have different background levels, we identify negative cells for each tissue sample by
using mutually exclusive marker pairs in Supplementary Table 1 and then make their expression
level below the level of any positive cells by normalized with the inferred background levels.

For our cyclic multiplexed IF (cmIF) imaging [3], we have tens of markers as shown in Supple-
mentary Table 1. Thus, for a given i-th marker as a reference, there exists at least one marker,
the j-th marker (target), showing a mutually exclusive expression pattern. The positive cell of the
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Figure 7: Conceptual illustration (left) and example of scatter plot using longitudinal biopsy sam-
ples (Bx1: middle and Bx2: right): mean intensity distribution of two markers shows different
baseline and signal level of each marker (CK7 and CD8) in Bx1/2 where green lines illustrate ex-
ample of inferred intensity of baseline for each marker, red and blue line shows corresponding cell
population density.

i-th marker cannot express the positive signal of j-th marker as shown in Figure 7 (left). This is
a reasonable assumption; since current cmIF panel includes immune/cancer markers (biologically
mutually exclusive). Therefore, there should exist at least one mutually exclusive marker pair.
Herein, we do not consider if there exists no positive cell in the reference marker since this marker
is not useful for further analysis by definition (i.e., no positive staining in the tissue sample).

4.2 Identifying mutually exclusive marker pairs

This procedure can be done by using either 1) biologically known mutually exclusive marker infor-
mation (i.e., a cancer vs. immune marker), or 2) a data-driven approach by identifying mutually
exclusive information from the i-th marker and all other maker pairs. For the latter case, we use a
Singular Value Decomposition (SVD) to measure mutually exclusiveness.

Define D =

xi1 xj1
· · · · · ·
xin xjn

 ∈ Rn×2 where i, j represents the i-th and j-th markers respectively

and x{·} represent mean intensity of individual cell. By using SVD, we can factorize D = UΣV ∗

where U ∈ Rn×n, Σ ∈ Rn×2 and V ∗ ∈ R2×2. U and V ∗ can be viewed as rotation matrix and
the diagonal entries σi of Σ are known as the singular values of D which can be regarded as a
scaling matrix. Since the singular values can be interpreted as the semi-axis of an ellipse in 2D,
we measure mutually exclusive of two markers expression as a ratio (r = σ2

σ1
). If two markers are

highly correlated with each other, we will get an elongated ellipse (i.e., r is close to zero). On the
other hand, if they are mutually exclusive, you will get a more circular shape (i.e., close to one).

4.3 Identifying cell types via non-negative matrix factorization (NNMF) or
sparse subspace clustering (SSC)

For a given mutually exclusive marker pair, we define mean intensity profiles of two markers as

Y =

Y1

Y2

Y3

 ∈ RN×2 where N(=
∑3

i=1 ni) represents the total number of cells, Y1 ∈ Rn1×2 represents

2-dimensional (i-th and j-th markers) mean intensity profile of a set of the i-th marker positive cells,
Y2 ∈ Rn2×2 represents intensity profile of a set of the j-th marker positive cells and Y3 ∈ Rn3×2

represents intensity profile of a set of negative cells for both the i-th and the j-th marker where ni
represents the number of cells belong to Y i.

The l-th row of Y can be denoted by y′l =
[
yl1 yl2

]
=
[
bli + sli blj + slj

]
∈ R1×2 where bli

and blj represents baseline (autofluorescence level) of the i-, j-th marker respectively and sli and slj
represents signal level of the i-th, j-th marker respectively. By definition (and expectation of high
signal-to-background ratio (SBR) of immunofluorescence intensity profile), we assume sli � bli > 0
and slj � blj > 0:

Lemma 1. Consider mutually exclusive set (i, j)- markers, i.e., {Y1,Y2,Y3} where y′p ∈ Yp, p
represents group index, i.e., p = {1, 2, 3}. Then yp cannot be represented by linear combination
of αyq + βyr with constraint (α > 0 and β > 0) where p 6= q 6= r and (p, q, r) represents any
permutations of (1, 2, 3).
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Proof. (suppose not) i.e., yp = αyq + βyr where we simply consider p = 1, q = 2 and r = 3:[
bpi + spi
bpj

]
= α

[
bqi

bqj + sqj

]
+ β

[
bri
brj

]
(1)

Then, reformulating this[
α
β

]
= − 1

sqjb
r
i + (bri b

q
j − b

q
i b
r
j)

[
brj −bri

−(bqj + sqj) bqi

] [
bpi + spi
bpj

]
(2)

Recall sli � bli or simply assume brj ≈ b
p
j ≈ b

q
j , b

r
i ≈ b

p
i ≈ b

q
i :[

α
β

]
= − 1

sqjb
r
i + (bri b

q
j − b

q
i b
r
j)

[
(brjb

p
i − bri b

p
j ) + brjs

p
i

−(bqjs
p
i + sqjb

p
i + sqjs

p
i ) + (bqi b

p
j − b

p
i b
q
j)

]
(3)

≈ − 1

sqjb
r
i

[
brjs

p
i

−(bqjs
p
i + sqjb

p
i + sqjs

p
i )

]
=⇒

[
(−)
(+)

]
(4)

(by contradiction).

By Lemma 1, simple non-negative matrix factorization (NNMF) or sparse subspace clustering
(SSC) or other method (e.g. gaussian mixture model (GMM)) with this constraint should be able
to identify the group of cell types for a given mutually exclusive pattern.

4.3.1 Non-negative Matrix Factorization (NNMF)

We can use non-negative matrix factorization:

min ‖Y −WH‖F subject to W ≥ 0, H ≥ 0 (5)

If we consider 2-dimensional feature set (i.e., mean intensity profile), there exists a trivial solution,
i.e., W = Y and H = I so we need to consider additional constraint such as H 6= I. If we include
more than 2 dimensional features by adding more features including total intensity, other cellular
mean intensity (nuclear-, cytoplasm-, or cellular), we can simply use (5).

4.3.2 Sparse Subspace Clustering (SSC)

We can use sparse subspace clustering with additional constraint by considering that each data
point in a union of subspaces can be efficiently reconstructed by a combination of other points in
the dataset. More precisely, each data point for data point ym = Y ′cm where cmm = 0 and cij ≥ 0
(additional constraint). Then,

min ‖ci‖q subject to ym = Y ′cm, cmm = 0, cij ≥ 0. (6)

min ‖C‖1 subject to Y ′ = Y ′C, diag(C) = 0, cij ≥ 0. (7)

In practice, since the intensity values of ym are all positive and l1 optimization penalizes a spar-
sity of coefficient C, it does not choose negative coefficient of cij even without having additional
constraint (i.e.., cij ≥ 0) in the optimization problem in (6) or (7). In this paper, we simply use
the optimization problem in (7) to identify two groups, i.e., positive cell and negative cell group to
infer background signal.

4.4 Inferring autofluorescence level with mutually exclusive marker pairs

Here, we simply use SSC to divide Y into two groups, either [Y1⊕Y3 and Y2] or [Y1 and Y2⊕Y3],
by selecting the number of clusters is equal to 2 (note that one could cluster more than 2 and
assign each cluster into the group of interest for inferring background or autofluorescence signal).
Since we are interested in inferring baseline signal of the i-th marker, we measure the i-th marker
expression from the clustered group and determine the group for measuring baseline signal:Y1

Y2

Y3

 =

Y 1
1 Y 1

2

Y 2
1 Y 2

2

Y 3
1 Y 3

2

 =

B1
i + S1

i B1
j + S1

j

B2
i + S2

i B2
j + S2

j

B3
i + S3

i B3
j + S3

j

 =

B1
i B1

j

B2
i B2

j

B3
i B3

j

+

S1
i 0

0 S2
j

0 0

 (8)

For a given clustered group, either [Y1 ⊕ Y3 and Y2] or [Y1 and Y2 ⊕ Y3], we can infer baseline
signal of the i-th marker from either B2

i (from Y2) or (B2
i or B3

i ) (from Y2 ⊕ Y3). Note that we
can measure the autofluorescence level or baseline signal from each clustered group Y q

p and identify
background signal and signal level respectively as follows:
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E[B2
i ] ≈ E[Y 2

1 ] ≈ E[B3
i ] ≈ E[Y 3

1 ] (9)

E[B2
j ] ≈ E[Y 1

2 ] ≈ E[B3
j ] ≈ E[Y 3

2 ] (10)

E[S1
i ] ≈ E[Y 1

1 ]− E[Y 3
1 ] ≈ E[Y 1

1 ]− E[Y 2
1 ] (11)

E[S2
j ] ≈ E[Y 2

2 ]− E[Y 1
2 ] ≈ E[Y 2

2 ]− E[Y 3
2 ] (12)

4.5 Intensity normalization by inferring autofluorescence signal

For a given reference marker (i.e., i-th marker), intensity normalization step is straightforward by
the fact that the autofluorescence level of negative controls (the i-th marker expression of B1

i , B2
i or

B3
i ) should be in the same ranges across batches or samples. As we infer background signal based

on the negative control, we can scale intensity values by the inferred background signal level of the
negative control for individual sample respectively to align intensity distribution. One could use
maximum intensity value from the negative control instead of using mean intensity value. Thus,
for a given reference marker, all the background level or baseline level of the negative control is
below one, i.e., in the same ranges across samples.

As an example, consider two sample tissues p and q which have different gains Gp and Gq. This
gain reflects any possible source of intensity variation such as tissue fixation, exposure time, batch
effect, etc. Due to the different gain, intensity value of p and q could be different. For a given i-th
marker, mean intensity measurement of single cell can be defined as follows:

ypi = Gpi (b
p
i + spi ) , Bp

i + Spi
yqi = Gqi (b

q
i + sqi ) , Bq

i + Sqi

where bpi , b
q
i represent baseline or autofluorescence signal, spi , s

q
j represent signal, and ypi and yqj

represent measurement signal, i.e., single-cell mean intensity from sample p and q respectively. Gpi
and Gqi represent gain value of the i-th marker for sample p and q respectively.

We infer B̄p
i and B̄q

i using mutually exclusive maker pairs and herein, we assume that we choose
B̄p
i (= Gpi b̄

p
i ) and B̄q

i = (Gqi b̄
q
i ) from the maximum values from the negative controls (i.e., b̄pi =

max(bpi,k) and b̄qi = max(bqi,l) where k and l represents cell index for sample p and q respectively).

Then, we normalize intensity profiles (i.e., ypi and yqi ) based on these values as follows:

ȳpi ,
ypi
B̄p
i

=
Gpi (b

p
i + spi )

B̄p
i

=
Gpi (b

p
i + spi )

Gpi b̄
p
i

=
bpi
b̄pi

+
spi
b̄pi

ȳqi ,
yqi
B̄q
i

=
Gqi (b

q
i + sqi )

B̄q
i

=
Gqi (b

q
i + sqi )

Gqi b̄
q
i

=
bqi
b̄qi

+
sqi
b̄qi

Therefore,

ȳpi =


bpi
b̄pi

(≤ 1), if negative cell, i.e., spi = 0

1 +
spi
b̄pi
, if positive cell, i.e., spi > 0

, ȳqi =


bqi
b̄qi

(≤ 1), if negative cell, i.e., sqi = 0

1 +
sqi
b̄qi
, if positive cell, i.e., sqi = 0

Note that
bpi
b̄pi
≤ 1,

bqi
b̄qi
≤ 1 and

spi
b̄pi
� 1,

sqi
b̄qi
� 1 by definition (high signal to background ratio). So,

all the negative cell from the sample p and q will be less than or equal to 1 and positive signal will
be above 1 by normalization. Also, note that normalized measurement ȳpi and ȳqi are not depend
on the gain term Gpi and Gqi anymore and if we assume b̄qi ≈ b̄qj , normalized signal ȳpi and ȳpj are

representing the true signal, i.e., si and sj with the same scaling factor (b̄qi ≈ b̄
q
i ).

It is important to see whether normalization conserves the true signal ratio (
sqi
spi

) for positive

cell. Since normalized intensity for negative cell will be less than or equal to 1, we do not consider
here. Assuming b̄qi ≈ b̄

q
i = b̄i, we consider the signal ratio of two positive cells from p and q samples:

ȳqi
ȳpi

=
1 +

sqi
b̄i

1 +
spi
b̄i

=
b̄i + sqi
b̄i + spi

(13)

If signal level is high enough (high signal-to-baseline ratio (SBR)), i.e., spi � b̄i and sqi � b̄i,

ȳqi
ȳpi
≈
sqi
spi

(14)

Thus, for high SBR region, we could preserve the true signal ratio well but we may have distorted
signal ratio when signal level is close to near baseline or background level. On the other hand,
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without normalization, we assume b̄pi ≈ b̄qi = b̄i and consider the signal ratio of positive cells from
p and q samples as below:

yqi
ypi

=
Gpi (b̄i + spi )

Gqi (b̄i + sqi )
≈
Gpi
Gqi

spi
sqi

(15)

For the last approximated term, we assume that signal level is high enough. We can see that the
true signal ratio is scaled by the gain ratio if we do not normalize them.

In order to show this, we simulate data and compare the result with and without normalization,

i.e.,
ypi
yqi

and
ȳpi
ȳqi

. The simulated result and heat map of the result are shown in Supplementary Figure

4 and 5 respectively. As we described above, as SBR increases, the normalized measurement is close
to the true signal ratio. In Supplementary Figure 5, heat map shows clearly the region of distortion
in low SBR region with high true signal ratio. On the other hand, without normalization, the
measurement is converged to gain ratio (i.e., G2/G1) where we have G2/G1 = 0.5 in this simulation.

4.6 Statistics and reproducibility

We evaluate the performance of the proposed method with three adjacent TMA sections (n = 59)
and results are presented as mean and the full distribution of the sample as specified in the figure.
We use the three adjacent TMA sections as technical replicates and compare correlation coefficient
of cell population and coefficient of variation as quantitative metrics.

Data Availability

For research reproducibility, our data (download) will be available: 1) 59 TMAs with three adjacent
sections and 2) longitudinal biopsies sample.

Code availability

Our code ( https://gitlab.com/Chang_Lab/cycif_int_norm) will be available.
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Supplementary Information

Supplementary Figure 1: Example of cell composition comparison based on unsupervised clustering
result between without normalization and with normalization with varying the number of cluster
(N = 5, 10, 15, 20). For each figure, top row shows the result without normalization and bottom
row shows the result with normalization where x-axis represents clustered group ID and y-axis
represents their cell population. With normalization approaches, each cluster group shows uniform
distribution from each batch.
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Supplementary Figure 2: cmIF Intensity distribution across Bx 1 and Bx 2 where top figure shows
before normalization and bottom figure shows after normalization based on inferred background
signal.

CD45

CK
19

Supplementary Figure 3: A simple multi-dimensional image viewer based on Napari [25] will be
useful to validate mutually exclusive biomarker pairs. Here, we visualize immune marker (CD45)
and cancer marker (CK19) with scatter plot which shows clear mutual exclusiveness.
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Supplementary Figure 4: Comparison between true signal ratio and measurement signal ratio with
and without normalization by changing signal to background ratio (SBR): as SBR increases, the
normalized signal ratio is close to the true signal ratio. On the other hand, without normalization,
measurement signal ratio is proportional to gain G2/G1 (0.5, in this simulation setting).
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Supplementary Figure 5: A heat map representation: (top left) true signal ratio, (top middle)
measurement signal ratio [w/o norm], (top right) measure signal ratio [w/ norm], (bottom middle)
error [w/o norm], (bottom right) error [w/ norm] where color represents signal ratio (low in blue
and high in red). From left to right across columns, signal to background ratio (SBR) increases
and thus, measurement signal ratio with normalization is close to the true signal ratio.
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Data-driven approach Knowledge-based approach
Markers 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th

AR CD31 HER2 CK7 CD45 LamB2 - - - - -
aSMA CK19 HER2 CD68 PgR H3K27 CK19 CK7 CD68
CD20 CD31 HER2 CK7 CD68 PgR CK19 CK7 CK14 CK5
CD3 CK7 HER2 CD31 CK19 CD68 CK19 CK7 CK14 CK5
CD4 HER2 CK19 CK7 CD31 H3K27 CK19 CK7 CK14 CK5
CD44 CK19 CD68 Ecad PgR HER2 - - - - -
CD45 CK7 HER2 CD31 CK19 LamB2 CK19 CK7 CK14 CK5
CD68 CK19 PgR CK14 Ecad H3K27 CK19 CK7 CD31
CD8 CK7 HER2 CD31 CK19 LamB2 CK19 CK7 CK14 CK5
CK14 CD68 Ki67 ColI cPARP GrNZB CD31 CD68 Vim
CK17 CD68 CK14 PgR CK19 CD44 CD31 CD68 Vim
CK19 CD68 CD44 Vim CD31 CD4 CD68 CD4 CD31
CK5 CD68 PgR CK19 CD44 Ecad CD31 CD68 Vim
CK7 CD31 Vim CD4 CD45 CD3 CD68 CD4 CD31
CK8 CD31 CD68 Vim CD4 HER2 CD68 CD4 CD31
ColI CK14 CD68 CK19 PgR CK5 CK19 CK7 CK14 CK5

ColIV CD68 PgR CK19 HER2 CD31 CK19 CK7 CK14 CK5 CD68
cPARP CK14 CD68 GRNZB PgR Ki67 - - - - -
Ecad CD68 CD44 CK14 Vim PgR CD68 CD4 CD31
ER CD31 HER2 CK7 CD68 Vim CD68 CD4 CD31

FoxP3 CD68 HER2 CK19 PgR CD31 CK19 CK7 CK5
GRNZB CK14 Ki67 cPARP ColI CD68 CK19 CK7 CK5 CD31
H3K27 CD68 HER2 CD44 CD31 PgR - - - - -
H3K4 CD31 CD68 HER2 CK19 PgR - - - - -

LamB2 HER2 CD31 CK7 CK19 CD68 - - - - -
LaminAC CD68 PgR CK19 CD44 CK14 - - - - -

PCNA CK7 CD45 CD31 HER2 CD3 - - - - -
PD1 CD68 HER2 CD31 PgR CK19 CK19 CK7 CK14 CK5 CD31

PDPNP CD68 CK19 HER2 PgR CK14 CK19 CK7 CK14 CK5 CD68
pERK CD68 HER2 CD31 PgR CK14 - - - - -
PgR CD68 CK14 HER2 CD44 CK19 CD68 CD4 CD31

pHH3 GRNZB CK14 CD68 ColI Ki67 - - - - -
pRB CK14 CD68 PgR CK19 GRNZB - - - - -
pS6 CD68 CK14 PgR CK19 CD44 - - - - -
Vim HER2 CK19 CK7 Ecad H3K27 CK19 CK7 CD68

HER2 CD31 Vim CD4 PgR CD44 CD68 CD4 CD31
Ki67 CK14 CD68 GRNZB CD44 PgR - - - - -

Supplementary Table 1: A list of mutually exclusive marker pairs based on (left) data-driven and
(right) biological known information. Red color on the left panel indicates that matched pairs exist
on the right panel. Green color on the right panel indicates that matched pairs exist on the left
panel.
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