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8

Abstract T cells in vivomigrate primarily via undirected random walks, but it remains unresolved9

how these random walks generate an e�cient search. Here, we use light sheet microscopy of T10

cells in the larval zebra�sh as a model system to study motility across large populations of cells11

over hours in their native context. We show that cell-to-cell variability is ampli�ed by a correlation12

between speed and directional persistence, generating a characteristic cell behavioral manifold13

that is preserved under a perturbation to cell speeds, and seen in Mouse T cells and Dictyostelium.14

These results suggest that there is a single variable underlying ameboid cell motility that jointly15

controls speed and turning. This coupling explains behavioral heterogeneity in diverse systems and16

allows cells to access a broad range of length scales.17

18

Introduction19

Many immune cells migrate through tissue in search of antigen or pathogens. In some cases,20

such as during extravasation from blood vessels and homing to target organs, this migration is21

guided by chemokine gradients (Witt et al., 2005; Okada et al., 2005; Germain et al., 2012; Sarris22

and Sixt, 2015). However, for naive T cells within T cell zones, in situ imaging studies have found that23

unguided random walk processes dominate ((Miller et al., 2002, 2003; Preston et al., 2006; Cahalan24

and Parker, 2008; Beltman et al., 2007; Banigan et al., 2015; Harris et al., 2012;Worbs et al., 2007;25

Textor et al., 2011; Beauchemin et al., 2007; Mrass et al., 2006; Katakai et al., 2013; Mrass et al.,26

2017), reviewed in (Mrass et al., 2010; Krummel et al., 2016)). This observation creates a conceptual27

challenge: T cells must dwell at scales of microns to make contact with antigen presenting cells28

(Wül�ng et al., 1997; Krummel et al., 2000; Beltman et al., 2009a; Fricke et al., 2016), yet migrate29

over scales of millimeters to �nd rare targets. A conventional di�usive random walk struggles to30

access these varied scales e�ciently, since a walker that dwells near another cell for 1 minute31

would require several days to travel 1 mm. Several authors have suggested that T cells may have32

an intrinsic behavioral program that allows them to explore over di�erent length scales (Harris33

et al., 2012; Krummel et al., 2016;Mempel et al., 2004). However, testing this hypothesis via in situ34

�uorescence microscopy raises inherent technical challenges: to observe a single cell accessing35

a broad range of spatial scales, it is necessary to have micron scale resolution over �elds of view36

of millimeters, with low enough photodamage to observe the same cells at high spatiotemporal37

resolution over long periods. For example, one intriguing proposal is that T cells perform Levy38

�ight (Harris et al., 2012), an anomalous random walk characterized by a power-law distribution of39

step sizes. Such random walks have been described in detail in the physics and ecology literature40
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(Shlesinger et al., 1995; Bartumeus et al., 2005; Viswanathan et al., 2011), and their scale-free41

behavior provides a natural way for foragers to accelerate searches in many contexts (Bartumeus42

et al., 2002). However, observation over short periods cannot distinguish between Levy �ight and43

heterogeneity amongst individual walkers (Petrovskii et al., 2011), both of which can create a broad44

distribution of displacements. More generally, we would like to understand whether there is a45

statistically-consistent behavioral program carried out by these cells.46

To address this question, we used selective plane illumination microscopy (Pitrone et al., 2013;47

Power and Huisken, 2017) to observe the native population of T cells in the live larval zebra�sh48

(Tg(lck:GFP, nacre*_* (Langenau et al., 2004)), over millimeter �elds of view and periods of a few49

hours. We observed a population of motile cells in the tail �n and larval �n fold (Figure 1A,50

Figure 1-video 1). We used this model system to dissect variation in cell behavior in a simple51

tissue context. Rather than a single broad distribution of speeds sampled by all cells, as in Levy52

�ight, we observed considerable heterogeneity in both speed and turning behavior across cells.53

This observation prompted us to analyze the distribution of cell behaviors in a space de�ned by54

speed and turning statistics. Surprisingly, cell behaviors fell on a one dimensional manifold in55

this space, characterized by a coupling between speed and directional persistence. Analysis of56

previously-published data in Mouse T cells (Gérard et al., 2014) and Dictyostelium (Dang et al., 2013)57

within this framework showed that their migration statistics fell along a similar manifold. Our58

results suggest that a coupling between speed and turning may be an intrinsic feature of ameboid59

cell migration, that explains apparent heterogeneity in migration behavior in diverse systems and60

generates exploration at many length scales. This framework also predicts global regulation in61

the actin remodeling machinery underlying ameboid migration, such that diverse perturbations62

modulate one underlying control variable.63

Results64

Cell motility behavior is heterogeneous, inconsistent with Levy �ight65

To investigate the statistical properties of T cell motility in our system, we measured cell trajectories66

within the tissue (Materials and Methods, Figure 1-video 1, Figure 2-video 1). We �rst evaluated67

evidence for Levy �ight behavior, as opposed to persistent random walks (Beauchemin et al., 2007;68

Beltman et al., 2007; Banigan et al., 2015; Harris et al., 2012), in our system. The distinction hinges69

on whether the statistics of individual trajectories are scale-free, so that super-di�usive behavior70

continues to long times; or if, alternatively, individual trajectories are di�usive at long times but71

there is heterogeneity across the population. To address this question, we performed a standard72

analysis of mean squared displacement as a function of time interval. Consistent with previous73

measurements (Beauchemin et al., 2007; Beltman et al., 2007; Banigan et al., 2015; Harris et al.,74

2012), we observed a faster-than-linear increase in MSD at early times, indicating super-di�usive75

behavior, with a best-�t line in surprisingly good quantitative agreement with previous observations76

up through 10 minutes (Harris et al., 2012; Fricke et al., 2016) (Figure 1C). However, we observed a77

transition at the scale of minutes, consistent with persistent random walks, and inconsistent with78

Levy �ight (also note the straight line on a linear scale, Figure 1C inset, characteristic of di�usive79

behavior). Note that while we have examined the subset of longer trajectories to measure the80

behavior through an additional order of magnitude in time, this result also holds when examining all81

trajectories through 15 minutes (Figure 1-Figure Supplement 1). To further test for an intermediate82

timescale, we computed the velocity-velocity power spectrum, using secant-approximated velocities83

along each trajectory (Materials and Methods). This quantity captures the timescale at which84

the velocities become decorrelated, if it exists; for a Levy-�ight process the same negative slope85

is observed at all frequencies (Viswanathan et al., 2005), while a persistent random walk model86

passes towards zero slope at low frequencies (Viswanathan et al., 2005; Pedersen et al., 2016).87

Consistent with the MSD analysis, we observe two regimes, with a clear timescale on the order of88

minutes (Figure 1D). Finally, we computed the distribution of lengths between direction changes89
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Figure 1. Cell motility behavior is inconsistent with Levy �ight. A. Maximum Z projection of a Tg(lck:GFP,
nacre*_*) zebra�sh at 12 dpf. This projection represents the �rst frame of a timecourse; see Figure 1-video 1. B.
Bright�eld of the region of tissue shown in A. C. Mean squared displacement as a function of time lag. The cells
migrate super-di�usively on scales of a few minutes. The MSD for a persistent random walk is �t to the data
(Materials and Methods, Appendix 1). Error bars represent 95% con�dence intervals on a bootstrap over n=335
trajectories containing all measured time intervals. (See also Figure Supplement 1). Inset: linear scale for the
�rst 10 minutes. D. The velocity power spectrum, averaged across all trajectories (n=634). A Levy (scale-free)
process consistent with the short time behavior would result in a continuation of the high frequency slope
(dashed line). Instead, we observe a timescale at a few minutes. E. Distribution of bout lengths within a
trajectory (Materials and Methods), �t with a stretched exponential (n=36190 bouts). For all panels, trajectories
were pooled from n=16 �sh.
Figure 1–Figure supplement 1. MSD for all trajectories tracked through 15 minutes.
Figure 1–video 1. T cell dynamics in the larval zebra�sh tail and �n foldMaximum Z projection of the tail
of a Tg(lck:GFP, nacre*_*) at 12 dpf (GFP channel). Tiled Z stacks were recorded every 45 seconds for 2.5 hours
(50 3 �m slices per stack). Tiles were assembled based on recorded stage locations. The movie was prepared
using Python 3.6.0 (code available at: https://github.com/erjerison/TCellMigration).
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(bout lengths) within a trajectory (Materials and Methods), scaled by the average bout length as90

suggested in (Petrovskii et al., 2011), and did not observe the characteristic Levy-�ight power law91

(Figure 1E).92

Since we did not �nd support for Levy �ight in our system, we next evaluated evidence for cell-to-93

cell heterogeneity. From examples of velocity traces (Figure 2A,C-F, Figure 2-video 1), we observed94

substantial variation in speed between cells, that can persist over spans of a few hours. These95

trajectories are not atypical: overall, 88% of trajectories have distributions of secant-approximated96

speeds that are inconsistent with the speed distribution pooled on all trajectories (KS test, p < .01).97

Interestingly, we also found signi�cant heterogeneity in cell turning behavior: 67% of cells had turn98

angle distributions inconsistent with the overall distribution (KS test, p < .01).99

To evaluate the rate of speed switching in our system, we measured the average speeds of100

individual trajectories on non-overlapping 20 minute intervals, and evaluated how the speed101

ranks change as a function of the time between intervals (Figure 2B). We found a high correlation102

between speeds on adjacent non-overlapping intervals, which decays slowly on the timescale of the103

measurement. Thus each cell samples a characteristic distribution of speeds that is stable over one104

to two hours. For the remainder of the analysis, we will consider the average speed to be a property105

of the trajectory; we return to consider the implications of speed switching in the discussion.106

Heterogeneous cell migration statistics fall on a behavioral manifold107

The surprising degree of heterogeneity in random walk behavior amongst individual cells in this108

very simple tissue context led us to ask whether there are any underlying rules governing this109

variation. Are individual cells free to pick any turn and speed statistics, or are there constraints?110

To investigate co-dependency between speed and turning behavior, we divided the cells into111

quintiles based on speed, which we refer to as speed classes. We observed strong variation in112

the distribution of turn angles amongst speed classes (Figure 3A): fast cells are most likely to turn113

shallowly, slow cells are most likely to turn around, and the distribution varies smoothly across the114

speed classes. This dependence could be driven by a local coupling between speed and turn angle:115

cells tend to go straighter whenever they go fast, which the faster cells do more often. Alternatively,116

it could be driven by an overall behavioral di�erence between fast and slow cells. To distinguish117

these possibilities, we measured the average turn angle as a function of the size of the steps118

surrounding it (Figure 3B). We found that both of these e�ects contribute: all cells go straighter119

during faster periods, but for a given step size, slow cells are more likely to turn sharply.120

The relationship between speed and turning suggests that there may also be systematic dif-121

ferences in the scaling of the MSD at short times between cells. In particular, variation in speed122

alone amongst individuals would not change the shape of the MSD, which would collapse when123

appropriately scaled (Appendix 1). On the other hand, the systematically shallower turns of faster124

cells would be expected to boost the slope of their MSD at short times, an e�ect we observe in the125

data (Figure 3C).126

The analysis at the level of speed classes suggested that there might be a single scalar variable,127

for which the cell’s average speed is a good proxy, that determines a number of higher-order128

statistics characterizing the cell’s migration behavior. To test this at the level of individual trajectories,129

we chose two summary statistics that capture the cell’s turning behavior: the average of the cosine130

of the turn angles along the trajectory, and the correlation between speeds and turn angles along131

the trajectory. The former is a summary of the overall distribution of turn angles for that cell, while132

the latter captures the degree of additional local coupling between speed and turn angle. Together133

with the cell’s speed, these two summary statistics form a three-dimensional behavioral space. We134

observed that the cell trajectories fall close to a curve in this space (Figure 3D). In particular, 73%135

of the variance in the average cosine can be explained by cell speed, with some residual variance136

due to the stochasticity of the process (7%) and other unknown e�ects (20%) (Figure 3-Figure137

Supplement 1). Thus T cell migration statistics can be organized into a one-dimensional behavioral138

manifold, characterized by a strong dependence between speed and turning behavior.139
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Figure 2. Cell speed and turning behavior are heterogeneous. A. Example of trajectories recorded over 3
hours at a 12 second interval (Tg(lck:GFP, nacre*_*) zebra�sh; 10 dpf). Here we show a maximum Z projection of
the 900th frame with trajectories overlaid; see video 1 for the timecourse. Examples of four cell trajectories,
with a range of characteristic speeds, are colored. B. Spearman rank correlation between trajectory speeds
measured on non-overlapping 20 minute intervals, as a function of the time between the beginning of the
intervals. Error bars represent 95% con�dence intervals on a bootstrap over trajectories. The null model was
constructed by permuting measured speeds across all the trajectories at each interval; error bars represent
95% con�dence intervals over the permutations. (Calculations performed on the n=321 trajectories of at least
120 minutes in length.) C. Velocity traces for the four cells highlighted in A. D. Secant-approximated speed
distributions for each cell from A, compared with the distribution over all cells (grey;n=98141 steps). E. Turn
angle distributions for each cell from A, compared with the distribution over all cells (grey;n=96122 turn angles).
Trajectories were pooled over n=16 �sh.
Figure 2–video 1. Heterogeneity of T cell migrationMaximum Z projection of the tail of a Tg(lck:GFP, nacre*_*)
at 10 dpf (GFP channel), with cell trajectories overlaid. A Z stack was recorded every 12 seconds for 3 hours
(62 2 �m slices per stack). A maximum pixel value threshold of 1200 was used throughout the timecourse
(no minimum pixel threshold was used). Four trajectories were chosen and highlighted in color; the remain-
der of the trajectories are plotted in grey. The movie was prepared using Python 3.6.0 (code available at:
https://github.com/erjerison/TCellMigration).
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Figure 3. Heterogeneous cell migration statistics fall on a behavioral manifold. A. Distribution of turn
angles amongst cells grouped by speed class. The distribution varies smoothly from faster cells, which tend to
go straighter, to slower cells, which tend to turn around more often. Error bars represent 95% con�dence
intervals from a bootstrap over trajectories in each speed class. The legend reports the mean speed for
trajectories in each class. B. Turning behavior conditioned on current cell speed. The average of the cosine of
the turn angle as a function of the average length of the steps on either side. Cells are grouped into speed
classes as in A. Error bars represent 95% con�dence intervals from a bootstrap over trajectories in each speed
class. C. Mean squared displacement by speed class. Due to the variation in turning behavior, the faster cells
appear initially more superdi�usive. Error bars represent 95% con�dence intervals from a bootstrap over
trajectories in each speed class. All speed class calculations were performed on the n=569 trajectories that
included all time intervals in the MSD analysis. D. Organization of cell behavior into a curve in a three
dimensional behavioral space. Each point represents a trajectory, and we show the average speed, turn angle,
and local speed-turn correlation. Grey: projection into the x-y plane. The trajectories shown in Figure 2 are
colored. Trajectories pooled over n=16 �sh.
Figure 3–Figure supplement 1. Variance explained by speed-turn relationship.
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Model predicts wide variation in length scales of exploration across the population140

Our observation of a behavioral manifold suggests that, despite the apparent heterogeneity in141

migration strategies, there may be a common program with a single underlying variable. In this142

view, a cell’s location on the manifold re�ects its internal value of this control variable, which in turn143

dictates its random walk behavior. Given the results of our MSD analysis, to determine candidates144

for a single-parameter migration model, we started with the canonical persistent random walk145

(Ornstein-Uhlenbeck) process (Uhlenbeck and Ornstein, 1930)):146

dv

i

dt

= *

1

P

v

i

+

S˘
P

⌘, (1)

where v is the velocity, ⌘ is a white noise term, and i labels the velocity component. This model has147

two free parameters: the speed, S, and the persistence time, P, which is the average time before a cell148

turns. Our observations suggest that there may in fact only be one control parameter; in particular,149

because faster cells tend to make shallower turns, we expect P to increase with S. To determine the150

relationship between these two variables, we measured the persistence time, averaged along each151

trajectory, as a function of cell speed, and found a linear dependence (Figure 4A). This suggests the152

following simple model of cell motility:153
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where ↵ is a constant with units of acceleration, � is a constant with units of time, and both are154

constrained by the empirical relationship in Figure 4A. We call this the speed-persistence coupling155

model (SPC).156

As in other persistent random walk models, SPC walkers are di�usive at long times; the MSD157

scales linearly with time, and the ratio between these quantities de�nes an e�ective di�usion158

constant (Appendix 1):159

D

eff

í MSD (⌧)

4⌧

=

1

2

S

2

P . (3)

Due to the dependence of P on S, the SPC model predicts a strong scaling of the e�ective di�usion160

constant with cell speed. We tested this prediction at several time intervals ⌧ and found good161

quantitative agreement between the model and the data (Figure 4B). In particular, the SPC model162

generates �ve-fold more variation in the e�ective di�usion constants across the cells than would163

be expected for a uniform persistence time model (UPT).164

We note that the analyses in this and the previous section depend on measured cell speeds165

and turn angles, which are an imperfect proxy for the true instantaneous process (Beltman et al.,166

2009b). In particular, both noise in the cell locations and �nite sampling intervals can introduce167

bias in the measured speeds, which could in principle generate spurious relationships between168

measured speed and turning behavior. We took two approaches to addressing the sensitivity169

of our conclusions to these issues. First, we addressed sensitivity to sampling rate by repeating170

the analyses above, subsampling timepoints by a factor of 2. This makes the turning behavior171

of the slowest two speed classes harder to distinguish, because they are rarely persistent over172

more than one timestep (Figure 4-Figure Supplement 1A,D), and introduces more noise in the173

local coupling (Figure 4-Figure Supplement 1B), but otherwise does not alter the structure of174

the correlations (Figure 4-Figure Supplement 1A-F). Second, we assessed the potential biases175

introduced by mislocation noise and �nite sampling to the speed-persistence relationship in176

simulations (Appendix 1, Appendix 1-Figure 7). We found that mislocation noise can lead to177

spurious correlations between speed and persistence at the slow end of the speed spectrum, but178

cannot account for the consistent correlation we observe across speeds.179

Finally, we note that the SPC Langevin model describes the e�ective di�usive behavior of the180

trajectories and their scaling at longer times, but may not capture all the details of the microscopic181

dynamics. In particular, the propensity of trajectories to turn backwards (peak at ✓ = ⇡ radians,182

Figure 3A) is not captured by this model.183
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Figure 4. Model predicts wide variation in length scales of exploration across the population. A. Mean
persistence time as a function of cell speed, measured along trajectories (n=710). Error bars represent 95%
con�dence intervals from a bootstrap over trajectories. UPT: Uniform persistence time; SPC: Speed-persistence
coupling. B. Scaling of the e�ective di�usion constant with cell speed. Except for a constant o�set, parameters
are �xed based on the speed-persistence relationship in A. Error bars represent 95% con�dence intervals on a
bootstrap over trajectories. Numbers of trajectories in each time interval: n=704; n=654; n=607; n=558; n=523.
Trajectories were pooled over n=16 �sh.
Figure 4–Figure supplement 1. Statistics from Figures 3 and 4, with timepoints subsampled.

Manifold is preserved under a drug perturbation to cell speeds184

We next asked about the robustness of the observed behavioral manifold under a perturbation to185

cell speeds. To determine relevant pathways and candidates to perturb cell speed, we performed186

single-cell RNA sequencing on cells isolated from the tail of 15 dpf Tg(lck:GFP) zebra�sh. To assess the187

�delity of the marker, we sorted GFP+ cells from an unbiased FSC/BSC gate (Materials and Methods).188

We used standard dimensional reduction and clustering methods (Materials and Methods) to189

identify 351 putative T cells (Figure 5A-B). Unexpectedly, we also identi�ed a population of epithelial190

cells that may mis-express lck at low levels (Materials and Methods, Figure 5-Figure Supplement 1,191

Figure 5-Figure Supplement 2).192

We called marker genes for the putative T cells based on di�erential expression relative to the193

epithelial cells (Materials and Methods). These included a number of T cell and immune markers194

(Schaum et al., 2018; Moore et al., 2016; Tang et al., 2017) (Figure 3B). We note that we did not195

observe signi�cant expression of markers associated with other motile non-T immune cells (B196

cells, macrophages, or neutrophils) (Schaum et al., 2018; Tang et al., 2017), and we do not �nd197

support for NK cells (Materials and Methods, Figure 5-Figure Supplement 2, Tang et al. (2017);198

Carmona et al. (2017)). The T cell associated genes also included several canonically involved in199

actin nucleation and remodeling in the leukocyte cytoskeleton (Vicente-Manzanares et al., 2002;200

Takenawa and Suetsugu, 2007) (WASP/ARP2/3 pathway; Figure 5B, Figure 5-Figure Supplement 2).201

Based on these results, we chose the drug Rockout, a known Rho kinase inhibitor a�ecting this202

pathway (Barros-Becker et al., 2017), as a candidate for perturbing cell speed, and repeated the203

measurements and analysis of cell migration behavior in the presence of the drug (Materials and204

Methods). We found that the distribution of cell speeds shifted downwards, but we still observed a205

quantitatively similar positive relationship between speed and turning behavior (Figure 5C, D). This206

is consistent with a model where the perturbation primarily shifted an internal cell state variable207

that determines location along the behavioral manifold, which in turn dictates both speed and208

turning behavior, although we note that there may be an additional small shift towards shallower209
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turns in the drug condition.210

Data from Mouse T cells and Dictyostelium also support speed-turn coupling211

Finally, we analyzed published data from two other species, mouse T cells in situ (Gérard et al., 2014)212

and Dictyostelium (Dang et al., 2013), in this framework. While some of the analyses that depend213

on longer time traces and larger cell numbers are not possible with these datasets, we tested the214

relationship between average turn angle and cell speed, which drives many other di�erences in the215

dynamics. We found that this correlation held amongst the control cells in both studies (Figure 6).216

This suggests that, as for zebra�sh T cells, there is heterogeneity in speed and turning behavior217

amongst the cells, and is consistent with a similar behavioral manifold. In the two published studies,218

genetic perturbations that knocked out or down one member of the actin remodeling machinery219

were used: a knockout of the non-canonical myosin Myo1g in one case, and a knockout of the220

Arp2/3 inhibitor Arpin in the other. In each case, the perturbation had a substantial e�ect on the221

distribution of cell speeds (Figure 6, C-D). However, in both cases, a quantitatively similar positive222

relationship between the speed and turning behavior amongst the perturbed cells was preserved.223

This analysis, together with the e�ects of the small molecule perturbation used in this study,224

generate the prediction that there is global coupling amongst some components of the actin225

remodeling machinery, so that diverse perturbations can lead to similar internal states.226

Discussion227

We have measured and analyzed the variability in cell motility amongst the T cells of the zebra�sh228

tail, and used the framework generated by this analysis to examine Mouse T cells and Dictoystelium.229

We found that migration statistics from all three species fell on a similar behavioral manifold. We230

note that, in general, heterogeneity of motility behavior across a population could be caused by the231

tissue context rather than by cell-intrinsic factors. However, the e�ects of the drug perturbation,232

as well as the e�ects of the genetic perturbations from (Gérard et al., 2014) and (Dang et al.,233

2013), support a cell-intrinsic basis for the behavioral manifold we observe here. In particular, we234

performed trials in which the same regions of tissue were imaged and cells tracked before and after235

addition of the drug (Figure 5-Figure Supplement 3); the observed changes in migration statistics236

must then be caused by the drug’s e�ect on the cell’s internal state, not by the tissue context.237

Our analysis of data from Mouse T cells and Dictyostelium suggests that speed-persistence238

coupling may be a general feature of ameboid cell migration. Most surprisingly, three apparently239

unrelated perturbations to the actin nucleation and remodeling machinery in the three di�erent240

systems all had the e�ect of shifting cells along, rather than o�, the manifold. This suggests that241

perturbations to di�erent parts of the pathway may modulate a single underlying variable, which242

jointly controls speed and turn distributions. This generates the hypothesis of extensive regulated243

coupling within this pathway, such that there are relatively few true control variables.244

The genetic perturbations used in previous studies made the cells faster and more persistent245

on average (Gérard et al., 2014; Dang et al., 2013). Our results suggest that this connection may246

be general to the cells rather than speci�c to the perturbation. In particular, shifts in the average247

turning behavior have been used to argue that Arpin and Myo1g control cell steering. Our analysis248

suggests that increasing cell speed may in many cases increase straightness, and vice versa, so that249

the e�ect on cell steering may be indirect.250

We have analyzed migration statistics in a framework where the average speed is a property251

of the trajectory. Our analysis of speed switching suggests that this is a reasonable assumption252

over about a 2 hour timespan (Figure 2B). We note that the moderate amount of speed switching253

that occurs within trajectories in our dataset may contribute to the unexplained portion of the254

variance in the speed-turn relationship (Figure 3-Figure Supplement 1). Our results suggest that255

cells maintain a location along the behavioral manifold, and hence an e�ective di�usion constant,256

over these timespans, so that there are metastable periods where cells explore at a particular257

length scale, before shifting to a di�erent one. Because of the steep scaling of the e�ective di�usion258
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A C

B D

Figure 5. Manifold is preserved under a drug perturbation to cell speeds. A. Dimensional reduction via
UMAP of scRNAseq gene expression pro�les for cells sorted from 15 dpf Tg(lck:GFP) zebra�sh. We called 351
putative T cells and 110 putative epithelial cells (Materials and Methods). B. Marker gene expression in the T cell
cluster. Cells from the T cell cluster express a number of T cell and ubiquitous immune markers, including the T
cell receptor light chain, trac, as well as genes involved in actin nucleation and remodeling. With the exception
of trac, the genes shown in these �rst two categories were amongst the top 50 di�erentially expressed genes
for the T cell cluster (Wilcoxon rank-sum test). Finally, we do not observe signi�cant expression of immune
markers associated with B cells, macrophages, or neutrophils. C. Correlation between the average cosine of the
turn angles along the trajectory and cell speed, for cells in control and Rockout-treatment conditions. Data for
all cells is shown as well as a binned average. Error bars represent 95% con�dence intervals on the binned
average on a bootstrap over cells. D. The distribution of speeds amongst control and Rockout-treated
trajectories. The treatment lowers cell speeds but maintains the relationship between speed and persistence.
Statistics based on trajectories pooled over n=16 control �sh (n=712 trajectories) and n=6 Rockout treatment
�sh (n=236 trajectories). (See also Figure Supplement 3.
) Figure 5–Figure supplement 1. Comparison between UMAP and index sort.
Figure 5–Figure supplement 2. UMAP dimensional reduction as in Figure Figure 5, colored by expression of
panels of genes.
Figure 5–Figure supplement 3. Figure 5C-D, including only paired control-Rockout treatment samples.
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Figure 6. Data from Mouse T cells and Dictyostelium also support speed-turn coupling. A. As in 5B-C, for
mouse T cells (data from (Gérard et al., 2014)). The perturbation is a genetic knockout of a non-canonical
myosin motor, Myo1g. B. Same as in A, for Dictyostelium (data from (Dang et al., 2013)). The perturbations are a
knockout and rescue of the Arp2/3 inhibitor Arpin. (control: n=42; Myo1g KO: n=123) C-D. Distributions of cell
speeds for the control and treatment conditions shown in A-B. (WT: n=42; Arpin KO: n=38; Arpin rescue: n=42)
In each case, the distribution of speeds shifts, but the cells tend to move along the speed-turn curve.
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constant with speed, the range of length scales accessible to the cells is large, with over 300-fold259

variation in e�ective di�usion constants in our data. Thus, while our observations are inconsistent260

with Levy �ight, the SPC model generates other ways for the cells to explore across a broad span of261

scales.262

Additionally, cells sampled from di�erent parts of the manifold have di�erent MSD slopes at263

early times (Figure 3C), so that this single-parameter migration model produces an apparent variety264

of migration strategies: if measured over short intervals, the cells appear to range from more to265

less superdi�usive.266

Finally, we note that speed-turn coupling could enhance a search strategy where local chemokine267

cues cause cells to slow down (Dustin et al., 1997; Mempel et al., 2004; Kawakami et al., 2005;268

Castellino et al., 2006;Moreau et al., 2015), because these signals would more e�ciently shift cells269

between exploration scales.270
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Materials and Methods285

Zebra�sh lines and procedures286

Tg(lck:GFP, roy*_*, nacre*_*) zebra�sh (Danio rerio) (Langenau et al., 2004) were obtained as a287

generous gift from Dr. Leonard Zon and Dr. Aya Ludin-Tal. Imaging was performed on Tg(lck:GFP)288

zebra�sh crossed into a nacre*_* background, at between 9 and 13 dpf. All adult and larval289

zebra�sh were maintained according to protocols approved by the Stanford Administrative Panel290

on Laboratory Animal Care.291

Microscopy292

Imaging was performed on a single-plane illumination microscope constructed as speci�ed in293

(Pitrone et al., 2013), with the exception that a Prior ProScan XY stage (Prior Scienti�c) coupled294

to a Zaber T-LLS 105 stage (Zaber Technologies) was used for sample movement. The light sheet295

was generated using an Olympus UMPLFLN10XW objective (NA=.3) and detection was performed296

with an Olympus UMPLFLN20XW objective (NA=.5) and an achromatic doublet tube lens (AC508-297

180-A-ML, Thorlabs). Images were recored either on a Retiga 2000R camera (Qimaging) or an Ace298

acA2040 (Basler). For the Ace ac2040 camera, a meniscus lens (LE1418-A - O2” N-BK7, Thorlabs)299

was added as a zoom lens, to match the image pixel width between the two cameras at .37�m. The300

�uorescence source was an Obis LS 488 nm laser (Coherent), and the microscope was controlled by301

Micro-Manager.302

Zebra�sh between 9 and 13 dpf were anesthetized with Tricaine-S (MS-222, Pentaire; .008% w/v,303

bu�ered to pH 7) and embedded in 2% low melting point agarose (Lonza SeaPlaque, #50100) with304

.004% w/v Tricaine. For imaging, the agarose was submerged in E3 with .008% w/v Tricaine and 50305
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mM Hepes. With the exception of Figure 2 and Figure 2-video 1, tiled z-stacks were obtained every306

45 seconds for at least 180 timepoints, with a �eld of view of at least 592 �m (dorsal-ventral axis)307

by 1200 �m (anterior-posterior axis). For Figure 2A and Figure 2-video 1, a z-stack was obtained308

every 12 seconds for 1100 timepoints, with a �eld of view of 757x568 �m (the �rst 900 timepoints309

are shown). For statistical comparison with the remainder of the data, trajectories from this �nal310

dataset were subsampled in time to give 48 second timesteps. Data was acquired with 2x2 binning,311

for an image pixel width of .74�m.312

For imaging in the presence of Rockout, embedded �sh were submerged in E3 with .008% w/v313

Tricaine and 50mMHepes plus 12 �M Rockout (Sigma Aldrich #555553). For paired control/Rockout314

trials, �sh were imaged for 2.5 hours in control conditions, followed by 2.5 hours in Rockout315

conditions over the same �eld of view.316

Single-cell RNA sequencing317

Thirty 15 dpf Tg(lck:GFP) zebra�sh were euthanized using .04% w/v Tricaine and transected posterior318

to the anus. Tail portions were pooled into HBSS (ThermoFisher #14025092) on ice. Tails were319

dissociated by incubating with 100 �g_mL Liberase-TL (Sigma Aldrich #5401020001) at room tem-320

perature for 20 minutes, followed by trituration with a 23 gauge needle. The cell suspension was321

�ltered through a 40 �m �lter and washed once in HBSS. GFP+ cells were sorted from an unbiased322

FSC-SSC gate on a Sony SH800 cell sorter into 384-well hard-shell PCR plates (Bio-Rad HSP3901)323

containing .4�l of lysis bu�er, prepared as described previously (Schaum et al., 2018). Reverse324

transcription following a Smart-Seq2 protocol, and Illumina library preparation, were carried out325

as described previously (Schaum et al., 2018), except that following cDNA ampli�cation, cDNA was326

diluted uniformly to a mean target concentration of .4 ng_�l for library preparation. Libraries were327

sequenced on the NovaSeq 6000 Sequencing System (Illumina) using 2x100-bp paired-end reads.328

Image processing and cell tracking329

Tiles were assembled based on recorded stage coordinates and aMaximum Z projection was applied330

to Z stacks. Sample drift in x and y was subtracted by identifying and tracking auto�uorescent331

pigment spots. In particular, the coordinates of 1-3 isolated pigment spots were identi�ed manually332

at the �rst timestep; at each timestep, the brightness centroid was computed for a circle with a 25333

pixel radius around the previous centroid, and the average trajectory of the pixel spots was rounded334

to the nearest pixel and subtracted from the timeseries. Prior to cell segmentation, the average335

image across the whole timecourse was subtracted from each timestep. For data recorded on the336

Retiga 2000R camera, prior to segmentation the image was thresholded at the 30th pixel percentile337

and the maximum pixel value was �xed so that .4% of pixels were saturated. For data recorded on338

the Basler Ace acA2040 camera, no lower threshold was used and the maximum pixel value at each339

timepoint was �xed so that .2% of pixels were saturated. Ilastik software (Sommer et al., 2011) was340

used for cell segmentation and tracking: the Ilastik pixel classi�cation module was used to classify341

foreground and background, and the manual tracking module was used to identify and track cells.342

To de�ne trajectories, the brightness centroid of each cell in x and y at each timestep was computed343

from Ilastik tracking masks and the Maximum Z projection. Processing steps not using Ilastik were344

performed using Python 3.6 (code available at: https://github.com/erjerison/TCellMigration).345

Trajectory analysis346

Trajectories with at least 30 consecutive steps were included in the analysis; for MSD calculations,347

trajectories that included all time intervals were included. For calculations of power spectra, single348

missing timesteps were linearly interpolated based on the two adjacent positions, and computations349

were performed on the longest consecutive segment for each trajectory. For the M. musculum data,350

the time interval was 30 seconds. For the Dictyostelium data, timesteps were subsampled from the351

original to give an interval of 20 seconds.352
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Mean-squared displacements were computed along each trajectory as:353

MSD(⌧ = mt

int

) =

1

N * m

N*m…
s=1

íx(m + s) * íx(s)2, (4)

whereN is the total number of timesteps and t

int

is the time interval. The overall MSD was computed354

by averaging the MSDs for each trajectory, and 95% con�dence intervals were calculated via a355

bootstrap over trajectories.356

The overall MSD was �t to:357

MSD(⌧) = 4S

2

P⌧(1 +

P

⌧

(e

*

⌧

P

* 1)) + �

2

, (5)

which we note is the common formula for mean squared displacement in both the Ornstein-358

Uhelnbeck model (see Appendix 1) and in the Kratky-Porod wormlike chain model. Unless otherwise359

noted, �tting was performed using the scipy.optimize.curve�t function in scipy 1.3.0; �tting was360

performed in log space and weighted by computed con�dence intervals.361

The velocity power spectrum was computed based on the vector of secant-approximated
velocities for each trajectory. Velocity vectors were zero-padded to 400 timesteps, and the fourier
transforms of the velocity components were computed using the the �t function in numpy (1.16.4).
Letting the fourier-transformed velocity components for trajectory m be v

x

(k,m), v
y

(k,m), the power
spectrum for each trajectory was computed as:

PSD(k,m) =

1

N

2

N

N

m

…
i=x,y

(v
i

(k,m)2 + v
i

(N * k,m)2), 1 < k <

N

2

(6)

PSD(0,m) =

1

N

2

N

N

m

…
i=x,y

v
i

(0,m)2 (7)

PSD(

N

2

,m) =

1

N

2

N

N

m

…
i=x,y

v
i

(

N

2

,m)2, (8)

where N = 400 and N

m

is the length of trajectory m. The overall PSD was computed as the average362

over the PSDs for each trajectory:363

PSD(k) =

1

n

n…
m=1

PSD(k,m), (9)

where n is the number of trajectories. For Figure 1D, a piecewise linear function was �t to the PSD364

in log space; we plot the high-frequency �tted line and a line with slope 0.365

Following (Petrovskii et al., 2011), we calculated the distribution of bout lengths within a tra-366

jectory as the distribution of x displacements between reversals in direction in x, divided by the367

average of these displacements within each trajectory. The distribution was calculated using the368

numpy.histogram function on percentile bins with the option density=True; the x locations of points369

were determined based on the average value of points in each bin. We �t the distribution to a370

stretched exponential function f (x) = Ae

*�x

� ; the �tted value of the stretch parameter � was .65.371

The overall speed distribution was computed by collecting secant-approximated speeds across372

all trajectories and timepoints; similarly, the overall turn angle distribution was computed by373

collecting all relative angles between consecutive segments. For the Kolmogorov-Smirnov (KS)374

test, the overall CDFs of speeds and turn angles were estimated by measuring the cumulative375

frequency over 25 percentile bins and performing linear interpolation to yield a continuous function.376

A two-sided KS test (scipy.stats.kstest) was performed for the sets of speeds and turn angles of377

each trajectory.378

Turn angle distributions for each speed class were computed by collecting all relative angles379

between consecutive segments amongst cells in that speed class; the distributions were symmetric380

about ✓ = 0 and so were folded to be between 0 and ⇡ radians. 95% con�dence intervals were381

calculated based on a bootstrap over trajectories in each speed class. For the relationship between382

local speed and turn angles (Figure 2B), the local speed was estimated as the average speed of the383
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two consecutive steps surrounding a turn. Turns were binned based on the local speed, and the384

average of the cosine of the turn angles was computed for each bin. For this and other binned385

statistics, the x location of the bin was �xed to be the average value for the points in that bin.386

To estimate the rate of speed switching, all trajectories of at least 120 minutes in length were387

used. The average speed of each trajectory was measured on 20 minute intervals; 20 minutes was388

chosen to minimize the bias-variance trade-o�. Speci�cally, because every cell samples speeds from389

a distribution, there is trade-o� between measuring speeds on intervals that are too short, which390

may not give a good estimate of the mean, and intervals that are too long, where cells may switch391

during the interval. To minimize this trade-o�, the interval that maximized the rank correlation392

between adjacent non-overlapping blocks was used. The average speed of each cell was measured393

on non-overlapping intervals, and the Spearman rank correlation coe�cient between all pairs of394

intervals was computed. The correlation as a function of time was calculated as the average over395

all pairs of intervals with the same di�erence in start times. We computed 95% con�dence on a396

bootstrap over trajectories. For the null model, we permuted speeds amongst the trajectories on397

each interval; we calculated 95% con�dence intervals over the permutations.398

For Figure 3, the average of the cosine of turn angles between adjacent steps was calculated399

for each trajectory, as well as the average over all adjacent steps of the secant approximated400

speeds. For Figure 3D, the correlation between local speed and turns was computed as the Pearson401

correlation coe�cient between the local speed, as de�ned above, and turn angles across the set of402

adjacent steps in the trajectory.403

To estimate the fraction of the variance in turning behavior explained by the cell speed, we �t a404

spline curve (UnivariateSpline class of scipy 1.3.0; default parameters) to the relationship between405

speed and the average of the cosine of the turn angles (Figure 3- Figure Supplement 1A). Letting406

the spline function be f , we estimated the variance accounted for by the speed as V
s

= V ar(f (S

m

)),407

where the index m labels trajectories. We estimated the variance in the means due to variation408

within trajectories, which we called stochasticity, as V

st

=

1

n

≥
n

m=1

1

k

m

*1

V ar

j

(cos ✓

jm

), where n is the409

total number of trajectories, k
m

is the number of turn angles within trajectory m, and cos ✓

jm

is the410

cosine of the turn angle j in trajectory m. Remaining variance we classi�ed as other (Figure 3- Figure411

Supplement 1B); this may be due to imperfections in the spline model, other experimental noise,412

or additional biological variability.413

The persistence time was de�ned to be the time elapsed before the trajectory turns at least ⇡

2

414

radians, averaged along the trajectory. Speci�cally, letting the displacement between timepoints s415

and s + 1 be íx(s), the persistence time along each trajectory was calculated as:416

É

P =

1

n

n…
s=1

⌧(s), ⌧(s) =

m*1…
t=s

t

int

(10)

where m > s is the �rst timestep for which íx(s) � íx(m) < 0, t
int

is the time interval, and n is the �nal417

base point for which m f N , where N is the �nal timepoint. For Figure 4A, trajectories were binned418

into mean speed deciles, and the average persistence time was calculated over trajectories in the419

bin; error bars represent 95% con�dence intervals on a bootstrap over trajectories.420

The e�ective di�usion coe�cient at time ⌧ was measured as:421

D

eff

(⌧) =

MSD(⌧)

4⌧

. (11)

To measure D

eff

(⌧) as a function of S, cells were divided into speed bins (with 5% of the speed422

distribution per bin); D
eff

(⌧) for each speed bin was measured by averaging the D

eff

(⌧) across423

trajectories, and error bars were computed based on a bootstrap over all trajectories. Note that424

D

eff

(⌧) will be independent of ⌧ only if di�usion scaling is respected, so that the collapse of the425

data in Figure 2F is additional corroboration that the trajectories behave di�usively at long times.426

As shown in the models section of the SI below, under the UPT model:427

D

eff

◊ S

2

, (12)
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whereas under the SPC model,428

D

eff

◊ S

2

(

S

↵

+ �), (13)

where ↵ and � are �xed across all trajectories. We �xed ↵ and � by �tting a line to the persistence429

time relationship in Figure 1C; note that this is a short-time statistic and need not a priori predict430

the e�ective di�usion constant at longer times. We �t the UPT model (dashed line) and the SPC431

model (solid) to the measuredD

eff

as a function of S; in both cases, there was one �tting parameter432

which was the constant of proportionality, which allows for an o�set on the y-axis in log space but433

does not change the shape of the curve.434

Analysis of scRNAseq data435

Reads were aligned to the Zebra�sh reference genome (genome release: GRCz10; annotations:436

GRCz10.85) using STAR (2.5); reads aligned to each gene were counted using the htseq-count437

function of HTseq (0.8.0), with the options -m intersection-nonempty and –nonunique all. Note438

that the �nal option counts reads that align to a location with more than one annotated feature439

(e.g. overlapping ORFs) as belonging to both features. This is necessary because of mis-annotation440

of the T cell receptor light chain constant region in the Zebra�sh reference genome; both ENS-441

DARG00000075807 (traj39) and ENSDARG00000104132 (traj28) contain the trac, so that reads442

mapping to trac would otherwise be discarded.443

Cells were �ltered if they expressed fewer than 650 genes or more than 3250 genes, and if444

more than 8% of reads were of mitochondrial origin. We used UMAP (0.3.1) with the default445

options to embed the log-transformed counts table in two dimensions, and HDBSCAN (0.8.22)446

with min_samples=10 to call clusters (Figure5-Figure Supplement 1A). Comparison with the index447

sort data (Figure5-Figure Supplement 1B) showed that cells from the largest cluster had FSC-BSC448

consistent with lymphocytes, whereas cells from other clusters tended to have higher FSC and BSC.449

We called the major cluster as the �rst cell group and other clusters as the second group; the n=23450

cells that were not assigned to a cluster by HDBSCAN were included with the �rst group if they had451

BSC< 8 ù 10

4, and with the second group otherwise. We identi�ed di�erentially expressed genes452

between the two groups via a Wilcoxon Rank-Sum test. We selected the 50 most di�erentially-453

expressed genes (lowest Wilcoxon p-value) that were enriched in the T cell group for further analysis.454

These included the T cell and immune-related genes tagapa, tagapb, ccr9a, tnfrs9b, il2rb, and ptprc455

(Schaum et al., 2018); we also tested for expression of the T cell receptor light chain constant456

region (trac; expression estimated based on the mean expression of ENSDARG00000075807 and457

ENSDARG00000104132). Based on these markers, we identi�ed the larger group (n=351) as T cells,458

and show expression for these cells in Figure 5B. The 50 most signi�cantly di�erentially expressed459

genes enriched in this group also included arpc1b, wasb, arghdig, coro1a, sept9b, and capgb, which we460

classi�ed as belonging to the WASP/ARP2/3 pathway based on the literature (Vicente-Manzanares461

et al., 2002). Finally, we observed very little expression of markers associated with other types462

of immune cells (the B cell light chain igic1s, the B cell marker ccl35.2, and the neutrophil and463

macrophage markers mpeg1 and mpx (Tang et al., 2017) in either group (Figure 5B, Figure 5-Figure464

Supplement 2). The genes most signi�cantly enriched in the non-T cell group are primarily keratin465

proteins (krt8, KRT1), as well as the epithelial marker ahnak (Schaum et al., 2018) (Figure Figure 5-466

Figure Supplement 2). We identi�ed these cells as epithelial cells, likely keratinocytes. We note467

that we observed GFP signal in the somite region of the Tg(lck:GFP) tail via microscopy (see, e.g.,468

Figure 1A and Movie S1) which we did not observe in wildtype nacre*_* zebra�sh, suggesting that469

these cells may mis-express the marker.470

Finally, we note that we observe a sub-cluster of T cells that are enriched for expression of471

ccl38a.5, ccl38.6, and zbtb32, and also have somewhat higher expression of scinlb (Figure 5-Figure472

Supplement 2). This is consistent with a subpopulation of cells previously identi�ed in Tg(lck:GFP)473

zebra�sh (Tang et al., 2017). These cells were previously identi�ed as NK cells; however, since they474

express the T cell receptor light chain, they are likely to be a T cell subset.475
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Data and Code Availability476

Sequencing data and the gene expression count table have been deposited on GEO (accession:477

GSE137770). Analysis code and trajectory data are available at https://github.com/erjerison/TCellMigration.478
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Appendix 1597

Persistent randomwalks: the uniformpersistence time (UPT) and the speed-persistence598

coupling (SPC) models599

The in�nitesimal model most commonly used to describe metazoan cell migration is the Orenstein-600

Uhlenbeck model (OU) (Uhlenbeck and Ornstein, 1930), which has also been called the persistent601

random walk model (PRW) in the context of cell migration (Wu et al., 2014). While we have chosen602

this model for concreteness, the statistical features discussed below are also in common to a603

number of other models that include some directional persistence but are di�usive at long times,604

including the Kratky-Porod wormlike chain model (Doi and Edwards, 1988). We brie�y review some605

of the standard results which we use to compare to data below.606

Under the OU model, the dynamics of a cell are described by:607

dv

i

(t)

dt

= *

1

P

v

i

(t)dt +

S˘
P

⌘

t

, (14)

where S is the speed parameter; P is the persistence time parameter; ⌘
t

is a Gaussian white noise608

term; and i = x, y, z. This model, considered the prototypical noisy relaxation process, produces two609

main qualitative features: trajectories that turn smoothly (i.e. directional persistence), and di�usive610
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behavior at times t ∏ P . We note that �uctuations in velocity and speed along the trajectory are611

also features of this model. In particular, the velocity-velocity autocorrelation function is given by:612

Ív
i

(t)v

i

(s)Î = S

2

e

*

t*s
P

. (15)

Setting t = s, we see that the speed parameter S is proportional to the root-mean squared speed:613

S =

t
Í 1
n

≥
n

i

v

i

(t)

2Î, where n is the number of dimensions. Because the distribution of velocities614

generated by the model is Gaussian, S is also proportional to the mean speed. The decay of615

the velocity autocorrelation in each component sets the turning timescale at P ; at long times the616

directions of motion are uncorrelated.617

The mean-squared displacement (MSD) after a time interval ⌧ is given by:618

Í(íx(⌧) * íx(0))

2Î = 2nS

2

P⌧(1 +

P

⌧

(e

*

⌧

P

* 1)), (16)

where n is the number of dimensions. The MSD scales advectively, as nS2

⌧

2, in the limit of ⌧ ~ P ,619

and di�usively, as 2nS2

P⌧, in the limit of ⌧ ∏ P . Thus themodel predicts that Í(íx(⌧)*íx(0))

2Î
⌧

will approach620

a constant value of 2nS2

P at long times, which de�nes the e�ective di�usion constant to be 1

2

S

2

P .621

We refer to the OUmodel with �xed persistence time parameter P (but potentially variable speed622

parameters S) as the uniform persistence time (UPT) model. We note that under the OU model, the623

MSD and PSD depend on the speed parameter S only through the constant scale factor S2: for �xed624

P , the quantities Í(íx(⌧)*íx(0))

2Î
S

2

and Ív
i

(f )

2Î
S

2

are independent of speed, as are the normalized quantities625

Í(íx(⌧)*íx(0))

2Î
Í(íx(⌧

0

)*íx(0))

2Î and
Ív

i

(f )

2Î
Ív

i

(f

0

)

2Î , where ⌧

0

and f

0

are a chosen time interval and frequency, respectively. (Note626

that this is also true of the full dynamics: we can eliminate the dependence on S by transforming627

to the variable Év =

v

S

, or measuring distance in units proportional to S.) In particular, the e�ective628

di�usion constant D
eff

=

1

2

S

2

P scales with S

2.629

Our observation of a linear relationship between measured mean speeds and correlation630

times suggests the following constrained form of the OU model, which we have called the speed-631

persistence coupling (SPC) model:632

dv

i

(t)

dt

= *

1

S

↵

+ �

v

i

(t) +

St
S

↵

+ �

⌘

t

, (17)

where ↵ is a constant with units of acceleration; � is a constant with units of time; and both are633

�xed across all cells.634

In this model, the e�ective di�usion constant is:635

D

eff

=

1

2

S

2

(

S

↵

+ �). (18)

Under the SPC model, the control parameter S is proportional to the cell’s mean speed, so that636

this observable fully speci�es its dynamics.637

Finally, we note that with �xed S and P , these models still produce variation in both local speed638

and turning behavior along trajectories; the control parameters, together with Equation 14, set the639

distributions of these quantities.640

E�ects of �nite-length trajectories, sampling intervals, noise, and distributions of641

persistence time on speed-persistence coupling642

Measurements of speed and persistence time are imperfect estimators of the underlying continuous643

process. Here we address whether statistical artifacts could generate the observed correlations644

between speed and persistence time. In particular, the �nite sampling interval introduces a bias645

downwards in all speed estimates, because some turns are missed. Because this e�ect is stronger646

for less-persistent cells, which turn more, we expect it to introduce a correlation between the647

measured speed and the measured persistence time.648
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To evaluate the in�uence that this may have had on our data, we simulated a collection of cells649

with the same speeds as our measured cells under the OU model. Simulations were performed650

using the velocity update rule in Equation 14 (Gillespie, 1996), with 20 simulated intervals dt per651

sampling interval. Position coordinates were determined by numerical integration of the velocities652

along the simulated trajectories. Noise in centroid locations was included by adding a Gaussian653

random variable to x and y positions. We conservatively set the noise parameter at � = 3�m654

per sampling interval; this was chosen as an estimate of the combined e�ects of true technical655

noise and changes in cell shape during the interval. Each simulated trajectory was 50 sampling656

intervals (1000 microscopic timesteps) in length. To match the measurement, sampling intervals657

were assigned to be 45 seconds in length. We measured both mean speeds and correlation times658

on the simulated trajectories as de�ned in Materials and Methods.659

We �rst assessed whether the SPC model, de�ned in the previous section, with the addition of660

noise in the centroid locations, gave the expected dependence of measured persistence time on661

measured cell speed (Figure 7B). Next, we simulated a collection of cells with the same set of speeds662

as in the data, with a constant persistence time parameter P (the UPT model), to check whether the663

�nite length of the trajectories induced a correlation between measured speeds and persistence664

times (Figure 7C). We did not observe a signi�cant e�ect. Next, we added centroid location noise665

to the UPT model. The addition of noise does induce a correlation at the slow end of the speed666

spectrum (Figure 7D); this is because cells that happen to have turned more will appear slower.667

However, this e�ect becomes negligible for cells with speeds above the noise level. We note that668

this likely contributes to the measured propensity for sharp turns amongst the slowest cells, and669

may lead to misassignment between the two lowest speed classes.670

We next evaluated whether a model where both S and P varied in a manner consistent with the671

data, but were uncorrelated with each other, could induce a correlation between measured speed672

and persistence time. Such a correlation could appear on the faster end of the speed spectrum673

due to variable P , because the fastest measured cells are biased to having been both fast and674

particularly persistent. We evaluated the size of this e�ect in our data by simulating a collection675

of cells with the observed speed distribution, as before, permuting the predicted P parameters676

from the SPC model amongst the simulated cells. We found that this did not measurably bias the677

speed-persistence relationship (Figure 7E). Finally, we simulated the uncorrelated S and P model678

with the addition of centroid location noise (Figure 7F).679

From this analysis, we concluded that noise in the locations creates a spurious correlation680

between measured speed and measured persistence time at the slow end of the speed spectrum,681

but that this e�ect cannot account for the consistent correlation across speeds that we observe; and682

that a model with variable P that is uncorrelated with S also cannot account for our observations.683
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A B C

D E F

Figure 7. Comparisons between speed-persistence time relationship in simulations and data. A. Data (as in
Figure 4A). B. Simulation of the SPC model with empirical parameters (see Appendix 1 for details). C. Simulation
of uniform persistence time (UPT) model, with speeds and persistence times measured as in the data. Biases
introduced by measured speeds and persistence times do not lead to an observable correlation. D. Simulation
of UPT model with a conservative estimate of mislocation noise. A spurious correllation is induced at low cell
speeds, but cannot account for the trend across cell speeds that we observe. E. Simulation of a model where
the predicted persistence times have been reshu�ed amongst the cells, to simulate an empirically-realistic
model where persistence times vary but are uncorrelated with speed. This does not generate a signi�cant bias
in the speed-persistence relationship. F. Model with reshu�ed persistence times, as in E., and mislocation noise.
As in D., this leads to a spurious correlation at low speeds but no other signi�cant e�ects.
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Figure 1–Figure supplement 1. MSD for all trajectories tracked through 15 minutes, including all
measured time intervals (n=612). As with the subset of longer trajectories, we observe a curved
MSD consistent with a persistent random walk (PRW) model. Inset: linear scale through 10 minutes,
showing a straight line consistent with di�usive behavior after the �rst few minutes. Error bars
represent 95% con�dence intervals on a bootstrap over trajectories.

684

Figure 3–Figure supplement 1. A. Spline �t to speed-turn angle relationship. B. The fraction of the
variance in the turn angle summary statistic explained by speed (estimated based on the spline
�t in A.), by stochasticity, i.e. variance within a trajectory; and by other factors, which may include
imperfections in the spline �t (see Materials and Methods).
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E

Figure 4–Figure supplement 1. Panels A,B,D,E as in Figure 3A-D; Panels C,F as in Figure 4A-B; with
all statistics re-calculated based on sub-sampling timepoints by a factor of 2.

686

Figure 5–Figure supplement 1. A. UMAP dimensional reduction of cell gene expression pro�les
from scRNAseq, with clusters assigned by HDBSCAN (colors). B. Index sort data of FSC/BSC for these
cells (colors correspond to cluster assignments from A).
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Figure 5–Figure supplement 2. UMAP dimensional reduction as in Figure Figure 5, colored by
expression of panels of genes. The largest cluster was called as T cells based on their expression of
T cell and immune markers (�rst row) and non-expression of immune markers from other cell types
(�nal row). The other cells were called as epithelial based on their expression of keratin genes, as
well as ahnak (fourth row). We note that we observed a subset of T cells consistent with a subset
from a previous observation (Tang et al., 2017) that were identi�ed as NK cells (third row); however,
these cells express trac as frequently as other T cells in the sample, suggesting that they are a T cell
subset.

688

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 28, 2019. ; https://doi.org/10.1101/785964doi: bioRxiv preprint 

https://doi.org/10.1101/785964
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

Figure 5–Figure supplement 3. As in Figure 5C-D, but including only those control samples with a
paired Rockout treatment sample (n=6 �sh). Fish were imaged for 2.5 hours, and imaging media
was replaced with media containing Rockout. Imaging over the same �eld of view was continued
for 2.5 hours.

689

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 28, 2019. ; https://doi.org/10.1101/785964doi: bioRxiv preprint 

https://doi.org/10.1101/785964
http://creativecommons.org/licenses/by-nc-nd/4.0/

