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Abstract

From cellular activation to drug combinations, the control of biological systems involves
multiple stimuli that can elicit complex nonlinear interactions. To elucidate the functions and
logic of stimulus interactions, we developed SAIL (Synergistic/Antagonistic Interaction
Learner). SAIL uses a machine learning classifier trained to categorize interactions across a
complete taxonomy of possible combinatorial effects. The strategy resolves the most
informative interactions, and helps infer their functions and regulatory mechanisms.
SAIL-predicted interaction mechanisms controlling key immune functions were
experimentally validated. SAIL can integrate results from multiple datasets to derive general
properties of how cells respond to multiple stimuli. Using public immunological datasets, we
assembled a fine-grained landscape of ~30000 interactions. Analysis of the landscape shows
the context-dependent functions of individual modulators, and reveals a probabilistic algebra
that links the separate and combined stimulus effects. SAIL is available through a user
friendly interface to resolve the effect of stimulus and drug combinations.
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Introduction

Biological responses are shaped by the effects of multiple stimuli in complex environments,
and treatment of many diseases involves combination therapies . A complex consequence of
combination stimuli is the potential occurrence of nonlinear interactions that can dramatically
alter the effects of individual treatments. Studies of the inflammatory microenvironment, for
example, have identified various emergent effects of combination exposures *~°. Although
understanding such combinatorial effects is key to elucidating biological processes, new
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computational tools are still needed to dissect and interpret interactions between biological
signals in -omics studies.

The typical combinatorial treatment experiment consists of -omics data generated in four
conditions: 0 (control), stimulus X, stimulus Y, and the combination X+Y. A common way to
understand interaction effects between X and Y is to identify non-additive responses induced
by the combination X+Y, and to classify them as either synergistic -larger than additive- or
antagonistic -smaller than additive-. Despite widespread use, this approach has limited
resolution because it confounds interactions that are qualitatively different °. For example, the
conventional approach does not discriminate less common patterns of interaction with high
biological significance, such as the emergence of a new response, from more frequent
nominal interaction responses, such as non-additivity due to saturation effects. Furthermore,
due to the lack of a satisfactory analysis framework and accessible tools, most studies are
restricted to a specific combination of interest, providing only partial, fragmented insight.
The narrow scope of current approaches may obscure general properties and principles that
underlie the occurrence of combinatorial interactions.

Here, we present a comprehensive framework to map and interpret interaction effects within
and across -omics combination treatments. The framework is based on a machine learning
classifier trained to categorize gene responses in -omics combination treatments across a
predefined, complete taxonomy of theoretically possible response patterns. Mapping the
experimental gene responses into the appropriate element of the taxonomy resolves the most
informative combinatorial effects, and facilitates the inference of coherent biological
programs and of the underlying regulatory mechanisms. SAIL guided the identification of
new cytokine interaction mechanisms in human dendritic cells, which we experimentally
validated with neutralizing experiments.

Another major advance of SAIL is the capacity to integrate results from multiple -omics
combination treatments and derive a broader understanding of how cells respond to
combinations of stimuli. Using a compendium of public datasets, we assembled a
fine-grained landscape comprising ~30000 interactions from a variety of immune cells.
Analysis of the landscape sheds new light on the context-dependent functions of individual
modulators, and reveals a probabilistic algebra, a set of probabilistic rules underlying the
integration process that link the separate and combined stimulus effects.

SAIL is available through a user friendly interface to resolve the combinatorial control of
biological processes in public or user-generated dataset, and to assist the development of
rational combination therapeutics.

Results

Overview of the SAIL framework

SAIL is a machine learning framework to map and interpret interaction effects from -omics
combination treatment experiments comprising a vehicle control (denoted by 0), two
individual stimuli (X, Y), and their combination (X+Y) (Fig. 1a, left sub-panel). Samples are
harvested at specific timepoints after stimulation, and an -omics dataset, such as gene
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expression microarray or RNA-seq, is generated. The dataset is analyzed by a machine
learning classifier previously trained to map gene responses across the predefined taxonomy
of 123 possible response profiles (Fig. S1). These represent qualitatively different scenarios
for the expression of a gene in the conditions 0, X, Y, X+Y °. As we demonstrate, mapping
the experimental gene responses into the appropriate element of the taxonomy resolves the
most informative combinatorial effects, and facilitates the inference of coherent biological
programs (Fig. 1a, right sub-panel).

The use of an abstract taxonomy makes it possible to map interactions from multiple datasets
onto a common reference space. Using public immunological datasets, we assembled
~30,000 combinatorial interactions in an overall, fine-grained combinatorial landscape of
immunity (Fig. 1b). The landscape is an information-rich object that reveals new aspects of
the logic and functions of interactions, guiding new hypotheses.

Machine learning-driven classification of combinatorial interactions

A key problem we address is how to classify noisy -omics data from combination treatments
across the taxonomy of theoretical profiles. To solve this problem, we trained a machine
learning classifier on an extensive set of simulated interaction profiles (Fig. 2a). Each
interaction profile was simulated in multiple instances with variable group means for the
conditions 0, X, Y, X+Y within a range of values consistent with the experimental data (see
Methods). The statistical variability around the group means was assumed to be normally
distributed. This assumption is widely held in the analysis of microarray data, and still
applicable to RNA-seq data upon a suitable transformation ’. Given the uncertain noise level
in the experimental data, we simulated three noise regimes: low, medium, and high (Fig. 2a,
see Methods). The different noise levels were simulated by decreasing the effect size,
defined in terms of the standardized means differences between the four conditions (see
Methods).

From each simulated instance of a profile, we extracted a vector of statistical features
including the group means, the average deviation from additivity, and the significance of all
pairwise contrasts from the conditions 0, X, Y, X+Y (see Methods). These features served as
predictors of the true class. Overall, the training set comprised ~340,000 simulated profiles,
pairing up vectors of statistical features (inputs) with the corresponding true profile labels
(outputs) (Fig. 2b). We then trained two established machine learning classifiers: Linear
Discriminant Analysis (LDA), and Random Forest (RF), keeping our previously proposed
deterministic match algorithm as a reference®.

To compare the performance of the different algorithms, we evaluated various metrics for
multiclass classification on independent test sets. RF showed a more robust performance then
LDA across the three noise levels (Fig. 2¢). Although the deterministic match had the largest
accuracy in the low noise regime, its performance declined more rapidly with increasing
noise compared with RF and LDA. An additional advantage of RF and LDA over the
deterministic match is the possibility for a “soft” (i.e. probabilistic) assignment of an input
profile into any element of the taxonomy. The probabilistic outputs generated by RF
systematically showed superior performance over LDA in all noise regimes (Fig. 2d).
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Additional machine learning methods were also evaluated but performed less efficiently in
terms of computational overhead.

These results, complemented by analyses of the distribution of precision and recall over all
taxonomy classes (Fig. S2), indicated RF as the most robust and suitable way to classify
combinatorial interactions.

Building a combinatorial landscape of human immunity

Next, we developed a strategy to systematically map, annotate, and analyze interactions from
diverse combination treatments as available in Gene Expression Omnibus (Fig. 3a). To
retrieve the relevant datasets, we used key terms typically associated with combination
treatments such as “synergy”, “antagonism”, “combinatorial”, and similar. This approach was
meant to facilitate automatic update of the resource as new -omics combination treatments
become publicly available. Focusing on immunology, we selected a total of 25 human and 7
murine datasets (Table 1). We applied SAIL to each dataset and mapped a total of 29,479
interactions. The proportions of interactions from each type of cell or combination of stimuli
varied widely (Fig. S3).

Despite numerous studies on combination treatments, the frequency at which different types
of interactions occur has not been systematically studied. We found that the most frequent
interactions are interpretable as technical and/or biological saturation of the assay, which we
refer to as floor and ceiling effects (Fig. 3b, top subpanel). Our approach segregates these
effects from less frequent but more biologically relevant interaction responses. The most
prevalent of these more important profiles are suppression (9%), inhibition (8%), restoration
(4%), emergence (4%), and potentiation (3%) (Fig. 3b, middle subpanel). Notably, our
analysis also revealed that several theoretically possible combinatorial effects were nearly
absent (<0.04%). The rare patterns include reversals, where two signals with the same
individual effect (e.g. up-regulation of a gene separately by X and Y) are reversed by the
combination (e.g. down-regulation of the same gene by X+Y) (Fig. 3b, bottom subpanel).
To assemble results from multiple combination treatments, we created a 3D landscape with
axes representing datasets, genes, and scores quantifying the intensity and robustness of the
identified interactions (Figure 3c¢). The dataset axis was also annotated with metadata on the
experiments including species, cell type, stimuli, and time point. The gene axis was annotated
with immunological gene families such as chemokines, interleukins, checkpoints and other
terms from the ImmPort database 8. The interaction axis was annotated by the profiles
predicted for each interaction by the machine learning classifier.

Slicing the landscape along specific dimensions provides different types of insight into the
role and functions of the interactions. For example, slicing by gene family allows systematic
identification of synergistic and antagonistic effects involving immune modulators of interest.
Figure 3d shows a 2D projection of the landscape that contains stimulatory and inhibitory
checkpoints, key regulators of the immune system with increasing therapeutic applications
*1 In the considered datasets, immune checkpoints show a variable propensity towards
synergistic and antagonistic regulation. While CD40 and CDS80 present sparse, selective
interaction effects across datasets, /DO] is synergistically induced in a diversity of datasets.
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Among these synergies, we found two cases of potentiation in pDC and moDC (Figure 3e).
Because IDOI inhibits T cell division and promotes regulatory T cells !!, these synergistic
effects may serve to contain overreacting immune responses in the inflammatory
microenvironment.

SAIL ability to integrate results from multiple datasets makes it possible to globally estimate
the frequency of different synergistic and antagonistic, and to investigate the impact of these
effects on gene families and pathways of interest.

Probabilistic algebra underlying immune cell responses to combination treatments

If the cellular response to a combination was merely additive, the effect of the combination of
stimuli would be uniquely determined as the sum of the individual effects. However,
interaction effects open the possibility for diverse synergistic and antagonistic scenarios. By
integrating results from multiple -omics datasets, SAIL enables to explore whether any
generalized logic rules link the individual to the combined effects of two signals.

To address this problem, we implemented a new analytical approach and summary
visualization (Fig. 4a). First, we aggregated profiles in our taxonomy that share the same
pattern of individual effects, regardless of their combined effect. For example, we grouped
interaction profiles for which neither X nor Y have any effect in isolation (Fig. 4a, top
panel). Next, we considered all the possible combinatorial effects. Given that X and Y have
no isolated effect, the combination X+Y can produce three qualitative outcomes:
up-regulation (synergistic), no effect (additive), or down-regulation (antagonistic). Suppose
the three possibilities occur with a frequency of 30%, 50%, 20% among the genes classified
in this aggregated profile group, respectively (Fig. 4a, middle panel). To represent these
frequencies in a compact yet informative manner, we used horizontal bars in the column
corresponding to the condition X+Y. The color of the horizontal bars keeps track of the sign
of the interaction (blue: synergistic, red: antagonistic, gray: additive) (Fig. 4a, bottom
panel). We refer to this visualization scheme as a “strata plot”. For each strata plot, we
quantified the uncertainty in predicting the combinatorial effects for the given individual
effects using a normalized Shannon entropy (see Methods).

We then systematically assessed the frequency of all possible combinatorial effects as a
function of the individual effects (Fig. 4b). For each aggregated profile group, we generated
the corresponding strata plot (Fig. 4¢). The analysis revealed a probabilistic algebra that
associates the individual effects of the two signals with the most prevalent type of interaction.
For example, if both X and Y downregulate the expression of a gene, the most likely type of
interaction is a floor effect (Fig. 4d, top). We observed this pattern in 80% out of over 10000
responses in the corresponding group. Similarly, up-regulation individually by both X and Y
often results in a ceiling effect pattern in the combination treatment condition, with a
frequency of 66% (Fig. 4d, middle). If one signal upregulates a gene, and the other has no
effect, the most likely resulting response is an additive effect, followed by a suppression,
observed with a frequency of 18% (Fig. 4d, bottom). Importantly, this result showed that
given two signals, with one up-regulating a given gene and the other having no effect on the
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same gene, antagonistic effects such as suppression were more frequent than a potentiation
effect.

Together with the most likely outcome for each group, our results also reveal the systematic
absence of theoretically possible combinatorial effects. Consistent with our analysis of the
frequency of the different interactions, we found vanishingly small probabilities associated
with reversals.

Altogether, our results support the derivation of a probabilistic algebra underlying the cellular
response to combination treatments. The algebra predicts the most likely type of interactions
given the individual effects of two stimuli.

Interactions determine a context-dependent TNFa biology

A critical consequence of interactions is the potential modification of effects observed with
each individual treatment. Our framework systematically detects qualitative changes in the
effects of a given signal in the presence of other stimuli. To illustrate this, we focused on
TNFo, an extensively studied immunomodulators 2.

To explore how the composition of the inflammatory microenvironment can alter TNFa
biology, we sliced the combinatorial landscape along two axes (Fig. 5, top-left). From the
dataset axis, we selected combination treatments involving TNFa with other stimuli,
including IFNB and IFNy in four human cell models (Fig. 5a, left-margin). From the
interaction axis, we extracted interaction profiles that encoded a qualitative change of the
TNFa effect when considered as a mono-treatment. We started by considering three types of
qualitative changes: suppression, antagonistic reversal, and synergistic reversal of TNFa
effects (Fig. Sa, top-margin). For each pair of dataset and profile, we processed the
corresponding gene list with enrichment analysis to gain insight at the functional level.

Genes showing suppression and reversal of TNFa effects were significantly enriched in
important immune processes including T-helper 1 polarization and antigen presentation (Fig.
5a). Further analysis (Fig. 5, top-right, Methods) also suggested that co-modulators can
drive the emergence of new functions, not observed by TNFa modulation in isolation.
Although these emerging functions were relatively few, they comprised potentially important
processes such as proteasome degradation and T cell chemotaxis.

Our results illustrate the ability of SAIL to systematically study how the effect of a stimulus
is qualitatively altered by other stimuli through a variety of interaction effects including
suppression, reversal, and the emergence of entirely new functions.

Prediction and validation of TNFo and IFNp interaction effects in human
monocyte-derived dendritic cells

Next, we applied SAIL to investigate the synergistic interactions of two specific cytokines,
IFNB and TNFa. While IFNJ and TNFa are key modulators of immune functions whose
individual effects have been extensively studied '»', their interactions remain poorly
understood. We previously reported that IFNB and TNFa act synergistically to induce an
antiviral state in monocyte-derived dendritic cells (moDC) . To investigate the systems level
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impact of IFNB and TNFa co-treatment on human moDC, we applied SAIL to the
corresponding combination treatment experiment.

SAIL detected 374 synergistic interactions, which we mapped to the corresponding profile
groups (Fig. S4). The interaction groups with the largest number of synergistic effects were
‘emergent synergy’, ‘TNFa potentiates IFNP’, ‘IFNP restores TNFa’, and ‘IFNJ potentiates
TNFo’ (Fig. 6A). To understand the function of these specific interaction patterns, we sorted
the corresponding gene lists based on the synergy score and searched for candidates with
potential key immunological roles. We first focused on the emergent synergies due to their
special role as responses exclusive to the combination. In this profile, the genes with the
largest synergy scores were LIMK2, MCOLN2, SLC7A5, TP53BP2, and several genes having
more established immunological roles such as RELB, IL15RA, and VCAMI.

The protein VCAM-1 has been described as a regulator of leukocyte migration and cell
adhesion '°. Due to the fundamental importance of the DC-T cell axis in the generation of an
immune response, we hypothesized that IFNB and TNFa synergistically induce VCAM-1 to
promote moDC-T cell adhesion. We tested this hypothesis by quantifying DC-T cell adhesion
using imaging flow cytometry (see Methods). When exposed to the combination of IFNf and
TNFa, moDC showed an increased adhesion to T cells that was not observed with either
cytokine alone (Fig. 6d). The increased DC-T cell adhesion was mediated by VCAM-1, since
VCAM-1 neutralization abolished the synergistic effect (Fig. 6d). To our knowledge, these
results identify for the first time a role for synergistic induction of VCAM-1 by TNFa and
IFNB in promoting DC-T cell adhesion.

To further explore the immune processes controlled by IFNJ and TNFo synergies, we
performed enrichment analysis separately for the different profiles, and compared the results
with a conventional analysis that aggregates all the synergies in a single gene set (Fig. 6c,
left). Certain annotation terms were captured by SAIL as well as by the conventional method,
but SAIL provided additional insight. For example, both SAIL and conventional analysis
captured a highly significant enrichment in mineral absorption. However, SAIL analysis also
revealed the pattern ‘IFNP restores TNFa’ as the main contributor to this enrichment. This
pattern contains several members of the family of metallothioneins (MT1X, MTIE, MTIF,
MTIHLI), which are increasingly recognized as important players in the response to
cytokines and pathogen signals '°. Overall, annotation by profile revealed an enrichment in
annotation terms not resolved by conventional analysis (Fig. 6c, right). In particular, we
found pattern ‘IFNP potentiates TNFa’ enriched in T cell proliferation, critical step in the
generation of an immune response.

Using an allogeneic cross donor stimulation, we tested the hypothesis that a IFNf and TNFa
stimulation may act in synergy to enhance T cell proliferation (Fig. 6d, left panel). The
combination treatment induced a nearly two-fold increase in the percent of proliferating T
cells, an effect not seen with either stimulus alone. The synergy pattern of the T cell
proliferation measurement diverged slightly from the gene level profile, which showed some
effect by TNFa alone. It is not surprising that the interactions patterns comparing mRNA
level regulation and protein-dependent functional effects show marginal differences.
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Importantly, the synergistic induction of T cell proliferation, predicted by SAIL, was
confirmed experimentally.

Next, we wanted to identify the molecular mediators of the increased T cell proliferation.
Candidate genes for mediating this synergistic response predicted by enrichment analysis
included TNSFS9 and CCL5. Review of the literature suggested CCL-5 as the most likely
candidate '7. We therefore hypothesized that CCL-5 may contribute to increased proliferation
of T cells induced by INFB and TNFa exposed DC. This hypothesis was confirmed by
immunoneutralization of CCL-5 (Fig. 6d, right panel).

These experimental validations demonstrate the value of SAIL in mining interaction data for
new hypotheses that guide further study.

Discussion

In this work, we present a comprehensive machine learning framework to map and interpret
interaction effects within and across -omics combination treatment studies. Our analysis of a
compendium of immunological combination treatment datasets generated a landscape of
~30,000 interactions. We obtained global insight into the principles and functions of
interactions from analysis of the landscape, and validated new hypotheses about
combinatorial cytokine effects.

Developing learning models to predict synergistic combinations of treatments based on the
individual effects is an active area of research '®2'. Despite an apparent methodological
similarity, the motivation and goals of our framework are fundamentally different from these
studies. In our framework, machine learning is applied to classify and interpret the function
of diverse types of synergistic and antagonistic interactions induced by -omics combination
treatments, and not to directly predict these effects.

Nonetheless, application of SAIL to a compendium of public datasets revealed a
combinatorial algebra, that is, a set of rules that for any given pattern of individual effects,
can predict the probability of all the possible combinatorial effects. The analysis also revealed
that certain a priori possible response patterns, such as reversals, are very rare events in all
studies examined. This may imply the existence of mechanistic constraints and exclusion
principles that limit the spectrum of potential combinatorial responses at the transcriptional
level. Overall, our findings could inform and enhance future predictive models with a new
type of evidence derived from a number of -omics datasets.

A potential consequence of interactions is the radical modification of effects observed with
individual treatments. Using the SAIL framework, these events are easily identified by
isolating interaction profiles that encode qualitative combination changes in the effect of a
treatment of interest. In the case of TNFo, we found that co-modulators alter fundamental
immunological processes, such as antigen presentation and T helper cell polarization, and
may produce the emergence of entirely new functions, not modulated by TNFa
mono-treatment. Identifying the context-dependent effects of an agent may be useful in a
therapeutic perspective. The success of therapeutic agents relies on the control of both
pathogenic and homeostatic pathways. Our approach may assist in the design of drug
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combinations that leverage antagonistic interactions to selectively reduce pathogenic activity
while preserving necessary homeostatic pathways.

A fundamental tool for biological interpretation of -omics experiments is pathway-level
enrichment analysis. SAIL uncovers biological processes regulated in combination treatment
studies by fine-grained aggregation of genes showing similar interaction responses. As we
demonstrate, these aggregates reflect coherent biological processes that provides insight into
the principles and functions of interactions, and generate hypotheses for new interaction
effects that were experimentally validated. In the analysis of IFNP and TNFa co-treatment,
SAIL uncovered novel synergies that control the DC-T cell interactions and T cell
proliferation, both of which are critical immune processes. Importantly, SAIL analysis also
suggested specific hypotheses on the molecular mediators controlling these functions,
VCAM-1 and CCL-5, which we validated with neutralization experiments.

We note several potential limitations of the SAIL framework. The classifier was trained
under the assumption of normally distributed data. While this assumption is commonly held
in the analysis of microarray and RNA-seq data upon a suitable transformation, it may not
apply to other assays. Under alternative distributional assumptions, our approach would be
adaptable to other -omics technologies, such as proteomics, metabolomics, and epigenetics
data. To demonstrate the usefulness of SAIL, we restricted the initial landscape to
immunology. Future releases of the landscape can accommodate additional datasets
applicable to all domains of biological research.

To facilitate the application of SAIL, we developed a user-friendly platform. Users can
upload experimental data on new combinations, or re-analyze datasets from our curated
database. A few simple steps enable the user to identify and interpret the most relevant
synergistic and antagonistic interactions. The platform is connected with external resources

2 and enrichR | to provide extensive annotation at

including ImmPort ¥ Gene Cards
single-gene and pathway level. SAIL web tools can be used to generate testable hypotheses
about the role of combinatorial interactions in driving biological processes.

Notably, treatment interactions are important in clinical therapeutics and side effects. More
than 10,000 clinical trials in the United States alone are studying the effects of drug
combinations *?*, By uncovering relevant interactions and their functions, SAIL can further

understanding of interaction mechanisms and the development of combination therapeutics.
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Figure legends

Figure 1. Overview of the SAIL framework

(a) SAIL (immune Synergistic/Antagonistic Interaction Learner) is a machine learning
framework to decipher the effect of combination treatments. It takes as input -omics data
from the four prototypical conditions of combination treatments: 0 (control), stimulus X,
stimulus Y, and the combination X+Y (left sub-panel). The dataset is analyzed by a classifier
trained to map each gene into a complete taxonomy of theoretically possible response profiles
(middle sub-panel, see also Fig. S1). The taxonomy helps infer the functional role of
different types of synergistic and antagonistic effects (right sub-panel). (b) A major advance
of SAIL is the capacity to integrate results from multiple combination treatments. Using a
compendium of publicly available immunological datasets (right sub-panel), we built a
combinatorial landscape comprising ~30000 interactions. Global analysis of the landscape
and of user-generated data drive new hypotheses on the logic and functions of combinatorial
interactions.

Figure 2. Machine learning classification of treatment interactions

(a) We generated a training set of simulated interaction profiles. Each profile was simulated
multiple times with realistic group means for the conditions 0, X, Y, X+Y. To build a robust
classifier, we simulated three noise levels: low, medium, high. From each simulated profile i,
instance j, and noise level n, we extracted a vector v¥ ™of statistical features including the
p-values for all possible pairwise contrasts from the groups 0, X, Y, X+Y. (b) The vectors v
™ labeled with their originating profiles, provided a training set. This was used to develop a
machine learning classifier that takes as input a vector of statistical features, and predicts as
output the most probable profile. We compared three classification algorithms: Deterministic
Match, Linear Discriminant Analysis (LDA), and Random Forests (RF). (¢) To compare their
performance, we measured the classification accuracy -the fraction of correct predictions- on
independent test sets. RF provided the most consistent distribution of accuracy. (d) To further
compare LDA and RF, we computed the multiclass log gain, a metric that accounts for the
full probabilistic output returned by these classifiers. Again, RF showed the best performance
and was selected as the most robust model.

Figure 3. Building a combinatorial landscape of immunity

(a) Workflow to map and investigate combinatorial effects from multiple combination
treatment experiments. We selected 32 -omics combination treatments from diverse immune
cells and combinations of stimuli. Applying SAIL to each dataset, we mapped ~30000
interaction effects. (b) The first seven cards represent the most frequent types of interactions.
The last two cards represent interactions that occur with vanishingly low frequency. (¢) To
integrate interactions from different datasets, we created a 3D structure with axes
representing datasets, genes, and scores quantifying the intensity and robustness of the
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effects. The resulting landscape, supplemented with metadata and prior knowledge, makes it
possible to comprehensively investigate the effect of combination treatments on immune
cells. (d) The plane shows a 2D projection of the landscape focusing on immune checkpoints,
a key immunological gene family. The size and color of the rectangles keeps track
respectively of the interaction score and sign (blues: synergistic, red: antagonistic). The
immune checkpoint /DOI is synergistically induced in multiple datasets (non-standard
abbreviations: P3C= Pam3CSK; vD=vitamin D; GM=GM-CSF; edelf=edelfosine;
Flu=influenza virus). (e) By looking at the specific nature of these synergies, we found two
cases of potentiation in human moDC (top) and pDC (bottom).

Figure 4. Probabilistic algebra governing immune cell responses to combination
treatments

(a) To explore the relationship between the individual and combined effects of two signals,
we developed a new analytical and visualization technique. First, we divided the taxonomy of
response profiles in groups whose elements share the same conjunction of individual effects
by X and Y, regardless of their combined effect. For example, Group 1 contains response
profiles for which both X and Y have no effect in isolation (a, top). Next, we consider all the
possible effects of the combination). In Group 1, the combination can have three qualitative
scenarios (a, middle). We then estimate the frequency of each of these scenarios. In this
hypothetical example, the three scenarios are observed with frequencies of 30%, 50%, and
20%. To represent the three frequencies in a compact yet informative manner, we use
horizontal bars in the column corresponding to the condition X+Y. We refer to this
visualization scheme as a strata plot (a, bottom). The colors of the horizontal bars keep track
of the sign of the interaction (blue: synergistic, red: antagonistic, gray: additive). (b) By
repeating the above procedure for all combinatorial responses in the landscape, we derived a
probabilistic algebra linking any conjunction of individual effects. (¢) Frequency of
combinatorial effects corresponding to different types of individual effects. (d) Three
examples of a probabilistic link between a conjunction of individual effects and the most
recurrent interaction.

Figure 5. Combinatorial interactions determine a context-dependent TNFa biology

To explore how cofactors might alter the TNFa biology, we sliced the combinatorial
landscape (top-left) along two axes. From the dataset axis, we extracted combination
treatments involving TNFa and concomitant factors including IFNy and IFN in four human
cellular models (left-margin). From the interaction axis, we extracted interaction profiles that
encode a qualitative change of the effect of TNFo mono-treatment. We started by considering
three types of qualitative changes: suppression, antagonistic reversal, and synergistic reversal
(top-margin). For each dataset and profile, we processed the corresponding gene list with
enrichment analysis to gain insight at functional level. The matrix elements correspond to
selected significantly enriched functions (* adjusted p<0.05, ** adjusted p<0.01, *** adjusted
p<0.001). Example hits from each function are shown in parentheses. In the case of emergent
effects (last column), we looked for a significant enrichment in new functions, not observed
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with TNFa alone (top right, see also Methods). This analysis suggests that cofactors could
drive the emergence of new TNFa functions.

Figure. 6 Prediction and validation of IFNP and TNFa synergistic effects in
monocyte-derived dendritic cells (a) We applied SAIL to analyze the synergistic effects
induced by IFNP and TNFa after 1 hour exposure. We focused on the four profile groups
with the largest number of synergies. In the group of emergent synergies, we found VCAM1,
a gene involved in the regulation of cell adhesion. (b) We tested the hypothesis that the
emergent induction of VCAM1 in the DC would mediate an increase in DC-T cell interaction.
Assayed by imaging flow cytometry, moDCs exposed to IFNB+TNFa showed an emergent
increase in DC-T cell adhesion. This synergistic effect was eliminated by VCAM-1
neutralization. The synergy score for this effect -defined as the mean deviation from
additivity- was significantly reduced (t-test, p=0.03). The error bars represent the standard
error of the mean synergy score. (¢) To explore whether IFNB+TNFa synergy patterns
represented coherent gene programs, we determined the functional enrichment for each
pattern. (c, left panel). We compared these SAIL-based functional analyses to results
obtained with a conventional analysis of unclassified synergy genes. (¢, right panel).
SAIL-based enrichment provided a richer functional annotation. In particular, it suggested
that synergy genes in the ‘IFNf potentiates TNFa’ pattern rightmost panel in (a) may mediate
T cell proliferation. (d) This hypothesis was tested using allogeneic cross donor stimulation.
The synergy group ‘IFNP potentiates TNFa’ contained two hits potentially responsible for T
cell proliferation: TNFSF9 and CCL5. Using CCL-5 neutralizing antibodies, we confirmed
that IFNP and TNFa act in synergy to promote T cell proliferation, and that this proliferation
depends on CCL-5. The synergy score for this effect -defined as the mean deviation from
additivity- was significantly reduced by neutralization of CCL-5 (t-test, p=0.008). The error
bars represent the standard error of the mean synergy score.

Tables

Table 1. Datasets used to construct the combinatorial landscape of immunity

Accession Species Cell type Signal X Signal Y Time point
GSES054 Human thyroid cells IFNy IL1B 1d

GSE3633 Human ARPE-19 cells IFNy TNFa 2d
GSE43409 Human innate lymphoid cells cocktail (IL-1/IL-7/IL-23) aNKp44 3.5h
GSES3712 Human monocytic THP-1 LPS SB203580 4h
GSES3712 Human monocytic THP-1 LPS SB203580 1d
GSES9179 Human Hut78 cells Enzastaurin AR-A014418 3d
GSE63038 Human NK cells FcR activation IL-12 12h
GSE79077 Human MDMs dexamethasone IFNy 20h

GSES7915 Human pDC IL3 Flu 6h


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5054
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36331
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43409
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53712
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53712
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59179
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63038
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE79077
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57915
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GSES7915 Human pDC GM-CSF Flu 6h
GSES7915 Human pDC GM-CSF Flu 1d
GSES7915 Human pDC GM-CSF LL37 1d
GSES7915 Human monocytes NOD2 TLRs 6h
GSES7915 Human monocytes NOD2 TLRs 1d
GSES7915 Human monocytes IFNy TLRs 6h
GSE46903 Human macrophage IFNy TNFa 3d
GSE46903 Human macrophage TNFa P3C 3d
GSE36323 Human monocytic THP-1 D3 TsA 2.5h
GSES2819 Human macrophage Vitamin D H37Rv 24h
GSE44392 Human CDA4+ T cell edelfosine beads 30h
GSE24767 Human keratinocyte IL-17 TNFa 1d
GSE77814 Human BMSC IFNy TNFa (1.5 ng/ml)  2d
GSE77814 Human BMSC IFNy TNFa (15 ng/ml) 2d
GSE134209 Human moDC TNFa IFNB 1h
GSE134209 Human moDC TNFa IFNB 2.5h
GSE20302 Mouse DC Lact acidophilus Bifid bifidum 10h
GSE28994 Mouse Lung Pam2CSK4 ODN2395 4h
GSE32986 Mouse DC curdlan (1 mg/ml) GM-CSF 4h
GSE32986 Mouse DC curdlan (100 mg/ml) GM-CSF 4h
GSE35291 Mouse HSPCs valproic acid lithium 7d
GSES3986 Mouse macrophage IFNy LPS 1d
GSE62249 Mouse SB-3123p cells cocktail (TNFo/IFNy) Vemurafenib 4d

Non-standard abbreviations: MDM=Monocyte-Derived Macrophages; P3C=Pam3CSK; D3=nuclear hormone 10,25(0OH)2D3;
TsA=trichostatin A; BMSC=Bone Marrow Stromal Cells; HSPCs=hematopoietic stem/progenitor cells; Lact=Lactobacillus;
Bifid=Bifidobacterium

Methods

Definition and simulation of interaction profiles

The notion of interaction profiles has been introduced in our previous work °, and is briefly
summarized here. The interaction profiles represent qualitatively different scenarios for the
expression of a gene in the conditions 0, X, Y, X+Y. Fig. S1 shows the taxonomy of 123
profiles used in this study. Mathematically, each profile corresponds to a linear system of
equalities and inequalities satisfied by the mean expression levels of a gene in the conditions
0, X, Y, X+Y, respectively denoted by e, ,e,,e,, e,,, . The linear system defining a given
profile admits infinitely many solutions, each of which can be seen as a particular instance of
the profile. For example, an emergent synergy (no effect by X, no effect by Y, and


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57915
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57915
http://gse57915/
http://gse57915/
http://gse57915/
http://gse57915/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46903
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46903
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36323
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52819
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44392
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24767
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE77814
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE77814
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20302
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28994
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32986
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32986
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35291
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53986
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62249
http://f1000.com/work/citation?ids=6611641&pre=&suf=&sa=0
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up-regulation by X+Y) is satisfied by the vectors (2.2, 2.2, 2.2, 5.5), (4.1, 4.1, 4.1, 7.8), as
well as by infinitely many other qualitatively similar vectors.

To simulate a profile, our strategy starts by sampling the solution space of the corresponding
system of inequalities. The solution space is sampled within a range of admissible values,
chosen to mimic the experimental data. Next, a noise term is added to each instance of a
profile using a random number generator. The noise term is assumed to be normally
distributed. This assumption is widely held in the analysis of microarray data, and still

applicable to RNA-seq data upon a suitable transformation ’

. Increasing noise levels
correspond to a decreasing effect size, which is defined in terms of the standardized
differences between the group means in the four conditions, as further described below. To
account for the relatively small number of samples in -omics data, we simulated four
replicates for each of the conditions 0, X, Y, X+Y. The steps to simulate interaction profiles

are as follows:

Definition of a range of admissible expression values. This was chosen as the interval [-14,
14], consistent with the range of log2-transformed expression values from microarray and
RNA-seq data upon the Voom transformation.

Sampling the solution space for the given profile in the specified range. The vector of
numbers (e,, ey, e,, e,,, ) for the given profile were found with the function xsample
from the package /imsolve. For each profile, we extracted 400 instances for each level of
noise.

Definition of the signal of a simulated profile. The signal can be seen as a generalization of
the fold-change in A Vs. B experiments. In a combination treatment, we first consider all
pairwise fold-changes from the conditions 0, X, Y, X+Y. Except for the case of constant
genes, at least one of these contrasts must be different from 0. The signal 9 is defined as the
absolute value of the smallest non-zero difference. To avoid very weak signals, not
meaningful in the analysis of expression data, a minimum signal of 0.5 is used in the training
set.

Simulation of random noise. To simulate random variability around the values ¢, e, , e, ,
e, ,the data was assumed to be normally distributed around the group means: e,~N(e;, 6)
,with i = 0, X, Y, X+Y. The parameter ¢ was assumed the same for all groups. For each of the
four conditions, we simulated 4 replicates. Different levels of noise, were simulated by
setting different values of the ratio d/c.

Enforcement of the range of the expression values. The addition of random noise can push
some of the values e; outside the initially prescribed range of expression. In this case, we
forced the simulated values to be at the limit of the range. For example, a value of -18.5 was
reset to -14, the lower limit of the prescribed range.
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Training and testing of the machine learning classifier

To train the machine learning classifiers, we generated a training set by simulating multiple
instances of every profile in the admissible range of expression values. For each instance of a
simulated profile, we extracted a vector of statistical features which were used as predictors
of the true class. The statistical features were built on the output of the Limma package, an
established tool for differential gene expression analysis?. These include the estimated mean
values ¢,, e, e,, e, , , the p-values of all possible pairwise contrasts among these four
values, and additional statistics returned by Limma. The training set comprised different noise
regimes. These were simulated by fixing different values for the parameter 6/c, as described
in the previous section. We considered the following values: low noise (6/c=4), medium
noise (6/6=2.5), high noise (8/c=2). Training of the machine learning classifiers was done
using the R packages Caret and RandomForest.

To select the best model, we generated additional simulated data and measured the
out-of-sample classification accuracy per profile and for different values of 6/c defined as in
the training set. For each of these values, the accuracy was quantified as the proportion of
correct predictions. The multiclass log-gain, and the class-specific precision and recall were
computed with the packages MLmetrics and mitest.

Generating the combinatorial landscape of immunity

Public combination treatment datasets were retrieved from Gene Expression Omnibus using
the package GEOquery *°. To facilitate comparisons, all the datasets were imported in the
same format as in the original publications. The datasets were preprocessed as follows. First,
if different probes were available for the same gene, the probe with the largest coefficient of
variation was selected. Second, genes with low coefficient of variation (lower than the
median of the distribution computed for all genes) were filtered out. Next, differentially
expressed genes were determined with the Limma package. A significance cutoff of 0.05 was
applied on the p-values after correction for multiple testing. An additional cutoff was
imposed on the 6 (defined above): genes with 6 lower than the median value computed across
all differentially expressed genes were filtered out. The resulting differentially expressed
genes were then analyzed by the machine learning classifier which assigned to each gene the
predicted element of the taxonomy. For each identified interaction, a score was defined to
measure its magnitude as well as its significance. The magnitude of the interaction b was
measured as the average Bliss index, defined as the average deviation from additivity
b=Aey y —(Aey+ Aa , where Ae; = e, —¢, , with b > 0 for synergistic effects and 5 <0

for antagonistic effects. The significance of the interaction was measured as the class

probability p returned by the classifier. The overall score was defined as the product b - p.
The identified interactions were annotated using a manually curated list of stimulatory and
inhibitory immune checkpoints, as well as the gene lists provided by the ImmPort database ®.

Probabilistic algebra of signal integration
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To derive the probabilistic algebra, we first organized the taxonomy of profiles in groups.
Each group consists of profiles that share the same individual effects of X and Y, but differ
for the effect of the combination X+Y. Because the labels X and Y are arbitrary and
biologically irrelevant, pairs of groups that obtained by switching the role of X and Y were
considered as the same group, for a total of 10 groups.

Let N, denote the number of responses classified in group i from all analyzed datasets, for
i=1,.., 10. For each of these groups, let n.denote the number of possible outcomes for the
combination. Furthermore, let N, ; the number of responses in group i with outcome j, for

Jj =1,..., n,. The probability of outcome j in group i is estimated as pi; = N g /N, . Given

the probabilities p; Iz the normalized Shannon entropy for group i was computed as
n;

S;= — X p;;jlog(p;;)/log(n;). This is a number between O and 1 that measures the
j=1

uncertainty in the response to the combination for given individual effects. A value of §,=0
corresponds to a deterministic response (only one outcome for the combination observed with
100% frequency), while §;= 1 corresponds to maximum uncertainty (all outcomes for the

combination occur with 1/n; frequency).

Enrichment analysis

The functional enrichment of interactions was done using the Enrichr library #. Four
annotation databases were considered: GO Biological Processes (2017b), KEGG (2016),
Wikipathways (2016), Reactome (2016). Enrichment was considered significant if the
enrichment p-value adjusted for multiple testing was lower than 0.05.

To analyze the synergies induced by IFNP and TNFa co-treatment, we focused on annotation
terms with size lower than 500 genes, to increase the specificity of the identified functions
and pathways. Moreover, we imposed a minimum threshold in the overlap between the
annotation term and the gene set being analyzed. This threshold was meant to identify
annotation terms covering a minimum proportion of the gene set being analyzed. We chose a
minimum coverage of 2%.

DC differentiation

All human subjects research protocols were reviewed and approved by the IRB of the Icahn
School of Medicine at Mount Sinai. Monocyte-derived DCs were obtained from healthy
human blood donors following a standard protocol described elsewhere ?’. All experiments
were replicated using cells obtained from different donors. IFNP and TNFa treatments IFNf3
(PBL InterferonSource) was added at a concentration of 2000 U/ml and TNFa (Symansis) at
a concentration of 1.3 ng/ml to the DC culture. Incubation time varied.

Microarray data of human moDC treated with IFNP and TNFa

DC were treated with 4500 pg/mL TNFa, 3000 pg/mL IFN, or the combination of both for
either 1 h or 2.5 h. Untreated DC served as a negative control. Three samples were taken per
treatment and time point. RNA was extracted with the RNeasy plus kit (Qiagen) following
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the manufacturer’s instructions. Gene expression was assayed using broad human genome
specific HG-U133 Plus 2 GeneChip expression probe arrays (Affymetrix). Affymetrix
microarray data were normalized using gcRMA . Additional data processing was done as
steps described above (see section “Generating the combinatorial landscape of immunity™) .

Experimental validation of IFNP and TNFa synergistic effects

To test the involvement of VCAMI1 on TNFa IFNP induced synergy, DCs were exposed to
TNFa, IFN, the combination of TNFa and IFNf or control as described above. Four hours
after treatment DCs were exposed to allogeneic T cells in a 1:3 ratio for an additional four
hours and then fixed with paraformaldehyde. Cells were stained with fluorochrome labeled
antibodies against CD11c (DCs) and CD3 (T cells) and analyzed by imaging flow cytometry.
DCs interacting with T cells were identified in images were one or multiple T cells had a
direct contact with a DC.

To test the involvement of CCL5 on TNFa and IFNP induced synergy, DCs were exposed to
the cytokine mixtures as described above. After 4 hours, DCs were exposed to CFSE stained
allogeneic T cells for 5 days and then fixed with paraformaldehyde. Cells were stained with a
monoclonal antibody against CD11c and the extend of T cell proliferation was measured by
the dilution of CFSE in the CD11c negative population, as CFSE gets weaker with every T
cell division. The stain to exclude DCs was necessary as DCs also digest CFSE positive parts
of T cells.

Data and code availability

All the analyses have been implemented in R. An interactive R Shiny application of SAIL
can be found at https://SAIL.shinyapps.io/test app/. The site also contains downloadable
code and documentation to run the software locally.

Supplemental information

Figure S1. A comprehensive taxonomy of response profiles to combination treatments
Each card corresponds to a possible response profile of a standard combination treatment
experiment involving the conditions 0 (control), X, Y, and the combination X+Y. The color
code keeps track of the sign of interaction: gray for additive, red for antagonistic, blue for
synergistic. The taxonomy includes all the qualitative responses defined in our previous
work®, as well as additional profiles that capture the semi-quantitative effect of X, Y in case
these two signals have opposite effects (e.g., one gene is up-regulated by X and
down-regulated by Y or viceversa). In this case, we introduce new profiles by comparing the
magnitude of the opposing effect.

Figure S2. Distribution of precision and recall of LDA and RF across the taxonomy of
response profiles

To evaluate the performance of LDA and RF, we measured the distribution of precision (a)
and recall (b) over all the 123 elements in the taxonomy of response profiles to combination
treatments (see Figure S1). These metrics were evaluated on independent test sets and for
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three levels of noise: low, medium, and high. The results show that LDA fails to detect
certain response profiles even in the low noise range. Overall, RF provides higher precision
and recall, and a more consistent performance over the different classes.

Figure S3. Quantification of interaction by cell type and type of combination
Quantification of the ~30000 interactions included in combinatorial landscape aggregated by
immune cell type (a) and by type of combination (b). Non-standard abbreviations: tlr=TLR
ligands; host=host-derived factors (e.g. cytokines).

Figure S4. SAIL analysis of interaction effects between IFNB and TNFa in human
moDC

(a) To study the interactions of IFNJ and TNFo, human blood moDC were treated in
triplicates with control (0), IFNB, TNFa, and the combination IFN+TNFa. After one hour,
gene expression was measured with Microarray chips. Differential expression analysis
revealed 1568 genes (adjusted p-value<0.05). (a, bottom) Using SAIL, these genes were
classified in 596 additive, 359 synergistic, and 613 antagonistic profiles, and (b) mapped the
corresponding profile groups. (c¢) Profile group 1 contains emergent effects, i.e., genes
regulated only with the combination, as exemplified by the gene VCAMI (¢, right
sub-panel). (d) Profile group 2 contains synergies interpreted as a floor effect, as exemplified
by the gene RHOB (d, right sub-panel). (e) Profile group 4b contains genes up-regulated by
IFNB and further potentiated by the combination. This effect, exemplified by the gene
CXCLI11 (e, right sub-panel), is interpreted as a ‘potentiation’ effect.

Bibliography

1.  Schmidt, C. The benefits of immunotherapy combinations. Nature 552, S67-S69
(2017).

2. Wu, M, Sirota, M., Butte, A. J. & Chen, B. Characteristics of drug combination therapy
in oncology by analyzing clinical trial data on ClinicalTrials.gov. Pac. Symp.
Biocomput. 6879 (2015). doi:10.1142/9789814644730 0008

3. Min, L. et al. Synergism between curdlan and GM-CSF confers a strong inflammatory
signature to dendritic cells. J. Immunol. 188, 1789-1798 (2012).

4.  Tuvim, M. J., Gilbert, B. E., Dickey, B. F. & Evans, S. E. Synergistic TLR2/6 and

TLRY activation protects mice against lethal influenza pneumonia. PLoS ONE 7,


http://f1000.com/work/bibliography
http://f1000.com/work/bibliography/6612534
http://f1000.com/work/bibliography/6612534
http://f1000.com/work/bibliography/6612534
http://f1000.com/work/bibliography/6612534
http://f1000.com/work/bibliography/6612534
http://f1000.com/work/bibliography/6612538
http://f1000.com/work/bibliography/6612538
http://f1000.com/work/bibliography/6612538
http://f1000.com/work/bibliography/6612538
http://f1000.com/work/bibliography/6612538
http://f1000.com/work/bibliography/6612538
http://f1000.com/work/bibliography/77942
http://f1000.com/work/bibliography/77942
http://f1000.com/work/bibliography/77942
http://f1000.com/work/bibliography/77942
http://f1000.com/work/bibliography/77942
http://f1000.com/work/bibliography/77942
http://f1000.com/work/bibliography/77942
http://f1000.com/work/bibliography/6832435
http://f1000.com/work/bibliography/6832435
http://f1000.com/work/bibliography/6832435
http://f1000.com/work/bibliography/6832435
http://f1000.com/work/bibliography/6832435
https://doi.org/10.1101/790543

bioRxiv preprint doi: https://doi.org/10.1101/790543; this version posted October 3, 2019. The copyright holder for this preprint (which was

10.

11.

12.

13.

14.

15.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

€30596 (2012).

Walasek, M. A. et al. The combination of valproic acid and lithium delays
hematopoietic stem/progenitor cell differentiation. Blood 119, 3050-3059 (2012).
Cappuccio, A. et al. Combinatorial code governing cellular responses to complex
stimuli. Nat. Commun. 6, 6847 (2015).

Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear
model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).
Bhattacharya, S. et al. ImmPort: disseminating data to the public for the future of
immunology. Immunol. Res. 58, 234-239 (2014).

Darvin, P., Toor, S. M., Sasidharan Nair, V. & Elkord, E. Immune checkpoint
inhibitors: recent progress and potential biomarkers. Exp. Mol. Med. 50, 165 (2018).
Fan, Y. et al. Progress of immune checkpoint therapy in the clinic (Review). Oncol.
Rep. 41,3-14 (2019).

van Baren, N. & Van den Eynde, B. J. Tryptophan-degrading enzymes in tumoral
immune resistance. Front. Immunol. 6, 34 (2015).

Kalliolias, G. D. & Ivashkiv, L. B. TNF biology, pathogenic mechanisms and emerging
therapeutic strategies. Nat. Rev. Rheumatol. 12, 49—62 (2016).

Gonzélez-Navajas, J. M., Lee, J., David, M. & Raz, E. Immunomodulatory functions of
type I interferons. Nat. Rev. Immunol. 12, 125-135 (2012).

Hartmann, B. M., Marjanovic, N., Nudelman, G., Moran, T. M. & Sealfon, S. C.
Combinatorial cytokine code generates anti-viral state in dendritic cells. Front.
Immunol. 5,73 (2014).

Deem, T. L., Abdala-Valencia, H. & Cook-Mills, J. M. VCAM-1 activation of

endothelial cell protein tyrosine phosphatase 1B. J. Immunol. 178, 3865-3873 (2007).


http://f1000.com/work/bibliography/6832435
http://f1000.com/work/bibliography/6916733
http://f1000.com/work/bibliography/6916733
http://f1000.com/work/bibliography/6916733
http://f1000.com/work/bibliography/6916733
http://f1000.com/work/bibliography/6916733
http://f1000.com/work/bibliography/6916733
http://f1000.com/work/bibliography/6916733
http://f1000.com/work/bibliography/6611641
http://f1000.com/work/bibliography/6611641
http://f1000.com/work/bibliography/6611641
http://f1000.com/work/bibliography/6611641
http://f1000.com/work/bibliography/6611641
http://f1000.com/work/bibliography/6611641
http://f1000.com/work/bibliography/6611641
http://f1000.com/work/bibliography/148638
http://f1000.com/work/bibliography/148638
http://f1000.com/work/bibliography/148638
http://f1000.com/work/bibliography/148638
http://f1000.com/work/bibliography/148638
http://f1000.com/work/bibliography/2819322
http://f1000.com/work/bibliography/2819322
http://f1000.com/work/bibliography/2819322
http://f1000.com/work/bibliography/2819322
http://f1000.com/work/bibliography/2819322
http://f1000.com/work/bibliography/2819322
http://f1000.com/work/bibliography/2819322
http://f1000.com/work/bibliography/6172650
http://f1000.com/work/bibliography/6172650
http://f1000.com/work/bibliography/6172650
http://f1000.com/work/bibliography/6172650
http://f1000.com/work/bibliography/6172650
http://f1000.com/work/bibliography/5956374
http://f1000.com/work/bibliography/5956374
http://f1000.com/work/bibliography/5956374
http://f1000.com/work/bibliography/5956374
http://f1000.com/work/bibliography/5956374
http://f1000.com/work/bibliography/5956374
http://f1000.com/work/bibliography/5956374
http://f1000.com/work/bibliography/835029
http://f1000.com/work/bibliography/835029
http://f1000.com/work/bibliography/835029
http://f1000.com/work/bibliography/835029
http://f1000.com/work/bibliography/835029
http://f1000.com/work/bibliography/1128634
http://f1000.com/work/bibliography/1128634
http://f1000.com/work/bibliography/1128634
http://f1000.com/work/bibliography/1128634
http://f1000.com/work/bibliography/1128634
http://f1000.com/work/bibliography/545990
http://f1000.com/work/bibliography/545990
http://f1000.com/work/bibliography/545990
http://f1000.com/work/bibliography/545990
http://f1000.com/work/bibliography/545990
http://f1000.com/work/bibliography/6612539
http://f1000.com/work/bibliography/6612539
http://f1000.com/work/bibliography/6612539
http://f1000.com/work/bibliography/6612539
http://f1000.com/work/bibliography/6612539
http://f1000.com/work/bibliography/6612539
http://f1000.com/work/bibliography/919720
http://f1000.com/work/bibliography/919720
http://f1000.com/work/bibliography/919720
http://f1000.com/work/bibliography/919720
http://f1000.com/work/bibliography/919720
https://doi.org/10.1101/790543

bioRxiv preprint doi: https://doi.org/10.1101/790543; this version posted October 3, 2019. The copyright holder for this preprint (which was

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Subramanian Vignesh, K. & Deepe, G. S. Metallothioneins: emerging modulators in
immunity and infection. Int. J. Mol. Sci. 18, (2017).

Makino, Y. ef al. Impaired T cell function in RANTES-deficient mice. Clin. Immunol.
102, 302-309 (2002).

Preuer, K. et al. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning.
Bioinformatics 34, 1538—1546 (2018).

Huang, L. et al. Driver Network as a Biomarker: Systematic integration and network
modeling of multi-omics data to derive driver signaling pathways for drug combination
prediction. Bioinformatics (2019). doi:10.1093/bioinformatics/btz109

Ryall, K. A. & Tan, A. C. Systems biology approaches for advancing the discovery of
effective drug combinations. J. Cheminform. 7,7 (2015).

Menden, M. P. et al. Community assessment to advance computational prediction of
cancer drug combinations in a pharmacogenomic screen. Nat. Commun. 10, 2674
(2019).

Stelzer, G. et al. The genecards suite: from gene data mining to disease genome
sequence analyses. Curr. Protoc. Bioinformatics 54, 1.30.1-1.30.33 (2016).

Kuleshov, M. V. ef al. Enrichr: a comprehensive gene set enrichment analysis web
server 2016 update. Nucleic Acids Res. 44, W90-7 (2016).

Rationalizing combination therapies. Nat. Med. 23, 1113 (2017).

Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing
and microarray studies. Nucleic Acids Res. 43, €47 (2015).

Davis, S. & Meltzer, P. S. GEOquery: a bridge between the Gene Expression Omnibus
(GEO) and BioConductor. Bioinformatics 23, 1846—1847 (2007).

Hartmann, B. M. ef al. Pandemic HINI1 influenza A viruses suppress immunogenic


http://f1000.com/work/bibliography/4616963
http://f1000.com/work/bibliography/4616963
http://f1000.com/work/bibliography/4616963
http://f1000.com/work/bibliography/4616963
http://f1000.com/work/bibliography/4616963
http://f1000.com/work/bibliography/2008775
http://f1000.com/work/bibliography/2008775
http://f1000.com/work/bibliography/2008775
http://f1000.com/work/bibliography/2008775
http://f1000.com/work/bibliography/2008775
http://f1000.com/work/bibliography/2008775
http://f1000.com/work/bibliography/2008775
http://f1000.com/work/bibliography/4740422
http://f1000.com/work/bibliography/4740422
http://f1000.com/work/bibliography/4740422
http://f1000.com/work/bibliography/4740422
http://f1000.com/work/bibliography/4740422
http://f1000.com/work/bibliography/4740422
http://f1000.com/work/bibliography/6526077
http://f1000.com/work/bibliography/6526077
http://f1000.com/work/bibliography/6526077
http://f1000.com/work/bibliography/6526077
http://f1000.com/work/bibliography/6526077
http://f1000.com/work/bibliography/6526077
http://f1000.com/work/bibliography/6526077
http://f1000.com/work/bibliography/6526077
http://f1000.com/work/bibliography/702132
http://f1000.com/work/bibliography/702132
http://f1000.com/work/bibliography/702132
http://f1000.com/work/bibliography/702132
http://f1000.com/work/bibliography/702132
http://f1000.com/work/bibliography/7094476
http://f1000.com/work/bibliography/7094476
http://f1000.com/work/bibliography/7094476
http://f1000.com/work/bibliography/7094476
http://f1000.com/work/bibliography/7094476
http://f1000.com/work/bibliography/7094476
http://f1000.com/work/bibliography/7094476
http://f1000.com/work/bibliography/7094476
http://f1000.com/work/bibliography/5343361
http://f1000.com/work/bibliography/5343361
http://f1000.com/work/bibliography/5343361
http://f1000.com/work/bibliography/5343361
http://f1000.com/work/bibliography/5343361
http://f1000.com/work/bibliography/5343361
http://f1000.com/work/bibliography/5343361
http://f1000.com/work/bibliography/1531591
http://f1000.com/work/bibliography/1531591
http://f1000.com/work/bibliography/1531591
http://f1000.com/work/bibliography/1531591
http://f1000.com/work/bibliography/1531591
http://f1000.com/work/bibliography/1531591
http://f1000.com/work/bibliography/1531591
http://f1000.com/work/bibliography/6612531
http://f1000.com/work/bibliography/6612531
http://f1000.com/work/bibliography/6612531
http://f1000.com/work/bibliography/6612531
http://f1000.com/work/bibliography/148089
http://f1000.com/work/bibliography/148089
http://f1000.com/work/bibliography/148089
http://f1000.com/work/bibliography/148089
http://f1000.com/work/bibliography/148089
http://f1000.com/work/bibliography/148089
http://f1000.com/work/bibliography/148089
http://f1000.com/work/bibliography/823900
http://f1000.com/work/bibliography/823900
http://f1000.com/work/bibliography/823900
http://f1000.com/work/bibliography/823900
http://f1000.com/work/bibliography/823900
http://f1000.com/work/bibliography/4593959
http://f1000.com/work/bibliography/4593959
http://f1000.com/work/bibliography/4593959
http://f1000.com/work/bibliography/4593959
https://doi.org/10.1101/790543

bioRxiv preprint doi: https://doi.org/10.1101/790543; this version posted October 3, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

RIPK3-driven dendritic cell death. Nat. Commun. 8, 1931 (2017).
28. Wu, Z. & Irizarry, R. A. Preprocessing of oligonucleotide array data. Nat. Biotechnol.

22, 656-8; author reply 658 (2004).


http://f1000.com/work/bibliography/4593959
http://f1000.com/work/bibliography/4593959
http://f1000.com/work/bibliography/4593959
http://f1000.com/work/bibliography/5606089
http://f1000.com/work/bibliography/5606089
http://f1000.com/work/bibliography/5606089
http://f1000.com/work/bibliography/5606089
http://f1000.com/work/bibliography/5606089
https://doi.org/10.1101/790543

combination treatment,

-omics assays

gene 1

T T T T T T

0 X Y X+Y

X (e.g. cytokine 1)
Y (e.g. cytokine 2)

machine learning functional
interaction classification inferences
synergistic

DDD]

>, 0@004

additive

antagonistic

apoptosis

|l e |

-

synergistic

[1011]a=

b public data compendium

|

@& ») 75

TNF+IFN IL3+FLU IL4+LPS

o
S B

combinatorial landscape

.0

@

C

o

(@]

(]

=

©
O@@ g 0)‘\(0.96

SAIL web tools \6

/ 2SS [r/,\\:\}

hypotheses "4 gy user-generated

data

\\ testing and new

research directions


https://doi.org/10.1101/790543

o

true profiles

profile 1

alll

X YX+Y

profile 2

DDDU

X Y X+Y |'|::>v21l(Low)

(P = 123 profiles)

RF O
determ match +
LDA A

random

simulated profiles b
low noise medium noise high noise
- - ) .
L i é E L inputs
. T i
= —[= _Q g
L 1 - | = + +
|] v 1(Low) I y"1(Med) I v (High)
i i ‘:’ models
i = [ i E
; . =
H : -E g é # _E E D
'g 1 % 1 B | 1 1 1 B | 1 1
I : v 1 (Med) Il \ v>21 (High) outputs
1 out of N 1 out of N 1 out of N
simulations simulations simulations
d
c
2 9 = ~
8 < <3 o
O -0
= o > O T——o
7] B \ o @ 7
@© ‘t o %)) ™
2 - \A 8 ]
O © + ©
o S .
R poms=s =~ r i
S~

low medium high

low medium high

6‘0’0 | high
< | medium
low
y11(ow) 1N (Low)
VP 1 (Low) VPN (Low)

determ
match LDA RF
/ / ¥

I _] IlDDUU

mil



https://doi.org/10.1101/790543

stimulat

inhibi

< X

b flooring ceiling suppression C interaction
compendium of combination 27% 12% 9% score

treatment datasets

! | o alss

SAIL machine learning

interaction classification .
l inhibition restoration emergent (+)

8% 4% 4%
annotation with meta-data and
pathway databases D|:||:||:| Dﬂ] DDD]

combinatorial landscape

potentiation reversal (-) reversal (+)
l 3% + 0.03% 0%

-interactions in specific gene families
-probabilistic algebra DI:":ID ==

-context-dependent effects of stimuli

e IDO1
macrophage moDC pDC Tcell 6- Q
o o o a a o | o o (8] o B -CD40 T s
R o o o a o o o o 5] o B -CcDs0 3
o o o o B o = oc @l o o D +CD86 o, @
o o o [ o o @ e @ 8 ©®© ® FHLA-DRB1 mMoDC o %
O @ @ 8 o m o B B © @ D |} SLAMF1 31 '
B @ @ @ o o o c | o B @ - TNFSF4 - | ¥ |
o o o o o B = 8 ©0 © O @ TNFSF9 0 IFN TNF +
0 o o o o =] =} o o =) B -CcD274
B o o o o [l e o o B B ‘o1 B Q
o o o a s} o o o o o o B LGALS9 s
o o a a (] o o D o o o O SIGLEC7 pDC X 6- Iﬁ
i i ¥ ¥ ¥ i ¥ i i i U 1 R"
dexam LPS TNFa TNFa H37Rv TNFa' TNF2  GM' GM? GM IL3 edelf g )
IFNg IFNg IFNg P3C vD  IFNb' IFNb? Flu'  Flu?  LL37  Flu beads o %

0 I3 Flu +


https://global.gotomeeting.com/join/914226161
https://doi.org/10.1101/790543

strata plot

individual effects

0 X Y

frequency of
combinatorial effects

ﬂ 30%

M 50%

. 20%

graphic reduction

0% 100%
_>

30%

50%
20%

X+Y

b

C

combinatorial landscape
(~680000 responses)

n= 632588
entropy = 0.02

—

group by individual
effects (n)

frequency of
combinatorial effects

!

graphic reduction

probabilistic algebra

n= 10059
entropy = 0.33

d

individual effects most frequent

category interaction
80% |:
% AND J%L? —= |LOO

o ] = [0

allnn

Ol o 1 18%
0 X AND oY

n= 5459
entropy = 0.49

n= 14515
entropy = 0.69

66%
99% i 80%
e e - o
0 X Y X+Y 0 X Y X+Y 0 X Y X+Y 0 X Y X+Y
n= 12636 n= 3132 n= 3431 n= 2310
entropy = 0.47 entropy = 0.63 entropy = 0.44 entropy = 0.64
52% il
_—— P 78% my
66%
L i & e« ‘
0 X Y X+Y 0 X Y X+Y 0 X Y X+Y 0 X Y X+Y

60%

53%


https://doi.org/10.1101/790543

TNF datasets

X

TNFa

TNFa

TNFa

TNFa

Y

IFNB

IFNy

IFNy

P3C
(TLR
ligand)

cell
type

moDC

ARPE19

BMSC

Mo

interactions altering
TNF effects

suppression (-)

TNFa reversal (-)

TNFa reversal (+)

DDDD

0 TNF Y +

ODD::

TNF Y +

=il

0 TNF Y +

T-helper 1 type
immune response***
(IL12B;SOCSS5)

mitotic spindle
organization™*
(GPSM2;STIL)

extracellular matrix
organization**
(ADAMTS16;
COL22A1)

mitochondrial ATP
synthesis™*
(ATP5B;ATP5A1)

AP-1 transcription
factor network™*
(PLAU;FOSB)

ribosome™*
(RPL36A-HNRNPH2;
RPS3)

sterol regulatory
binding proteins
(INSIG1;PRKAGH)

*kk

regulation of viral
genome replication***
(IFITM2;0AS3)

antigen presentation
via MHC class II"**
(HLA-DMA;HLA-DRB5)

Fc gamma R-mediated
phagocytosis™
(FCGR2A;SYK)

emergent

al

OTNF

DDDD

enrichment

new emergent
TNF functions

NF-kB activation
through
FADD/RIP-1

oxidative
phosphorylation

T cell chemotaxis

proteasome
degradation


https://doi.org/10.1101/790543

op

% of interacting DC

emergent

0 IFN TNF +

28 1

24

201

o

TNF potentiates IFN

IFN restores TNF

veh IFN

TNF

+

veh IFN TNF +

IFN potentiates TNF

veh IFN TNF +

veh IFN TNF +

LIMK2 ACOD1 MT1X TNFSF9
RELB CXCL9 MT1E CCL5
VCAM1 LDRL MT1F TTN
IL15RA GBP4 MT1HL1 DRAM1
l -log(ad;. p)
C NF-kb signalling - O v 125
IFN-b signalling - ‘ 10.0
TLR signalling -| () 7.5
pos reg NK cell prolif - O 5.0
mineral absorption - ) 2.5
methallothioneins - coverage
TNF signalling -| () O @ () o0s
pos reg T cell prolif - ) O 0.15
v iSAIL conventional O 0.25
* d *
: o
8 041.] active CCL5 | inactive CCL5 S 0.50 /B
203 ) @
3 0.2 3 109 @ % 0.25
g 0.1 - 2 0.00
= 0.0 IR =iy s an
[
R 5 PN
o 4 KK - g ? [y &] O
& 2 W@ v ¢ % 2 .2
& & ® k3 & &
> @ > @


https://doi.org/10.1101/790543

Profile 2 _Emmg_q_ rofile 4 f rofile6 rofile7 rofile8 rofile 9 __Profile 1

|L || N | 0 L= anll (oo

Profi _P ] ___Profile 15 Profil 1|6 ___Profile 17 _P fij,e_18 _P ofile 1"9 Profile 20 Profile 2

[] ﬂljf mjr - O 500 O L oloo HHH

i 4 il Profile 26 | r_ 8 Profile 29 Profi rofile _Em.f.l.le_?: 2
|||||—||||||_ L] IIII_” |_| |—||_| |iﬁu|: |_| _||—|

) (TE1 [ e T el e o e
111 FTF ETd CTTsd ] 2B D 0 o
1 [ [ [Tt Ui (T [T Fil] (T

0 baln Hn|r =il _nly (o Ikl 00 [H o _m'
=il HH|| sl 1 e Dol Tled oo W - [

]

]


https://doi.org/10.1101/790543

'''' 1

classifier LDA ! RF

low med high

1

b classifier LDA ! RF

1.00 =

0.75+ | é —
§ 0.50+ '
S : :

025{ § .

kg
0.00{__9 ' '
low med high


https://doi.org/10.1101/790543

Mouse_SB-3123p cells 1
Mouse_macrophage
Mouse_Lung 1
Mouse_hematopoietic cells 1
Mouse_DC 1

Human_thyroid cells 1
Human_T cell 1

Human_pDC 1

Human_NK cells 1
Human_monocytic THP1 1
Human_monocytes 1
Human_moDC 1
Human_macrophage 1
Human_keratinocyte 1
Human_innate lymphoid cells 1
Human_Hut78 cells 1
Human_BMSC 1
Human_ARPE19 cells -

-

2000 4000 6000 8000
n. of classified profiles

o

tir_tir1
tir_drug 1
host_tir1
host_host 1
host_drug 1

drug_drug 1

T

0 5000 10000 15000
n. of classified profiles

effect

additive

- antagonistic
- synergistic


https://doi.org/10.1101/790543

a 0, IFN, TNF, IFN+TNF

S

Human moDC

S

1568 regulated genes

add 659

Ik

b

profile
interaction group

group 1

freq

group 4a

0
0 IFN TNF +
freq
group 2 0 1
|
0 IFN TNF +
freq

0 IFN TNF

+

]» emergent [—)

} flooring =

} potentiation —>

log2(expr)

2.5

log2(expr)

log2(expr)

2 4 6 8

3.5

8.0

7.0

6.0

12

VCAM1
[ |
e
i -
| i : Lt
i ! —.— I 1
0 IFN TNF +
RHOB
| =
0 IFN TNF +
CXCL11
i e
i -l
% L e L
0O IFN TNF +


https://doi.org/10.1101/790543

