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ABSTRACT 
De novo protein design for catalysis of any desired chemical reaction is a long standing goal in protein                  

engineering, due to the broad spectrum of technological, scientific and medical applications. Currently,             

mapping protein sequence to protein function is, however, neither computationionally nor experimentally            

tangible 1,2 . Here we developed ProteinGAN, a specialised variant of the generative adversarial network 3               

that is able to 'learn' natural protein sequence diversity and enables the generation of functional protein                

sequences. ProteinGAN learns the evolutionary relationships of protein sequences directly from the            

complex multidimensional amino acid sequence space and creates new, highly diverse sequence variants             

with natural-like physical properties. Using malate dehydrogenase as a template enzyme, we show that              

24% of the ProteinGAN-generated and experimentally tested sequences are soluble and display wild-type             

level catalytic activity in the tested conditions in vitro, even in highly mutated (>100 mutations) sequences.                

ProteinGAN therefore demonstrates the potential of artificial intelligence to rapidly generate highly diverse             

novel functional proteins within the allowed biological constraints of the sequence space.  
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MANUSCRIPT  

A protein's three-dimensional structure, physicochemical properties and molecular function are defined by            

its amino acid sequence. From the 20 commonly occurring proteinogenic amino acids, a small sized               

protein comprising 100 amino acids can be made in 10 130 unique ways. In this vast multidimensional                

space - often referred to as the protein fitness landscape 4 - as little as 1 in 10 77 sequences are estimated                     

to fold into the defined three-dimensional structures to carry out specific functions 5–7 . This imposes a                

great burden on experimental approaches aiming to design novel protein sequences, such as random              

mutagenesis 4 and recombination of naturally occurring homologous proteins 8,9 , as up to 70% of random                

amino acid substitutions typically result in a decline of protein activity and 50% are deleterious to protein                 

function 4,10–16. On the other hand, Artificial intelligence (AI) is not limited by the amount of sequence                 

variations it can process 17–19 and, instead of depending on a blind search process, is based on an                  

inference-based one - it infers protein properties 18,20 and function 19,21 directly from training examples.               

Recent AI approaches have also demonstrated great potential in capturing both the structural and              

evolutionary information found in natural protein sequences 17,22 . Nevertheless, the majority of existing             

machine learning models in biology are discriminative 17,18,21, i.e., the model is trained, using readily               

available data, to predict the properties of a given protein sequence. A generative modeling approach, in                

contrast, could generate new sequence samples from the learned portion of functional protein sequence              

space, giving direct access to unexplored sequence diversity within functional protein structures, without             

the need to test a large number of non-functional protein sequence variants. Indeed, breakthrough              

generative learning strategies, such as Generative Adversarial Networks (GANs) 3 can learn            

multidimensional distributions in disparate scientific domains to generate photorealistic images 23 ,           

hand-written text 24 , music 25 and even DNA sequences with biological properties 26,27 . Hence, in the                

present study we develop and test ProteinGAN (Figure 1a) to learn and sample the protein sequence                

space for de novo generation of functional enzymes.  

ProteinGAN is a generative model architecturally tailored specifically to learn patterns in long biological              

sequences (Methods, Supplementary Figure 1). A customized temporal convolutional network 28 enabled            

the network to simultaneously analyze local and global sequence fragments, and thus to capture the               

meaningful sequence motifs and long-distance relationships critical for correct protein structural           

assemble. We additionally introduced a self-attention layer 29 , to help ProteinGAN focus on functionally              

important areas across the entire length of the sequences, such as catalytic residues (Methods,              

Supplementary Figure 1). The final architecture of the network comprised 45 layers with over 60 million                

trainable parameters.  

 

A family of bacterial malate dehydrogenase (MDH) enzymes (EC 1.1.1.37) was used to train the neural                

network. MDH is a tricarboxylic acid cycle enzyme catalyzing the conversion of malate to oxaloacetate               
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using NAD + as a cofactor (Supplementary Figure 2). We chose MDH based on the following criteria: (i) it                  

has a large number of diverse sequences (a total of 16 706 unique sequences were used for training),                  

which were on average 319 ± 18.2 (sd) amino acids long with pairwise sequence identities as low a s                  

10%; (ii) it is a complex enzyme that must bind both its substrate and NAD + cofactor for catalysis and (iii)                    

its activity can be readily monitored in vitro. During model training, we assessed the quality of the                 

sequences generated by ProteinGAN at every 1200 learning steps. In each assessment, 64 sequences              

were generated and their identities to natural sequences in the training and validation datasets were               

computed (Figure 1b). After 2.5M learning steps, at which training was terminated (Supplementary             

Figures 3, 4), the mean sequence identities between the generated and natural sequence sets had               

reached a plateau (median sequence identity to the closest natural sequences was 61.3%). Following the               

initial quality assessment, 20 000 of the generated sequences were used to further evaluate the               

ProteinGAN performance.  

 

 

Figure 1. | ProteinGAN learns intrinsic relationships of natural protein sequences . a) ProteinGAN training              
scheme. Given a random input vector, the Generator network produces a protein sequence which is scored by the                  
Discriminator network comparing it to the natural protein sequences. The generator tries to fool the discriminator by                 
generating sequences that will eventually look like real ones (the generator never actually sees real enzyme                
sequences). b) Sequence identity of 64 generated sequences to the nearest natural sequence at different training                
timestamps. c) ProteinGAN effectively captures amino acid distribution of natural MDH sequences. Sequence             
variability expressed as Shannon entropies for generated and training sequences estimated from multiple-sequence             
alignment (MSA). Low Shannon entropy values represent highly conserved and thus functionally relevant positions,              
whereas high entropy indicates high amino acid diversity at a given position. d) A sequence logo of key conserved                   
positions in the multiple sequence alignment. e) ProteinGAN learns the order of amino acids in natural MDH                 
sequences. Amino acid pair association (Zm positional score) matrices for Natural and Generated protein sequences.               
Positive values indicate a larger distance than expected when comparing random sequences with the same amino                
acid frequency. The numbers indicate how many positions, on average, the amino acids in a pair are closer (negative                   
values) or further apart (positive values) than in a random sequence. 
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First, we evaluated ProteinGAN’s ability to capture evolutionary sequence properties, i.e. the positional             

amino acid variation in generated and natural sequences. Shannon entropies were computed for each              

position in multiple sequence alignments of the generated and natural MDH sequences (Figure 1c). The               

positional variability in generated sequences was highly similar to that in natural sequences, with peaks               

(high entropy) and valleys (low entropy) appearing at similar positions in the sequence alignment. Indeed,               

we observed a high correlation (Pearson’s r = 0.89, p-value < 1e-16) between the entropy values of                 

generated and natural sequences. At conserved positions the generated sequences preserved key            

substrate-binding and catalytic residues (Figure 1d). Further comparative analysis of generated and            

natural sequences showed that even in highly variable sequence regions, the frequencies of individual              

amino acids were perfectly correlated (Pearson’s r = 0.96, p-value < 1e-16, Supplementary Figure 5).                

Moreover, for each individual sequence, ProteinGAN inferred the specific physicochemical amino acid            

signatures present in this enzyme class. For instance, despite high sequence diversity among generated              

sequences, the fractions of hydrophobic, aromatic, charged and cysteine-containing residues were the            

same (Wilcoxon rank sum test p-value > 0.05) as in natural ones. Apart from the differences in hydrophilic                  

and polar uncharged residues (p-value = 7e-5 and 1e-28, respectively), the network had learned the               

overall amino acid composition corresponding to both the evolutionary and physicochemical constraints            

(Figure 1c,d; Supplementary Table 1; Supplementary Figure 6, 7).  

 

In proteins, amino acid pairs that are remote on the primary sequence are often spatially close and                 

interact in the 3D structure, ensuring the appropriate protein stability and function 30 . We therefore               

assessed whether ProteinGAN was able to learn such local and global amino acid relationships by               

looking for pairwise amino acid relationships across the full length of the MDH sequences. To investigate                

local pairwise relationships we calculated the amino acid association measures for natural and generated              

sequences using the minimal proximity function Zm (Santoni et al. 2016 ). The function Zm (A,B) counts, for                

each pairwise combination of the 20 amino acids, the average distance between amino acid A to the next                  

amino acid B occuring in the sequence. The calculated distances can be expressed as a matrix of all                  

pairwise combinations (Figure 1e). The matrices for the natural and generated sequences were 88%              

similar, showing that the amino acid positional order had been learned by ProteinGAN, capturing the local                

amino acid relationships existing in natural sequences. One of the main differences between the two               

sequence sets was in tryptophan (Figure 1e, W column), likely resulting from the fact that 22% of the                  

natural MDH sequences used did not have tryptophan. To investigate the global amino acid relationships,               

we calculated the pairwise amino acid frequency distributions for all combinations of position pairs in all                

sequences in multiple sequence alignments. These frequency distributions were then used to calculate             

correlations between the training and generated sequences. Overall, we found strong correlations            
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between the natural and generated sequences (averaged Pearson’s r = 0.95, Supplementary Figure 8),              

which demonstrated that the pairwise relationships were highly similar in both sets of sequences. To               

expand on this, we inspected whether the generated MDH sequences possessed the two main Pfam               

(Finn et al. 2014 ) domains “Ldh_1_N” and “Ldh_1_C” that were identified (E-value < 1e-10) in the natural                 

MDH sequences. Indeed, we found that 98% of the generated sequences contained both signatures, with               

the rest containing one of the two domains. Collectively, our results show that ProteinGAN-generated              

sequences are of high quality and closely mimic natural MDH proteins, both in terms of amino acid                 

distributions at individual sites, as well as in terms of local and long-distance relationships between pairs                

of amino acids present throughout the primary sequence of the MDH family.  

 

We then explored whether ProteinGAN was able to generalize the entire protein family beyond the               

training dataset, i.e. to generate novel sequence diversity. Visualization of the sequence diversity of              

generated and natural sequences using t-distributed stochastic neighbour embedding (t-SNE)          

dimensionality reduction (Maaten and Hinton 2008) showed that a majority of natural MDH sequences              

grouped into large clusters (Figure 2a), as they were highly similar (median pairwise identity 92%,               

Supplementary Figure 9). In contrast, the generated sequences grouped into smaller clusters            

interpolating between the natural sequence clusters and resembled a learned manifold of the MDH              

sequence space (Figure 2a). To assess whether the diversity in generated sequences would contain              

novel and functionally relevant biological properties, we performed a search of CATH 31 sequence models               

corresponding to all known 3D structural protein domains (Methods). We first evaluated whether the              

network generated new structural domain diversity over the training period (Figure 2b). While the number               

of identified structural domains plateaued at the early stage of training (after approx. 0.2M steps),               

corresponding to 79% of all identified domains, additional structural CATH domains were discovered             

throughout the entire training process. In total, 119 novel structural sequence motifs were identified              

(E-value < 1e-6) in the generated sequences that do not exist in the training MDH dataset (Figure 2b                  

inset), demonstrating the network’s ability to generate novel biologically relevant sequences. We next             

evaluated whether the generated structural domain diversity was due to chance. To test this, as a control,                 

we randomly introduced amino acid substitutions into the natural MDH sequences, whilst preserving             

natural amino acid frequency distribution and the rate of mutations to mimic the natural sequence               

variability (Figure 2b inset, Methods). The total structural domain diversity was reduced by 38.9% in               

mutated natural sequences, of which 97.4% of mutat present in natural sequences, demonstrating that              

random mutations did not produce biologically relevant sequence diversity (Figure 2b inset, Fisher’s exact              

test p-value < 8.2e-16). Using clustering analysis based on sequence similarity we observed that on               

average over 95% of the generated sequences were not more than 10% similar to each other (90%                 

sequence identity within the cluster, Figure 2c), in contrast to only 17% of the natural sequences at the                  
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same sequence identity level. This shows that the generated sequences expanded the currently known              

sequence space of the MDH family up to 4-fold (Figure 2c inset).  

 

 
Figure 2. | ProteinGAN expands the functional MDH sequence space. a) The protein sequence space was                
visualized by transforming a distance matrix derived from k-tuple measures of protein sequence alignment ( Wilbur               
WJ, Lipman DJ . 1983) into a t-SNE embedding. Dot sizes represent the 70% identity cluster size for each                  
representative. As opposed to natural sequences, generated sequences formed disparate small clusters indicating             
their diverse nature. b) CATH domain diversity generated throughout evolution of ProteinGAN. At every 1200 learning                
steps, 64 sequences were sampled and searched for representative CATH domains (E-value <1e-6). Inset:              
ProteinGAN generated novel domains that are not present in existing the MDH family (left). In contrast to                 
ProteinGAN-generated sequences, randomly introducing mutations does not expand MDH sequence diversity           
(Fisher’s exact test p-value < 8.2e-16), but rather decreases CATH domain diversity (right). For random controls, 10                 
000 mutated natural sequences were simultaneously searched for presence of CATH domains (see Methods). c)               
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Comparison of sequence diversity between generated sequences and the natural MDH dataset. By varying sequence               
identity cutoffs, generated sequences group into up to 4 times more clusters than natural sequences demonstrating                
expanded sequence diversity. Inset shows the ratio of number of clusters (Y-axis) at different sequence identity                
cutoffs (X-axis). d) MDH activity measured by fluorescently monitoring NADH consumption using protein expression              
method 1 (Methods). e) Catalytic activity confirmed using LC-MS/MS operating in selected reaction monitoring mode               
for enzymes expressed using protein expression method 1 (Methods). f) Oxaloacetate to malate conversion yields               
are comparable to natural MDH enzymes as determined using mass spectrometry.   
 
Finally, considering that random amino acid substitutions typically result in a decline or even complete               

loss of protein activity 4,10–16 , we experimentally tested whether the ProteinGAN-generated MDH            

sequences were catalytically active in vitro. We selected 60 representative generated sequences within a              

range of 45% to 98% pairwise sequence identity to natural MDH and with 7 to 157 amino acid                  

substitutions compared to their closest MDH neighbour (Supplementary Figure 10, Supplementary Table            

2), of which 55 were successfully synthesized and cloned into an expression vector. Production of               

recombinant proteins in Escherichia coli and purification using affinity chromatography yielded 11 protein             

variants (Method 1) that could be purified from the cell lysate soluble fraction (Supplementary Table 3,                

Supplementary Figure 11). With the aim to identify additional soluble proteins, we repeated the              

experiment (Method 2) under growth conditions favouring protein folding and solubility using            

ArcticExpress E.coli strain, expanding the number of purified soluble proteins to a total of 19               

(Supplementary Table 3, 35% of all synthesized protein variants). This is comparable to other systematic               

studies, which typically obtain soluble protein for 20% to 40% of all tested constructs 32–34. The purified                 

proteins were assessed for MDH activity (Supplementary Figure 2) by monitoring NADH consumption             

using a spectrophotometer. 13 of the 19 soluble enzymes, including a variant with 106 amino acid                

substitutions (66% identity to the closest existing enzyme, Supplementary Figure 12), showed MDH             

catalytic activity (Figure 2d, Supplementary Table 3, Supplementary Figures 13, 14). Furthermore, for the              

subset of 8 purified enzymes for which the protein amount could be accurately quantified the generated                

MDH proteins displayed similar reaction rates as wild-type enzymes (Supplementary Figure 13). These             

enzymes were also confirmed, by LC-MS/MS, to convert oxaloacetate to malate with reaction yields              

comparable to commercial MDH enzyme controls (Figure 2e,f).  

 

In conclusion, here we present a generative adversarial network, ProteinGAN, that successfully captures             

the natural properties of proteins and enables discovery of novel functional sequences. In vitro              

experiments confirm that a large portion (24%) of the generated enzymes are soluble and many display                

catalytic activities comparable to - or surpassing that of - natural enzymes (Figure 2d,e,f Supplementary               

Figure 11,13). The generated functional enzymes contain up to 106 mutations compared to the closest               

natural malate dehydrogenase (Supplementary Figure 12), while retaining functionally relevant sequence           

motifs and the correct position-specific amino acid composition that preserves long-range amino acid             

interactions (Figure 1). Since ProteinGAN enables large leaps to unexplored sections of the functional              
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sequence space (Figure 2a), it opens up the biochemical exploration of the highly diverse enzymes               

populating this space. Such enzymes may have catalytic properties that differ significantly from those              

found in natural enzymes, as they have not evolved with the constraint to carry out specific functions in                  

living organisms as natural enzymes have. Navigating the fitness landscape to find even one such               

enzyme using current methods, including random mutagenesis 4 and recombination of homologous            

proteins 8,9 , would be highly laborious or may not even be feasible. Due to the exponential decline in                  

protein fitness with the number of random mutations 11,35 or the number of parent molecules that are used                  

to generate the recombination libraries 36,37 , current methods are fundamentally limited in the sequence              

space that can be explored by their use. The expanded functional sequence diversity provided by               

ProteinGAN (Figure 2b,c) may also provide suitable, non-natural, starting points for protein engineering 38 ,              

with great potential for applications in biocatalysis 39 . We speculate that further development of the               

ProteinGAN framework will enable even greater leaps in sequence space and may also make the method                

applicable to smaller enzyme families. Future work should explore whether ProteinGAN can be trained on               

entire protein families where, despite sharing sequence similarity, its members perform distinct functions. 

  

8 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 2, 2019. ; https://doi.org/10.1101/789719doi: bioRxiv preprint 

https://paperpile.com/c/NNPEn5/B6ell
https://paperpile.com/c/NNPEn5/SfBwO+dtIHI
https://paperpile.com/c/NNPEn5/c7x9c+JlBxQ
https://paperpile.com/c/NNPEn5/JUj4+ZGwYJ
https://paperpile.com/c/NNPEn5/NySM
https://paperpile.com/c/NNPEn5/jggN
https://doi.org/10.1101/789719
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Methods and materials 
Neural network architecture details 

The GAN architecture consisted of two networks - a discriminator and a generator - each of which used                  

ResNet blocks 40 (Supplementary Figure 1). Each block in the discriminator contained 3 convolution              

layers with filter size of 3x3, 2 batch normalization layers 41 and leaky ReLU activations 42 . The generator                  

residual blocks consisted of two transposed convolution layers, one convolution layer with the same filter               

size of 3x3 and leaky ReLU activations. Each network had one self-attention layer 29 . Transposed               

convolution technique was chosen for up-sampling, as it yielded the best results experimentally             

(Supplementary Figure 15). For loss, non-saturating loss with R1 regularization 43 was used             

(Supplementary Figure 16). To ensure training stability, Spectral normalization 44 was implemented in all              

layers. 

The input to the discriminator was one-hot encoded with a vocabulary size of 21 (20 canonical amino                 

acids and a sign that denoted a space at the beginning or end of the sequence). The generator input was                    

a vector of 128 values that were drawn from a random distribution with mean 0 and standard deviation of                   

0.5, with the exception that values whose magnitude was more than 2 standard deviations away from the                 

mean were re-sampled. The dimensions of generated outputs were 512x21, wherein some of the              

positions denoted spaces. The implementation of ProteinGAN can be accessed at           

https://github.com/biomatterdesigns/ProteinGAN . 

 

Network training data 
Bacterial malate dehydrogenase (MDH) sequences were downloaded from Uniprot on January 10th 2019             
45 . Sequences longer than 512 amino acids or containing non-canonical amino acids were filtered out.               

The final dataset consisted of 16 898 sequences, which were clustered into 70% identity clusters using                

the MMseq2 tool 46 for balancing the dataset during the training process. 20% of the clusters with less                  

than 3 sequences were randomly selected for validation (192 sequences) and the rest of the dataset was                 

used for training (16 706 sequences). 

 

Network training process 

The ratio 1:1 between generator and discriminator training steps was selected (Supplementary materials,             

Supplementary Figure 17). ADAM algorithm 47 was used to optimize both networks. Throughout the              

training, the learning rate was gradually decreased from 1e-3 to 5e-5 for both the generator and the                 

discriminator. To avoid bias towards sequences with large number of homologues, smaller clusters were              

dynamically up-sampled during the training. In order to track the performance, along with GAN losses,               
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generated data was constantly evaluated. Without halting the training process, every 1200 steps             

generated sequences were automatically aligned with the training and validation datasets using BLAST             
48,49 . Throughout the training, BLOSUM45, E-value and identity scores as well as standard deviation of the                

discriminator layer were calculated and monitored (Supplementary Figure 3, 18, 19, 20). ProteinGAN was              

trained for 2.5 M steps with a batch size of 64 (one step consisted of 64 sequences). The training took                    

210 hours (~9 days) on NVIDIA Tesla P100 (16 GB). 

Generated sequences bioinformatic analysis 

Multiple sequence alignments Multiple sequence alignments (MSA) (Figure 1) were calculated using            

using Clustal Omega 50 by merging natural and generated datasets in equal amounts. To calculate further                

Shanon entropies, after MSA we split the alignment corresponding to generated and training sequences.              

Columns having more than 75% of gaps in either dataset were removed from further analysis. For each                 

column in MSA, Shannon entropy was calculated as follows: , where is the         .e. − (x )log p(x )s = ∑
20

i=1
p i 20 i   (x )p i    

frequency of amino acid i occurring at a column of MSA.  

Amino acid pair association matrices Amino acid pair association matrices were calculated for every              

possible pair in a sequence and averaged over the whole dataset. The association score was used as                 

reported in the original article (Santoni et al. 2016), where Zm  is expressed as follows: 

. Here and are the average and the(a, )Zm b = σP (a,Rand(b))m

P (a,b)−P (a,Rand(b)) m m   P (a, and(b)) m R   σP (a,Rand(b))m
     

standard deviation of the randomly shuffled sequence association score for the same pair. The              

association function for scoring was selected as the minimal proximity function: 

. Here for each position of amino acid , the closest occurrence of(a, )  Pm b = n
1 ∑
n

i=1
minj=1,...,m x{|

| i − yi||}      xi      a      

amino acid at position is identified and the average of the distances between the pairs is calculated.   b    yi               

In our implementation, if a sequence does not contain a certain amino acid, Null value is returned for the                   

pairs containing the amino acid. 

Sequence clustering Sequence clustering was performed using MMseqs2 46 with easy-cluster option            

and required sequence identity cutoff. 

Pfam/CATH domain search All sequences generated by ProteinGAN were classified using HMMER3 51             

search over Pfam 32.0 database 52 . HMMs for each CATH representative domain from the sequence               

clusters at 35% sequence identity (v4.1) were downloaded from CATH database repository 31 . To avoid               

biases in sequence scoring, generated sequences together with the natural sequences in equal quantities              

were appended to the same file and in all tests were searched simultaneously using hmmsearch tool with                 
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default options 51 . To evaluate whether generated domain diversity was not due to chance, we chose a                 

random subset of 10 000 natural sequences and mutated them by randomly introducing on average 100±                

30 sd substitutions of amino acids (corresponding to median identity of generated sequences Figure 1b)               

that were uniformly sampled of natural amino acid probability distribution. Generated, natural and mutated              

sequences (10 000 of each) were searched as one database and hits were considered significant with                

E-value < 1e-6. The analyzed sequences were generated by latest checkpoint model (~2.5M training              

steps).  

t-SNE plot generation A distance matrix of cluster representatives was used as the t-SNE input. To get                 

cluster representatives, first, the number of sequences in both datasets were equalized by taking 13,272               

sequences from natural and generated datasets. These sequences were independently clustered using            

MMseqs2 46 with 70% minimal sequence identity. This generated 926 clusters of natural sequences and               

3,778 clusters of generated sequences. Representative sequences of these clusters were chosen based             

on MMseqs2 output. From the representative sequences a distance matrix was generated using Clustal              

Omega 50,53 . The distance matrix was used with the scikit-learn t-SNE module 54 with default settings                

(early exaggeration 12, learning rate 200, maximum number of iterations: 1000) except that the              

embedding generation perplexity was set to 7. Coordinates given by t-SNE were used for plotting, the                

size of a given dot was visualized based on the cluster size it represents. 

Visualization of GAN training Sequences generated during the training period were sampled at 14              

different times. For each of the 14 checkpoints, 64 sequences were taken, every checkpoint was taken                

after (where x is number of checkpoints) GAN steps, with the first checkpoint replaced               

with 1 instead of 300. For all the generated sequences, a global identity to the closest sequence in                  

training dataset was calculated. Identities of each checkpoint were plotted. 

Correlation of distant dimer pairs To calculate the correlation of close and distant dimer pairs between                

the datasets, the total number of individual dimers for every possible MSA position pair was calculated:                  

, here was a set of dimer counts over each position pair of a m , , .., }ds = { a1,a1 ma1,a2 . ma21,a21   mai,aj       aai j        

multiple sequence alignment ( ). Each number of set was calculated by   d , , }mai,aj = { 1,1 d1,2 ..., dn,n     mai,aj     

summing dimers over all sequences of MSA in positions n and m: here s is the total aai j            adn,m = ∑
s

z=1
ai j      

number of sequences in MSA. ds was calculated for each dataset and for each member of the ds set,                   

Pearson’s r was calculated between the datasets (natural and generated). These correlations were             

plotted as a heatmap (Supplementary Figure 8). For ds calculation only columns containing less than               

75% of gaps in both natural or generated datasets were used. 

Experimental validation of generated enzymes 
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The sequences generated by ProteinGAN were synthesized, cloned into the pET21a expression vector             

and sequence-verified by Twist Bioscience. In addition to the enzyme sequence a C-terminal linker and               

four histidines (AAALEHHHH) were added, resulting in a deca-His-tag in the final construct (which              

includes six histidines derived from the expression vector), to enable downstream affinity purification.             

Method 1: The constructs were transformed into the BL21(DE3) E. coli expression strain. From the               

resulting transformation mixture 15 µl was used to inoculate 500 µl LB broth supplemented with 100 µg/ml                 

carbenicillin. Cells were grown overnight at 32°C in a 96 deep well plate with 700 rpm orbital shaking.                  

Protein expression was achieved by diluting the overnight cultures 1:30 into 1 ml autoinduction TB               

including trace elements (Formedium, UK) supplemented with 100 µg/ml carbenicillin and grown for 4 h in                

37°C, followed by overnight growth at 18°C and 700 rpm shaking. Cells were collected by centrifugation                

and the cell pellets frozen in -80°C overnight. To purify the recombinant proteins, cells were thawed,                

resuspended in 200 µl lysis buffer (50 mM HEPES pH 7.4, 5% glycerol, 300 mM NaCl, 0.5 mM TCEP, 0.5                    

mg/ml lysozyme, 10 U/ml DNaseI, 2 mM MgCl 2 ), and incubated for 30 min at room temperature. To                 

improve lysis triton-X-100 was added to a final concentration of 0.125% (v/v), and the cells were frozen in                  

-80°C for 30 min. After thawing in room temperature water bath, the lysates were spun down for 10 min in                    

3000 x g to remove cell debris, and the supernatants were transferred to a new 96-well plate with 50 µl                    

Talon resin in each well (Takara Bio, Japan). Unspecific binding of proteins to the resin was reduced by                  

adding imidazole to a final concentration of 10 mM in each well. The plate was incubated at room                  

temperature for 30 min with 400 rpm shaking, after which the lysates with the beads were transferred to a                   

96-well filter plate (Thermo Scientific, USA, Nunc 96-well filter plates), placed over a 96-well collection               

plate, and centrifuged for 1 min at 500 x g in a swing-out centrifuge. The resin was washed three times                    

with 200 µl wash buffer (50 mM HEPES pH 7.4, 5% glycerol, 300 mM NaCl, 0.5 mM TCEP, 40 mM                    

imidazole), and the proteins were eluted from the resin in two 50 µl fractions using elution buffer (50 mM                   

HEPES pH 7.4, 5% glycerol, 300 mM NaCl, 0.5 mM TCEP, 250 mM imidazole). The two eluate fractions                  

were combined and transferred to a 96-well desalting plate (Thermo Scientific, USA, Zeba Spin Desalting               

Plate, 7K MWCO) pre-equilibrated with sample buffer (50 mM HEPES pH 7.4, 5% glycerol, 300 mM NaCl,                 

0.5 mM TCEP). The plate was spun down 1000 x g for 1 min, and collected proteins were analysed by                    

SDS-PAGE followed by Coomassie staining. The soluble proteins were carried on for further             

characterisation. 

To test for malate dehydrogenase activity, an aliquot of purified protein was added to a reaction mixture                 

containing 0.15 mM NADH, 0.2 mM oxaloacetic acid and 20 mM HEPES buffer (pH 7.4). The final                 

reaction volume was 100 µl and the reaction was carried out at room temperature in a UV-transparent                 

96-well half-area plate (UV-Star Microplate, Greiner, Austria). Activity was measured in triplicates by             

following NADH oxidation to NAD+, with absorbance reading at 340 nm performed every 30 sec for 15                 
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min in a BMG Labtech SPECTROstar Nano spectrophotometer. Un-specific oxidation of NADH was             

monitored in no-substrate controls, and these values were subtracted from the other samples. Conversion              

from absorption values to NADH concentration was carried out using an extinction coefficient of 6.22 mM.                

For calculation of kinetic parameters, 10 nM of each protein was assayed with a range of oxaloacetate                 

concentrations. 

LC-MS/MS quantification was performed for selected active enzymes. The activity assay was performed             

as outlined above, in triplicates, with protein concentrations ranging between 10 and 250 nM. Reactions               

were terminated after 45 min by diluting the assay mixtures in water to 1 µg/ml starting concentration of                  

oxaloacetate. For chromatographic separation a Zorbax Eclipse Plus C18 50 mm × 2.1 mm × 1.8 µm                 

(Agilent) with an Nexera series HPLC (Shimadzu) was used. Mobile phase A was composed of H20                

(MiliQ HPLC grade) with 0.1% Formic acid (Sigma); mobile phase B was Methanol (Sigma) with 0.1%                

Formic acid (Sigma). The oven temperature was 40°C. The chromatographic gradient was set to              

consecutively increase from 0% to 100%, hold, decrease from 100% to 0% and hold, in 60 sec, 30 sec,                   

30 sec and 30 sec, respectively. The autosampler temperature was 15°C and the injection volume was                

0.5 µL with full loop injection. For MS quantification a QTRAP® 6500 System (Sciex) was used, operating                 

in negative mode with Multiple Reaction Monitoring (MRM) parameters optimized for Malic acid based on               

published parameters 55 . Electrospray ionization parameters were optimized for 0.8mL/min flow rate, and             

were as follows: electrospray voltage of -4500 V, temperature of 500 °C, curtain gas of 40, CAD gas set                   

to Medium, and gas 1 and 2 of 50 and 50 psi, respectively. The instrument was mass calibrated with a                    

mixture of polypropylene glycol (PPG) standards. The software Analyst 1.7 (Sciex) and MultiQuant 3              

(Sciex) was used for analysis and quantitation of results, respectively.  

 

Additionally (Method 2), to increase protein solubility, MDH constructs were transformed into            

ArcticExpress competent cells (Agilent technologies, USA). The transformants were inoculated into 500            

µL of LB media with 15 µg/mL of Gentamicin and 50 µg/mL of Ampicillin and grown overnight at 30° C in                     

a Thermomixer Comfort Eppendorf thermomixer (Eppendorf, Germany). 250 µL of overnight culture were             

transferred to 10 mL (dilution 1:40) of semi-synthetic media (1 % Tryptone, 0.5% Yeast extract, 0.268 %                 

(NH4)2SO4, 0.15% NH4Cl, 0.6 % KH2PO4, 0.4% K2HPO4, 1% Glycerol, pH 7.0) supplemented with 15               

µg/mL of Gentamicin and 50 µg/mL of Ampicillin. Cell were cultivated at 37 ° C for 2 hours, until OD600                    

reached 0.6-0.8, then the media were enriched with 0.5 M of saccharose. Induction was carried out at                 

12°C with 0.5 mM IPTG overnight. The cells were harvested by centrifugation (4000 x g 10 min at 4° C),                    

resuspended in 0.1 M potassium phosphate buffer, pH 7.0 and then sonicated on ice in 2.0 mL tubes at                   

30% amplitude for 5 min of total ON time (30 s on/30 s off) by using the Bandelin SonoPuls HD 2070                     

homogeniser (BANDELIN, Germany).  
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To remove cell debris, the lysates were centrifuged at 16 000 x g, 4° C. The soluble recombinant MDH                   

mutants were purified by using HisPur™ Ni-NTA Spin columns (ThermoFisher Scientific, USA). The             

columns with loaded supernatants were washed with Wash buffer (0.1 M Potassium phosphate buffer,              

pH7.4, NaCl 250 mM and 40 mM imidazole). Proteins were eluted with Elution buffer (0.1 M Potassium                 

phosphate buffer, pH7.4, NaCl 250 mM and 300 mM). The eluted fractions were dialysed against 0.1M                

Potassium phosphate buffer, pH 7.4. The concentration of the proteins was determined using NanoDrop              

2000 (Thermofisher Scientific, USA). The aliquots of total lysate, soluble lysate fraction and purified              

protein were loaded onto SDS PAGE 15%. 

 

The malate dehydrogenase activity was measured at 25 ° C in 96-well flat bottom UV transparent plate                 

(UV-Star Microplate) (Greiner Bio-One, Austria). The reaction mixture (final volume 200 µL) contained an              

aliquot of purified protein, freshly prepared 0.15 mM NADH and 0.2 mM oxaloacetic acid, and 0.1 M                 

Potassium phosphate buffer, pH7.4. The absorbance reading was done at 340 nm every 5 seconds for 3                 

minutes in a BioTek PowerWave XS microplate reader (Biotek, USA). For NADH at 340 nm 6.22 mM                 

cm-1 extinction coefficient (εM) was used. The path length (l) in the microplate was calculated according                

A=c x εM x l. 
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