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Statement of Significance  
We utilize a mathematical model to deconvolute the nonlinear contributions of CAR T-cell 

proliferation and exhaustion to predict therapeutic efficacy and dependence on CAR T-

cell dose and target antigen levels. 

 
Abstract 
Chimeric antigen receptor (CAR) T-cell therapy has shown promise in the treatment of 

hematological cancers and is currently being investigated for solid tumors including high-

grade glioma brain tumors. There is a desperate need to quantitatively study the factors 

that contribute to the efficacy of CAR T-cell therapy in solid tumors. In this work we use a 

mathematical model of predator-prey dynamics to explore the kinetics of CAR T-cell killing 

in glioma: the Chimeric Antigen Receptor t-cell treatment Response in GliOma 

(CARRGO) model. The model includes rates of cancer cell proliferation, CAR T-cell 

killing, CAR T-cell proliferation and exhaustion, and CAR T-cell persistence. We use 

patient-derived and engineered cancer cell lines with an in vitro real-time cell analyzer to 

parameterize the CARRGO model. We observe that CAR T-cell dose correlates inversely 

with the killing rate and correlates directly with the net rate of proliferation and exhaustion. 

This suggests that at a lower dose of CAR T-cells, individual T-cells kill more cancer cells 

but become more exhausted as compared to higher doses. Furthermore, the exhaustion 

rate was observed to increase significantly with tumor growth rate and was dependent on 

level of antigen expression. The CARRGO model highlights nonlinear dynamics involved 

in CAR T-cell therapy and provides novel insights into the kinetics of CAR T-cell killing. 

The model suggests that CAR T-cell treatment may be tailored to individual tumor 

characteristics including tumor growth rate and antigen level to maximize therapeutic 

benefit. 
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Introduction 
 
Chimeric antigen receptor (CAR) T-cell therapy is a targeted immunotherapy, 

demonstrating remarkable antitumor efficacy, particularly in the treatment of hematologic 

cancers [1,2]. CAR T-cell therapy is a specific type of immunotherapy where T-cells are 

genetically modified to recognize a tumor antigen thereby specifically redirecting T cell 

cytolytic activity. Inspired by the success of CAR T-cell therapy in liquid tumors, there has 

been a great interest in expanding the use of CAR T-cells for the treatment of solid tumors, 

such as glioblastoma (GBM), a highly aggressive form of primary brain cancer. Several 

clinical trials using CAR T-cells to treat GBM have been initiated all over the world [3–6]. 

At this early stage of clinical development, CAR T-cells offer much promise in solid 

tumors. However, the diversity of current clinical trials employing varying types of CARs 

for different solid tumors, target patient populations, and preconditioning regimes, 

presents a significant challenge in identifying which aspects of a given CAR T-cell 

treatment protocol are most critical for its effectiveness. An additional critical challenge 

for CAR T-cell therapy is the potential for transient-progression, where the cancer 

appears to progress before eventually responding to the treatment [7,8].  

 

In order to address these challenges in CAR T-cell therapy for solid tumors, we 

endeavored to study the kinetics of CAR T-cell killing with an in vitro system and a 

mathematical model. Mathematical models are useful to describe, quantify, and predict 

multifaceted behavior of complex systems, such as interactions between cells. A 

mathematical model is a formalized method to hypothesize systems dynamics, and yield 

solutions that represent the system's behavior under certain initial conditions. 

Mathematical models can be versatile and tested with clinical data which may be obtained 

in vivo from non-invasive imaging [9–11]. When additional information about the system 

becomes available, the model can be refined and adjusted accordingly. Many 

mathematical models have been developed to understand tumor progression to guide 

refinement of cancer therapy regimens [12–14]. As CAR T-cell therapy is a newly 

advanced treatment modality, relatively few studies have utilized computational modelling 

to understand and improve this cell-based therapy. Recently computational models have 

been developed to investigate cytokine release syndrome for toxicity management [15–
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17], effect of cytokine release syndrome on CAR T-cell proliferation [18], and mechanisms 

of CAR T-cell activation [19,20], dosing strategies[21]. However, it remains an open 

challenge how to use mathematical modeling to study and ultimately predict dynamics of 

CAR T-cell mediated cancer cell killing with respect to CAR T-cell dose, cancer cell 

proliferation, target antigen expression, and how these factors contribute to the overall 

effectiveness of CAR T-cell therapy. 

 

Based upon our pre-clinical and clinical experience with our well-characterized IL13Rα2-

targeted CAR T-cell therapy for recurrent glioblastoma [22,23], we have identified several 

factors which contribute to the effectiveness of CAR T-cells: rates of proliferation, 

exhaustion, persistence, and target cell killing. To study these various facets of CAR T-

cell killing kinetics, we modeled the dynamics between cancer cells and CAR T-cells as 

a predator prey system with the CARRGO mathematical model: Chimeric Antigen 

Receptor t-cell treatment Response in GliOma. We used a real-time cell analyzer 

experimental system to estimate parameters of the mathematical model and then apply 

the model to in vivo human data with the long-term aim of developing a model which could 

be used to predict and eventually to optimize response. 

 

Methods 
The CAR T-cell treatment Response to GliOma (CARRGO) mathematical model is a 

variation on the classic Lotka-Volterra [24,25] predator-prey equations: 

𝑑𝑋
𝑑𝑡
$

cancer cell
rate of change

=	𝜌𝑋 (1 −
𝑋
𝐾,

-../..0

logistic growth 
of cancer cells

− 𝜅2𝑋𝑌-/0

CAR T4cell 
induced cancer cell death

 

 

(1) 

𝑑𝑌
𝑑𝑡
$

CAR T4cell
rate of change

=	 𝜅5𝑋𝑌678
cancer	cell	stimulated	proliferation

or exhaustion of CAR T-cells

− 𝜃𝑌F
GHI	J4KLMM	NLOPQ

 (2) 

where 𝑋 represents the density of cancer cells, 𝑌 is the density of CAR T-cells, 𝜌 is the 

net growth rate of cancer cells, 𝐾 is the cancer cell carrying capacity, 𝜅2 is the killing rate 

of the CAR T-cells, 𝜅5 is the net rate of proliferation including exhaustion or death of CAR 
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T-cells when encountered by a cancer cell and 𝜃 is the natural death rate of CAR T-cells. 

The parameters 𝜌, 𝐾, 𝜅2, 𝜃 are constants and assumed to be non-negative except for 𝜅5 

which can be either positive or negative. A positive value of 𝜅5 indicates an increased rate 

of CAR T-cell proliferation when stimulated by interaction with a cancer cell. A negative 

value of 𝜅5 indicates exhaustion or limited activation of CAR T-cells resulting from 

interaction with a cancer cell (Table 1). Exhaustion and hypoactivation of CAR T-cells are 

combined into a single value and are not modeled individually.  

 

We chose to model the net number of cancer cells and simple interactions between 

cancer cells and CAR T-cells because the output data from the culture system is limited 

to cell number over time. We therefore are only able to infer dynamics at this scale and 

dimension (cells, time). Moreover, we performed a system identifiability analysis to 

demonstrate the parameters of model can be uniquely determined from the data in this 

experiment (see supplemental methods) [26–29]. Future studies may examine more 

complex dynamics and features such as modeling individual cell antigen levels, 

heterogeneity, resistant and sensitive sub populations, repeated treatments, etc. with 

other experimental designs which directly measure these features.  

 
Model assumptions 
The CARRGO model treats cancer cell-CAR T-cell dynamics in this experimental 

condition as a closed predator-prey system. The model assumes 1) the populations are 

well mixed, 2) cancer cell growth is limited by space and nutrients (culture media) in the 

 
Table 1: CARRGO model parameters. All parameters are assumed to be non-negative except k2 
which may be positive or negative. 

Parameter Description Unit

! Cancer cell net growth rate day-1

" Carrying capacity cell

#$ CAR T-cell killing rate day-1 cell-1

#% Net rate of proliferation and exhaustion of T-
cells when stimulated by cancer cells day-1 cell-1

& CAR T-cell net death (persistence) day-1
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in vitro culture system and therefore grow logistically, 3) CAR T-cells kill cancer cells when 

they interact via the law of mass action, 4) the CAR T-cell killing rate does not explicitly 

assume a dependence on antigen density, 5) CAR T-cells may be stimulated to proliferate 

or to undergo loss of effector function—defined as exhaustion—upon contact with a 

cancer cell [30], and 6) the CAR T-cell death rate is independent of cancer cell density. 

We chose the Logistic growth model for the cancer cell population because the fixed 

growth rate and carrying capacity parameters were the biological quantities of interest 

when comparing CAR T-cell killing kinetics across cell lines. Witzel et al compared 

sigmoidal growth laws including Logistic, Gompertz, and Richards showed that all these 

models can be fit equally well to this form of experimental data [31]. Data supporting our 

model assumptions are given in supplemental material1 (Fig. S1,S2)  

 
Dynamical system analysis of the CARRGO model 
Closed form solutions cannot be obtained for the relatively simple CARRGO model. To 

study the possible dynamics with the CARRGO model, we perform classical dynamical 

system analysis. Detailed mathematical analysis of this model can be found in several 

textbooks in dynamical systems [25,32]. In the interest of informing the reader, we briefly 

summarize the main points here. We begin by 1) scaling (non-dimensionalizing) the 

variables in the system and then 2) identify stationary points and classify their stability 

and finally 3) interpret the stationary points and system dynamics in terms of the initial 

numbers of cancer cells and CAR T-cells.  

 

First, we scale the variables in the CARRGO model to obtain a model without physical 

units in order to study the intrinsic dynamics of the system. We scale time, the cancer cell 

and CAR T-cell populations as 

𝜏 = 𝑡𝜌, 𝑦 = 	 TU
V
𝑌, 𝑥 = X

Y
. 

These variables are substituted into the CARRGO model (Eq.1,2) to obtain the scaled 

dimensionless system 

Z[
Z\
= 𝑥(1 − 𝑥) − 𝑥𝑦  

 

(3) 
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Z_
Z\
= 	𝐵𝑥𝑦 − 𝐴𝑦 ,        with dimensionless constants  𝐴 = b

V
,			𝐵 = TdY

V
. (4) 

The steady-state solutions of this system are obtained by setting the time derivatives 

equal to zero (Eq. 3,4). The values of the dimensionless parameters A and B determine 

the dynamics of the system which may be represented as trajectories in a 2-dimensional 

phase-space of cancer cells and CAR T-cells (𝑥, 𝑦). Three stationary points 

corresponding to steady-state solutions are denoted by 𝑃f = (𝑥, 𝑦) are: 𝑃2 = (0,0) where 

both the cancer cells and CAR T-cells are eliminated (zero), 𝑃5 = (1,0) where cancer cells 

population reaches the carrying capacity and CAR T-cells are eliminated, and a 

coexistence of both populations, 𝑃h = ij
k
, 1 − j

k
l. Three possible dynamics can result 

from this model depending on the values of A and B (Fig.1). 

Case 1 Successful CAR T-cell treatment (𝐴 = 0, 𝐵 > 0): This situation occurs when the 

death rate of CAR T-cells is negligible (𝜃 ≈ 0) relative to the proliferation rate of cancer 

cells (𝜌), and the CAR T-cells are stimulated to proliferate when encountering a cancer 

cell (𝜅5 > 0). In this case the equilibrium points are when the cancer cells are eliminated 

 
Figure 1: Possible dynamics from the CARRGO model. Dynamics are represented as 
trajectories in a 2-dimensional phase-space (𝑥, 𝑦) = (cancer	cells,	CAR	T-cells). (a) Case 1: 
Successful CAR T-cell treatment (A=0, B=0.2). This situation predicts all long-term dynamics 
to result in eradication of cancer cells with varying levels of residual CAR T-cells. (b) Case 2: 
CAR T treatment failure (A=0, B= -0.2). This situation predicts all long-term dynamics to result 
in cancer cells growing to carrying capacity and eventual elimination of CAR T-cells. (c) Case 
3: Pseudo-failure/pseudo-response (A= 0.14, B=1.6). This situation predicts long-term 
coexistence of cancer cells and CAR T-cells, denoted P3 (red circle). In this situation, cancer 
cells and CAR T-cell populations increase, then decrease, then increase in an oscillatory 
manner. The dark blue regions shows cancer cell response and the light grey regions show 
cancer cell progression. We note that all 3 dynamics predicted by the CARRGO model include 
periods of transient increase or decrease in the cancer cell population, pointing to pseudo-
progression of cancer, which a critical challenge in CAR T-cell treatment. 

00
0

Pseudo-failure /
Pseudo-response

(a) (b)

Successful CAR T treatment

Rapid response

Transient
progression

CAR T treatment failure

Transient regression

Rapid
progression

(c)

Transient-response

Transient-
progression
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with some remaining CAR T-cells (0, 𝑦) and when the cancer cells reach carrying capacity 

with no remaining CAR T-cells (K,0). Cancer cell elimination (0, 𝑦) is stable only if the 

CAR T-cell population is larger than the ratio (𝑦 > 1 ⇒ 𝑌 > 𝜌 𝜅2⁄ ), that is to say if the 

product of the rate of CAR T-cell killing and the number of CAR T-cells is greater than the 

proliferation rate of the cancer cells. If the initial CAR T-cell population is below the line 

𝑌 < V
TU
− VX

YTU
, the CARRGO model predicts a transient progression of cancer cells before 

eventual response (grey region). The point (K,0) is an unstable repulsor state (Fig.1a). 
 

Case 2 CAR T-cell treatment failure (𝐴 = 0, 𝐵 < 0): This situation occurs when the 

proliferation rate of CAR T-cell is less than the exhaustion rate of CAR T-cells due to 

interaction with cancer cells. In this case the fixed points are (0, 𝑦) and (K,0) are the same 

as in case 1. However, the point (K,0) is now a stable attractor state, corresponding to 

the cancer cells eventually growing to carrying-capacity and extinction of CAR T-cells. 

Again cancer cell elimination (0, 𝑦) is stable only if the CAR T-cell population is larger 

than the ratio (𝑌 > 𝜌 𝜅2⁄ ). If the initial CAR T-cell population is above the line 𝑌 > V
TU
− VX

YTU
, 

the CARRGO model predicts a transient regression of cancer cells before eventual rapid 

progression (grey region). This case is a failure of CAR T-cell treatment (Fig.1b). 

 

Case 3 Pseudo-failure or pseudo-response (𝐴 > 0, 𝐵 > 0): In this situation, the third 

stationary point 𝑃h corresponding to cancer cell and CAR T-cell coexistence lies in the 

first quadrant (positive numbers of cancer cells and CAR T-cells) only if 𝐴 ≤ 𝐵. The point 

𝑃h =
j(k4j)

k
 is then a stable sink (Fig.1c). This case results in a transient increase in 

cancer cells corresponding to tumor progression followed by a decrease in tumor cells 

corresponding to treatment response in an oscillating manner. The transient and 

oscillatory nature of these dynamics may be interpreted as a “pseudo”-failure and 

“pseudo”-response to the therapy. We note that cancer progression and treatment occur 

on finite and sometimes small timescales and therefore oscillatory dynamics may not be 

observed in vivo due to insufficient time to observe these changes.  

Cell lines 
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Low-passage primary brain tumor (PBT) lines were derived from GBM patients 

undergoing tumor resections at City of Hope as previously described [33,34]. 

Fibrosarcoma line HT1080 was obtained from the American Tissue Culture Collection 

(ATCC) and maintained according to recommendations. PBT030 endogenously 

expresses high level of IL13Ra2. HT1080 and PBT138 do not express IL13Ra2 and were 

lentivirally engineered to express varied levels based on different promoter strengths to 

investigate the relationship between killing kinetics and antigen expression level: High 

(>70%+) driven by the EF1a promoter, Medium (between 40%+-70%+) driven by the PGK 

promoter, Low (<20%+) driven by the attenuated PGK100 promoter [35,36]. These cell 

lines are denoted with H, M, L respectively e.x. HT1080-H. These tumor cell lines were 

selected because they differ in aggressiveness (proliferation rates) and antigen 

expression levels (endogenous or engineered). 

 

Chimeric Antigen Receptor (CAR) T-cells were derived from healthy donor enriched 

CD62L+CD45RO+ central memory T cell population and lentivirally transduced with 

second-generation IL13Rα2-targeting CARs: IL13BBζ or IL1328ζ [33,34,37,38]. 

Transduced product was enriched for CAR and expanded in X-Vivo media with 10% FBS 

until 17 days in culture and cryopreserved. Non-transduced T cells expanded under the 

same condition was used as mock control.  

 
Experimental design 
Real-time monitoring of cancer cell growth was performed by using xCELLigence cell 

analyzer system [39]. This system utilizes electrical impedance to non-invasively quantify 

adherent cell density with a dimensionless number referred to as cell-index (CI). The cell-

index read-out from the machine is strongly positively correlated with the number of cells 

in the well (r2 > 0.9) and can be used as a linear measure of cell number [31]. We therefore 

report CARRGO parameter values in units CI which can be translated into units per cell 

based on the linear relation. Real-time cytotoxicity assay was performed using 

xCELLigence system in disposable 96 well E-Plates. Prior to seeding, tumor cells were 

enzymatically single-celled and seeded at 25 × 10h, 12.5 × 10h, or 2 × 10h cells per well 

depending on the cell line. Cells were either left untreated (triplicates per cell line) or 
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treated with CAR T-cells at effector to target ratios (E:T) of 1:5, 1:10, and 1:20. CAR T-

cells were added to the wells about 24 hours after cancer cell seeding. Growth curves 

were recorded over 4 days with temporal resolution of 15 minutes (Fig. 2). Each cell line 

was treated with three IL13Rα2-targeted CAR T-cells: BBζ, 28ζ, and mock. At the end of 

the experiment, flow cytometry was performed to measure the residual CAR T-cells, 

cancer cells and IL13R𝛼2 expression level. The details of cancer cell seeding, effector to 

target ratios used for the experiments are given in supplement material (Table. S1). The 

cancer cell dynamics of all the wells of 96 well E-plate for all cell lines are given in 

supplemental material (Fig. S3).  

 

CARRGO model fitting to experimental data 
The first 24 hours of the time-series describes the process of cell attachment to the bottom 

of the plate (Fig. 2). The spatial process of cell adhesion and spreading in the well can 

be modeled as a reaction-diffusion process, described in supplement material (Fig. S4). 

Since we are interested in cell growth kinetics, we omitted the data from first 24 hours 

during the attachment process. The final time point is determined when the cells reach 

confluency which varies by cell line. Observed time of confluency for the PBT cell line 

was around 120 hours from the time of seeding while HT1080 reached confluency within 

80 hours. The data points from CAR T-cell administration (24 hours after seeding) up to 

80% of maximum CI value (confluency) were used for model fitting to estimate the 

parameters. At greater than 80% of the maximum CI, the linear relationship between CI 

and cell number no longer holds [31].  

 

Cancer cell net growth rate 𝜌 and carrying capacity 𝐾 (Eq.1) were computed by fitting 

logistic growth to untreated cancer cell time series data. The CAR T-cell killing rate 𝜅2, 

growth rate 𝜅5, and death rate 𝜃 were computed by fitting the solution of the CARRGO 

model (Eqs.1,2) to treated cancer cell time series data by minimizing the root mean 

square error. All optimization computations were performed in MATLAB with fmincon. 
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CARRGO model fitting to human data 

A patient with recurrent glioma received CAR T-cells engineered for IL13R𝛼2 and showed  

complete tumor regression, which was published as brief report by Brown et al in the New 

England Journal of Medicine in 2016 [33]. We retrospectively collected the magnetic 

resonance imaging (MRI) data of this patient and calculated tumor volumes to be used to 

fit the CARRGO model. Three lesions were selected using the lesion labeling reported in 

Brown et al [33]: lesions T6 ,T7 which responded to IL13Ra2 targeted CAR T-cells and 

lesion T9 which was a lesion that appeared later on which did not respond to the therapy. 

Tumor volumes for each lesion were estimated by manual segmentation of contrast-

 
Figure 2: Schematic of experiment design and output data from the xCELLigence system. 
a) The xCELLigence system for real-time monitoring of cancer cell growth and response to CAR 
T-cell therapy. b) The output of xCELLigence is “Cell Index” (CI) which is calculated from changes 
in electrical impedance in the culture plate over time. Cell index is strongly correlated with the 
number of cells in the well/plate. This system results in distinct regimes of cell growth dynamics, 
including an attachment phase followed by proliferation and confluency. The proliferation growth 
regime was used to fit the CARRGO model and quantify dynamics of CAR T-cell killing of cancer 
cells (blue curve) as compared to untreated growth (red curve).  
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enhancing lesions from T1-weighted post-contrast MRIs. The number of cancer cells (CC) 

was estimated by calculating CC=[tumor volume (𝜇m3)]/[GBM cell size (𝜇m3)] with the 

average cell diameter assumed to be 20	𝜇m [40]. The volume of a spherical cell is then 

given by 𝑉 = (4𝜋/3)(10𝜇𝑚)h. These relationships were used to estimate the total number 

of cancer cells in a tumor volume. The tumor growth rate (𝜌 (1/time)) was computed from 

two subsequent imaging time points following the first appearance of the lesion on MRI. 

CAR T-cells were administered first directly into the tumor tissue and subsequently into 

the cerebrospinal fluid via the intraventricular injection. Because the CAR T-cells migrated 

to several tumor foci in the patient, we assumed a small fraction (5-10%) of the infused 

dose reached each individual lesion at each infusion. The CARRGO model was fit to the 

time-series MRI-derived tumor volume data by minimizing the root mean square error for 

MRIs before and during CAR T-cell treatment to compute the rates of CAR T-cell killing 

𝜅2, exhaustion 𝜅5 and death q. 

 
Results 
Model/data fitting to in vitro data 
A high goodness of fit of the CARRGO model to the xCELLigence data was observed 

across all cell lines (𝑅5 = 0.93 ± 0.1, Fig. 3, Fig. S3). To investigate the sensitivity of our 

model fitting to sampling frequency, we down-sampled the data by taking time intervals 

of 2 hours, 5 and 10 hours. No significant variation was observed in the model parameters 

𝜅2, 𝜅5 and 𝜃 to the down-sampled data (repeated measure ANOVA p>0.1)(Fig. S5, S6). 

We consistently observed very small values of the CAR T-cell death rate (𝜃 < 104h). 

Uniqueness of the parameters was tested by choosing 100 different combinations of 

values of the parameters across several orders of magnitude for the model fitting 

optimization procedure. We found that if the optimization converged, it converged to 

unique values of the parameters, which is a direct consequence of the identifiability 

analysis of the model and minimum number of points required to resolve the model (see 

supplementary material1 Fig. S7, Movie S1).  
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Validation of xCELLigence dynamics with flow cytometry 
Because the xCELLigence system is an indirect measure of cell number, we validated 

the previously reported linear relationship [39] between the cell index read-out from the 

machine and the number of cells measured with flow cytometry (r2 > 0.9, supplementary 

material2 Fig. S8). Because cell index measures the change in electrical impedance 

caused by both cancer cells and CAR T-cells adhering to the plate, CAR T-cell dynamics 

are not directly measured by the system, so we compared the cancer cell (CC) to T-cell 

ratio (TC) from flow cytometry to that predicted from CARRGO model. The model 

predicted ratio CC/TC at end time point shows a similar trend to that measured with flow 

cytometry, indicating the CARRGO model-predicted CAR T-cell dynamics derived from 

 

 
Figure 3: CARRGO model dynamics and in vitro CAR T-cell and glioma cell data. 
Dynamics from 3 cancer cell lines with and without CAR T-cell treatment along with CARRGO 
model fits (red line: logistic growth; green line: CARRGO model) with effector to target ratio 
1:20. Top row: cell index from xCELLigence and model fit. Bottom row: data of treatment 
dynamics plotted in phase-space colored by time (hours). (a, b) PBT138, tumor seeding 
12.5 × 10h (cells), (c, d) PBT030, tumor seeding 12.5 × 10h (cells), (e, f) HT1080 High, tumor 
seeding 2 × 10h (cells). Estimated tumor growth rate for cell line PBT138-H was 𝜌 = 0.72 day-

1, for PBT030 was 𝜌 = 1.07 day-1 and for HT1080-H was 𝜌 = 2.1	day-1. PBT138-H and PBT030 
show successful CAR T-cell killing. HT1080-H shows CAR T-cell exhaustion and treatment 
failure. These dynamics are captured in the phase space diagrams and CARRGO model 
parameters, which correctly capture transient progression before response for PBT138 and 
PBT030 (case 1, Figure 1) and rapid progression for HT1080 H (case 2, Figure 1). 
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Figure 3: CARRGO model dynamics and in vitro CAR T-cell and glioma cell data. Dynamics 
from 3 cancer cell lines with and without CAR T-cell treatment along with CARRGO model fits (red 
line: logistic growth; green line: CARRGO model) with effector to target ratio 1:5. Top row: cell index 
from xCELLigence and model fit. Bottom row: data of treatment dynamics plotted in phase-space 
colored by time (hours). (a,b) PBT138-H, tumor seeding  12.5 × 103(cells),  (c,d) PBT030, tumor 
seeding  12.5 × 103(cells) (e,f) HT1080-H, tumor seeding 2 × 103  (cells). Estimeted tumor growth 
rate for cell line PBT138-H was ρ=0.72 day-1 , for PBT130 was ρ=1.07 day-1 , for HT1080 was 
ρ=2.1 day-1. PBT138 and PBT030 show successful CAR T-cell killing. HT1080-H shows CAR T-cell 
exhaustion and treatment failure. These dynamics are captured in the phase space diagrams and 
CARRGO model parameters, which correctly capture transient progression before response for 
PBT138-H and PBT030 (case 1, Figure 1) and rapid progression for HT1080-H (case 2, Figure 1).
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the xCELLigence data are consistent with flow cytometry measurements. This trend was 

observed in PBT030 and PBT138 for BBζ and 28ζ CAR T-cells and for all doses 

(supplementary material2 Fig. S9). 

 
CAR T-cell dose-dependent dynamics 
We examined the effect of varying the effector to target ratio, i.e. CAR T-cell dose for all 

cell lines. The CAR T-cell death rate parameter was found to be very small (𝜃 < 104� day-

1) for all cancer cell lines and all CAR T-cells and doses. The killing rate parameter 𝜅2 

shows a negative correlation while 𝜅5 shows positive correlation with respect to the CAR 

T-cell dose. The parameter 𝜅5 was negative only for tumor line HT1080-H which indicates 

the exhaustion rate being much stronger than the proliferation rate of the CAR T-cells. A 

positive correlation of 𝜅2 with CAR T-cell dose indicates that higher dose of CAR T-cell 

results in a lower killing rate, since each individual CAR T-cell has fewer number of cancer 

cells to encounter. The range of values for κ2and κ5 varied with cancer cell line as the 

growth rate of each cell line is different from each other, however, the overall trends were 

preserved across the cell lines. Plots of 𝜃, 𝜅2and 𝜅5 for PBT030, PBT138 (seeding 

12.5 × 10h) and HT1080-H treated with BBζ CAR T-cells are shown in Figure 4. Other 

cell-lines and parameters for 28ζ CAR T-cells are given in supplementary material2 (Fig. 
S10). 

 

Relating 𝜿𝟏, 𝜿𝟐with tumor growth rate and antigen expression 
Tumor growth rate 𝜌 varies significantly (p<0.01) among different cell-lines and with 

antigen expression level (see supplement material2 Fig. S11a). To investigate the 

relationship between tumor growth rate and CAR T-cell killing 𝜅2 and exhaustion 𝜅5, we 

evaluated cell lines with antigen levels greater than 80% and treated with BBζ CAR T-

cells at an effector to target ratio of 1:5. No significant correlation was found between the 

cancer cell proliferation rate 𝜌 and killing rate (𝜅2) (Fig. S11b). However, the exhaustion 

rate 𝜅5 is significantly correlated with tumor growth rate (Fig. S11c) with Pearson 

correlation coefficient 𝑟 = −0.9, p<0.001. Similar results were observed for the cells 

treated with 28ζ IL13Ra2-CARs. Figure 5 shows the density of IL13R𝛼2 level on cancer  
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cell surface and its relation to CAR T-cell killing for cell line HT1080-H and PBT138-H. 

We observed that 𝜅2 shows a decreasing trend from medium to high antigen level (Fig.5c)  

suggesting that high levels of antigen expression may not result in faster rates of CAR T-

cell killing. The rate constant 𝜅5 increases from low to medium antigen expression and 

plateaus with high levels (Fig.5d). This suggests limited activation of CAR T-cell at lower 

antigen expression and exhaustion rate from medium to high antigen may not change 

significantly and may be the result of over-activation of the CAR T-cells. 

 
 
Figure 4: Comparisons of CARRGO model parameters with cell line and CAR T-cell 
dose. CARRGO model parameters: (top row) killing rate (κ2), (middle row) 
proliferation/exhaustion rate (κ5), (bottom row) and persistence/death rate (θ), for cell lines 
PBT138-H, PBT030, and HT1080-H treated with three different effectors to target (ET) ratios 
(1:5, 1:10, 1:20). CAR T-cell killing rate is observed to decrease with increasing ET ratio for all 
cell lines. This suggests CAR T-cells kill more cancer cells per unit time at a lower 
concentration as compared to higher ET ratio. In contrast, the CAR T-cell proliferation / 
exhaustion rate increases with ET ratio. This suggests that the CAR T-cells are stimulated to 
proliferate and are less exhausted with higher ET ratio as compared to lower. For reference, 
CAR T-cells are hypoactivated in mock (𝜅5 < 0). The CAR T-cell death rate, or persistence, is 
observed to be independent of target cell line and ET ratio.  
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Figure 4: Comparisons of CARRGO model parameters with cell line and CAR T-cell dose. 
CARRGO model parameters: (top row) killing rate (κ1), (middle row) proliferation/exhaustion rate (κ2), 
(bottom row) and persistence/death rate (θ), for cell lines PBT138-H, PBT030, and HT1080-H treated 
with three different effectors to target (ET) ratios (1:5, 1:10, 1:20). CAR T-cell killing rate is observed to 
decrease with increasing ET ratio for all cell lines. This suggests CAR T-cells kill more cancer cells per 
unit time at a lower concentration as compared to higher ET ratio. In contrast, the CAR T-cell 
proliferation / exhaustion rate increases with ET ratio. This suggests that the CAR T-cells are stimulated 
to proliferate and are less exhausted with higher ET ratio as compared to lower. For reference, CAR T-
cells are hypoactiveted in mock (κ2 < 0). The CAR T-cell death rate, or persistence, is observed to be 
independent of target cell line and ET ratio. 
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CARRGO model applied to in vivo human data 
To translate the in vitro dynamics to of the model to real patient data [23], we fit the 

CARRGO model to MRI-derived tumor volume data during CAR T-cell treatment (Fig. 6). 

The CARRGO model is able to fit the tumor growth dynamics quite accurately for lesions 

T6, and T7 with the same set of parameters 𝜅2 = 6 × 104�(day-1 cell-1), 𝜅5 = 0.3 × 1042� 

(day-1 cell-1), 𝜃 = 0.1 × 104�(day-1) and lesion T9 with 𝜅2 = 9 × 104�(day-1 cell-1), 𝜅5 =

−2 × 1042h (day-1 cell-1), 𝜃 = 5 × 104� (day-1). In the case of lesion T9, although the 

CARRGO model is consistent with the overall tumor dynamics, it does not fit the later time 

points following CAR T-cell treatment well. This is because lesion T9 received radiation 

treatment between day 200 to 300, which is not included in the CARRGO model. We note 

the negative correlation between the tumor growth rate (𝜌 = 0.06, 0.07 /day and 𝜌 = 0.2 

/day for T6, T7 and T9 respectively) with the CAR T-cell exhaustion rate 𝜅5 in the patient 

data, which is consistent with that observed in the experimental data (Fig. S11c). We 

remark that the parameters 𝜅2 and 𝜅5 are on the order of 𝑂(1042h), which appear to be 

 

 
Figure 5: Killing kinetics of CAR T-cells as compared to antigen expression level. 
Antigen expression measured with flow cytometry (mean florescence intensity (MFI), % of cells 
positive) for cell line HT1080, PBT138 (mock, low, medium, high) (a) and CAR T-cell killing 
dynamics measured by xCELLigence (b). 𝜅2 shows a decreasing trend from medium to high 
antigen levels (c) suggesting that high levels of antigen expression may not result in faster 
rates of CAR T-cell killing. 𝜅5 increases from low to medium antigen expression and plateaus 
with high antigen levels(d). This suggests limited activation of CAR T-cell at lower antigen 
expression and that exhaustion rates from medium to high antigen may not change 
significantly. 
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Figure 5: Killing kinetics of CAR T-cells as compared to antigen expression level. Distribution of antigen expression 
for cell line HT1080, PBT138* (a) and CAR T-cell killing dynamics measured by xCELLigence (b).  shows a decreasing 
trend from medium to high antigen level (c) suggesting that high levels of antigen expression may not result in faster 
rates of CAR T-cell killing.  increases from low to medium antigen expression and plateaus with high levels(d). This 
suggests deactivation of CAR T-cell at lower antigen expression and exhaustion rate from medium to high antigen may 
not change significantly.
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very small, however, these parameters are scaled by the caring capacity 𝐾 in units of 

cells, which is of order 𝑂(10�). Therefore, these parameter values are comparable with 

the in vitro data when scaled relative to the carrying capacity (Fig. 4) 

 

Discussion 
The CARRGO model is a simple representation of cancer-cell T-cell interactions. We 

developed the CARRGO model with the aim of understanding CAR T-cell efficacy in 

terms of rates of killing, proliferation, exhaustion, and persistence with a real-time cell 

analyzer in a simple, controlled in vitro system. The CARRGO model fit remarkably well 

to the highly temporally resolved experimental data and as well as to data derived from a 

patient treated with IL13Ra2 BBζ CAR T-cells. Although the predator-prey mathematical 

model formalism has been widely used in a number of biological settings, the novelty of 

this model is in the application to a novel form of cancer therapy with a high temporal 

 
Figure 6: CARRGO model applied to in vivo human data. A male patient with multi-focal glioblastoma 
was treated with IL13Ra2 CAR T-cells. Yellow circles are used to indicate tumor location and do not 
reflect tumor size. Cell number is calculated from tumor size with volumetric segmentation of the contrast-
enahcing lesion. The right columns shows CARRGO model fits and dynamics based on the tumor volume 
data. The CARRGO model parameters are the same for lesions T7 and T6, which responded to CAR T-
cell treatment. The model predicts that the non-responding lesion T9 had a smaller rate of CAR T-cell 
killing and increased rates of exhaustion and CAR T-cell death. Lesion T9 was also observed to have a 
higher cancer cell proliferation rate (r =0.2/day) as compared to T6 and T7 which had very similar rates 
(r =0.06/day, r =0.07/day, respectively).  
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resolution cell monitoring experimental design which provides nearly continuous data on 

killing kinetics.  

 

With the CARRGO model we show that the rate of cancer cell killing by CAR T-cells is 

inversely related to the CAR T-cell dose. With a fixed number of cancer cells as an initial 

condition, as the number of CAR T-cells increases (dose), any individual T-cell encounter 

will encounter fewer number of cancer cells to kill, indicating that increasing dose does 

not result in a maximal rate of killing on a per T-cell basis. For example, the PBT138 cell 

line shows complete killing within 80 and 100 hours for effector to target ratios 1:5 and 

1:10 respectively. This result suggests that a lower dose of CAR T-cells may change the 

time to complete cancer cell killing but shows the same overall cancer cell killing 

effectiveness. We observed that 𝜅5 positively correlated with CAR T-cell dose. Because 

the parameter 𝜅5 is a net measure of CAR T-cell proliferation and exhaustion or lack of 

activation and the T-cell proliferation is not dose dependent [18], the trend observed in 𝜅5 

with dose is dominated by the exhaustion rate: the higher the dose, the lower the 

exhaustion rate, resulting in an increased value of 𝜅5. The death rate of CAR T-cells was 

very small as compared to the cancer cell proliferation rate for all conditions. This is likely 

due to the short time-scale of the experiment and because the T-cells were stimulated to 

proliferate by the presence of cancer cells.  

 

We observed that the cancer cell growth showed no relation with CAR T-cell killing rate 

and an inverse relationship with 𝜅5. This may explain variations in patient-specific 

responses even for the same CAR T-cell dose. For a fixed CAR T-dose, 𝜅5	is the principle 

determinant of treatment failure or success as shown in phase plane analysis (Fig.1), 

which is also observed in patient data (Fig.6). This result, driven by the CARRGO model 

analysis suggests that the balance between proliferation and exhaustion of CAR T-cells 

may contribute more than the rate of CAR T-cell mediated cancer cell killing in 

determining treatment success or failure. Moreover, the CARRGO model predicts 

transient progression of cancer cells even in the case of successful CAR T-cell therapy. 

This prediction may be consistent with the clinical phenomenon of pseudo-progression, 

in which the cancer is seen to progress during therapy before eventually responding [7,8]. 



   
 

   
 

Identifying characteristics of the patient and the CAR T-cells which may result in pseudo-

progression could have a profound effect on interpretation of these dynamics observed 

in the clinic.  

 

Interestingly, we found 𝜅2 decreases and 𝜅5 plateaued from medium antigen level to 

higher level of antigen expression. One of the possible explanations of this behavior could 

be the antigen density is more heterogeneous in the higher antigen level cell population 

as compared to medium and low antigen levels (Fig.5a). A ore heterogeneity in the 

density of antigen expression intensity in the cancer cells within the initial population may 

cause clustering of CAR T-cells resulting in their exhaustion [20,41]. Another confounding 

factor can be the dependence of the detected antigen signal intensity on both the number 

of antigen-positive tumor cells and their individual antigen expression intensity. 

Elucidating these factors individually can better tune the model parameters and the 

prediction of the tumor response dynamics. However, more studies are required to 

examine effect of cell and population level antigen density on CAR T-cell killing kinetics.  

 

There are some important limitations to consider with this model and experimental 

system. Perhaps the most obvious is that the in vitro system is not a model for the human 

immune system or tumor microenvironment. It does not include cytokines, stromal cells, 

or additional immune cells such as myeloid cells which contribute to CAR T-cell activity 

in vivo. Another limitation is the assumption that the populations are well mixed. In 

practice, this assumption may depend on the route of CAR T-cell administration, with 

intracavitary and intraventricular injections potentially resulting in spatially heterogeneous 

densities of CAR T or cancer cells, although methods to assess the distribution of CAR 

T-cells in vivo remains an open challenge[42,43]. To address this limitation, the well-

mixed assumption may be relaxed and CAR T-cell killing dynamics interrogated with 

spatial or agent-based models[44]. Another limitation is with regard to the  experimental 

system: the change in electrical impedance measured by the cell index does not 

differentiate cell detachment from cell killing. This is only a minor consideration as the cell 

lines used are very adherent to the plate and were not observed to detach. Finally, the 

experimental system does not directly measure dynamics of CAR T-cells. However, our 



   
 

   
 

model is initialized with known numbers of cancer cells and CAR T-cells and the model-

predicted cancer cell to CAR T-cell ratio at the experimental endpoint was validated with 

flow cytometry, giving confidence to our model predictions and parameter estimates. To 

address this limitation, the CARRGO model CAR T-cell dynamics can be validated by 

labeling the CAR T-cells and directly measuring their dynamics with live cell imaging 

based methods [45]. Despite these limitations, the CARRGO model succeeded in 

revealing nonlinear dynamics, quantifying kinetics of killing, and generating hypotheses 

which may be tested in other in vitro systems, and other computational or in vivo models. 

 

In summary, CAR T-cells have shown promise in hematologic malignancies and are being 

actively investigated in solid tumors. We aimed to use mathematical modeling to 

investigate factors which contribute to the kinetics of CAR T-cell mediated cancer cell 

killing in a simple isolated in vitro system. We were able to fit the CARRGO model to in 

vitro and in vivo human data with remarkable accuracy. We demonstrated that we can 

consistently and reproducibly estimate rate constants in the CARRGO model and 

investigate their dependence on CAR T-cell dose and antigen expression levels. The 

CARRGO model may be combined with other mathematical models which estimate 

cancer cell growth and proliferation rates noninvasively with MRI data [9,11,46] to 

produce a fine-tuned and benchmarked suite of mathematical models, which may aide in 

optimization of dosing and scheduling of CAR T-cells for greater individualized and 

personalized therapy.  
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