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Abstract 
Over the last 30 years, computational biologists have developed increasingly realistic 
mathematical models of the regulatory networks controlling the division of eukaryotic cells.   
These models capture data resulting from two complementary experimental approaches: low-
throughput experiments aimed at extensively characterizing the functions of small numbers of 
genes, and large-scale genetic interaction screens that provide a systems-level perspective on 
the cell division process. The former is insufficient to capture the interconnectivity of the 
genetic control network, while the latter is fraught with irreproducibility issues.  Here, we 
describe a hybrid approach in which the genetic interactions between 36 cell-cycle genes are 
quantitatively estimated by high-throughput phenotyping with an unprecedented number of 
biological replicates. Using this approach, we identify a subset of high-confidence genetic 
interactions, which we use to refine a previously published mathematical model of the cell 
cycle. We also present a quantitative dataset of the growth rate of these mutants under six 
different media conditions in order to inform future cell cycle models. 

Author Summary 
The process of cell division, also called the cell cycle, is controlled by a highly complex network 
of interconnected genes. If this process goes awry, diseases such as cancer can result. In order 
to unravel the complex interactions within the cell cycle control network, computational 
biologists have developed mathematical models that describe how different cell cycle genes are 
related. These models are built using large datasets describing the effect of mutating one or 
more genes within the network. In this manuscript, we present a novel method for producing 
such datasets. Using our method, we generate 7,350 yeast mutants to explore the interactions 
between key cell cycle genes. We measure the effect of the mutations by monitoring the 
growth rate of the yeast mutants under different environmental conditions. We use our 
mutants to revise an existing model of the yeast cell cycle and present a dataset of ~44,000 
gene by environment combinations as a resource to the yeast genetics and modeling 
communities.   

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2019. ; https://doi.org/10.1101/785840doi: bioRxiv preprint 

https://doi.org/10.1101/785840
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 
Eukaryotic cells grow and divide using a highly conserved and integrated network of positive 
and negative controls that ensure genomic integrity and maintain cell size within reasonable 
bounds. Proper control of the cell division cycle is essential for competitive fitness, embryonic 
development and maturation, and tissue homeostasis. Failure in these control mechanisms may 
result in cell death, developmental defects, tissue dysplasia, or cancers. One of the foremost 
model organisms for unraveling the molecular mechanisms of cell cycle control is the budding 
yeast Saccharomyces cerevisiae. Several hundred yeast mutants, generated in dozens of 
research laboratories over the past 40 years, have led to the discovery and characterization of 
many genes and proteins that regulate progression through the cell cycle1. Because of the 
intense labor involved in these experiments, individual laboratories have tended to focus on 
small numbers of genes and proteins involved in sub-sections of the extensive network of 
gene/protein interactions that control cell cycle events. This reductionist approach was 
necessary in the early stages of identifying and characterizing the molecular regulatory system, 
but it carries with it the danger of missing higher levels of network organization and their 
phenotypic consequences 2-4. 

In contrast to a detailed, reductionist experimental approach, which builds a regulatory 
network from the bottom up, a systems-level approach seeks to provide a more global and less 
biased view of regulatory networks.  Systems biologists can uncover key regulatory interactions 
and network architectures that bottom-up practitioners may have missed 5, 6. Unfortunately, 
the top-down, pan-genome approach, while good for generating hypotheses, is usually poor for 
testing hypotheses because the experiments are mostly correlative, and the data is often 
plagued by problems of accuracy and reproducibility. Combining a variety of ‘omics’ studies 
may help to overcome these challenges, but it is often difficult to integrate disparate data sets 
into a single network model 7-10. Ideally, one should combine top-down and bottom-up data, 
but huge discrepancies of scale between these two data types present barriers to integrating 
and understanding the hypotheses derived from each approach 11-17. 

To mitigate these problems, many researchers, including ourselves, have developed detailed 
mathematical models that integrate top-down and bottom-up approaches in order to describe 
the molecular mechanisms that underlie cell cycle regulation in budding yeast 4, 17-22. The 
governing equations of the model are simulated on a computer, and the model (the ‘wiring 
diagram’ of molecular interactions) is adjusted until it generates dynamic behaviors that reflect 
the documented molecular changes and general network behaviors observed in cells (e.g., cell 
viability, timing of cell cycle events, cell size at birth, response to DNA damage or chromosome 
misalignment at mitosis) 23-26. Often, the documented data is missing detailed molecular 
information, such as protein concentrations and rate constants of crucial reactions, but fitting 
the model (i.e., fine-tuning the parameter values) to extensive sets of phenotypic data usually 
introduces strong constraints on these unknown parameters 19, 27. In this way, mathematical 
models can refine our understanding of the molecular mechanisms underlying cell cycle 
progression and test if the proposed network architecture and kinetic rate-constant estimates 
are consistent with both bottom-up and top-down observations. 
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One of the major problems when developing large mathematical models of the cell cycle has 
been the lack of consistent data sets. It has been challenging to compare data collected on cell 
cycle mutants that often have different genetic backgrounds, whose phenotypes are usually 
descriptive rather than quantitative, and whose phenotypes are assessed under inconsistent 
conditions. These problems leave the modeler with the difficult task of curating, interpreting 
and consolidating inconsistent and sometimes unreliable experimental results. 

A particularly pernicious example of this problem is the use of the ‘synthetic lethal’ (SL) 
phenotype of double-mutant yeast cells in the development and calibration of mathematical 
models of the budding yeast cell cycle. Synthetic lethality arises when viable yeast strains 
carrying deletions of two different genes are crossed to produce inviable, double-mutant 
progeny (i.e., gene1Δ and gene2Δ mutant strains are viable separately, but the double-mutant 
gene1Δ gene2Δ strain is inviable). Because they impose strong constraints on the control 
system, SL gene combinations are exceptionally useful in deducing the network wiring diagram 
and estimating the rate constants in the mathematical model. On the other hand, if the 
identification of synthetic lethal combinations of genes is incomplete or inaccurate, then SL 
‘identifications’ can wreak havoc on a model by forcing the modeler to make adjustments that 
are unwarranted. Problems arise because the experimental identification of SL gene 
combinations is plagued by false-positives and false-negatives and by the fact that some 
synthetic-lethal interactions are dependent on the genetic background of the parental strain. 
Hence, for the purpose of modeling cell cycle control in budding yeast, it is crucial to have a 
reliable, well documented, independently confirmed set of SL gene combinations observed in a 
uniform genetic background.  

We have addressed this problem by reconsidering the identification of SL gene combinations of 
‘cell-cycle control’ genes in budding yeast by a disciplined construction of replicate double-
mutant strains  based on a synthetic gene array (SGA) technology28 pioneered by Tong and 
Boone29 and the epistasis miniarray profile (E-MAP) 28 workflow described by Schuldiner30.   

We focused on a set of only 36 cell cycle genes, most of which are functionally well-
characterized (Table 1). This list comprises all the non-essential genes included in a recent 
mathematical model of the yeast cell cycle (herein referred to as the ‘Kraikivski’ model)19, as 
well as genes whose protein products have redundant functions or interact with the proteins 
represented in the model.  

By comparing the results of our screen with previously published SL interactions listed on The 
Saccharomyces Genome Database (SGD, https://www.yeastgenome.org/), and further 
validating via tetrad analysis (TA), we generate lists of ‘high confidence’ and ‘low confidence’ SL 
interactions. Next, we compare these high-confidence SL interactions with the predictions of 
our most recent and extensive mathematical model of budding-yeast cell-cycle controls 19. We 
find that, in its present state, the model’s predictions of SL interactions are not very accurate 
because the predictions were based on parameter values estimated from a collection of SL 
gene combinations that misidentified some crucial genetic interactions. From our new 
collection of high-confidence and low-confidence SL gene combinations we re-parametrize the 
model to get much better agreement with the data. Presumably, this newly parametrized 
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version of the model will give more reliable predictions about the phenotypes of other types of 
budding yeast mutants as well. 

Finally, we phenotype mutants of the ~600 gene combinations that are not SL under six 
different media conditions expected to differentially influence cell cycle progression, providing 
quantitative fitness data that can be used in the future development of more refined and 
stochastic models of the cell cycle.  

Results 
Identifying synthetic lethal interactions among 630 gene combinations 
To assess all possible combinations of 36 cell cycle knock-outs across multiple biological 
replicates, we generated eight sets of independent parent lines to be used in four crosses. To 
avoid suppressor mutations – a feature of the commercial yeast haploid gene deletion 
collections – we generated 110 parent strains by tetrad dissection of commercial heterozygous 
diploid gene deletion strains (either before or after switching the kanMX marker to natMX), and 
we generated 4 parent strains by de novo gene deletion in BY4741 or BY4742. Neither the 
commercial SSA1/ssa1∆ strain nor any diploids produced by crosses with any de novo ssa1∆ 
mutant parent were able to sporulate, indicating that two copies of this HSP70 chaperone gene 
is essential for meiosis. Interestingly this was not the case for the Ssa1 co-chaperone, Ydj1. We 
also generated SGA haploid selection marker strains by mating and tetrad dissection of the 
aforementioned strains with the SGA strain developed by the Boone lab29 or by de novo gene 
deletion in that strain (55 and 70 parent strains, respectively).Each set of parent strains carried 
at least two differently marked deletions in all or most of the 36 genes for each of two different 
markers. According to the workflow described in Figure 1, single mutant parent strains with 
opposite markers were crossed and both MATa and MATa double-mutant progeny were 
selected for using SGA29 haploid selection markers, resulting in up to 20 biological replicates for 
each gene combination. In total, we generated 7,350 mutants in which to analyze the 630 
double-mutant combinations. 

Examining these 7,350 mutants, we first flagged potential synthetic lethal interactions by 
scoring each cross as ‘growth’ or ‘non-growth’, i.e., each double-mutant haploid colony as 
‘present’ or ‘absent’ on double mutant haploid selection plates (Figure 2). The results for all 
progeny are compiled in Figure 3.  

No combination of genes produced the same results in every cross. In fact, the results among 
biological replicates varied considerably (Figure 2, Table S4). Hence, we set a threshold for 
defining likely SL interactions. If evidence for synthetic lethality was observed four or more 
times irrespective of which parent strain the deletions were derived from, we flagged the 
combination as ‘likely SL’ (Figure 3, Table 2).  

A threshold of four was selected, because it ensures that the interaction was seen in at least 
two of the independent sets of crosses performed. This threshold also provided for the highest 
level of agreement between our screen and previously published results (discussed in the 
following section). For our set of 630 combinations, we observed 29 that exhibited synthetic 
lethality in at least four biological replicates. 
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Comparing the results of our screen with previously reported SL interactions 
In Table 2 we compare our results to the 36 SL gene combinations documented on SGD for the 
36 genes in our data set (excluding several curation errors which are listed in the supplement) 
and to the predictions of Kraikivski’s published model19. There are 58 lines in Table 2, referring 
to 58 (out of 630 possible) gene combinations for which one or more of the following 
statements is/are true: 

1. the combination is documented as SL on SGD, 
2. the combination is observed in our screen as likely SL, 
3. the combination has been predicted to be SL by Kraikivski’s model. 

A Venn diagram indicating the overlap of these 58 gene combinations is provided in Figure 3B. 

Of the 36 gene combinations documented as SL on SGD, 16 were observed as likely SL in our 
screen (Figure 3B). Meanwhile, 13 of our observed SL gene combinations are not listed on SGD. 
Hence, the overlap between the previously published SL interactions, and the combinations in 
our screen that exhibited synthetic lethality in at least four replicates is only ~50%.  Dropping 
the threshold for likely SL interactions in our screen from four to three would have resulted in 
the identification of only one additional previously documented SL interaction (lte1∆ sic1∆), 
while adding 13 SL interactions that are not supported by the literature. Increasing the 
threshold to five would have excluded an additional 13 SL interactions that have been 
previously observed. 

As a check on these comparisons, we performed tetrad analysis (TA) on at least one cross for all 
of the combinations listed in Table 2 except for one (cdh1∆ ssa1∆) from which we failed to 
recover tetrads. Of the 13 SL gene combinations that we observed for the first time in this 
study, six were not SL by TA (bck2Δ cdh1Δ, bub2Δ cdc55Δ, bub3Δ swi4Δ, cdc55Δ nrm1Δ, cdc55Δ 
swi4Δ and swi6Δ whi3Δ). The other seven (bub1Δ swi6Δ, bub3Δ swi6Δ, cdc55∆ cdh1∆, cdc55∆ 
clb5∆, cdc55∆ lte1∆, cd55∆ whi3∆, and cdh1∆ swi6∆) exhibited variable results or low spore 
viability regardless of genotype in at least one of the crosses, complicating the interpretation of 
the results. Of the 20 ‘documented’ SL interactions that were not observed in our screen, 17/20 
tested by TA were viable. The other three (lte1Δ sic1Δ, lte1Δ ydj1Δ, msn5Δ swi6Δ) varied by 
replicates or exhibited low spore viability overall, and thus remain ambiguous. 

In summary, our screen identified 13 new potential SL interactions, but none of these were 
definitively validated by TA. Our screen failed to validate 20 previously published SL 
interactions. By TA, we determined that at least 17 of these are likely not SL. Of the 16 double-
mutant combinations that were both ‘documented’ SL on SGD and ‘likely’ SL according to our 
screen, TA confirmed that nine combinations are indeed inviable. The other seven remain 
ambiguous.  

Based on these comparisons, we re-classify the 58 gene combinations in Table 2 as ‘high-
confidence synthetic-lethal’ combinations (shaded orange), ‘high-confidence viable’ double-
mutants (shaded blue), and ‘uncertain’ (unshaded). Of those that remain uncertain, for five 
gene combinations which all include swi4Δ or swi6Δ (bub3Δ swi6Δ, clb5Δ swi6, msn5Δ swi4Δ, 
msn5Δ swi6Δ, swi4Δ swi6Δ) additional replicates were attempted, but no tetrads were 
recovered. 
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Some of the variability observed between replicate tetrad analyses of the same genotype, as 
well as apparent meiotic defects may be the result of chromosome loss. For instance, Bub1 and 
Bub3, which are involved in regulating the Spindle Assembly Checkpoint and tension sensing in 
spindles31, 32, exhibited unusual behavior in halo assays indicative of chromosome loss (see 
additional data). 

Using our screen to refine a previously published model of the cell cycle 
In addition to SGD, we compared our ‘likely’ SL interactions with those that were predicted by 
Kraikivski’s model19. Of the 22 predicted SL gene combinations in Table 2, 10 are both 
documented and confirmed by our screen, two (bck2Δ swi6Δ and cln3Δ swi4Δ) were 
documented but not observed by us, and one (cdh1Δ swi6Δ) was observed by us but not 
documented on SGD. Nine predicted SL gene combinations were neither observed by us nor 
documented on SGD. We tested eight of these by TA and found six to be viable, while two 
(cdh1∆ lte1∆ and cdh1∆ ydj1∆) remain uncertain (Table 2). Five of these ‘orphan’ predictions 
involve cdh1∆, suggesting an overemphasis of Cdh1 activity in the model. We tested four of 
these combinations by TA and found that two were viable (cdh1Δ clb5Δ and cdh1Δ cln3Δ), while 
two remain uncertain (cdh1Δ lte1Δ and cdh1Δ ydj1Δ). Six SL gene combinations that were both 
documented and observed by us were not analyzed in Kraikivski’s model.  

In summary, Kraikivski’s model makes 37 predictions (22 SL + 15 V) concerning the genetic 
interactions listed in Table 2. Of these predictions, 16 are consistent with our ‘high-confidence’ 
SL/V phenotypes, 7 are inconsistent (bolded in Table 2), and 14 are ambiguous. Hence, the 
accuracy of the published model is ~50%, comparable to the agreement between our screen 
and the literature.   

The limited accuracy of the model’s predictions is likely due to the fact that the parameter 
values in the model were estimated by fitting the model to ‘documented’ SL gene combinations 
that are themselves unreliable. To correct this problem, we have re-parametrized the model in 
light of the ‘high confidence’ SL and viable (V) interactions (shaded orange and blue, 
respectively in Table 2), allowing for some flexibility for the uncertain interactions.  

In re-parameterizing the model, we had two intentions: (a) to maximize the number of correctly 
explained mutant phenotypes in Table 2, and (b) to simulate correctly those mutant strains 
with well-characterized phenotypes that were previously explained by the model. Guided by 
these two criteria, we manually adjusted 13 parameter values in the model (see Table S3 in 19), 
as follows:  

First, because of the central roles played by SBF, MBF and Cln3 in the START transition of the 
budding yeast cell cycle, we addressed our new results suggesting a viable phenotype for swi4D 
cln3D double-mutant cells in opposition to previous reports that swi4D cln3D is a synthetic 
lethal strain 33. To ‘rescue’ swi4D cln3D cells, we significantly increased the activation of MBF 
(Swi6:Mbp1) by Bck2 (the only activator of MBF in the absence of Cln3), while simultaneously 
increasing the inactivation of MBF by Clb2 and decreasing slightly the activation of MBF by Cln3, 
in order to keep the level of MBF activity similar to that of the previous model, thus minimizing 
the perturbations to all other mutants that were previously explained by the model. Because 
Ydj1 is a regulator of Cln3 activity, the phenotype of swi4D ydj1D  agreed with new data too.  
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The viability of swi6D clb2D suggests that Swi4 alone (without Swi6) can successfully initiate the 
START transition, and then the cell cycle can be completed without Clb2 (with Clb1 alone). To 
correctly simulate this mutant, we had to significantly increase the weight of Swi4 in the 
transcriptional regulation of the START transition. 

We also made adjustments to account for the five mutant strains involving cdh1∆ that our 
original model did not predict correctly. In the model, cell division (upon exit from mitosis) is 
determined by Clb2 activity dropping below a certain threshold, which is in turn governed by 
Cdh1 (involved in Clb2 degradation during telophase) and Sic1 (an inhibitor of Clb2-dependent 
kinase activity as cells return to G1). Hence, the inviability of cdh1Δ sic1Δ cells is the crucial 
mutant defining the cell-cycle exit threshold, and it was correctly predicted by the original 
model. In this double-mutant, Clb2-dependent kinase activity is down-regulated in anaphase 
only by Cdc20-dependent degradation of Clb2. (In reality, of course, Clb2 activity depends on 
many upstream regulators—such as Ydj1, Clb5, Ssa1, Cln3, and Swi6— that affect cell mass at 
division.) Our new assessment of synthetic lethal interactions allows for better ‘tuning’ of the 
parameters that govern Clb2 regulation by Cdh1, Cdc20 and Sic1. Additionally, when originally 
constructing and parametrizing our model, we did not have many lte1∆ mutant strains to 
constrain Lte1-related parameters, so we adjusted parameters to correctly explain lte1∆ 
mutants.  

Predictions of the newly parametrized model are given in the last column of Table 2.Our 
expertise in cell cycle regulation and mutant behavior allowed us to make these parameter 
adjustments manually; however, computational algorithms for reparameterization may be 
required if a larger number of novel mutant phenotypes becomes available in the future. 

Inherent limitations of synthetic lethality screens 
The SGA process relies on efficient production of double mutant haploid progeny from crosses. 
Mating defects, low sporulation efficiencies, meiotic defects causing poor spore viability, poor 
spore germination, or technical problems with the pinning process can prevent the transfer of 
double mutant cells during haploid selection, resulting in false positives (i.e., poorer growth 
than there should be; 29, 34). Genetic interactions resulting in reduced fitness are also subject to 
significant selection for genetic mishaps that improve fitness, resulting in false negatives (i.e., 
better growth than there should be; 29, 34). Genetic mishaps resulting in false negatives can 
include spontaneous mutation to introduce a suppressor mutation 35, or disomy. Disomy can 
result from chromosome nondisjunction during sporulation, or gene conversion resulting in 
escape of heterozygous diploids from haploid selection 34, 36. False negatives can also result 
from contamination from outside sources or cross-contamination during replica-pinning. 

Following the presence or absence of colonies throughout the SGA process, we found that all 
crosses produced diploids (see Additional Data). Therefore, failure to mate did not produce any 
false positives. False positives can also result from inefficient pinning or systematic problems 
with the parents resulting in overall low viability. Parent lines that resulted in fewer than 12/36 
viable haploid progeny were excluded from the analysis, but some false positives likely 
persisted. For instance, seven of the SL gene combinations observed in our screen involved 
cdc55∆, which was problematic in most genetic contexts due to inconsistent pinning (cells were 
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very dry and clumpy and did not adhere well to pins). By tetrad analysis, we identified six out of 
29 SL gene combinations observed in our screen to be definitive false positives.   

Our experimental design makes it possible to get rough estimates of false negative rates by 
monitoring positions on each plate that should have been empty for growth. We designed our 
screen such that “hit” strains were arrayed the same way (alphabetically by the gene knocked 
out) for every cross, leaving empty spaces for any parent that was not generated (Figure 1).  In 
this way, some positions in the cross had only one parent crossed to an empty position (‘single 
parent’ in Figure 1), and some positions had two parents that were mutant for the same allele 
(‘monogenic cross’ in Figure 1). Neither of these ‘crosses’ should result in colonies during the 
final round of double-mutant haploid selection, as they will not contain both of the antibiotic 
resistance markers. Colonies at ‘single parent’ or ‘monogenic cross’ positions are indicative of a 
false negative event (red cells in Figure 2).  

To estimate the contribution of contamination to false negatives, we identified colonies in 
empty plate positions. All plates were devoid of contaminating colonies in empty positions 
(Table S3). In positions containing only one parent strain, only 3/570 positions on the haploid 
progeny plates had any contaminating colonies (Table S3). Therefore, contamination is a 
negligible contributor to observed false negatives. 

To identify false negatives arising from genetic mishaps, we identified colonies produced by 
crosses between two strains carrying deletions of the same gene. 77/202 monogenic crosses 
resulted in progeny on the final haploid selection plates (Table S3), indicating a coarsely 
estimated false negative rate of 38%.  

These false negative events occurred more frequently for MATa progeny than MATa progeny 
(Table S3). This is to be expected, because MATa progeny can escape selection for MATa 
progeny through gene conversion between STE3pr-LEU2 and leu2∆0, but gene conversion 
cannot occur between STE2pr-SpHIS3 (S. pombe orthologue) and his3∆1 to allow MATa  cells to 
escape MATa selection 29, 34. If MATa progeny persist through the MATa selection due to gene 
conversion, they can mate with the neighboring MATa progeny producing diploids that are 
heterozygous for both markers. 

Although few SGA or E-MAP studies report them, it is well-established that these screens have 
high, but variable, false negative and false positive rates from 17% to 70% 30, 36-39 and 5% to 90% 
38, 40-43, respectively. The false positive and negative rates observed in our study are thus in the 
normal range for large genetic screens. 

Quantifying fitness and genetic interactions across six media types 
As the most extreme genetic interaction, synthetic lethality has a powerful influence on models 
of cell-cycle regulating genes. However, due to the limitations of synthetic lethality screens 
more accurate models call for more nuanced phenotypic markers.  

To identify interactions between the 36 genes that do not result in synthetic lethality, we 
monitored the growth rate of the viable double mutants over a time course. Each mutant was 
assigned a fitness score according to how the growth rate compared with wild-type controls on 
the same plate. Using this approach, we identified ~100 gene combinations that were not SL 
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but had fitness scores more than six standard deviations below wild-type under normal growth 
conditions (Figure 4). 

More importantly, by comparing fitness scores of the double mutant progeny with those of 
their single mutant parents, we calculated genetic interaction (GI) scores for all viable mutants. 
GI scores44-46 are a function of the parent and progeny fitness and illustrate the direction 
(positive or negative) and the magnitude of the interaction for each of the ~600 viable gene 
combinations. Non-zero GI scores indicate a possible epistatic relationship. Negative GI scores 
suggest that the genes involved may have redundant functions, while positive GI scores indicate 
that one mutation may have a rescuing effect over the other. 

As with synthetic lethality, we observed a considerable amount of variability in fitness scores 
and genetic interaction scores for mutants of the same genotype in different crosses (biological 
replicates, Figure 4).  To identify trends within the variability, GI scores for a given genotype 
were sorted into different bins, and the bin that contained the largest number of biological 
replicates was used to determine a consensus GI score which is represented in Figure 5 and 
Table 3. From the distribution of overall GI scores for a given media, we flagged those with a 
consensus score at the extreme positive and negative ends. Those gene combinations with 
consensus GI scores in the top or bottom 5% of all GI scores are reported in Table 3.   

To further identify genetic interactions among our set of cell cycle regulator genes that may not 
be apparent under standard growth conditions, we also calculated fitness and genetic 
interaction scores for all double mutant progeny and single mutant parents in the presence of 
two different carbon sources and in the presence of three checkpoint activating drugs.  

YPDextrose served as a control (mass doubling time ~100 min). Mass doubling times are longer 
on YPGalactose (~150 min) and even longer on YPRaffinose (~200 min) 47. Slower growth rates 
can enable positive regulators to build up such that mutants which would normally grow very 
slowly due to the stochasticity of cell cycle transitions can exhibit some level of rescue on YPG 
or YPR 23, 48.  

The distribution of GI scores that we observed was comparable for YPD and YPG, but the GI 
scores occupied a narrower range for mutants grown on YPR (Figure 5), suggesting that  the 
very slow growth rate provided by YPR might allow the growth of mutants that have more 
extreme phenotypes on YPD to normalize on YPR. 

The drugs Benomyl (Ben), camptothecin (CPT), and hydroxyurea (HU) activate checkpoints 49-59. 
Mutants defective in these checkpoints will rush through the cell cycle and accumulate 
genetic/chromosome defects leading to slower growth due to decreased viability. We expect 
known checkpoint mutants to exhibit reduced fitness under these conditions, but interactions 
with other cell cycle regulators (including other checkpoint genes) can enhance or suppress the 
checkpoint defects 31, 60-66.  

In several cases, gene combinations that had a GI score within the normal distribution on YPD, 
showed a much more extreme GI on one or more of the other five media types (Table 3). For 
instance, the GI score for fkh1∆ fkh2∆ on YPD was negative, but not remarkably so. However, 
on YPD+Ben and YPD+CPT, the consensus GI scores for fkh1∆ fkh2∆ were in the lower 5% and 
2.5%, respectively. Fkh1 and Fkh2 both promote the transition from G2 to M, so the double 
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mutant is likely to cause stalling at G2. Ben prevents spindle assembly while activating the 
spindle assembly checkpoint, so that cells move forward to M phase despite not properly 
forming a mitotic spindle. CPT causes DNA damage during M phase. So, cells that make it to M 
phase in an fkh1∆ fkh2∆ mutant would likely arrest in the presence of Ben or CPT, thus 
exacerbating the mutant phenotype.  

Relative GI scores for a family of gene combinations also reflect the role of those genes within 
the cell-cycle regulatory network. For instance, Bub1 and Bub3 function along with Mad1, 
Mad2, and Mad3 to arrest cells in metaphase in response to defective attachments of 
kinetochores to spindle microtubules – a mechanism called the Spindle Assembly Checkpoint 
(SAC)31, 32. However, Bub1 and Bub3 also have a role in tension sensing in spindles independent 
of their role in the SAC31, 32. This can be seen in the observation that bub1/3 mutants have 
lower GI scores in benomyl than mad1-3 mutants (Table 3). 

Interestingly, several other mutants did not show reduced fitness in benomyl but did display a 
chromosome loss phenotype (Table 3, Additional Data). These mutants were also synthetic 
lethal or synthetic sick with bub1/3 mutants. Clb5 is one such mutant and has previously been 
predicted to have a role in tension sensing31, which the genetic interaction suggests works 
independently of Bub1/Bub3. Interestingly, although Sic1 works to inhibit CDK-Clb67-69, 
including Clb5, the sic1∆ phenotypes were similar to those of clb5 mutants. Since Sic1 is 
important for suppressing CDK/Clb activity and is activated by the mitotic exit network (MEN), 
we hypothesize that elevated CDK/Clb may prolong anaphase resulting in spindle positioning 
defects, or defects in SAC silencing. 

Although slow growth of swi6∆ mutants made it difficult to assess halos, like clb5∆ and sic1∆ 
mutants, they also appeared to increase chromosome loss. However, unlike Clb5 and Sic1, Swi6 
has no direct role in mitosis. Nevertheless, reduced viability in bub1/3 swi6 double mutants 
suggests some interaction. We propose that reduced activity of the MBF and SBF at START 
perturbs expression of proteins important for spindle function or chromosome cohesion, 
exacerbating the chromosome segregation defects of the bub1/3 mutants. 

It is important to note that not all of the gene combinations that we identified as ‘high-
confidence’ synthetic lethal had remarkably negative genetic interaction scores in our screen. 
There are two plausible explanations for this discrepancy. First, the use of in-plate wild-type 
controls prohibited the use of antibiotics in the phenotyping screen, so false negatives (growth 
where growth is not expected) due to contamination are more likely. Second, for gene 
combinations that are truly synthetic lethal, any living colonies are necessarily the result of false 
negatives due to genetic mishaps. These gene combinations are thus more prone to result in 
outliers with higher than expected genetic interaction scores and should be interpreted with 
caution. 
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Discussion 
The selective pressure applied by synthetic lethal screens leads to genetic mishaps that enable 
mutants that would otherwise be lethal to escape29, 34; conversely, the low fitness of many of 
the single mutant parents used in such screens can cause interactions that are not lethal to 
emerge. These false negative and false positive events lead to very high levels of variability (see 
Table S5 for an example). We accounted for this variability by probing a relatively small number 
of genes with an unprecedented number of biological replicates. While E-MAP screens 
generally incorporate four biological replicates24, and SGA screens rely on technical replicates 
alone29, most of the genetic interactions tested in this study included between eight and 16 
independent biological replicates (Table S4). We also compared our results with previous 
publications and resolved discrepancies via tetrad analysis in order to generate a list of ‘high 
confidence’ synthetic lethal interactions which informed a new iteration of a previously 
published cell cycle model.  

Variability in synthetic lethal screens is a major challenge for modelers. The ~100 tetrad 
analyses performed in this study demonstrate an unexpectedly high level of variation even 
among low-throughput, manual experiments. For this reason, synthetic lethality may not be the 
best marker for parameterizing models. Additionally, models based on synthetic lethality are 
inherently deterministic; yet, it’s well-known that many of the processes governing progression 
through the cell cycle are stochastically regulated. Modeling stochasticity will require a more 
granular dataset that provides quantitative phenotypes based on parameters such as growth 
rate, rather than deterministic phenotypes such as lethality or checkpoint arrest. 

The results presented here demonstrate that quantitative cell phenotyping can be readily 
performed in a high-throughput workflow. By comparing colony sizes over time, we generated 
a quantitative picture of growth rates for over 7,000 mutants. This more sensitive approach 
enabled us to identify interesting genetic interactions with less extreme phenotypes than 
synthetic lethality (ie. whi3∆ ydj1∆) and gene combinations that provided a rescue effect (ie. 
bub3∆ cdh1∆). We also show that our workflow can be expanded to include different test 
conditions. By quantitatively phenotyping our mutants on six different media types, we 
demonstrate that our approach is sensitive enough to capture environmental variability. Data 
for the ~44,000 gene by media combinations is available through the supplement and can be 
used to develop more elaborate models of cell cycle regulatory control.  

In conclusion, our approach is readily scalable and could generate additional, multi-gene data 
sets to motivate the development of better, more stochastic models of cell-cycle control and, 
indeed, other aspects of the physiology of budding yeast cells.  

Methods  
Experimental Workflow 
To generate the double mutants, we used a modified epistasis miniarray profile (E-MAP) 
workflow 30. The E-MAP workflow is a modification of the synthetic genetic array (SGA) protocol 
30. In a typical SGA screen, a single query strain is crossed to all viable deletion strains (over 
4,000) 29, 40. The query strain includes a set of reporter genes that allow selection of haploid 
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progeny of one mating type or another. E-MAP screens use the same series of selection 
conditions, but generally involve a few hundred deletion strains crossed to produce every 
possible combination of double-gene deletions 30.  

Our experimental design most closely follows the E-MAP approach but with a few significant 
differences. First, we focused on a set of only 36 cell cycle genes. Second, we used eight sets of 
parent strains in four sets of crosses, increasing the number of biological replicates to eight 
from four in a standard E-MAP or one in a standard SGA (which use technical replicates; 29, 30): 

(1) MATa / genei::kanMX    (5) MATa / genei::kanMX / SGA 

(2) MATa / genei::natMX    (6) MATa / genei::natMX / SGA 

(3) MATa / genei::kanMX   (7) MATa / genei::kanMX / SGA  

(4) MATa / genei::natMX   (8) MATa / genei::natMX / SGA 

genei::kanMX refers to genei knocked-out with a kanamycin-resistance marker, genei::natMX 
refers to genei knocked-out with a nourseothricin-resistance marker, and ‘SGA’ refers to the 
haploid-selection markers can1Δ::STE2pr-Sphis5 and lyp1Δ::STE3pr-LEU2 used in SGA screens. 
Details for how each of the parent strains were generated can be found in the online 
supplement.  These parent strains were confirmed by PCR and used in four sets of crosses: 

 Cross 1: Strain(1, genei) X Strain(8, genek)   

Cross 2: Strain(2, genei) X Strain(7, genek) 

Cross 3: Strain(3, genei) X Strain(6, genek)   

Cross 4: Strain(4, genei) X Strain(5, genek) 

From these crosses, we selected double-mutant progeny of both mating types, further 
increasing the biological replicates to 16. (SGA and E-MAP screens select only MATa progeny 29, 

30). All media were standard recipes for SGA29 (see Supplemental Materials). Mating type of the 
double mutant progeny and the single mutant parents was confirmed via Halo assays70 (See 
online supplement). With this protocol, we generate (in principle) 16 biological replicates of 
each double-mutant, geneiΔ genekΔ. In certain cases, two parents of the same genotype were 
generated independently, such that the total number of biological replicates is up to 20 for 
some double mutant combinations.  

We measured colony growth rates on three different growth media (YPD, YPG, and YPR) and in 
the presence of three different checkpoint activating drugs: Ben, CPT, and HU. Ben disrupts 
attachment of kinetochores to the mitotic spindle and activates the spindle assembly 
checkpoint (SAC; dependent on Bub1,3 and Mad1-3) 49, 71, 72. CPT inhibits topoisomerase 
resulting in DNA entanglements and double strand breaks upon chromosome segregation 73, 74. 
HU inhibits ribonucleotide reductase 75, which leads to replication fork stalling 76.   

We first made template plates by first replica pinning the haploid progeny (which were in 96 
array) onto different positions on the same YPD+G418(600ug/ml)/nat(150ug/ml) source plate 
four times to produce quadruplicates of each strain using a Rotor HDA (Singer Instruments, 
Somerset, UK). Rows A, B, I and J were left empty for in-plate wild-type controls colonies. At the 
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same time, we set up YPD plates with the wild-type parent strains BY4741 and BY4742 arrayed 
at 384 density, occupying positions in rows A, B, I and J. We incubated both sets of plates at 
30°C for two days.  

We then replica pinned the wild-type controls onto new YPD plates (using a new source plate 
whenever the colonies began to look depleted). After visual inspection of the plates to ensure 
even transfer of the wild-type controls, we replica pinned the set of double mutant colonies to 
the templates. Plates were imaged after 12, 24, 36, 48, and 60 hours of growth at 30°C.  

We imaged all diploid selection plates, final haploid progeny selection plates, halo assay plates, 
and phenotyping plates using the Phenobooth (Singer Instruments, Somerset, UK) imaging 
platform and software. To maintain consistency, all images were collected in the same order at 
the same resolution and camera settings, and were batch processed to crop the image, perform 
background subtraction and colony identification whenever possible. We then exported the 
raw colony size data for analysis.  

Data Analysis 
Analysis of the data is discussed extensively in the supplement. Briefly, plate-to-plate variation 
was accounted for by normalizing colony size using in-plate wild-type controls. Edge-effects 
were accounted for by adjusting the growth rates such that the mean growth rates of edge-
adjacent colonies and internal colonies were comparable (Table S6, Figure S1, and Figure S2). 
Jack-knife filtering was used in a small number of cases to remove colonies that behaved as 
outliers within quadruplicates (four technical replicates).  

Growth rates, fitness scores, and GI scores44-46 were calculated using a linear model for growth 
rate according to the following equations: 

Growth Rate (r):   st = r·t + s0 
Fitness Score (W):   W = rmutant / rWT 
Genetic Interaction Score (ε):  ε = WAB - WAWB 

WAB = fitness score for the double-mutant progeny, WA = fitness score for the MATa parent,  
WB = fitness score for the MATα mutant, st = colony size at time t, and s0 = colony size at time 0 
 
A histogram binning procedure was used to estimate the mode for genetic interaction scores 
across biological replicates (up to 20 independent crosses). The “consensus” GI score reported 
in Figure 5 and Table 3 is the midpoint of the bin containing the maximum number of values 
(additional details in the supplement).  
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Supporting Information Legends 
Figure S1. Example of plate images and growth curves. (A) Unprocessed (left) and processed 
(right) images of a phenotyping plate across the 5 time points. (B) Growth curves for one of the 
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quadruplicates shown in A before (top) and after (bottom) normalization. Each colored line 
represents one of the colonies in the quadruplicate. The black and blue lines plot edge colonies 
(positions C1 and D1), while the red and green lines plot non-edge colonies (C2 and D2). 

Figure S2. Normalizations for six representative phenotyping plates. Normalizations based on 
the mean growth rate of the wildtype controls on each plate were used to account for edge 
effects. Heat maps show a visual representation of growth rates across each plate. The X and Y 
axis are the coordinates for the 384 positions where a colony may appear. In every case, wild-
type controls are in rows A, B, I, and J, columns 1-4, 11-14, and 21-24. Histograms compare the 
growth rate of colonies that are on the edge of the plate or adjacent to an empty position 
(distance level 0) with those that are one or more positions away from an edge (non-zero 
distance levels). The p-value reported above the histogram marks the significance of the 
difference between the growth rate of edge-adjacent colonies and internal colonies. In each 
case, raw, unnormalized heat maps, histograms, and p-values are shown just above their 
normalized counterparts. 

Figure S3. Comparison of fitness scores for double mutants in all four sets of crosses on YPR 
media. White cells indicate zero growth and grey cells indicate missing or excluded data. Royal 
blue is used to designate fitness scores that differ from WT by fewer than 2 standard 
deviations. Cyan and green indicate fitness scores that are greater than WT by up to or more 
than 6 standard deviations respectively. Magenta and red indicate fitness scores that are less 
than WT by up to or more than 6 standard deviations respectively. A & B) Cross 1. C & D) Cross 
2. E & F) Cross 3. G & H) Cross 4. 

Figure S4. Comparison of fitness scores for double mutants in all four sets of crosses on YPG 
media. White cells indicate zero growth and grey cells indicate missing or excluded data. Royal 
blue is used to designate fitness scores that differ from WT by fewer than 2 standard 
deviations. Cyan and green indicate fitness scores that are greater than WT by up to or more 
than 6 standard deviations respectively. Magenta and red indicate fitness scores that are less 
than WT by up to or more than 6 standard deviations respectively. A & B) Cross 1. C & D) Cross 
2. E & F) Cross 3. G & H) Cross 4. 

Figure S5. Comparison of fitness scores for double mutants in all four sets of crosses on YPD-
Ben media. White cells indicate zero growth and grey cells indicate missing or excluded data. 
Royal blue is used to designate fitness scores that differ from WT by fewer than 2 standard 
deviations. Cyan and green indicate fitness scores that are greater than WT by up to or more 
than 6 standard deviations respectively. Magenta and red indicate fitness scores that are less 
than WT by up to or more than 6 standard deviations respectively. A & B) Cross 1. C & D) Cross 
2. E & F) Cross 3. G & H) Cross 4. 

Table S1. Parent Strains used in this study 

Table S2. Primers used in this study 

Table S3. Potential sources of false negatives 

Table S4. Replicates supporting synthetic lethal (SL) 

Table S5. Colony size and growth rate variability across biological replicates of cdh1Δ swi4Δ 
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Table S6. Mann-Whitney tests before and after edge effect normalization 

Table S7. Basal parameter values for wild-type cells. Adjusted parameters are highlighted 

Additional Data Figure 1: Halo assays of single mutant parents and double mutant progeny for 
the MATa kan x MATα SGA nat cross (parent set 1 x parent set 8) 

Additional Data Figure 2: Halo assays of single mutant parents and double mutant progeny for 
the MATa nat x MATα SGA kan cross (parent set 2 x parent set 7) 

Additional Data Figure 3: Halo assays of single mutant parents and double mutant progeny for 
the MATa SGA kan x MATα nat cross (parent set 5 x parent set 4) 

Additional Data Figure 4: Halo assays of single mutant parents and double mutant progeny for 
the MATa SGA nat x MATα kan cross (parent set 3 x parent set 6) 

Additional Data Figure 5: Comparison of double mutant heterozygous diploids with MATa and 
MATα haploid progeny for the MATa kan x MATα SGA nat cross (parent set 1 x parent set 8) 

Additional Data Figure 6: Comparison of double mutant heterozygous diploids with MATa and 
MATα haploid progeny for the MATa nat x MATα SGA kan cross (parent set 2 x parent set 7) 

Additional Data Figure 7: Comparison of double mutant heterozygous diploids with MATa and 
MATalpha haploid progeny for the MATa SGA kan x MATα nat cross (parent set 5 x parent set 4) 

Additional Data Figure 8: Comparison of double mutant heterozygous diploids with MATa and 
MATα haploid progeny for the MATa SGA nat x MATα kan cross (parent set 3 x parent set 6) 

Additional Data Table 1: Colony size data for all double mutant haploid progeny selected for on 
YPD+G418/nat. 

Additional Data Table 2: Growth rates for single mutant parents on all media types 

Additional Data Table 3: Growth rates for MATa and MATα double mutant progeny from the 
MATa kan x MATα SGA nat cross (parent set 1 x parent set 8) on all media types 

Additional Data Table 4: Growth rates for MATa and MATα double mutant progeny from the 
MATa nat x MATα SGA kan cross (parent set 2 x parent set 7) on all media types 

Additional Data Table 5: Growth rates for MATa and MATα double mutant progeny from the 
MATa SGA kan x MATα nat cross (parent set 5 x parent set 4) on all media types 

Additional Data Table 6: Growth rates for MATa and MATα double mutant progeny from the 
MATa SGA nat x MATα kan cross (parent set 3 x parent set 6) on all media types 

Additional Data Table 7: Fitness scores for single mutant parents on all media types 

Additional Data Table 8: Fitness scores for MATa and MATα double mutant progeny from the 
MATa kan x MATα SGA nat cross (parent set 1 x parent set 8) on all media types 

Additional Data Table 9: Fitness scores for MATa and MATα double mutant progeny from the 
MATa nat x MATα SGA kan cross (parent set 2 x parent set 7) on all media types 

Additional Data Table 10: Fitness scores for MATa and MATα double mutant progeny from the 
MATa SGA kan x MATα nat cross (parent set 5 x parent set 4) on all media types 
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Additional Data Table 11: Fitness scores for MATa and MATα double mutant progeny from the 
MATa SGA nat x MATα kan cross (parent set 3 x parent set 6) on all media types 

Additional Data Table 12: Genetic interaction scores for double mutant progeny from all 
crosses on all media types. Monogenic crosses and crosses where a parent was not generated 
or had a fitness score of zero are marked NA. 
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Table 1. List of 36 cell cycle regulator genes used in the crosses 
Gene Function Gene Function Gene Function 

B
C

K
2 Pos regulator of START. 

C
LN

2  Pos regulator of G1-S. G1 cyclin 
activator of Cdc28. Paralog of CLN1. 

S
IC

1  

Neg regulator of G1-S. 
Stoichiometric inhibitor of CDK 
(CKI) Cdc28-Clb complexes. 

B
FA

1 

Neg regulator of M-G1. Spindle 
Position Checkpoint (SPOC). 
Subunit of Tem1 GTPase-activating 
protein with Bub2.  

C
LN

3 

Pos regulator of START. Promotes 
transcription of CLN1 and CLN2. G1 
cyclin activator of Cdc28. CLN2 
paralog. 

S
S

A
1  

Pos regulator of START. Cytosolic 
HSP70 protein. Forms co-
chaperone complex with Ydj1. 
Involved in reversing sequestration 
of CLN3 mRNAs by Whi3, and 
stress-response. 

B
U

B
1 

Neg regulator of Metaphase-
Anaphase. Spindle Assembly 
Checkpoint (SAC). Forms complex 
with Bub3 to catalyze formation of 
Mad-Cdc20 Mitotic Checkpoint 
Complex (MCC). 

FK
H

1 

Pos regulator of G2-M among other 
chromatin functions. Transcription factor 
that is partially redundant with FKH2, 
but they often have opposite effects.  

S
W

E
1 

Neg regulator of G2-M. 
Morphogenesis Checkpoint. Protein 
kinase phosphorylates and inhibits 
Cdc28-Clb. Homolog of S. pombe 
Wee1. 

B
U

B
2 

Neg regulator of M-G1. Spindle 
Position Checkpoint (SPC). Subunit 
of Tem1 GTPase-activating protein 
with Bfa1.  FK

H
2 

Pos regulator of G2-M among other 
chromatin functions. Transcription factor 
that is partially redundant with FKH1, 
but they often have opposite effects. S

W
I4

 

Pos regulator of START. 
Transcription factor for late G1 
genes. Forms complex with Swi6 to 
form SBF, which is partially 
redundant with MBF. 

B
U

B
3 

Neg regulator of Metaphase-
Anaphase. SAC. Forms complex 
with Bub1 to catalyze formation of 
Mad-Cdc20 MCC. IB

D
2 

Neg regulator of M-G1. SPC. Interacts 
with Bfa1 and epistatic to Bfa1-Bub2. 

S
W

I5
 Pos regulator of M-G1. 

Transcription factor for late M and 
G1 genes. 

C
D

C
55

 

Pos regulator of G2-M and SAC 
signaling. Inhibits M-G1. Regulatory 
subunit of protein phosphatase 2A 
(PP2A). Homolog of mammalian 
B55. LT

E
1 

Positive regulator of M-G1. Unknown 
function, but epistatic to mitotic exit 
network (MEN). 

S
W

I6
 

Pos regulator of START. 
Transcription factor for late G1 
genes. Forms complex with Swi4 to 
form SBF, and with Mbp1 to form 
MBF. Interacts with co-repressor 
Whi5. 

C
D

H
1  

Pos regulator of M-G1. Activator of 
the APC. Homolog of Cdc20. 

M
A

D
1  

Neg regulator of Metaphase-Anaphase. 
SAC. Forms complex with Bub3 to 
catalyze formation of Mad-Cdc20 MCC. 

W
H

I3
 Neg regulator of START. RNA 

binding protein that sequesters 
CLN3 mRNA in cytoplasm. Paralog 
of WHI4. 

C
LB

1  

Pos regulator of G2-M. B-type 
cyclin activator of Cdc28. Paralog of 
CLB2. 

M
A

D
2  

Neg regulator of Metaphase-Anaphase. 
SAC. Forms complex with Mad3/Cdc20 
to form MCC. Inhibits Anaphase 
Promoting Complex (APC). W

H
I4

 

Neg regulator of START. Loss of 
Whi4 alone has no effect on cell 
cycle,but does enhance cell cycle 
phenotypes of whi3 mutants. 
Paralog of WHI3. 

C
LB

2  Pos regulator of G2-M. B-type 
cyclin activator of Cdc28. Paralog of 
CLB1. M

A
D

3  Neg regulator of Metaphase-Anaphase. 
SAC. Forms complex with Mad2 and 
Cdc20 to form MCC. Inhibits APC. W

H
I5

 Neg regulator of START. Co-
repressor with SBF and MBF. 
Homolog of Nrm1. 

C
LB

5  

Pos regulator of DNA replication. 
Also, involved in spindle dynamics 
during M. B-type cyclin activator of 
Cdc28. Paralog of CLB6. 

M
B

P
1 

Pos regulator of START. Transcription 
factor forms complex with Swi6 and 
partially redundant with Swi4-Swi6 
transcription factor SBF. 

Y
D

J1
 

Pos regulator of START. Cytosolic 
HSP70 protein. Forms co-
chaperone complex with Ssa1. 
Involved in reversing sequestration 
of CLN3 mRNAs by Whi3 and 
stress-response. 

C
LB

6  

Pos regulator of DNA replication. 
Also, involved in spindle dynamics 
during M. B-type cyclin activator of 
Cdc28. Paralog of CLB5. M

S
N

5 

Pos regulator of G1-S. Karyopherin 
exportin involved in nuclear export of 
Swi5 and Swi6. 

Y
H

P
1 

Promotes proper timing of M and 
G1 transcription. Transcriptional co-
repressor with Mcm1. Paralog of 
YOX1. 

C
LN

1 

Pos regulator of G1-S. G1 cyclin 
activator of Cdc28. Paralog of 
CLN2. 

N
R

M
1 

Pos regulator of G1-S. Co-repressor 
with MBF during S-phase. Homolog of 
Whi5. 

Y
O

X
1  

Promotes proper timing of M and 
G1 transcription. Transcriptional co-
repressor with Mcm1. Paralog of 
YHP1. 
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Table 2. Comparison of observed synthetic lethal interactions with those previously documented, those predicted by the 
Kraikivski model19, and our new model. For previously documented SL interactions, it is noted whether they were manually 
curated or derived from a high-throughput (HTP) screen. The “SL score” highlights the number of crosses in our screen that 
support synthetic lethality out of the total number of replicates.  Double mutant combinations are reported as synthetic lethal 
(SL), viable (V), or having reduced viability (RV). More than one reported TA result indicates that the TA was repeated for two or 
more crosses. Results marked with an asterisk are lower confidence due to poor spore viability. Cases where spore viability was 
too low to determine synthetic lethality are marked MD to indicate a possible meiotic defect. Rows shaded orange mark likely 
synthetic lethal interactions. Rows shaded blue mark likely viable interactions. Instances where the model does not support the 
‘high confidence’ interactions are bolded. 

Gene 1 Gene 2 Documented Observed Kraikivski 
Model 

New 
Model Method Refs SL SL Score TA 

BCK2 CDH1 
  

Y 5/14 V, V, V V V 

 
BCK2 CLN3 Manual 33, 77-81 Y 6/12 SL*, SL, RV SL SL 
BCK2 SWI4 HTP 82 

 
2/16 V, V, V V V 

BCK2 SWI6 Manual 33 
 

3/6 V, V, V SL SL 
BFA1 BUB3 HTP 38 

 
1/10 V 

 
 

BFA1 LTE1 Manual 83 
 

0/16 V, V, V 
 

 
BUB1 CLB5 Manual 31 Y 6/8 SL*, SL* 

 
 

BUB1 SIC1 Manual 84 Y 5/8 V, SL, MD, V 
 

 
BUB1 SWI6   Y 6/10 RV*, RV*   
BUB2 CDC55 

  
Y 4/8 V, V V V 

BUB3 CDH1 HTP 62 
 

2/10 V 
 

 
BUB3 CLB1 HTP 62 

 
0/8 V 

 
 

BUB3 CLB5 HTP/manual 31, 62 Y 5/10 SL 
 

 
BUB3 SIC1 HTP 62 Y 5/8 SL 

 
 

BUB3 SWI4 
  

Y 7/12 V, V 
 

 
BUB3 SWI6 

  
Y 4/10 V, SL 

 
 

BUB3 YDJ1 HTP 62 
 

0/2 V 
 

 
CDC55 CDH1 

  
Y 6/10 SL*, V, MD V V 

SL 
CDC55 CLB5 

  
Y 7/10 SL, RV V SL 

CDC55 LTE1 
  

Y 5/10 SL, RV V V 
CDC55 MSN5 Manual 85 

 
1/6 V, V, RV* 

 

 
 

CDC55 NRM1 
  

Y 5/8 V, V 
 

 
 

CDC55 SWI4 
  

Y 4/12 V, V, MD V V 
CDC55 WHI3 

  
Y 4/8 MD, MD 

 
 

CDH1 CLB5 
   

0/16 V SL V 
CDH1 CLN3 

   
2/16 V SL V 

CDH1 LTE1 
   

2/16 V,RV, MD 
 

SL V 
CDH1 MAD1 HTP 62 Y 4/12 RV, V 

 
 

CDH1 MAD2 HTP 62 Y 6/16 V, MD, V SL SL 
CDH1 SIC1 HTP/manual 84, 86 Y 4/14 SL SL SL 
CDH1 SSA1 

   
0/2 

 
SL V 

CDH1 SWI4 HTP 82 
 

0/18 V, V, V V V 
CDH1 SWI5 Manual 87 Y 10/16 SL, RV* SL SL 
CDH1 SWI6 

  
Y 7/12 SL, V, MD, MD SL SL 

CDH1 WHI5 HTP 82 Y 4/18 V, RV* SL SL 
CDH1 YDJ1 

   
2/4 SL, V, RV SL V 

CLB1 CLB2 Manual 88-91 Y 4/12 SL, SL SL SL 
CLB2 MAD2 HTP 62 

 
0/14 V V V 

CLB2 SWI6 
   

1/10 V SL V 
CLB2 SIC1 Manual 92, 93 

 
0/12 V, V V V 

CLB5 SIC1 Manual 92, 93 
 

0/14 V, V, RV V V 
CLB5 SWI4 Manual 94 Y 10/18 RV*, SL SL SL 
CLB5 SWI6 Manual 94 Y 4/12 V, V, SL SL SL 
CLN3 SWI4 HTP, manual 33, 82 

 
2/18 V, V, V, V 

 
SL V 

LTE1 MAD2 
   

1/16 V SL V 
LTE1 SIC1 HTP 84 

 
3/14 V*, SL V V 

LTE1 SWI6 
   

1/12 V SL V 
LTE1 YDJ1 HTP 95 

 
2/4 SL, SL, V V V 

MAD1 SIC1 HTP 62 
 

0/10 V 
 

 
MAD2 SIC1 HTP 62 

 
1/14 V, V V V 

MAD2 WHI5 HTP 62 
 

1/18 V V V 
MAD3 SIC1 HTP 62 

 
0/10 V 

 
 

MBP1 SWI4 Manual 78, 96 Y 15/20 SL SL SL 
MSN5 SWI4 Manual 97, 98 Y 4/8 V 

 
 

MSN5 SWI6 Manual 97, 98 
 

2/4 RV, V 
 

 
SWI4 SWI6 Manual 33, 99, 100 Y 12/14 RV*, V*, MD SL SL 
SWI4 YDJ1 

   
2/6 V SL V 

SWI6 WHI3 
  

Y 4/10 V, V 
 

 
Total # SL intractions 36 29 (6 viable by TA) 22 13 
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 Table 3. Genetic interaction score outliers for each media type. Consensus genetic interaction (GI) scores are reported for 
each gene combination that 
had a score in the top or 
bottom 5% of overall GI scores 
for one or more media types. 
The number reported reflects 
the midpoint of the bin 
occupied by the largest 
number of biological 
replicates. Red and green 
shading highlights negative 
and positive scores, 
respectively. The top 2.5% and 
5% are shaded light and dark 
green, respectively. The 
bottom 2.5% and 5% are 
shaded light and dark red, 
respectively. Interactions 
which we determined to be 
very likely synthetic lethal are 
shown in bold. “ND” indicates 
GI scores that were not 
determined. 

 

 

  YPD YPR YPG YPD+Ben YPD+CPT YPD-HU 
BCK2 CDC55 0.327 0.126 0.040 0,163 0.175 0.401 
BCK2 CLN3 -0.113 0.126 0.088 -0.797 -0.834 0.084 
BCK2 SWI6 -0.918 -0.703 -0.824 -0.317 -0.229 -0.397 
BCK2 WHI3 0.107 0.126 0.040 0.403 -0.027 0.084 
BFA1 CDC55 0.107 0.347 0.256 -0.077 0.175 0.202 
BFA1 SWI4 -0.113 -0.095 -0.176 0.403 -0.027 0.084 
BFA1 SWI6 -0.113 0.126 -0.295 0.403 -0.027 -0.279 
BUB1 CLB5 -0.332 -0.537 -0.608 -0.077 -0.138 -0.320 
BUB1 SIC1 -0.475 -0.095 -0.057 -0.077 -0.027 -0.279 
BUB1 SWI6 -0.552 -0.095 -0.392 -0.077 -0.431 -0.279 
BUB1 SWI6 -0.332 -0.460 0.040 -0.077 0.377 0.265 
BUB1 YOX1 0.107 -0.095 0.040 0.055 0.377 -0.279 
BUB2 SWI6 0.327 -0.095 0.180 -0.077 0.084 0.472 
BUB3 CDH1 0.547 0.445 -0.532 -0.077 0.306 0.472 
BUB3 CLB5 -0.332 -0.537 -0.532 -0.077 -0.027 -0.279 
BUB3 MSN5 0.327 0.126 0.256 -0.077 0.175 0.084 
BUB3 SIC1 -0.332 -0.442 -0.532 -0.077 -0.431 0.027 
BUB3 SSA1 0.341 0.3914 0.256 0.143 0.389 0.276 
BUB3 SWE1 0.327 0.126 0.180 -0.077 0.579 0.401 
BUB3 SWI4 -0.113 -0.551 0.040 -0.077 -0.431 -0.461 
BUB3 SWI6 -0.332 0.513 0.616 -0.077 -0.229 -0.279 
BUB3 WHI3 0.547 0.126 0.256 0.055 0.377 0.401 
CDC55 CDH1 -0.332 0.347 -0.176 -0.209 -0.027 -0.098 
CDC55 CLB6 0.327 0.347 0.256 0.163 0.175 0.084 
CDC55 CLN1 -0.475 0.126 0.088 -0.317 -0.027 -0.098 
CDC55 CLN2 -0.233 0.027 -0.176 -0.317 -0.027 0.447 
CDC55 FKH1 0.107 0.347 0.256 -0.077 -0.027 0.447 
CDC55 FKH2 0.327 0.665 0.472 0.163 0.175 0.276 
CDC55 LTE1 -0.113 -0.095 -0.532 -0.077 -0.027 -0.098 
CDC55 MAD3 0.327 0.716 0.418 -0.077 -0.027 0.265 
CDC55 MSN5 0.327 0.108 0.256 0.163 -0.027 0.447 
CDC55 SIC1 0.107 0.568 0.418 -0.077 0.898 0.447 
CDC55 SWE1 0.492 0.347 0.256 0.163 0.175 0.401 
CDC55 SWI4 -0.552 -0.316 -0.392 -0.209 -0.027 -0.098 
CDC55 SWI5 0.107 0.347 0.256 0.163 0.175 0.447 
CDC55 SWI6 -0.233 -0.095 -0.176 0.163 -0.027 0.810 
CDC55 WHI3 0.250 0.568 0.688 0.163 0.377 0.628 
CDC55 WHI4 0.425 0.347 0.256 0.163 0.306 0.628 
CDC55 WHI5 0.327 0.347 0.256 0.163 0.175 0.447 
CDC55 YDJ1 0.327 0.568 0.688 0.403 0.377 0.447 
CDC55 YHP1 0.156 0.347 0.352 -0.077 0.175 0.447 
CDC55 YOX1 -0.113 0.126 0.256 0.163 0.175 0.447 
CDH1 CLB2 -0.113 -0.095 0.040 -0.473 -0.344 0.084 
CDH1 CLB5 0.107 0.126 0.040 0.163 0.377 0.084 
CDH1 FKH1 0.008 0.027 0.040 0.163 0.377 0.265 
CDH1 MAD1 0.008 0.057 -0.176 0.403 0.084 -0.098 
CDH1 MAD2 0.250 0.126 0.040 0.055 -0.027 -0.461 
CDH1 SIC1 0.250 0.347 0.040 -0.077 -0.027 0.265 
CDH1 SWI5 -0.772 -0.758 -0.608 -0.557 -0.6325 -0.642 
CDH1 SWI6 -0.552 -0.703 -0.392 -0.557 -0.229 -0.279 
CDH1 WHI3 0.250 0.347 0.256 0.163 0.175 0.265 
CDH1 YDJ1 -0.552 -0.758 -0.392 -0.077 -0.027 -0.279 
CLB2 CLB5 0.008 -0.095 -0.176 -0.797 0.667 0.265 
CLB2 FKH2 -0.113 -0.095 -0.176 -0.209 -0.431 -0.098 
CLB2 SWI6 0.425 0.347 0.472 0.163 0.780 0.628 
CLB5 CLN1 0.107 0.126 -0.057 0.163 0.377 0.084 
CLB5 CLN2 0.107 0.126 0.040 0.163 0.377 0.265 
CLB5 MBP1 0.107 0.126 0.256 0.319 0.377 0.124 
CLB5 SIC1 -0.113 0.126 -0.176 0.163 0.377 0.084 
CLB5 SWI4 -0.772 0.126 -0.824 -1.037 -0.229 -0.461 
CLB5 SWI6 -0.552 -0.316 -0.608 -0.797 -0.027 -0.279 
CLB6 MBP1 0.107 0.126 0.180 0.403 -0.027 0.084 
CLB6 SWI6 0.107 0.126 0.040 0.403 0.084 0.084 
CLB6 WHI3 0.107 0.126 0.040 0.163 -0.360 -0.098 
CLN1 SSA1 0.107 0.126 -0.057 0.319 0.377 0.265 
CLN1 SWI6 0.107 0.126 0.040 0.403 0.377 0.084 
CLN1 YHP1 -0.113 -0.095 -0.176 0.163 -0.360 0.084 
CLN3 WHI3 -0.113 0.126 0.040 0.403 -0.027 -0.098 
CLN3 YDJ1 -0.552 -0.758 -0.608 -0.557 -0.027 -0.279 
FKH1 FKH2 -0.332 -0.095 -0.392 -0.557 -0.6325 0.084 
FKH1 SWI6 0.107 0.347 0.256 0.163 -0.138 0.265 
FKH1 WHI3 0.107 0.126 0.040 0.403 -0.027 0.084 
FKH2 LTE1 -0.113 0.126 0.040 0.403 0.084 0.401 
FKH2 MBP1 0.327 0.126 0.040 -0.209 0.084 0.002 
FKH2 SIC1 -0.233 0.126 -0.176 0.403 -0.027 0.265 
FKH2 WHI4 -0.113 0.126 0.418 0.055 0.084 0.084 
FKH2 YDJ1 -0.113 -0.095 -0.176 -0.557 -0.027 -0.279 
FKH2 YOX1 0.107 -0.095 0.472 0.403 -0.166 0.265 
LTE1 SWI6 0.156 -0.095 0.418 -0.209 -0.027 0.265 
LTE1 YDJ1 -0.458 -0.095 -0.176 -0.077 -0.027 -0.223 
MAD1 SWI4 -0.113 0.126 0.040 0.403 -0.027 0.084 
MAD2 SWI4 0.107 0.126 -0.057 0.643 -0.027 0.084 
MAD3 MSN5 -0.113 0.027 0.040 0.403 -0.027 0.084 
MAD3 SWI4 -0.113 0.027 -0.176 0.403 -0.027 0.265 
MAD3 SWI6 0.107 0.126 -0.057 0.403 0.084 -0.098 
MBP1 SWI4 -0.991 -0.979 -0.824 -1.277 -0.834 -0.461 
MSN5 SWI4 -0.113 -0.095 -0.176 -1.037 -0.229 -0.279 
MSN5 SWI6 -0.772 -0.758 -0.608 -1.037 -0.229 -0.461 
SIC1 SWI6 -0.113 0.126 0.040 -0.077 0.377 0.256 
SIC1 WHI3 0.107 0.347 0.180 -0.077 -0.027 0.084 
SSA1 SWI4 -0.113 0.126 0.256 0.403 -0.037 0.447 
SSA1 WHI3 ND -0.399 -0.473 ND -0.767 ND 
SSA1 YHP1 -0.332 -0.095 -0.176 -0.077 -0.360 -0.098 
SWE1 YDJ1 0.008 0.126 0.256 0.163 0.713 0.526 
SWI4 SWI6 -0.772 -0.758 -0.608 -0.797 -0.229 -0.279 
SWI5 SWI6 0.008 -0.095 -0.608 -0.077 -0.360 -0.397 
WHI3 YDJ1 -0.991 -0.758 -0.824 -0.557 -1.0361 -1.0053 
WHI5 YDJ1 -0.475 -0.537 -0.392 -0.077 -0.027 -0.279 
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Figure 1. Simplified representation of experimental workflow. Example of a single cross plate where two MATa “bait” strains 
in which the gene of interest (GOI) was knocked out (KO) with a kanamycin resistant marker (kanMX, also confers resistance to 
G418) are each crossed to the 36 MATa “hit” strains in which the gene of interest was knocked out with a nourseothricin-
resistant marker (natMX). Heterozygous diploids were selected for on media containing both antibiotics, and then sporulated 
on standard sporulation media. The sporulated colonies were pinned onto a series of specialized SGA media that select for 
MATa and MATa haploid progeny. Positions on the double mutant haploid plates that would have resulted in “monogenic 
crosses” (where the same gene of interest was knocked out in both parents) or “single parent crosses” (where one of the 
parent positions was empty) were monitored for potential false-negatives. The double mutant haploid progeny were used to 
identify synthetic lethal interactions (Figure 2 and Figure 3) and then pinned in quadruplicate on a fresh YPD plate. WT controls 
were added, and the resulting master plate was pinned onto six different media types for phenotyping (Figure 4 and Figure 5). 
Phenotyping plates were imaged every 12 hours to monitor growth rates. 
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Figure 2. Binary assessment of colony growth for double mutants in all four sets of crosses. Figures on the left were derived 
from MATa progeny. Figures on the right were derived from the sister MATa progeny. MATa parents are organized along the x-
axis and MATa parents are organized along the y-axis alphabetically by the gene that was knocked out. Rows or columns 
shaded light grey indicate positions on the plate that should have been empty, because the parent was never generated. The 
diagonal in each heat map indicates a cross between two parents in which the same gene was knocked out. These should not 
result in growth under selection. Red cells indicate unexpected growth and are an indication of the false negative rate. Rows 
and columns shaded dark grey indicate parents that were never generated or were excluded from the analysis, because at least 
one third of the progeny resulting from that parent failed to grow. Duplicates of the same gene/marker combination within the 
same cross are not shown. Total number of crosses (excluding monogenic) =7350 A & B) Cross 1. C & D) Cross 2. E & F) Cross 3. 
G & H) Cross 4.  
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Figure 3. Likely synthetic lethal interactions determined by compiling data from all crosses. A) Table documenting how many 
crosses supported synthetic lethality (no growth of the double mutant progeny). Synthetic lethal interactions that we designate 
as ‘high-confidence’ in Table 2 are outlined in black B) Venn-Diagram comparing observed SL interactions with those that have 
been previously documented and/or predicted by the Kraikivski model. Note: clb2∆ clb5∆ is excluded as these genes are linked. 
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Figure 4. Comparison of fitness scores for double mutants in all four sets of crosses on YPD media. Figures on the left were 
derived from MATa progeny. Figures on the right were derived from the sister MATa progeny. MATa parents are organized 
along the x-axis and MATa parents are organized along the y-axis alphabetically by the gene that was knocked out. Rows and 
columns shaded dark grey indicate crosses that were not performed or were excluded from the analysis. A & B) Cross 1 C & D) 
Cross 2. E & F) Cross 3 G & H) Cross 4. Fitness heatmaps for the remaining 5 media types are available is Figures S3-S7. 
Duplicates of the same gene/marker combination within the same cross are not shown. 
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Figure 5. Genetic interaction scores on each media type determined by compiling data from all crosses. Heat maps show the 
distribution of binned genetic interaction (GI) scores for each mutant combination. Brighter green and darker red squares 
correspond to higher positive and lower negative GI scores, respectively. Grey squares denote gene combinations for which 
three or fewer crosses were generated. Histograms show the overall distribution of GI scores for each media type. The dotted 
red lines distinguish the lower and upper 5% of interactions. A: YPD; B: YPD + raffinose; C: YPD + galactose, D: YPD + benomyl; 
E: YPD + camptothecin, F: YPD + hydroxyurea 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2019. ; https://doi.org/10.1101/785840doi: bioRxiv preprint 

https://doi.org/10.1101/785840
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2019. ; https://doi.org/10.1101/785840doi: bioRxiv preprint 

https://doi.org/10.1101/785840
http://creativecommons.org/licenses/by-nc-nd/4.0/

