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Abstract

As medical  imaging  enters  its  information  era  and  presents  rapidly  increasing  needs  for  big  data
analytics,  robust  pooling  and  harmonization  of  imaging  data  across  diverse  cohorts  with  varying
acquisition  protocols  have  become  critical.  We describe  a  comprehensive  effort  that  merges  and
harmonizes a large-scale dataset of 10,232 structural brain MRI scans from participants without known
neuropsychiatric disorder  from 18 different studies that represent geographic diversity. We use this
dataset and multi-atlas-based image processing methods to obtain a hierarchical partition of the brain
from larger anatomical regions to individual cortical  and deep structures and derive normative age
trends of brain structure through the lifespan (3 to 96 years old). Critically, we present and validate a
methodology for harmonizing this pooled dataset in the presence of nonlinear age trends. We provide a
web-based visualization  interface  to  generate  and present  the  resulting  age  trends,  enabling  future
studies of brain structure to compare their data with this normative reference of brain development and
aging, and to examine deviations from normative ranges, potentially related to disease.

1. Introduction

Structural brain changes have been studied at  various stages of the lifespan in relation to age and
neurodegenerative diseases and conditions (Fjell and Walhovd, 2010; Habes et al., 2016), as well as to
brain development (Courchesne et al., 2000; Sowell et al., 2001; Toga et al., 2006). A large number of
imaging studies reported findings on age-related changes in brain structure during adolescence, early
adulthood, and late adulthood (Giedd et al., 1999; Driscoll et al., 2009; Mills et al., 2016; Pfefferbaum
et al., 1994; Tamnes et al., 2010; Terribilli et al., 2011). Traditionally, most neuroimaging studies have
been limited to analyses on single-center homogeneous datasets carefully constructed using acquisition
protocols that aim to minimize instrument-related variability in the data. However, in recent years there
is  an  increasing  trend  towards  data  sharing  in  neuroimaging  research  communities,  with  multiple
collaborative efforts for pooling existing data resources to form large, diverse samples covering a wide
age range (Alfaro-Almagro et al., 2019; Thompson et al., 2014). Such collective efforts are critical for
enabling development  of diagnostic  and prognostic  biomarkers  that  apply across  different  imaging
equipment as well as across the broad spectrum of demographics, which is essential for translation of
neuroimaging research into clinical settings.

A number  of  studies  have  shown the  importance  of  mega-analyses  combining data  from multiple
cohorts.  For  example,  data  from  the  multi-site  ENIGMA  Consortium  have  been  found  to  link
volumetric abnormalities with post-traumatic stress disorder (Logue et al., 2018), schizophrenia (Van
Erp et al., 2016), and major depressive disorder (Schmaal et al., 2016). However, there are important
challenges in combining imaging data from multiple studies and sites. A major challenge is the lack of
standardization  in  image  acquisition  protocols,  scanner  hardware,  and  software.  Inter-scanner
variability has been demonstrated to affect measurements obtained for downstream analysis such as
voxel-based  morphometry  (Takao  et  al.,  2011),  lesion  volumes  (Shinohara  et  al.,  2017),  and DTI
measurements (Zhu et al., 2011). Differences in sample demographics are also an important concern
that should be handled carefully when combining multi-site data (LeWinn et al., 2017). For example,
MR contrast may be confounded by differences in brain water content, which varies across age and
diagnostic groups (Bansal et al., 2013). Finally, large-scale studies ultimately require robust and fully
automated pipelines without the need to manually inspect and correct large sets of data, which is both
time-consuming, subjective, and less likely to be adopted clinically.
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In this paper we present a major effort designed to create the cross-sectional LIFESPAN dataset for
quantitative characterization of structural changes in brain anatomy through the human lifespan from
age 3 to 96. For this purpose, structural brain MRI scans from 18 studies were pooled together, creating
a large, and most importantly, diverse sample (N=10,232). Although our focus is on structural MRI, our
methodologies are applicable to any kind of imaging data. We test the robustness of a fully automated
and  standardized  multi-atlas  labeling  pipeline,  namely  MUSE: Multi-atlas  region  Segmentation
utilizing  Ensembles  of  registration  algorithms  and  parameters  and locally  optimal  atlas  selection
(Doshi et al., 2016), which segments the brain into a set of hierarchically predefined regions of interest
(ROIs)  and measures the volume of each of these regions.  A notable advantage of  the multi-atlas
segmentation methodology is that it computes the consensus labeling of a large ensemble of reference
atlases,  and  hence  simultaneously  provides  mechanisms  for  selecting  atlases  based  on  their  local
similarity  to  the  target  scan  during  the  label  fusion.  The  reference  atlases  represent  anatomical
variability across participants that span a wide age range, thus enabling a more robust segmentation
across highly heterogeneous datasets.

The harmonization approach presented in this paper addresses the unique challenge of combining 18
studies from diverse age ranges in the presence of nonlinear age-related changes in brain volumes.
Through the lifespan, the brain structure changes as a result of a complex interplay between multiple
maturational and neurodegenerative processes. The effect of such processes could yield large spatial
and temporal variations on the brain (Toga et al., 2006). A parsimonious model of age, such as a linear
or  quadratic  model,  is  unlikely  to  sufficiently  capture  the  relationship  between  age  and  volume
throughout the lifespan (Fjell et al., 2010; Ziegler et al., 2012). Additionally, studies in our dataset did
not overlap entirely on age, making techniques based on sample matching infeasible (Karayumak et al.,
2019).

In order to capture non-linearities in age-related volume changes in brain anatomy through the lifespan,
we propose to fit a generalized additive model (GAM) with a penalized nonlinear term to describe age
effects (Hastie and Tibshirani, 1986; Wood, 2017). Within a single model, we estimated the location
(mean) and scale (variance) differences in imaging measurements across sites. In the absence of ground
truth, we performed simulation experiments to evaluate the harmonization performance across various
conditions of sample composition. The simulation experiments leverage a large single-scanner study
covering the entire adult lifespan to serve as an estimate of ground truth. Sampling this study and using
simulations,  we  evaluate  the  effects  of  sample  demographics  and  relative  sample  sizes  on  the
harmonization accuracy.

Other communities that handle high dimensional data-integration across multiple sites have faced the
necessity of harmonization. Among the available methods, ComBat, which was originally proposed to
remove batch effects in genomics data (Johnson et al., 2007), has been recently adapted to diffusion
tensor imaging data (Fortin et al., 2017), cortical thickness measurements (Fortin et al.,  2018), and
functional connectivity matrices (Yu et al., 2018). The method was shown to remove unwanted sources
of variability, specifically site differences, while preserving variations due to other biologically-relevant
covariates in the data. We adopt and test ComBat in our harmonization pipeline of the LIFESPAN
dataset in conjunction with GAMs, which we refer to as ComBat-GAM. We compared ComBat-GAM
to no harmonization and to ComBat with a linear model, based on their performances on a multi-variate
brain age prediction task.
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Successful harmonization of imaging measurements enabled us to estimate age-related volume changes
for  each  anatomical  region  of  the  LIFESPAN dataset,  which  we  refer  to  as  age  trajectories.  The
resulting age trajectories are supported by the large sample size of the dataset and may serve as a
reference  for  the  neuroimaging  community.  We provide  an  interactive  online  tool  that  will  allow
researchers to visualize the age trajectories of different anatomical regions, as well as to calibrate their
own data with the LIFESPAN dataset, and position user-specific data among the reference trajectories.

2. Material and methods

2.1 MRI datasets

We collected structural MRI (T1) data from 18 studies. The pooled dataset included baseline scans of
typically-developing  and  typically-aging  participants  from  each  study  with  available  age  and  sex
information. We defined typical development and typical aging as the absence of a known diagnosis of
a neuropsychiatric disorder. We considered multi-center imaging studies that undertook efforts to unify
protocols  as  single  studies;  this  includes  the Alzheimer’s Disease Neuroimaging Initiative  (ADNI)
(Jack Jr. et al., 2008), the Baltimore Longitudinal Study of Aging (BLSA) (Armstrong et al., 2019;
Resnick  et  al.,  2003),  the  Coronary  Artery  Risk  Development  in  Young  Adults  study  (CARDIA)
(Friedman et al., 1988), the Pediatric Imaging, Neurocognition, and Genetics study (PING) (Jernigan et
al., 2016), the Philadelphia Neurodevelopmental Cohort (PNC) (Satterthwaite et al., 2016), and UK
Biobank (Alfaro-Almagro et al., 2019). Phases of ADNI (ADNI-1, ADNI-2) and BLSA (1.5T SPGR,
3T MPRAGE) were considered separate  studies  due to  major  scanner  updates.  A single  scan was
included  in  the  LIFESPAN  dataset  for  each  ADNI  and  BLSA  subject.  Table  1  shows  general
characteristics  of  the  study  datasets.  Figure  1  presents  age  distributions  for  each  study  in  the
LIFESPAN dataset, sorted by median age. Scanner models and acquisition protocol parameters in each
dataset are given in Supplementary Table 1. Informed consent was obtained from all participants by the
leading institutions of each individual study in the LIFESPAN dataset.  The Ethics Committee of the
leading institution of each cohort approved its study.
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Table 1. Summary characteristics of the datasets included in the LIFESPAN dataset, sorted by median
age.

Dataset Country of Origin No. Participants No. Females (%) Age Range 
(Median)

PING USA 301 151 (50.2) [3, 21] (12.8)

PNC USA 1,422 742 (52.2) [8, 24] (15.0)

MUNICH Germany 169 52 (30.8) [18, 62] (29.7)

PennBBL USA 164 95 (57.9) [16, 73] (30.2)

CHINA-TAH China 105 61 (58.1) [20, 57] (32.0)

CARDIA USA 693 360 (51.9) [42, 56] (51.0)

SHIP Germany 2,682 1,455 (54.3) [21, 91] (52.8)

PAC-WASH USA 239 148 (61.9) [42, 76] (61.5)

PAC-WISC USA 122 85 (69.7) [48, 73] (62.2)

UKBIOBANK United Kingdom 2,151 1,159 (53.9) [45, 80] (64)

PAC-JHU USA 92 56 (60.9) [42, 88] (68.3)

BLSA-3T USA 935 501 (53.6) [24, 96] (69.9)

ADC USA 103 66 (64.1) [58, 95] (71)

AIBL Australia 429 242 (56.4) [60, 92] (73)

ADNI-2 USA 312 170 (54.5) [56, 95] (73.1)

BLSA-1.5T USA 91 35 (38.5) [56, 86] (73.1)

PennPMC USA 40 21 (52.5) [50, 85] (75)

ADNI-1 USA 182 84 (46.2) [59, 89] (75.8)

LIFESPAN 
dataset

10,232 5,483 (53.6) [3, 96] (56.0)
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Figure 1: Age distributions of studies that are part of the LIFESPAN dataset, sorted by median age.
The study with youngest median age, PING, contains participants from age 8 to 24. The study with
oldest median age, ADNI-1, contains participants from age 59 to 89.

2.2 MRI image processing

A fully  automated  processing  pipeline  was  applied  to  each  participant’s  T1-weighted  scan.  Pre-
processing involved correction of magnetic field intensity inhomogeneity (Tustison et al., 2010) and
skull-stripping, i.e.  extraction of brain tissues, using a multi-atlas method (Doshi et  al.,  2013). For
segmenting each T1 scan into a set of pre-defined anatomical regions of interest (ROIs) we used a
multi-atlas,  multi-warp  label-fusion  method,  MUSE  (Doshi  et  al.,  2016),  which  has  obtained  top
accuracy in comparison to multiple benchmark methods in independent  evaluations (Asman et al.,
2013). In this framework, multiple atlases with semi-automatically extracted ground-truth ROI labels
are first warped individually to the target image using two different non-linear registration methods. A
spatially  adaptive  weighted  voting  strategy  is  then  applied  to  fuse  the  ensemble  into  a  final
segmentation. This procedure was used to segment each image into 145 ROIs spanning the entire brain.
We calculated the volumes of these 145 ROIs, as well as the volumes of 113 composite ROIs that were
obtained by combining individual ROIs into larger anatomical regions following a pre-defined ROI
hierarchy. A list of the ROIs used in the LIFESPAN dataset is given in Supplementary Table 2.
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2.3 Quality control of extracted variables

A systematic fully-automated quality control (QC) procedure guided by final outcome variables was
conducted to identify and exclude cases of low quality. This procedure was applied on a set of 69
representative ROIs, including deep brain structures and sub-lobe level cortical parcellations, as well as
the intra-cranial volume (ICV) (Supplementary Table 3). Volumes of selected ROIs were corrected for
ICV and z-score transformed independently for  each dataset  in  order  to  identify data  outliers.  We
defined outliers as volumes that were greater than three standard deviations (SD) away from the within-
study sample mean of the specific ROI. All scans that included at least three outlier ROIs were flagged
for exclusion and investigation. In total, 254 scans were excluded based on this automated procedure,
comprising 2.42% of the original sample (Supplementary Table 4).

2.4 Harmonization of imaging variables

We harmonized individual ROI volumes using a model that builds upon the statistical harmonization
technique proposed in Johnson et al. (2007) for location and scale (L/S) adjustments to the data. This
method estimates within a single model the location (mean) and scale (variance) differences in ROI
volumes across sites, as well as variations due to other biologically-relevant covariates in the data that
are  intended to  be  preserved.  Once  estimated,  the  standardized  ROI volumes  can  be  achieved  by
removing location and scale effects due to site differences.

Given Y is the volume of an ROI, a LS adjustment of Y is:

(1) YLS-adjusted = ( (Y – f(X) – gi) / di ) + f(X)

where f(X) denotes the variation of Y captured by the biologically-relevant covariates X, g is a vector of
estimated location effects for each site i, and d is a vector of estimated scale effects for each site i. In
the linear case, f(X) = a + bX and the corresponding adjustment is:

(2) YLS-adjusted = ( (Y – a – Xb – gi) / di ) + a + Xb

To allow for nonlinear age trajectories in ROI volumes informed by real data, we used a Generalized 
Additive Model (GAM) for f(X) in Equation 1. GAMs allow for flexible nonlinearity in X represented 
using a basis expansion. Additionally, penalization in the objective function of the model fitting ensures
the smoothness of f(X) and avoids over-fitting to the observed data (Hastie and Tibshirani, 1986). In our
design, we included a smoothed nonlinear term for age, using thin plate regression splines for basis 
expansion as described in Wood (2003), as well as parametric terms for sex and ICV. The model was 
estimated based on penalized regression splines and the degree of smoothness was internally selected 
using the restricted maximum likelihood (REML) criterion. Accordingly, our harmonized ROI volume 
was estimated as:

(3) YGAM = ( (Y – f(x1, x2, x3) – gi) / di ) + f(x1, x2, x3) 

where  f(x1, x2, x3)  is the estimated function of the covariates age, sex, and ICV, respectively. In our
model, we assumed that f(x1, x2, x3) was nonlinear in age, and linear in sex and ICV, hence:
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(4) f(x1, x2, x3) = a + f1(x1) + b2 x2 + b3 x3

We integrated  the  non-linear  GAM  model  with  the  previously-proposed  framework  of  ComBat
(Johnson et  al.,  2007)  for  the  multivariate  harmonization  of  multiple  ROIs.  The  main  premise  of
ComBat is that location and scale effects for multivariare outcomes, e.g. intensities across voxels or
volumes  across  ROIs,  are  drawn from a  common parametric  prior  distribution.  ComBat  estimates
hyperparameters  of  the  prior  distributions  from the  data  using  empirical  Bayes  framework.  Once
estimated, the hyperparameters are used to compute conditional posterior estimates of all location and
scale  effects  (Johnson  et  al.,  2007).  ComBat  adjusts  volumes  Y using  the  conditional  posterior
estimates. Together with our non-linear GAM model, we have:

(5) YComBat-GAM = ( (Y – f(x1, x2, x3) – g*
i) / d*

i ) + f(x1, x2, x3)

where g* is a vector of conditional posterior estimates of location effects for each site i, and d* is a 
vector of conditional posterior estimates of scale effects for each site i.

2.5 Evaluation of goodness of fit with GAM versus linear and quadratic models on single-site data

We first performed a comparative evaluation of the proposed GAM structure against both linear and
quadratic models on single-site data. For the comparisons we selected three large studies with different
age ranges. The Philadelphia Neurodevelopmental Cohort (PNC) included 1,422 participants from ages
8  to  24  (Satterthwaite  et  al.,  2016).  The  Study  of  Health  in  Pomerania  (SHIP)  included  2,682
participants from ages 21 to 91 (Völzke et al., 2010). The 3-Tesla cohort of the Baltimore Longitudinal
Study of Aging (BLSA-3T) included 935 participants from ages 24 to 96 (Armstrong et al., 2019). For
each ROI, a linear model, a quadratic model, and a GAM with a smoothed nonlinear age term were fit
to predict volumes from age. In all models, sex and ICV were included as additional covariates. The
regression models were applied separately on each of the three study datasets to avoid confounding
with site effects.  We quantified the goodness of fit  by calculating the adjusted R-squared for each
model. Additionally, we used the Chi-square test to examine whether the residual sum of squares (RSS)
were significantly lower using GAMs than other models.

2.6 Simulation experiments

The proposed harmonization model estimates a non-linear relationship between ROI volumes and age.
The accuracy of the estimated age trajectory from multi-site data is a critical metric for harmonization
performance. However, due to lack of ground-truth data, evaluations using real data were not possible.
Therefore,  we  performed  simulation  experiments  for  assessing  the  effect  of  harmonization  in  the
presence of known site effects for two different conditions. Toward this goal, we leveraged the large
single-site SHIP study dataset (N=2,682) spanning ages 21 through 91.

In all experiments, we simulated volumes of the hippocampus for three hypothetical sites (named Site-
A, Site-B and Site-C), using actual hippocampus volumes from SHIP. A ground truth age trajectory was
first estimated on the entire SHIP data using a GAM model with a nonlinear term for age (sex and ICV
effects were ignored for the simulations). For each of the 3 sites, we randomly sampled data following
the sample size and age range constraints imposed by each experiment. Site-specific location and scale
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effects  were  then  introduced  on  actual  hippocampus  volumes  to  generate  the  simulated  datasets
independently for each of the two experiments.
 
We performed harmonization using the LS adjustment with GAM method. The error of the estimated
age trajectory after harmonization was quantified as the mean absolute error (MAE) over 100 equally-
spaced age grid-points along the estimated trajectory versus the ground truth trajectory, standardized by
the  mean  ROI  volume,  to  produce  relative  Mean  Absolute  Error  (rMAE).  In  all  steps  of  the
experiments,  we  repeated  the  simulation  100  times  to  obtain  robust  measures  of  estimated  age
trajectory error.
 
i. Effect of degree of overlap in the age ranges of data sites

Simulation  Experiment  I  aimed to  study the  sensitivity  of  the  proposed method to  the  amount  of
overlap in age ranges between harmonized datasets. For this purpose, we fixed the age ranges of Site-A
and Site-C (30 to 50 and 60 to 80 years respectively), while allowing a 30-year sliding age range for
Site-B that varies from younger (30 to 60 years) to older (50 to 80 years). All sites had equal sample
sizes of 500.

ii. Effect of balancing sample sizes

Simulation Experiment II was designed to investigate harmonization of sites with unbalanced sample
sizes. We assessed the effects of sub-sampling from a relatively larger site to create a balanced sample
composition. Our main hypothesis was that leaving some data out of the harmonization in order to
generate datasets balanced sample sizes might lead to more accurate alignment across studies. For this
purpose, we fixed the sample size of sites A and C to 100, and varied the size of Site-B by randomly
sub-sampling from 400 participants. We compared harmonization results using the complete Site-B
sample (n=400) versus harmonization after sub-sampling Site-B by 50% (n=200) and 75% (n=100).

2.7 Harmonization of volumetric measurements from the LIFESPAN dataset

We applied ComBat-GAM on each of the 145 anatomical ROIs using the complete LIFESPAN sample
to remove location and scale effects for each ROI.

Similar to Fortin et al. (2018), we evaluated the harmonization by assessing the accuracy on cross-
validated brain age prediction using pre- and post-harmonized ROI volumes as features. The brain age
model was constructed using a fully-connected neural network with one hidden layer, using the Keras
and TensorFlow libraries (Abadi et al., 2015). ROI volumes for the complete LIFESPAN sample were
used as input features to the model, in addition to sex and ICV. We performed 10-fold cross-validation,
as well as leave-site-out cross validation to assess the effect of harmonization for brain age prediction
on unseen sites. The network was trained with the Adam optimizer using mean squared error as the cost
function with a constant learning rate of 1x10-4. The fully-connected layer consisted of 100 nodes with
20% dropout and RELU activation functions for each node. The output layer consisted of a single node
with a  linear  activation  function.  We trained separate  models  with 10-fold  cross  validation on the
complete LIFESPAN dataset using unharmonized ROIs, ROIs harmonized using ComBat with a linear
model  and  ROIs  harmonized  using  ComBat-GAM.  The  predictive  accuracy  of  each  model  was
evaluated using mean absolute error (MAE), i.e. mean absolute difference between predicted and actual
ages. We also performed leave-site-out validations, using the PNC, SHIP, and BLSA-3T studies as
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independent  test  datasets  in  each  experiment,  in  order  to  assess  the  effect  of  harmonization  in
predicting the brain age for data previously unseen by the training model.

2.8 LIFESPAN age trajectories of ROI volumes

After harmonization,  we computed lifespan volumetric trajectories for each anatomical ROI, using
GAM to model smoothed, nonlinear age trends. Since we were primarily interested in the relationship
between age and ROI volumes, we regressed-out sex and ICV. The resulting age trajectories are free of
sex and ICV effects, and enable a comprehensive analysis of brain volumes throughout the human
lifespan.

Considering the large number of ROIs, we developed an interactive application that provides the end
users a practical tool for selective visualization of the computed age trajectories for different brain
regions. The visualization application, which allows users both to display LIFESPAN age trajectories
and to position their  own data  after  calibration with LIFESPAN data,  was created with the Shiny
package (Chang et al., 2019) in the R programming language, and is hosted at the following URL:
https://rpomponio.shinyapps.io/neuro_lifespan/  .

3. Results

2.5 Evaluation of goodness of fit with GAM versus linear and quadratic models on single-site data

Compared to linear models, GAMs achieved superior goodness-of-fit based on adjusted R-square for
124/145 ROIs in PNC, 120/145 ROIs in SHIP, and 128/145 ROIs in BLSA-3T. Compared to quadratic
models, GAMs achieved superior goodness-of-fit based on adjusted R-square for 106/145 ROIs in the
PNC, 114/145 ROIs in SHIP, and 129/145 ROIs in BLSA-3T. For most ROIs in all three studies, the
Chi-square test indicated significant reduction in residual sum of squares (RSS) between linear models
and  GAMs  (116/145  ROIs  for  SHIP,  94/145  ROIs  for  BLSA-3T,  FDR  corrected  for  multiple
comparisons). A summary of the comparative evaluation is presented in Table 2.
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Table 2. Results of evaluation of goodness of fit with GAM versus linear and quadratic models on
single-site data.

Number of ROIs in which GAM 
achieved better goodness of fit based on 
adjusted R-Square

Number of ROIs in which GAM 
achieved significant reduction in RSS 
based on Chi-square test*

Study GAM versus Linear GAM versus 
Quadratic

GAM versus Linear GAM versus 
Quadratic**

PNC (n=1422) 124 (85.5%) 106 (73.1%) 88 (60.7%) 0 (0%)

SHIP (n=2682) 120 (82.7%) 114 (78.6%) 116 (80.0%) 22 (16.3%)

BLSA-3T (n=935) 128 (88.3%) 129 (89.0%) 94 (94.8%) 12 (9.2%)

*Chi-square test p-values were FDR corrected for multiple comparisons.

**When  comparing  GAM to  quadratic  models  with  the  Chi-square  test,  some  p-values  were  not
obtained due to estimated residual degrees of freedom from GAM being higher than residual degrees of
freedom from a quadratic model. In such a case, GAM achieved a better fit than the quadratic model,
while requiring fewer effective model parameters. Since it is not valid to perform the Chi-square test
under such circumstances,we excluded these ROIs from this comparative experiment only. Specifically,
18 ROIs were excluded from PNC, 10 ROIs were excluded from SHIP, and 15 ROIs were excluded from
BLSA-3T.

Figure 2 presents hippocampus volumes in the three selected studies with separate fits using linear
models, quadratic models, and GAMs.
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Figure 2: Comparison of age trajectory fits for the hippocampus volume from three studies (PNC,
SHIP, and BLSA-3T) using linear models, quadratic models, and GAMs. The trajectories plotted are
for females and assume an average intra-cranial volume (ICV). In the top-left panel, the difference
between fits is not distinguishable. In the top-right panel and the bottom-left panel, both the quadratic
fit and the GAM fit exhibit clear improvement over the linear fit.

3.2 Simulation experiments

i. Effect of degree of overlap in the age ranges of data sites

In Figure 3, we present four of the possible scenarios under the constraints of Simulation Experiment I,
which assessed the impact of various degrees of overlap among three sites. The age range of Site-B had
a fixed width but was free to vary from younger to older ages.  The relative Mean Absolute Error
(rMAE) of age trajectory estimation for different age ranges of Site-B, before and after harmonization,
are shown in Figure 4. Age trajectories were more accurately estimated with harmonized data than
without  harmonization,  with  median  rMAE  decreasing  from  0.033  to  0.015  when  data  were
harmonized. With the harmonized data, the estimation error decreased consistently as the age range of
Site-B moved from younger to older until reaching a plateau for the age range 45 to 75, after which
estimation error began increasing with older age ranges.
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These  results  suggest  that  a  partial  overlap  of  5  to  10  years  between consecutive  dataset  pairs  is
sufficient  for  optimal  harmonization  of  multiple  datasets,  even  if  the  combination  of  age  ranges
includes disjoint pairs. The LIFESPAN dataset included three studies (PNC, SHIP, UKBIOBANK)
with sample sizes greater than 1,000 and age ranges spanning more than 15 years (Figure 1). These
datasets played a key role in connecting other smaller datasets together via partially-overlapping age
ranges. The weakest overlap was in the young-adult age range of 18 to 25 years. We included two
studies (MUNICH, PennBBL) that covered this age range entirely and had sample sizes greater than
150, as well as three additional studies that partially-covered this age range (PING, PNC, CHINA-
TAH).

Figure 3: Four possible scenarios under the constraints of Simulation Experiment I, which assessed
the effect of different degrees of age overlap on harmonization performance. The age range of Site-B
was free to vary from younger to older ages. In the upper-left panel, Site-B is overlapping only Site-A
and not Site-C. In the upper-right panel, Site-B is equally-overlapping Site-A and Site-C. In the lower-
left panel, Site-B is optimally overlapping Site-A and Site-C based on the results of the experiment. In
the lower-right panel, Site-B is overlapping only Site-C and not Site-A.
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Figure  4: The  relationship  between  the  relative  Mean  Absolute  Error  (rMAE)  of  age  trajectory
estimation and the age range of Site-B in Simulation Experiment I. In both panels, the x-axis indicates
the age range of Site-B, and moving from left to right is equivalent to sliding the age range of Site-B
from younger to older ages. In the top panel, the proportion of age overlap between Site-B and each of
the other two sites is plotted. In the bottom panel, the relative error in estimating the age trajectory is
shown both before and after harmonization. Harmonization reduced the estimation error. Additionally,
having  partially-overlapping  age  ranges  between  the  three  sites  led  to  reduced  error,  with  a  bias
towards a larger overlap with the older Site-C rather than an equal overlap with Sites A and C.
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ii. Effect of balancing sample sizes

Age trajectory estimation errors for varying amounts of sub-sampling from the relatively large site are
shown in Figure 5. The optimal performance was achieved when all data points were used, even though
the relative ratio of sample sizes between sites was heavily unbalanced (n=400 vs n=100). These results
suggest that the negative impact of reduced sample sizes is greater than that of unbalanced sample
compositions  in  age  trajectory  estimation after  harmonization,  which  is  in  contrast  to  our  original
hypothesis that balanced datasets would lead to better harmonization.

Figure  5: The  relationship  between  the  relative  Mean  Absolute  Error  (rMAE)  of  age  trajectory
estimation and the proportion of sub-sampling from Site-B in Simulation Experiment II. The original
sample size of Site-B was four times larger than that of Sites A and C. At 0.25, the size of Site-B after
sub-sampling was equal to the size of Sites A and C. At 0.5, the size of Site-B after sub-sampling was
equal to the twice the size of Sites A and C. Results were optimal when all data points were used.

3.3 Harmonization of volumetric measurements from the LIFESPAN dataset

Our proposed harmonization method removed location and scale  effects  associated with site,  after
controlling for age, sex, and ICV with GAM. Figure 6 shows the adjustments made to hippocampus
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volumes after  harmonization.  Adjustments  for  other  important  structures,  as  well  as  for  total  gray
matter and total white matter, are shown in Supplementary Figure 1. After harmonization, the residual
volumes by site are centered at  zero as expected,  indicating the removal of location effects. Scale
effects were not as strong for the hippocampus, with the residual volumes by site showing similar
variances before and after harmonization.

Figure 6: Comparison of hippocampus volumes before and after harmonization, correcting for age,
sex, and ICV using GAM. Studies are ordered from youngest to oldest based on median age. In the left
panel, volumes were not adjusted for site. In the right panel, volumes were adjusted with ComBat-
GAM, which removes location (mean) and scale (variance) differences across sites after controlling for
biological covariates. Horizontal lines are plotted at constants at 0, -200, and 200 for visual aid.

Age predictions obtained from the model trained using ROI volumes of participants with 10-fold cross
validation were more accurate when the data were harmonized. Figure 7 shows predicted and actual
ages for models trained on non-harmonized data, data harmonized with ComBat using a linear age
model,  and data  harmonized using ComBat-GAM. While  the application of  ComBat with a  linear
model  helped age prediction accuracy compared to  no harmonization,  the additional  use of  GAM
yielded the best results of the three methods, achieving mean absolute error (MAE) of 5.369.

16

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 26, 2019. ; https://doi.org/10.1101/784363doi: bioRxiv preprint 

https://doi.org/10.1101/784363


Figure 7: Comparison of age prediction results using three harmonization methods and 10-fold cross
validation with a fully-connected neural network using ROI Volumes as input features. MAE is the
mean absolute error (i.e. actual age minus predicted age). In the top panel, data were unadjusted for
site. In the middle panel, data were harmonized with ComBat using a linear model. In the bottom
panel, data were harmonized using ComBat-GAM.

In the leave-site-out validation experiments using the PNC, SHIP, and BLSA-3T as test datasets, 
harmonization with ComBat-GAM consistently led to improved prediction accuracy for each dataset, 
compared to using non-harmonized data or using data harmonized with ComBat using a linear age 
model (Table 3).
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Table 3. Results of leave-site-out age prediction for each harmonization method.

MAE* obtained for each Harmonization Method

Dataset Raw (non-harmonized) 
Data

ComBat-Linear ComBat-GAM

PNC (n=1422) 7.350 6.849 5.391

SHIP (n=2682) 6.578 6.417 6.134

BLSA-3T (n=935) 6.122 6.773 5.973

*MAE: Mean absolute error, i.e. mean absolute difference between predicted and actual ages.

3.4 LIFESPAN age trajectories of ROI volumes

LIFESPAN  age  trajectories  of  the  third  ventricle,  hippocampus,  thalamus,  and  occipital  pole  are
presented in Figure 8a and the age trajectories of 4 larger anatomical regions, total gray matter, frontal
gray matter, total white matter and deep gray matter, are presented in Figure 8b.

18

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 26, 2019. ; https://doi.org/10.1101/784363doi: bioRxiv preprint 

https://doi.org/10.1101/784363


Figure 8: Age trajectories for selected ROI volumes using the combined LIFESPAN dataset with 18
studies spanning the age range 3 – 96. Data were harmonized using ComBat-GAM. The trajectories
plotted are for females and assume an average intra-cranial volume (ICV). In A),  four ROIs were
selected from the set of 145 single ROIs. In B) four ROIs were selected from the set of 113 composite
ROIs.
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The age trajectories derived from the LIFESPAN data demonstrated variability at both the scales of
single ROIs and composite ROIs. At the single ROI level, the hippocampus demonstrated accelerated
atrophy late in the lifespan. From age 50 to 60, for example, the percentage difference in hippocampal
volume declined by 0.344% over 10 years, according to the age trajectory. In contrast, hippocampal
volume declined by 5.132% between age 70 and 80, and by 5.944% from age 80 to 90. Occipital pole
volumes were relatively stable throughout the lifespan. Total gray matter volume demonstrated a period
of rapid decline during adolescence, followed by gradual decay after age 25. Total white matter volume
demonstrated growth during adolescence, stability between ages 30 and 70, and gradual decline after
age 75.

Age  trajectories  for  each  ROI  from  the  harmonized  dataset  are  made  available  via  a  web-based
application  hosted  at  the  following  URL:  https://rpomponio.shinyapps.io/neuro_lifespan/.  The
application allows users to view the age trajectory of any ROI selected from the set  of 145 ROIs
harmonized in this study, as well as the 113 composite ROIs. The users may upload ROI volumes from
a new study to visualize them and compare them with the presented age trajectories. The application
also allows users to align their data to pre-calculated trajectories, by removing the location (mean) and
scale (variance) differences between new ROI volumes and the reference dataset after controlling for
age,  sex,  and  ICV.  Figure  9  shows  a  screenshot  of  the  application  being  used  to  visualize  the
hippocampus volume for an independent dataset together with the LIFESPAN age trajectory for this
ROI.
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Figure 9: Screenshot of the web-based application that allows visualization of the age trajectory for
each  anatomical  ROI  in  our  dataset.  In  red,  an  independent  dataset  (a  supplementary  batch  of
UKBIOBANK) has been uploaded after MUSE segmentation. UKBIOBANK values are aligned to the
LIFESPAN age trajectory by removing the location (mean) and scale (variance) differences between
new ROI volumes and the reference dataset after controlling for age, sex, and ICV. The application is
hosted at the following URL: https://rpomponio.shinyapps.io/neuro_lifespan/.

4. Discussion

We described and validated a methodology for harmonization and pooling of neuroimaging data across
multiple scanners and cohorts. Using this methodology, as well as regional volumetric measures from
18 neuroimaging studies, we created a large-scale dataset of structural MRI scans covering nearly the
entire  human lifespan.  We applied a fully-automated image processing pipeline to  extract  regional
volumes, followed by an automated quality control procedure to ensure data integrity, and a systematic
harmonization method to eliminate site effects while controlling for nonlinear age effects, with the final
goal of deriving age trajectories of 258 brain regions at multiple resolution levels. In order to facilitate
use of our methodology and data, we developed an interactive visualization and harmonization tool for
displaying age trajectories of individual anatomical regions. This tool provides a reference frame for
comparing the values of a new cohort against age trajectories estimated from 10,232 participants.
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We proposed the use of generalized additive models (GAM) to capture non-linearities in age-related
changes in brain structure without over-fitting. Each ROI is modeled by a GAM that includes age as a
nonlinear predictor and is optimized via restricted maximum likelihood with regularization to estimate
a smooth function.  GAMs were previously applied to capture nonlinear trends in a study of brain
development in adolescents (Satterthwaite et al.,  2014). In our experimental validations using three
independent datasets with large sample sizes and spanning different age ranges, we demonstrated that a
nonlinear model better captured age-related changes in ROI volumes in different periods of the lifespan
compared to linear and quadratic models. The superior performance of GAMs over linear models is
consistent with evidence of non-linearity in various anatomical structures, such as  gray matter lobes
(Giedd et al., 1999), basal ganglia (Ziegler et. al., 2012), and the hippocampus in late-life participants
(Allen et al., 2005; Janowitz et al., 2014).

In order to better-understand the behavior of our harmonization procedure relative to the age range
covered by each study, we performed simulation experiments leveraging a single-site study in which
we introduced artificial site effects. The first conclusion from these simulation experiments was that
partially-overlapping age ranges were preferable to disjoint age ranges. This result was expected, as
age-disjoint  studies  should  be difficult  to  harmonize  in  the  presence  of  nonlinear  age effects.  The
second result suggested that using all available data was preferable to the benefit of balancing across
multi-site samples.

Studies have used regional parcellation into anatomical ROIs to  understand the brain morphologic
changes during the lifespan as well as the effect of disease on the brain (Giedd et al., 1999; Ziegler et
al., 2012). Often age has been associated with brain atrophy in various regions (Coffey et al., 1998;
Habes et al., 2016), that could be linked to age-related pathologies such as neurodegenerative disorders
(Dickerson et al., 2009; Whitwell et al., 2007), but also to the the normal process of aging, which was
suggested  to  be  accompanied  by demyelination  in  the  white  matter  and axonal  loss  (Hinman and
Abraham,  2007).  The  individual’s  genetic  profile,  lifestyle,  environment,  and  disease-related  risk
factors  interact  together  and  contribute  to  the  brain  regional  vulnerability  to  age-related  changes
(Janowitz et al., 2014; Rodrigue et al., 2013). Our harmonized data suggest that there is remarkable
variability in the shape and nonlinearity of age trajectories of various ROIs, consistent with previous
reports (Courchesne et al., 2000;  Walhovd et al. 2011). For example, total gray matter (GM) volume
decreases rapidly during late childhood and adolescence, and it continues to decrease, albeit at a much
slower rate, in the adult life. We found that total brain white matter (WM) volume follows an inverted-
U trajectory, with rapid increases throughout childhood and adolescence then assuming a downward
trend around age 60, similar to the trajectory of Cerebral WM volume in Walhovd et al. (2005). Deep
GM structures seem to be stable until early adult life, at which point volume declines.

When ROIs are used as building blocks in subsequent analyses, it is important to know the effect of
harmonization on subsequently calculated biomarker indices. Toward this goal, we used predicted brain
age from a model that summarizes volumetric measures across multiple ROIs as an index that captures
the process of typical brain aging, and which has received increasing attention in the literature (Cole
and Franke, 2017; Habes et al., 2016; Dosenbach et al., 2010; Erus et al., 2015; Franke et al., 2010).
Our  results  indicated  that  harmonization  has  beneficial  effects  on  the  calculation  of  brain  age  by
reducing  the  prediction  error  relative  to  unharmonized  data  by  11.8%.  This  is  a  substantial
improvement, especially since it is likely to influence the value of the residuals (brain age – age) that
are typically used to flag advanced or resilient brain agers (Eavani et al., 2018).
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Our  analyses  have  focused  primarily  on  typically-developing  and  typically-aging  participants,
establishing  normative  age  trajectories  of  brain  regions.  We  included  participants  without
neuropsychiatric  disorders;  however,  to  harmonize  studies  which  have  a  specific  neuropsychiatric
disease as a focus, data from an appropriate control population is required according to our procedure.
Patient data should then follow the same harmonization transformations, but patients should not be
used in the calculation of the harmonization model. This is because the underlying assumption behind
our approach is that each cohort’s measurements were drawn from the same distribution of values,
albeit differing by age, sex, and intra-cranial volume (ICV). Patients with structural brain alterations
could  violate  this  assumption  and,  further,  including  them  in  the  harmonization  would  attenuate
disease-related effects. Hence, the age trajectory that we provided through the web-interface can serve
as a reference based on large control population over a wide age range,  and assuming a sufficient
control sample is available,  could assist  with the harmonization task of relatively small  pathologic
studies, which is otherwise unfeasible.

The current study demonstrates the practical capability of pooling heterogeneous imaging datasets for
downstream analysis, particularly at a large scale and in the presence of nonlinear age effects. Future
efforts  should focus on the application of this  framework to  new datasets,  the inclusion of patient
volunteers  to  derive  disease-specific  trajectories,  and  the  extension  of  the  current  harmonization
procedure to longitudinal studies.
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