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Abstract 
From cellular activation to drug combinations, the control of biological systems involves            
multiple stimuli that can elicit complex nonlinear interactions. To elucidate the functions and             
logic of stimulus interactions, we developed SAIL (Synergistic/Antagonistic Interaction         
Learner). SAIL uses a machine learning classifier trained to categorize interactions across a             
complete taxonomy of possible combinatorial effects. The strategy resolves the most           
informative interactions, and helps infer their functions and regulatory mechanisms.          
SAIL-predicted interaction mechanisms controlling key immune functions were        
experimentally validated. SAIL can integrate results from multiple datasets to derive general            
properties of how cells respond to multiple stimuli. Using public immunological datasets, we             
assembled a fine-grained landscape of ~30000 interactions. Analysis of the landscape shows            
the context-dependent functions of individual modulators, and reveals a probabilistic algebra           
that links the separate and combined stimulus effects. SAIL is available through a user              
friendly interface to resolve the effect of stimulus and drug combinations. 
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Introduction  
Biological responses are shaped by the effects of multiple stimuli in complex environments,             
and treatment of many diseases involves combination therapies 1,2. A complex consequence of             
combination stimuli is the potential occurrence of nonlinear interactions that can dramatically            
alter the effects of individual treatments. Studies of the inflammatory microenvironment, for            
example, have identified various emergent effects of combination exposures 3–5. Although           
understanding such combinatorial effects is key to elucidating biological processes, new           
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computational tools are still needed to dissect and interpret interactions between biological            
signals in -omics  studies.  
The typical combinatorial treatment experiment consists of -omics data generated in four            
conditions: 0 (control), stimulus X, stimulus Y, and the combination X+Y. A common way to               
understand interaction effects between X and Y is to identify non-additive responses induced             
by the combination X+Y , and to classify them as either synergistic -larger than additive- or               
antagonistic -smaller than additive-. Despite widespread use, this approach has limited           
resolution because it confounds interactions that are qualitatively different 6. For example, the             
conventional approach does not discriminate less common patterns of interaction with high            
biological significance, such as the emergence of a new response, from more frequent             
nominal interaction responses, such as non-additivity due to saturation effects. Furthermore,           
due to the lack of a satisfactory analysis framework and accessible tools, most studies are               
restricted to a specific combination of interest, providing only partial, fragmented insight.            
The narrow scope of current approaches may obscure general properties and principles that             
underlie the occurrence of combinatorial interactions.  
Here, we present a comprehensive framework to map and interpret interaction effects within             
and across -omics combination treatments. The framework is based on a machine learning             
classifier trained to categorize gene responses in -omics combination treatments across a            
predefined, complete taxonomy of theoretically possible response patterns. Mapping the          
experimental gene responses into the appropriate element of the taxonomy resolves the most             
informative combinatorial effects, and facilitates the inference of coherent biological          
programs and of the underlying regulatory mechanisms. SAIL guided the identification of            
new cytokine interaction mechanisms in human dendritic cells, which we experimentally           
validated with neutralizing experiments. 
Another major advance of SAIL is the capacity to integrate results from multiple -omics              
combination treatments and derive a broader understanding of how cells respond to            
combinations of stimuli. Using a compendium of public datasets, we assembled a            
fine-grained landscape comprising ~30000 interactions from a variety of immune cells.           
Analysis of the landscape sheds new light on the context-dependent functions of individual             
modulators, and reveals a probabilistic algebra, a set of probabilistic rules underlying the             
integration process that link the separate and combined stimulus effects. 
SAIL is available through a user friendly interface to resolve the combinatorial control of              
biological processes in public or user-generated dataset, and to assist the development of             
rational combination therapeutics. 
 
 
Results 
Overview of the SAIL framework  
SAIL is a machine learning framework to map and interpret interaction effects from -omics              
combination treatment experiments comprising a vehicle control (denoted by 0), two           
individual stimuli (X, Y), and their combination (X+Y) ( Fig. 1a, left sub-panel ). Samples are              
harvested at specific timepoints after stimulation, and an - omics dataset, such as gene             
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expression microarray or RNA-seq, is generated. The dataset is analyzed by a machine             
learning classifier previously trained to map gene responses across the predefined taxonomy            
of 123 possible response profiles ( Fig. S1 ). These represent qualitatively different scenarios            
for the expression of a gene in the conditions 0, X, Y, X+Y 6. As we demonstrate, mapping                  
the experimental gene responses into the appropriate element of the taxonomy resolves the             
most informative combinatorial effects, and facilitates the inference of coherent biological           
programs (Fig. 1a, right sub-panel ).  
The use of an abstract taxonomy makes it possible to map interactions from multiple datasets               
onto a common reference space. Using public immunological datasets, we assembled           
~30,000 combinatorial interactions in an overall, fine-grained combinatorial landscape of          
immunity ( Fig. 1b ). The landscape is an information-rich object that reveals new aspects of              
the logic and functions of interactions, guiding new hypotheses.  
 
Machine learning-driven classification of combinatorial interactions  
A key problem we address is how to classify noisy -omics data from combination treatments               
across the taxonomy of theoretical profiles. To solve this problem, we trained a machine              
learning classifier on an extensive set of simulated interaction profiles ( Fig. 2a ). Each             
interaction profile was simulated in multiple instances with variable group means for the             
conditions 0, X, Y, X+Y within a range of values consistent with the experimental data ( see                
Methods ). The statistical variability around the group means was assumed to be normally             
distributed. This assumption is widely held in the analysis of microarray data, and still              
applicable to RNA-seq data upon a suitable transformation 7. Given the uncertain noise level              
in the experimental data, we simulated three noise regimes: low, medium, and high ( Fig. 2a,               
see Methods ). The different noise levels were simulated by decreasing the effect size,             
defined in terms of the standardized means differences between the four conditions ( see             
Methods).  
From each simulated instance of a profile, we extracted a vector of statistical features              
including the group means, the average deviation from additivity, and the significance of all              
pairwise contrasts from the conditions 0, X, Y, X+Y ( see Methods ). These features served as               
predictors of the true class. Overall, the training set comprised ~340,000 simulated profiles,             
pairing up vectors of statistical features (inputs) with the corresponding true profile labels             
(outputs) ( Fig. 2b ). We then trained two established machine learning classifiers: Linear            
Discriminant Analysis (LDA), and Random Forest (RF), keeping our previously proposed           
deterministic match algorithm as a reference6.  
To compare the performance of the different algorithms, we evaluated various metrics for             
multiclass classification on independent test sets. RF showed a more robust performance then             
LDA across the three noise levels ( Fig. 2c ). Although the deterministic match had the largest               
accuracy in the low noise regime, its performance declined more rapidly with increasing             
noise compared with RF and LDA. An additional advantage of RF and LDA over the               
deterministic match is the possibility for a “soft” (i.e. probabilistic) assignment of an input              
profile into any element of the taxonomy. The probabilistic outputs generated by RF             
systematically showed superior performance over LDA in all noise regimes ( Fig. 2d ).            
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Additional machine learning methods were also evaluated but performed less efficiently in            
terms of computational overhead.  
These results, complemented by analyses of the distribution of precision and recall over all              
taxonomy classes ( Fig. S2 ), indicated RF as the most robust and suitable way to classify               
combinatorial interactions.  
 
Building a combinatorial landscape of human immunity 
Next, we developed a strategy to systematically map, annotate, and analyze interactions from             
diverse combination treatments as available in Gene Expression Omnibus ( Fig. 3a ) . To            
retrieve the relevant datasets, we used key terms typically associated with combination            
treatments such as “synergy”, “antagonism”, “combinatorial”, and similar. This approach was           
meant to facilitate automatic update of the resource as new -omics combination treatments             
become publicly available. Focusing on immunology, we selected a total of 25 human and 7               
murine datasets ( Table 1 ). We applied SAIL to each dataset and mapped a total of 29,479                
interactions. The proportions of interactions from each type of cell or combination of stimuli              
varied widely (Fig. S3 ).  
Despite numerous studies on combination treatments, the frequency at which different types            
of interactions occur has not been systematically studied. We found that the most frequent              
interactions are interpretable as technical and/or biological saturation of the assay, which we             
refer to as floor and ceiling effects ( Fig. 3b, top subpanel) . Our approach segregates these               
effects from less frequent but more biologically relevant interaction responses. The most            
prevalent of these more important profiles are suppression (9%), inhibition (8%), restoration            
(4%), emergence (4%), and potentiation (3%) ( Fig. 3b, middle subpanel ). Notably, our            
analysis also revealed that several theoretically possible combinatorial effects were nearly           
absent (<0.04%). The rare patterns include reversals, where two signals with the same             
individual effect (e.g. up-regulation of a gene separately by X and Y) are reversed by the                
combination (e.g. down-regulation of the same gene by X+Y) (Fig. 3b, bottom subpanel). 
To assemble results from multiple combination treatments, we created a 3D landscape with             
axes representing datasets, genes, and scores quantifying the intensity and robustness of the             
identified interactions ( Figure 3c ). The dataset axis was also annotated with metadata on the              
experiments including species, cell type, stimuli, and time point. The gene axis was annotated              
with immunological gene families such as chemokines, interleukins, checkpoints and other           
terms from the ImmPort database 8. The interaction axis was annotated by the profiles              
predicted for each interaction by the machine learning classifier.  
Slicing the landscape along specific dimensions provides different types of insight into the             
role and functions of the interactions. For example, slicing by gene family allows systematic              
identification of synergistic and antagonistic effects involving immune modulators of interest.           
Figure 3d shows a 2D projection of the landscape that contains stimulatory and inhibitory              
checkpoints, key regulators of the immune system with increasing therapeutic applications           
9,10. In the considered datasets, immune checkpoints show a variable propensity towards            
synergistic and antagonistic regulation. While CD40 and CD80 present sparse, selective           
interaction effects across datasets, IDO1 is synergistically induced in a diversity of datasets.             
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Among these synergies, we found two cases of potentiation in pDC and moDC ( Figure 3e ).               
Because IDO1 inhibits T cell division and promotes regulatory T cells 11, these synergistic              
effects may serve to contain overreacting immune responses in the inflammatory           
microenvironment.  
SAIL ability to integrate results from multiple datasets makes it possible to globally estimate              
the frequency of different synergistic and antagonistic, and to investigate the impact of these              
effects on gene families and pathways of interest.  
 
Probabilistic algebra underlying immune cell responses to combination treatments 
If the cellular response to a combination was merely additive, the effect of the combination of                
stimuli would be uniquely determined as the sum of the individual effects. However,             
interaction effects open the possibility for diverse synergistic and antagonistic scenarios. By            
integrating results from multiple -omics datasets, SAIL enables to explore whether any            
generalized logic rules link the individual to the combined effects of two signals.  
To address this problem, we implemented a new analytical approach and summary            
visualization ( Fig. 4a ). First, we aggregated profiles in our taxonomy that share the same              
pattern of individual effects, regardless of their combined effect. For example, we grouped             
interaction profiles for which neither X nor Y have any effect in isolation ( Fig. 4a, top                
panel ). Next, we considered all the possible combinatorial effects. Given that X and Y have               
no isolated effect, the combination X+Y can produce three qualitative outcomes:           
up-regulation (synergistic), no effect (additive), or down-regulation (antagonistic). Suppose         
the three possibilities occur with a frequency of 30%, 50%, 20% among the genes classified               
in this aggregated profile group, respectively ( Fig. 4a, middle panel ). To represent these             
frequencies in a compact yet informative manner, we used horizontal bars in the column              
corresponding to the condition X+Y. The color of the horizontal bars keeps track of the sign                
of the interaction (blue: synergistic, red: antagonistic, gray: additive) ( Fig. 4a, bottom            
panel ). We refer to this visualization scheme as a “strata plot”. For each strata plot, we                
quantified the uncertainty in predicting the combinatorial effects for the given individual            
effects using a normalized Shannon entropy ( see Methods).  
We then systematically assessed the frequency of all possible combinatorial effects as a             
function of the individual effects ( Fig. 4b ). For each aggregated profile group, we generated              
the corresponding strata plot ( Fig. 4c ). The analysis revealed a probabilistic algebra that             
associates the individual effects of the two signals with the most prevalent type of interaction.  
For example, if both X and Y downregulate the expression of a gene, the most likely type of                  
interaction is a floor effect ( Fig. 4d, top ). We observed this pattern in 80% out of over 10000                  
responses in the corresponding group. Similarly, up-regulation individually by both X and Y             
often results in a ceiling effect pattern in the combination treatment condition, with a              
frequency of 66% ( Fig. 4d, middle) . If one signal upregulates a gene, and the other has no                 
effect, the most likely resulting response is an additive effect, followed by a suppression,              
observed with a frequency of 18% ( Fig. 4d, bottom ). Importantly, this result showed that              
given two signals, with one up-regulating a given gene and the other having no effect on the                 
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same gene, antagonistic effects such as suppression were more frequent than a potentiation             
effect.  
Together with the most likely outcome for each group, our results also reveal the systematic               
absence of theoretically possible combinatorial effects. Consistent with our analysis of the            
frequency of the different interactions, we found vanishingly small probabilities associated           
with reversals.  
Altogether, our results support the derivation of a probabilistic algebra underlying the cellular             
response to combination treatments. The algebra predicts the most likely type of interactions             
given the individual effects of two stimuli.  
 
Interactions determine a context-dependent TNFα biology 
A critical consequence of interactions is the potential modification of effects observed with             
each individual treatment. Our framework systematically detects qualitative changes in the           
effects of a given signal in the presence of other stimuli. To illustrate this, we focused on                 
TNFα, an extensively studied immunomodulators 12.  
To explore how the composition of the inflammatory microenvironment can alter TNFα            
biology, we sliced the combinatorial landscape along two axes ( Fig. 5, top-left ). From the              
dataset axis, we selected combination treatments involving TNFα with other stimuli,           
including IFNβ and IFN𝝲 in four human cell models ( Fig. 5a, left-margin ). From the              
interaction axis, we extracted interaction profiles that encoded a qualitative change of the             
TNFα effect when considered as a mono-treatment. We started by considering three types of              
qualitative changes: suppression, antagonistic reversal, and synergistic reversal of TNFα          
effects ( Fig. 5a, top-margin ). For each pair of dataset and profile, we processed the              
corresponding gene list with enrichment analysis to gain insight at the functional level.  
Genes showing suppression and reversal of TNFα effects were significantly enriched in            
important immune processes including T-helper 1 polarization and antigen presentation ( Fig.           
5a) . Further analysis ( Fig. 5, top-right, Methods ) also suggested that co-modulators can            
drive the emergence of new functions, not observed by TNFα modulation in isolation.             
Although these emerging functions were relatively few, they comprised potentially important           
processes such as proteasome degradation and T cell chemotaxis.  
Our results illustrate the ability of SAIL to systematically study how the effect of a stimulus                
is qualitatively altered by other stimuli through a variety of interaction effects including             
suppression, reversal, and the emergence of entirely new functions.  
 
Prediction and validation of TNF α and IFNβ interaction effects in human           
monocyte-derived dendritic cells 
Next, we applied SAIL to investigate the synergistic interactions of two specific cytokines,             
IFNβ and TNFα. While IFNβ and TNFα are key modulators of immune functions whose              
individual effects have been extensively studied 12,13, their interactions remain poorly           
understood. We previously reported that IFNβ and TNFα act synergistically to induce an             
antiviral state in monocyte-derived dendritic cells (moDC) 14. To investigate the systems level             
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impact of IFNβ and TNFα co-treatment on human moDC, we applied SAIL to the              
corresponding combination treatment experiment.  
SAIL detected 374 synergistic interactions, which we mapped to the corresponding profile            
groups ( Fig. S4 ). The interaction groups with the largest number of synergistic effects were              
‘emergent synergy’, ‘TNFα potentiates IFNβ’, ‘IFNβ restores TNFα’, and ‘IFNβ potentiates           
TNFα’ ( Fig. 6A ). To understand the function of these specific interaction patterns, we sorted              
the corresponding gene lists based on the synergy score and searched for candidates with              
potential key immunological roles. We first focused on the emergent synergies due to their              
special role as responses exclusive to the combination. In this profile, the genes with the               
largest synergy scores were LIMK2, MCOLN2, SLC7A5, TP53BP2, and several genes having            
more established immunological roles such as RELB,  IL15RA, and VCAM1 .  
The protein VCAM-1 has been described as a regulator of leukocyte migration and cell              
adhesion 15. Due to the fundamental importance of the DC-T cell axis in the generation of an                 
immune response, we hypothesized that IFNβ and TNFα synergistically induce VCAM-1 to            
promote moDC-T cell adhesion. We tested this hypothesis by quantifying DC-T cell adhesion             
using imaging flow cytometry ( see Methods ). When exposed to the combination of IFNβ and              
TNFα, moDC showed an increased adhesion to T cells that was not observed with either               
cytokine alone ( Fig. 6d ). The increased DC-T cell adhesion was mediated by VCAM-1, since              
VCAM-1 neutralization abolished the synergistic effect ( Fig. 6d ). To our knowledge, these            
results identify for the first time a role for synergistic induction of VCAM-1 by TNFα and                
IFNβ in promoting DC-T cell adhesion.  
To further explore the immune processes controlled by IFNβ and TNFα synergies, we             
performed enrichment analysis separately for the different profiles, and compared the results            
with a conventional analysis that aggregates all the synergies in a single gene set ( Fig. 6c,                
left ). Certain annotation terms were captured by SAIL as well as by the conventional method,               
but SAIL provided additional insight. For example, both SAIL and conventional analysis            
captured a highly significant enrichment in mineral absorption. However, SAIL analysis also            
revealed the pattern ‘IFNβ restores TNFα’ as the main contributor to this enrichment. This              
pattern contains several members of the family of metallothioneins ( MT1X , MT1E, MT1F,            
MT1HL1 ), which are increasingly recognized as important players in the response to            
cytokines and pathogen signals 16. Overall, annotation by profile revealed an enrichment in             
annotation terms not resolved by conventional analysis ( Fig. 6c, right ). In particular, we             
found pattern ‘IFNβ potentiates TNFα’ enriched in T cell proliferation, critical step in the              
generation of an immune response.  
Using an allogeneic cross donor stimulation, we tested the hypothesis that a IFNβ and TNFα               
stimulation may act in synergy to enhance T cell proliferation ( Fig. 6d, left panel ). The               
combination treatment induced a nearly two-fold increase in the percent of proliferating T             
cells, an effect not seen with either stimulus alone. The synergy pattern of the T cell                
proliferation measurement diverged slightly from the gene level profile, which showed some            
effect by TNFα alone. It is not surprising that the interactions patterns comparing mRNA              
level regulation and protein-dependent functional effects show marginal differences.         
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Importantly, the synergistic induction of T cell proliferation, predicted by SAIL, was            
confirmed experimentally.  
Next, we wanted to identify the molecular mediators of the increased T cell proliferation.              
Candidate genes for mediating this synergistic response predicted by enrichment analysis           
included TNSFS9 and CCL5. Review of the literature suggested CCL-5 as the most likely              
candidate 17. We therefore hypothesized that CCL-5 may contribute to increased proliferation            
of T cells induced by INFβ and TNFα exposed DC. This hypothesis was confirmed by               
immunoneutralization of CCL-5 (Fig. 6d, right panel). 
These experimental validations demonstrate the value of SAIL in mining interaction data for             
new hypotheses that guide further study.  
 
Discussion 
In this work, we present a comprehensive machine learning framework to map and interpret              
interaction effects within and across -omics combination treatment studies. Our analysis of a             
compendium of immunological combination treatment datasets generated a landscape of          
~30,000 interactions. We obtained global insight into the principles and functions of            
interactions from analysis of the landscape, and validated new hypotheses about           
combinatorial cytokine effects.  
Developing learning models to predict synergistic combinations of treatments based on the            
individual effects is an active area of research 18–21. Despite an apparent methodological             
similarity, the motivation and goals of our framework are fundamentally different from these             
studies. In our framework, machine learning is applied to classify and interpret the function              
of diverse types of synergistic and antagonistic interactions induced by -omics combination            
treatments, and not to directly predict these effects.  
Nonetheless, application of SAIL to a compendium of public datasets revealed a            
combinatorial algebra, that is, a set of rules that for any given pattern of individual effects,                
can predict the probability of all the possible combinatorial effects. The analysis also revealed              
that certain a priori possible response patterns, such as reversals, are very rare events in all                
studies examined. This may imply the existence of mechanistic constraints and exclusion            
principles that limit the spectrum of potential combinatorial responses at the transcriptional            
level. Overall, our findings could inform and enhance future predictive models with a new              
type of evidence derived from a number of -omics datasets.  
A potential consequence of interactions is the radical modification of effects observed with             
individual treatments. Using the SAIL framework, these events are easily identified by            
isolating interaction profiles that encode qualitative combination changes in the effect of a             
treatment of interest. In the case of TNFα, we found that co-modulators alter fundamental              
immunological processes, such as antigen presentation and T helper cell polarization, and            
may produce the emergence of entirely new functions, not modulated by TNFα            
mono-treatment. Identifying the context-dependent effects of an agent may be useful in a             
therapeutic perspective. The success of therapeutic agents relies on the control of both             
pathogenic and homeostatic pathways. Our approach may assist in the design of drug             
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combinations that leverage antagonistic interactions to selectively reduce pathogenic activity          
while preserving necessary homeostatic pathways.  
A fundamental tool for biological interpretation of -omics experiments is pathway-level           
enrichment analysis. SAIL uncovers biological processes regulated in combination treatment          
studies by fine-grained aggregation of genes showing similar interaction responses. As we            
demonstrate, these aggregates reflect coherent biological processes that provides insight into           
the principles and functions of interactions, and generate hypotheses for new interaction            
effects that were experimentally validated. In the analysis of IFN β and TNF α co-treatment,             
SAIL uncovered novel synergies that control the DC-T cell interactions and T cell             
proliferation, both of which are critical immune processes. Importantly, SAIL analysis also            
suggested specific hypotheses on the molecular mediators controlling these functions,          
VCAM-1 and CCL-5, which we validated with neutralization  experiments. 
We note several potential limitations of the SAIL framework. The classifier was trained             
under the assumption of normally distributed data. While this assumption is commonly held             
in the analysis of microarray and RNA-seq data upon a suitable transformation, it may not               
apply to other assays. Under alternative distributional assumptions, our approach would be            
adaptable to other -omics technologies, such as proteomics, metabolomics, and epigenetics           
data. To demonstrate the usefulness of SAIL, we restricted the initial landscape to             
immunology. Future releases of the landscape can accommodate additional datasets          
applicable to all domains of biological research.  
To facilitate the application of SAIL, we developed a user-friendly platform. Users can             
upload experimental data on new combinations, or re-analyze datasets from our curated            
database. A few simple steps enable the user to identify and interpret the most relevant               
synergistic and antagonistic interactions. The platform is connected with external resources           
including ImmPort 8, Gene Cards 22, and enrichR 23, to provide extensive annotation at              
single-gene and pathway level. SAIL web tools can be used to generate testable hypotheses              
about the role of combinatorial interactions in driving biological processes.  
Notably, treatment interactions are important in clinical therapeutics and side effects. More            
than 10,000 clinical trials in the United States alone are studying the effects of drug               
combinations 1,2,24. By uncovering relevant interactions and their functions, SAIL can further            
understanding of interaction mechanisms and the development of combination therapeutics.  
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Figure legends 
Figure 1. Overview of the SAIL framework 
( a) SAIL (immune Synergistic/Antagonistic Interaction Learner) is a machine learning          
framework to decipher the effect of combination treatments. It takes as input - omics data              
from the four prototypical conditions of combination treatments: 0 (control), stimulus X,            
stimulus Y, and the combination X+Y ( left sub-panel ). The dataset is analyzed by a classifier               
trained to map each gene into a complete taxonomy of theoretically possible response profiles              
( middle sub-panel , see also Fig. S1 ). The taxonomy helps infer the functional role of              
different types of synergistic and antagonistic effects ( right sub-panel ). ( b) A major advance             
of SAIL is the capacity to integrate results from multiple combination treatments. Using a              
compendium of publicly available immunological datasets ( right sub-panel ), we built a           
combinatorial landscape comprising ~30000 interactions. Global analysis of the landscape          
and of user-generated data drive new hypotheses on the logic and functions of combinatorial              
interactions.   
 
Figure 2. Machine learning classification of treatment interactions  
( a ) We generated a training set of simulated interaction profiles. Each profile was simulated              
multiple times with realistic group means for the conditions 0, X, Y, X+Y. To build a robust                 
classifier, we simulated three noise levels: low, medium, high. From each simulated profile i,              
instance j , and noise level n, we extracted a vector vi,j (n)of statistical features including the                
p-values for all possible pairwise contrasts from the groups 0, X, Y, X+Y. (b) The vectors vi,j                 

(n), labeled with their originating profiles, provided a training set. This was used to develop a                
machine learning classifier that takes as input a vector of statistical features, and predicts as               
output the most probable profile. We compared three classification algorithms: Deterministic           
Match, Linear Discriminant Analysis (LDA), and Random Forests (RF). (c) To compare their             
performance, we measured the classification accuracy -the fraction of correct predictions- on            
independent test sets. RF provided the most consistent distribution of accuracy. (d) To further              
compare LDA and RF, we computed the multiclass log gain, a metric that accounts for the                
full probabilistic output returned by these classifiers. Again, RF showed the best performance             
and was selected as the most robust model.  
 
Figure 3. Building a combinatorial landscape of immunity 
( a ) Workflow to map and investigate combinatorial effects from multiple combination           
treatment experiments. We selected 32 -omics combination treatments from diverse immune           
cells and combinations of stimuli. Applying SAIL to each dataset, we mapped ~30000             
interaction effects. (b) The first seven cards represent the most frequent types of interactions.              
The last two cards represent interactions that occur with vanishingly low frequency. (c) To              
integrate interactions from different datasets, we created a 3D structure with axes            
representing datasets, genes, and scores quantifying the intensity and robustness of the            
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effects. The resulting landscape, supplemented with metadata and prior knowledge, makes it            
possible to comprehensively investigate the effect of combination treatments on immune           
cells. (d) The plane shows a 2D projection of the landscape focusing on immune checkpoints,               
a key immunological gene family. The size and color of the rectangles keeps track              
respectively of the interaction score and sign (blues: synergistic, red: antagonistic). The            
immune checkpoint IDO1 is synergistically induced in multiple datasets (non-standard          
abbreviations: P3C= Pam3CSK; vD=vitamin D ; GM=GM-CSF; edelf=edelfosine;       
Flu=influenza virus). (e) By looking at the specific nature of these synergies, we found two               
cases of potentiation in human moDC ( top) and pDC ( bottom).  
 
Figure 4. Probabilistic algebra governing immune cell responses to combination          
treatments 
(a) To explore the relationship between the individual and combined effects of two signals,              
we developed a new analytical and visualization technique. First, we divided the taxonomy of              
response profiles in groups whose elements share the same conjunction of individual effects             
by X and Y, regardless of their combined effect. For example, Group 1 contains response               
profiles for which both X and Y have no effect in isolation ( a, top ). Next, we consider all the                   
possible effects of the combination). In Group 1, the combination can have three qualitative              
scenarios (a, middle). We then estimate the frequency of each of these scenarios. In this               
hypothetical example, the three scenarios are observed with frequencies of 30%, 50%, and             
20%. To represent the three frequencies in a compact yet informative manner, we use              
horizontal bars in the column corresponding to the condition X+Y. We refer to this              
visualization scheme as a strata plot (a, bottom). The colors of the horizontal bars keep track                
of the sign of the interaction (blue: synergistic, red: antagonistic, gray: additive). (b) By              
repeating the above procedure for all combinatorial responses in the landscape, we derived a              
probabilistic algebra linking any conjunction of individual effects. (c) Frequency of           
combinatorial effects corresponding to different types of individual effects. ( d ) Three           
examples of a probabilistic link between a conjunction of individual effects and the most              
recurrent interaction.  
 
Figure 5. Combinatorial interactions determine a context-dependent TNFα biology 
To explore how cofactors might alter the TNFα biology, we sliced the combinatorial             
landscape ( top-left) along two axes. From the dataset axis, we extracted combination            
treatments involving TNFα and concomitant factors including IFNγ and IFNβ in four human             
cellular models ( left-margin ). From the interaction axis, we extracted interaction profiles that            
encode a qualitative change of the effect of TNFα mono-treatment. We started by considering              
three types of qualitative changes: suppression, antagonistic reversal, and synergistic reversal           
( top-margin). For each dataset and profile, we processed the corresponding gene list with             
enrichment analysis to gain insight at functional level. The matrix elements correspond to             
selected significantly enriched functions (* adjusted p<0.05, ** adjusted p<0.01, *** adjusted            
p<0.001). Example hits from each function are shown in parentheses. In the case of emergent               
effects (last column), we looked for a significant enrichment in new functions, not observed              
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with TNFα alone ( top right, see also Methods). This analysis suggests that cofactors could              
drive the emergence of new TNFα functions.  
 
Figure. 6 Prediction and validation of IFNβ and TNFα synergistic effects in            
monocyte-derived dendritic cells (a) We applied SAIL to analyze the synergistic effects            
induced by IFNβ and TNFα after 1 hour exposure. We focused on the four profile groups                
with the largest number of synergies. In the group of emergent synergies, we found VCAM1,               
a gene involved in the regulation of cell adhesion. ( b ) We tested the hypothesis that the                
emergent induction of VCAM1 in the DC would mediate an increase in DC-T cell interaction.               
Assayed by imaging flow cytometry, moDCs exposed to IFNβ+TNFα showed an emergent            
increase in DC-T cell adhesion. This synergistic effect was eliminated by VCAM-1            
neutralization. The synergy score for this effect -defined as the mean deviation from             
additivity- was significantly reduced (t-test, p=0.03). The error bars represent the standard            
error of the mean synergy score. ( c ) To explore whether IFNβ+TNFα synergy patterns             
represented coherent gene programs, we determined the functional enrichment for each           
pattern. ( c, left panel ). We compared these SAIL-based functional analyses to results            
obtained with a conventional analysis of unclassified synergy genes. ( c, right panel ).            
SAIL-based enrichment provided a richer functional annotation. In particular, it suggested           
that synergy genes in the ‘IFNβ potentiates TNFα’ pattern rightmost panel in ( a ) may mediate               
T cell proliferation. ( d ) This hypothesis was tested using allogeneic cross donor stimulation.             
The synergy group ‘IFNβ potentiates TNFα’ contained two hits potentially responsible for T             
cell proliferation: TNFSF9 and CCL5. Using CCL-5 neutralizing antibodies, we confirmed           
that IFNβ and TNFα act in synergy to promote T cell proliferation, and that this proliferation                
depends on CCL-5. The synergy score for this effect -defined as the mean deviation from               
additivity- was significantly reduced by neutralization of CCL-5 (t-test, p=0.008). The error            
bars represent the standard error of the mean synergy score.  
 
Tables 

Table 1. Datasets used to construct the combinatorial landscape of immunity 

Accession Species Cell type Signal X Signal Y Time point 

GSE5054 Human thyroid cells IFN𝝲 IL1β 1d 

GSE36331 Human ARPE-19 cells IFN𝝲 TNF α 2d 

GSE43409 Human innate lymphoid cells cocktail (IL-1/IL-7/IL-23) aNKp44 3.5h 

GSE53712 Human monocytic THP-1 LPS SB203580 4h 

GSE53712 Human monocytic THP-1 LPS SB203580 1d 

GSE59179 Human Hut78 cells Enzastaurin AR-A014418 3d 

GSE63038 Human NK cells FcR activation IL-12 12h 

GSE79077 Human MDMs dexamethasone IFN𝝲 20h 

GSE57915 Human pDC IL3 Flu 6h 
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GSE57915 Human pDC GM-CSF Flu 6h 

GSE57915 Human pDC GM-CSF Flu 1d 

GSE57915 Human pDC GM-CSF LL37 1d 

GSE57915 Human monocytes NOD2 TLRs 6h 

GSE57915 Human monocytes NOD2 TLRs 1d 

GSE57915 Human monocytes IFN𝝲 TLRs 6h 

GSE46903 Human macrophage IFN𝝲 TNF α 3d 

GSE46903 Human macrophage TNF α P3C 3d 

GSE36323 Human monocytic THP-1 D3 TsA 2.5h 

GSE52819 Human macrophage Vitamin D H37Rv 24h 

GSE44392 Human CD4+ T cell edelfosine beads 30h 

GSE24767 Human keratinocyte IL-17 TNF α  1d 

GSE77814 Human BMSC IFN𝝲 TNF α (1.5 ng/ml) 2d 

GSE77814 Human BMSC IFN𝝲 TNF α (15 ng/ml) 2d 

GSE134209 Human moDC TNF α IFN β 1h 

GSE134209 Human moDC TNF α IFN β 2.5h 

GSE20302 Mouse DC Lact acidophilus Bifid bifidum 10h 

GSE28994 Mouse Lung Pam2CSK4 ODN2395 4h 

GSE32986 Mouse DC curdlan (1 mg/ml) GM-CSF 4h 

GSE32986 Mouse DC curdlan (100 mg/ml) GM-CSF 4h 

GSE35291 Mouse HSPCs valproic acid lithium 7d 

GSE53986 Mouse macrophage IFN𝝲 LPS 1d 

GSE62249 Mouse SB-3123p cells cocktail (TNFα/IFN𝝲) Vemurafenib 4d 

Non-standard abbreviations: MDM=Monocyte-Derived Macrophages; P3C=Pam3CSK; D3=nuclear hormone 1α,25(OH)2D3;        
TsA= trichostatin A ; BMSC= Bone Marrow Stromal Cells; HSPCs=hematopoietic stem/progenitor cells; Lact=Lactobacillus;          
Bifid=Bifidobacterium 

 
 
Methods 
Definition and simulation of interaction profiles 
The notion of interaction profiles has been introduced in our previous work 6, and is briefly                
summarized here. The interaction profiles represent qualitatively different scenarios for the           
expression of a gene in the conditions 0, X, Y, X+Y. Fig. S1 shows the taxonomy of 123                  
profiles used in this study. Mathematically, each profile corresponds to a linear system of              
equalities and inequalities satisfied by the mean expression levels of a gene in the conditions               
0, X, Y, X+Y, respectively denoted by , , . The linear system defining a given       eO eX , eeY  X+Y        
profile admits infinitely many solutions, each of which can be seen as a particular instance of                
the profile. For example, an emergent synergy (no effect by X, no effect by Y, and                
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up-regulation by X+Y) is satisfied by the vectors (2.2, 2.2, 2.2, 5.5), (4.1, 4.1, 4.1, 7.8), as                 
well as by infinitely many other qualitatively similar vectors.  
To simulate a profile, our strategy starts by sampling the solution space of the corresponding               
system of inequalities. The solution space is sampled within a range of admissible values,              
chosen to mimic the experimental data. Next, a noise term is added to each instance of a                 
profile using a random number generator. The noise term is assumed to be normally              
distributed. This assumption is widely held in the analysis of microarray data, and still              
applicable to RNA-seq data upon a suitable transformation 7. Increasing noise levels            
correspond to a decreasing effect size, which is defined in terms of the standardized              
differences between the group means in the four conditions, as further described below. To              
account for the relatively small number of samples in -omics data, we simulated four              
replicates for each of the conditions 0, X, Y, X+Y. The steps to simulate interaction profiles                
are as follows: 
 
Definition of a range of admissible expression values . This was chosen as the interval [-14,               
14], consistent with the range of log2-transformed expression values from microarray and            
RNA-seq data upon the Voom transformation.  
 
Sampling the solution space for the given profile in the specified range . The vector of               
numbers ( , , , ) for the given profile were found with the function xsample e0  eX  eY  eX+Y            
from the package limsolve . For each profile, we extracted 400 instances for each level of               
noise.  
 
Definition of the signal of a simulated profile . The signal can be seen as a generalization of                 
the fold-change in A Vs. B experiments. In a combination treatment, we first consider all               
pairwise fold-changes from the conditions 0, X, Y, X+Y. Except for the case of constant               
genes, at least one of these contrasts must be different from 0. The signal δ is defined as the                   
absolute value of the smallest non-zero difference. To avoid very weak signals, not             
meaningful in the analysis of expression data, a minimum signal of 0.5 is used in the training                 
set.  
 
Simulation of random noise . To simulate random variability around the values , , ,           e0  eX  eY  

, the data was assumed to be normally distributed around the group means:eX+Y              ～N (e , σ)ei i
, with i = 0, X, Y, X+Y . The parameter was assumed the same for all groups. For each of the          σ            
four conditions, we simulated 4 replicates. Different levels of noise, were simulated by             
setting different values of the ratio ./σδ   
 
Enforcement of the range of the expression values . The addition of random noise can push               
some of the values outside the initially prescribed range of expression. In this case, we    ei             
forced the simulated values to be at the limit of the range. For example, a value of -18.5 was                   
reset to -14, the lower limit of the prescribed range.  
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Training and testing of the machine learning classifier 
To train the machine learning classifiers, we generated a training set by simulating multiple              
instances of every profile in the admissible range of expression values. For each instance of a                
simulated profile, we extracted a vector of statistical features which were used as predictors              
of the true class. The statistical features were built on the output of the Limma package, an                 
established tool for differential gene expression analysis 25. These include the estimated mean             
values , , , , the p-values of all possible pairwise contrasts among these four e0  eX  eY  eX+Y            
values, and additional statistics returned by Limma. The training set comprised different noise             
regimes. These were simulated by fixing different values for the parameter , as described          /σδ    
in the previous section. We considered the following values: low noise ( =4), medium           /σδ   
noise ( =2.5), high noise ( =2). Training of the machine learning classifiers was done /σδ    /σδ          
using the R packages Caret  and RandomForest .  
To select the best model, we generated additional simulated data and measured the             
out-of-sample classification accuracy per profile and for different values of defined as in          /σδ     
the training set. For each of these values, the accuracy was quantified as the proportion of                
correct predictions. The multiclass log-gain, and the class-specific precision and recall were            
computed with the packages MLmetrics and mltest. 
 
Generating the combinatorial landscape of immunity 
Public combination treatment datasets were retrieved from Gene Expression Omnibus using           
the package GEOquery 26. To facilitate comparisons, all the datasets were imported in the              
same format as in the original publications. The datasets were preprocessed as follows. First,              
if different probes were available for the same gene, the probe with the largest coefficient of                
variation was selected. Second, genes with low coefficient of variation (lower than the             
median of the distribution computed for all genes) were filtered out. Next, differentially             
expressed genes were determined with the Limma package. A significance cutoff of 0.05 was              
applied on the p-values after correction for multiple testing. An additional cutoff was             
imposed on the δ (defined above): genes with δ lower than the median value computed across                
all differentially expressed genes were filtered out. The resulting differentially expressed           
genes were then analyzed by the machine learning classifier which assigned to each gene the               
predicted element of the taxonomy. For each identified interaction, a score was defined to              
measure its magnitude as well as its significance. The magnitude of the interaction was             b   
measured as the average Bliss index, defined as the average deviation from additivity             

, where , with for synergistic effects ande Δe e )b = Δ X+Y − ( X + Δ Y   e  Δ i = ei − e0   b > 0     b < 0
for antagonistic effects. The significance of the interaction was measured as the class             
probability  returned by the classifier. The overall score was defined as the product p . b · p  
The identified interactions were annotated using a manually curated list of stimulatory and             
inhibitory immune checkpoints, as well as the gene lists provided by the ImmPort database 8.  
 
Probabilistic algebra of signal integration 
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To derive the probabilistic algebra, we first organized the taxonomy of profiles in groups.              
Each group consists of profiles that share the same individual effects of X and Y, but differ                 
for the effect of the combination X+Y. Because the labels X and Y are arbitrary and                
biologically irrelevant, pairs of groups that obtained by switching the role of X and Y were                
considered as the same group, for a total of 10 groups.  
Let denote the number of responses classified in group from all analyzed datasets, for N i           i       

. For each of these groups, let denote the number of possible outcomes for the, .., 10i = 1 .         ni         
combination. Furthermore, let the number of responses in group with outcome , for   N i, j       i    j   

. The probability of outcome in group is estimated as / . Given, .., nj = 1 .  i      j   i     p  Ni, j =  i, j N i   

the probabilities , the normalized Shannon entropy for group was computed as  pi, j        i     

. This is a number between 0 and 1 that measures thelog(p )/log(n )Si =  − ∑
ni

j=1
pi,j i,j i             

uncertainty in the response to the combination for given individual effects. A value of = 0              Si   
corresponds to a deterministic response (only one outcome for the combination observed with             
100% frequency), while = 1 corresponds to maximum uncertainty (all outcomes for the   Si           
combination occur with  frequency)./n1 i   
 
Enrichment analysis 
The functional enrichment of interactions was done using the Enrichr library 23. Four             
annotation databases were considered: GO Biological Processes (2017b), KEGG (2016),          
Wikipathways (2016), Reactome (2016). Enrichment was considered significant if the          
enrichment p-value adjusted for multiple testing was lower than 0.05.  
To analyze the synergies induced by IFNβ and TNFα co-treatment, we focused on annotation              
terms with size lower than 500 genes, to increase the specificity of the identified functions               
and pathways. Moreover, we imposed a minimum threshold in the overlap between the             
annotation term and the gene set being analyzed. This threshold was meant to identify              
annotation terms covering a minimum proportion of the gene set being analyzed. We chose a               
minimum coverage of 2%.  
 
DC differentiation 
All human subjects research protocols were reviewed and approved by the IRB of the Icahn               
School of Medicine at Mount Sinai. Monocyte-derived DCs were obtained from healthy            
human blood donors following a standard protocol described elsewhere 27. All experiments            
were replicated using cells obtained from different donors . IFNβ and TNFα treatments IFNβ             
(PBL InterferonSource) was added at a concentration of 2000 U/ml and TNFα (Symansis) at              
a concentration of 1.3 ng/ml  to the DC culture. Incubation time varied.  
  
Microarray data of human moDC treated with IFNβ and TNFα 
DC were treated with 4500 pg/mL TNFα, 3000 pg/mL IFNβ, or the combination of both for                
either 1 h or 2.5 h. Untreated DC served as a negative control. Three samples were taken per                  
treatment and time point. RNA was extracted with the RNeasy plus kit (Qiagen) following              
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the manufacturer’s instructions. Gene expression was assayed using broad human genome           
specific HG-U133_Plus_2 GeneChip expression probe arrays (Affymetrix). Affymetrix        
microarray data were normalized using gcRMA 28. Additional data processing was done as             
steps described above (see section “Generating the combinatorial landscape of immunity”) . 
 
Experimental validation of IFNβ and TNFα synergistic effects 
To test the involvement of VCAM1 on TNFα IFNβ induced synergy, DCs were exposed to               
TNFα, IFNβ, the combination of TNFα and IFNβ or control as described above. Four hours               
after treatment DCs were exposed to allogeneic T cells in a 1:3 ratio for an additional four                 
hours and then fixed with paraformaldehyde. Cells were stained with fluorochrome labeled            
antibodies against CD11c (DCs) and CD3 (T cells) and analyzed by imaging flow cytometry.              
DCs interacting with T cells were identified in images were one or multiple T cells had a                 
direct contact with a DC. 
To test the involvement of CCL5 on TNFα and IFNβ induced synergy, DCs were exposed to                
the cytokine mixtures as described above. After 4 hours, DCs were exposed to CFSE stained               
allogeneic T cells for 5 days and then fixed with paraformaldehyde. Cells were stained with a                
monoclonal antibody against CD11c and the extend of T cell proliferation was measured by              
the dilution of CFSE in the CD11c negative population, as CFSE gets weaker with every T                
cell division. The stain to exclude DCs was necessary as DCs also digest CFSE positive parts                
of T cells.  
 
Data and code availability 
All the analyses have been implemented in R. An interactive R Shiny application of SAIL               
can be found at https://SAIL.shinyapps.io/test_app/. The site also contains downloadable          
code and documentation to run the software locally.  
 
Supplemental information 
Figure S1. A comprehensive taxonomy of response profiles to combination treatments  
Each card corresponds to a possible response profile of a standard combination treatment             
experiment involving the conditions 0 (control), X, Y, and the combination X+Y. The color              
code keeps track of the sign of interaction: gray for additive, red for antagonistic, blue for                
synergistic. The taxonomy includes all the qualitative responses defined in our previous            
work 6, as well as additional profiles that capture the semi-quantitative effect of X, Y in case                
these two signals have opposite effects (e.g., one gene is up-regulated by X and              
down-regulated by Y or viceversa). In this case, we introduce new profiles by comparing the               
magnitude of the opposing effect.  
 
Figure S2. Distribution of precision and recall of LDA and RF across the taxonomy of               
response profiles 
To evaluate the performance of LDA and RF, we measured the distribution of precision ( a )               
and recall ( b ) over all the 123 elements in the taxonomy of response profiles to combination                
treatments (see Figure S1 ). These metrics were evaluated on independent test sets and for              
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three levels of noise: low, medium, and high. The results show that LDA fails to detect                
certain response profiles even in the low noise range. Overall, RF provides higher precision              
and recall, and a more consistent performance over the different classes.  
 
Figure S3. Quantification of interaction by cell type and type of combination 
Quantification of the ~30000 interactions included in combinatorial landscape aggregated by           
immune cell type ( a ) and by type of combination ( b ). Non-standard abbreviations: tlr=TLR             
ligands; host=host-derived factors (e.g. cytokines).  
 
Figure S4. SAIL analysis of interaction effects between IFNβ and TNFα in human             
moDC 
( a ) To study the interactions of IFNβ and TNFα, human blood moDC were treated in               
triplicates with control (0), IFNβ, TNFα, and the combination IFNβ+TNFα. After one hour,             
gene expression was measured with Microarray chips. Differential expression analysis          
revealed 1568 genes (adjusted p-value<0.05). ( a, bottom ) Using SAIL, these genes were            
classified in 596 additive, 359 synergistic, and 613 antagonistic profiles, and ( b ) mapped the              
corresponding profile groups. ( c ) Profile group 1 contains emergent effects, i.e., genes            
regulated only with the combination, as exemplified by the gene VCAM1 ( c, right             
sub-panel ). ( d) Profile group 2 contains synergies interpreted as a floor effect, as exemplified              
by the gene RHOB ( d, right sub-panel). ( e) Profile group 4b contains genes up-regulated by               
IFNβ and further potentiated by the combination. This effect, exemplified by the gene             
CXCL11  ( e, right sub-panel), is interpreted as a ‘potentiation’ effect.  
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