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ABSTRACT 17 

Background: The issue of antimicrobial resistance continues to grow worldwide, and long-term 18 

care facilities are significant reservoirs of antimicrobial-resistant organisms, in part due to high 19 

frequency of antimicrobial use. Patients with advanced dementia are particularly vulnerable to 20 

multidrug-resistant organism acquisition and antimicrobial overuse, which has negative 21 

consequences for the gut microbiome and can contribute to the selection and propagation of 22 

antimicrobial resistance genes. In this study, we longitudinally examined a group of advanced 23 

dementia patients treated with the fluoroquinolone antimicrobial levofloxacin, finding a 24 

correlation between abundance of pathogens and antimicrobial resistance genes, which we 25 

confirmed in a larger cohort of subjects with advanced dementia. 26 

Results: We observed significant inter- and intra-subject heterogeneity in the composition of the 27 

microbiota of the longitudinal levofloxacin cohort, suggesting temporal instability. Within this 28 

dataset, we did not find significant impacts of levofloxacin on the diversity, composition, function, 29 

or resistome of the gut microbiota of this population. However, we were able to link the 30 

antimicrobial resistance gene burden in a sample with the relative abundance of several 31 

pathobionts – particularly Escherichia coli, Proteus mirabilis, and Enterococcus faecalis, as well 32 

as less-prevalent species including Providencia stuartii and Staphylococcus haemolyticus. 33 

Furthermore, we used metagenomic assembly and binning to demonstrate that these species had 34 

higher genomic resistance gene levels than common gut commensals, and we were able to predict 35 

antimicrobial resistance gene burden from the relative abundances of these species in a separate, 36 

larger cohort from the same population. 37 

Conclusions: We found that the relative abundances of several pathobionts were correlated with 38 

and were even predictive of the level of antimicrobial resistance genes in corresponding samples, 39 
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and that these species carried high levels of resistances genes in their assembled genomes. In order 40 

to test this observation, we utilized a larger metagenomics dataset from a similar population and 41 

confirmed the association between pathobiont abundance and antimicrobial resistance genes. 42 

Given the high frequency with which these species were found at high levels in this population 43 

and the underlying vulnerability to infection with multidrug resistant organisms of advanced 44 

dementia patients, attention to microbial blooms of these species may be warranted. Additionally, 45 

in this study, we were able to utilize genomic assembly from metagenomic data to more 46 

definitively associate antimicrobial resistance gene levels with specific assembled species; as this 47 

technology continues to develop, assembly could prove to be a valuable method to monitor both 48 

specific resistance genes and blooms of multidrug-resistant organisms. 49 

 50 
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BACKGROUND: 53 

It is well-recognized that there is a growing threat of antimicrobial-resistant (AMR) 54 

bacterial strains that threaten the health and lives of millions worldwide. In the United States alone, 55 

the Centers for Disease Control and Prevention estimates that at least 2 million people get an AMR 56 

infection each year, and at least 23,000 die as a result[1]. A number of factors have driven the rise 57 

in AMR bacteria worldwide, including overprescription of antibiotics in the healthcare setting, 58 

over-the-counter access to antibiotics in some countries, and widespread use of antibiotics in 59 

animal husbandry for non-veterinary purposes[2-4]. Concerningly, hospitals and other medical 60 

institutions are frequent sites of AMR bacteria acquisition, where patients may already be ill or 61 

immunocompromised, antimicrobial use is common, and patient-to-patient transmission of AMR 62 

isolates can occur via inadequate hygiene or environmental contamination[5-8]. For example, 63 

AMR bacteria are highly prevalent in nursing homes, with estimates that over 35% of nursing 64 

home residents are colonized with multidrug resistant organisms (MDROs)[9-14]. This is 65 

particularly problematic in light of the fact that elderly patients in long-term care facilities may be 66 

frequently hospitalized, potentially serving as a mode of bidirectional transport of MDROs 67 

between healthcare facilities[15-17]. They are also prone to infections and are frequently treated 68 

with antimicrobials[18-20], which has long been associated with acquisition of MDROs and may 69 

not always be indicated[12, 17, 20-28]. 70 

The problem of MDRO prevalence and inappropriate antimicrobial use is of particular 71 

relevance in elderly subjects with advanced dementia, a population which receives extensive 72 

antimicrobial treatment which becomes more frequent closer to death, calling its benefit and 73 

effectiveness into question[28, 29]. Accordingly, advanced dementia specifically has been shown 74 

to be a risk factor of MDRO colonization[13, 30]. To examine this issue, the Study of Pathogen 75 
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Resistance and Exposure to Antimicrobials in Dementia (SPREAD) was undertaken from 2009-76 

2012 in order to analyze MDRO acquisition and appropriateness of antimicrobial prescription in 77 

elderly adults with advanced dementia residing in nursing homes[31]. Supporting the widespread 78 

nature of MDRO carriage in this population, analysis of SPREAD subjects revealed that there were 79 

significant baseline levels and new acquisitions of MDROs, and that there was notable spread of 80 

MDRO strains within and even between nursing home facilities[28, 32]. 81 

In addition to potential facilitation of MDRO acquisition or spread, antimicrobial overuse 82 

may also have negative impacts on the diversity, composition, or function of the gut microbiota, 83 

which may already be vulnerable in elderly populations. Healthy younger adults tend to have a 84 

fecal microbiome characterized by relatively high diversity of species and populated primarily by 85 

members of the phyla Bacteroidetes and Firmicutes, largely obligate anaerobes which exist in 86 

homeostasis with the intestinal epithelium[33-37]. However, it has been found that during 87 

senescence, the gut tends to have higher levels of Bacteroidetes and Proteobacteria and harbors 88 

higher levels of facultative aerobes and potential pathobionts, including Enterobacterales such as 89 

E. coli [36, 38-45]. These changes become more pronounced as aging progresses, and several 90 

studies have indicated that age-related alterations to the gut microbiota are relatively minor in 91 

septuagenarians, but become more pronounced over time and are clear in centenarians and 92 

supercentenarians[39, 43, 46-48]. This is likely due to a number of factors, including the decline 93 

of immune function, onset of age-related diseases (including metabolic disorders), changes to diet 94 

and mobility, and the increased likelihood of medication utilization and/or hospitalization[42, 49]. 95 

However, lifestyle of elderly adults has an important impact, as research suggests that community-96 

resident elderly subjects have a distinct and more diverse microbiome compared with those of their 97 

hospitalized or institutionalized peers, which was suggested to be at least in part due to nutritional 98 
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differences[49, 50]. Furthermore, reduced microbiome diversity has been associated with 99 

increased frailty of elderly subjects[49, 51]. Accordingly, given that the microbiomes of 100 

institutionalized elderly patients are perhaps already at risk, understanding the impacts of 101 

antimicrobial use and MDRO acquisition on this population is of importance. 102 

 We analyzed the gut microbiomes of eleven subjects from SPREAD to examine the impact 103 

of antimicrobial use on the gut microbiota composition, function, and antimicrobial resistance gene 104 

(ARG) profile of elderly dementia patients. These subjects were chosen as they were the largest 105 

cohort who had received a single antimicrobial (levofloxacin) during the collection period, and we 106 

anticipated that this intervention could have an impact on the already-vulnerable microbiota of this 107 

elderly, institutionalized cohort. Levofloxacin is an antimicrobial of the fluoroquinolone class with 108 

high oral bioavailability[52-54] which has been found to reduce levels of Gram-negative aerobic 109 

bacteria – including Proteobacteria and particularly Enterobacterales – in the fecal microbiota[55-110 

61], although fluoroquinolone resistance among this taxon has been spreading[62-69]. A 111 

maximum of five rectal swab samples, collected every three months, were taken from each subject, 112 

and both 16S rRNA amplicon and shotgun metagenomics sequencing were performed. We 113 

analyzed alpha and beta diversity, taxonomic composition, functional potential, and antimicrobial 114 

resistance gene profiles before and after administration of levofloxacin, but were unable to detect 115 

specific impact of levofloxacin on any of these measures. However, we did find an association 116 

between blooms of particular enteric species and ARG burden, including in samples where MDRO 117 

were not detected by culture, suggesting that certain pathobionts carrying high ARG burdens may 118 

frequently colonize this population and that metagenomics may allow detection of resistant 119 

bacteria not flagged by culture-based methods. 120 

 121 
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RESULTS 122 

Overview of Subjects 123 

 Elderly patients in long-term care facilities, and particularly patients with advanced 124 

dementia, are frequently exposed to antimicrobials and are at high-risk of acquisition and carriage 125 

of MDRO[9-13, 18-20, 27-30, 32]. From within the SPREAD cohort, we selected the largest group 126 

of subjects who had been administered a single antimicrobial during their participation in the study. 127 

This gave us a group of eleven subjects who had been given the fluoroquinolone levofloxacin, one 128 

of the most commonly prescribed antimicrobials. We analyzed up to five rectal swabs, taken every 129 

three months over the course of a year, from these eleven subjects in the SPREAD cohort[31], 130 

using both 16S rRNA and shotgun metagenomics sequencing (Figure 1A).  During their 131 

participation in the study, these subjects had received only a single course of levofloxacin (average 132 

course of eight days), which has previously been shown to decrease the proportion of the 133 

Enterobacterales order of Proteobacteria[55-61]. Of the eleven subjects, all but Subject I were 134 

female and all but Subject G were white. They ranged in age from 72 to 101, and six members of 135 

the cohort did not survive for the full year of the study (Additional Table 1). All but two subjects 136 

(C and G) resided in different nursing homes. Overall, there were 38 samples for metagenomics 137 

sequencing (Additional Table 2). Culture-based methods indicated that four of the eleven subjects 138 

acquired a MDRO during the study: Subject A acquired methicillin-resistant S. aureus (MRSA) at 139 

the 12-month timepoint, Subject B acquired multidrug-resistant E. coli at the 3-month timepoint, 140 

and Subjects C and D both acquired multidrug-resistant P. mirabilis  at the 3-month timepoint 141 

(Additional Table 1).  142 

Alpha and Beta Diversity Metrics 143 
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 Before focusing on antimicrobial resistance, we first wanted to assess the composition of 144 

the community throughout the longitudinal timeframe. We initially used the metagenomic 145 

sequencing data to compare the alpha diversity, or the diversity within each sample, of samples 146 

collected before and after levofloxacin administration. According to Shannon’s Diversity Index, 147 

which incorporates both richness and evenness of samples, there was no significant difference 148 

between the pre- and post-levofloxacin samples (Figure 1B). Furthermore, the alpha diversity was 149 

variable over time even within the same subject, and there was no clear trend of recovery in alpha 150 

diversity after antibiotic cessation. This suggests a degree of temporal instability, in which the 151 

richness and/or evenness of the samples varies changes over time. 152 

We then examined beta diversity, or the diversity between samples. We utilized the Bray-153 

Curtis Dissimilarity metric, which considers the identity and abundance of taxa shared between 154 

samples. Plotting this metric in a principal coordinate analysis (PCoA) revealed no apparent 155 

pattern of clustering based on either subject or sample collection point relative to levofloxacin, and 156 

in fact, samples from the same subject were often located quite distantly from one another (Figure 157 

1C). We then compared the within-subjects dissimilarity of sequential samples within a subject 158 

when both were pre-levofloxacin, both were post-levofloxacin, or one sample was pre- and one 159 

was post-levofloxacin; there was no significant difference between any of the groups (Figure 1D), 160 

suggesting that levofloxacin was not associated with community disruption. Furthermore, while 161 

within-subject dissimilarity was lower than between-subjects dissimilarity, the effect size was low 162 

(0.7013 vs. 0.7712, respectively; Figure 1E).    163 

Taxonomic Composition 164 

 We utilized Kraken2 in conjunction the with Bayesian Reestimation of Abundance with 165 

KrakEN2 (Bracken2) pipeline to assign taxonomy to our metagenomic sequencing samples[70, 166 
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71]. Corresponding to the high between-subjects beta-diversity, the taxonomic composition of the 167 

gut microbiome varied significantly between subjects. As is typical for the human gut microbiome, 168 

most bacteria belonged to the five major phyla of Firmicutes, Bacteroidetes, Proteobacteria, 169 

Actinobacteria, and Verrucomicrobia. However, consistent with the high within-subjects beta 170 

diversity, the dominant phyla varied greatly even between samples from the same subject 171 

(Additional Figure 1); for example, the most abundant phylum in Subject E was Bacteroidetes at 172 

two timepoints, Proteobacteria at two timepoints, and Firmicutes at one (Additional Figure 1F). 173 

Overall, the most abundant phylum was Actinobacteria in three samples, Bacteroidetes in 174 

seventeen samples, Firmicutes in seven samples, and Proteobacteria in eleven samples 175 

(Additional Figure 1A-L); averaging across all samples, Bacteroidetes was highest at 34.2%, 176 

followed by Proteobacteria (26.9%), Firmicutes (23.3%), and Actinobacteria (11.2%) (Additional 177 

Figure 1A). Qualitatively, many of the samples from this population represent highly divergent 178 

and dysbiotic microbiomes compared with what is typically seen with younger subjects, in which 179 

Proteobacteria in particular make up a much smaller proportion of the microbiome than in these 180 

elderly dementia subjects[33].     181 

 The genus- and species-level taxonomic composition was also variable. Blooms of 182 

potential pathogens[72], including Campylobacter ureolyticus[73], Corynebacterium 183 

urealyticum[74], Enterococcus faecalis[75, 76], Escherichia coli  [77, 78], Oligella urethralis[79-184 

82], Proteus mirabilis[83, 84], Providencia stuartii[85, 86], Pseudomonas aeruginosa[87, 88], 185 

Staphylococcus aureus[89-91], and Staphylococcus haemolyticus[92-94], were fairly common, 186 

both before and after levofloxacin administration (Figure 2A, Additional Figure 2). Across 187 

subjects, even baseline samples varied in composition, as expected from beta-diversity analysis. 188 

Averaging across all samples, the single most-abundant species was E. coli, further supporting the 189 
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qualitatively dysbiotic nature of the gut microbiome of this cohort (Figure 2A). Despite the high 190 

proportion of members of Enterobacterales in this cohort, Linear Discriminant Analysis Effect 191 

Size (LEfSe) analysis[95] did not reveal biomarkers for pre- or post-levofloxacin samples at the 192 

phylum, genus, or species level. Full data on taxonomic composition at the phylum and species 193 

levels can be found in Additional Data 1. 194 

 As we had access to full 16S rRNA and shotgun metagenomics data for our samples, we 195 

compared their taxonomic identifications at the genus level. The two methods of analysis were 196 

generally consistent, and blooms of prominent genera (including Escherichia, Proteus, 197 

Enterococcus, Providencia, Staphylococcus, and Bacteroides) were generally detected by both 198 

analysis pipelines (Additional Figure 3A). Metagenomics analysis was unsurprisingly able to 199 

detect more distinct genera, and of the genera that were called by both pipelines, LEfSe analysis 200 

revealed biases in both methods. For example, metagenomics analysis by Kraken2 and Bracken2 201 

detected higher levels of Bacteroides, while 16S rRNA analysis with Quantitative Insights Into 202 

Microbial Ecology 2 (QIIME2)[96] detected higher levels of Ruminiclostridium. Full data on 203 

taxonomic abundances at the genus level can be found in Additional Data 1 for metagenomics and 204 

Additional Data 2 for 16S rRNA. 205 

Functional Potential 206 

 We used the Human Microbiome Project Unified Metabolic Analysis Network 2 207 

(HUMAnN2) pipeline[97] to analyze the genetic content of the metagenomic samples. We utilized 208 

LEfSe to compare community function at the Kyoto Encyclopedia of Genes and Genomes (KEGG) 209 

ortholog, Gene Ontology (GO) term, and MetaCyc pathway levels. As in the taxonomic analysis, 210 

there were no significant biomarkers of either pre-or post-levofloxacin administration samples. 211 

However, while the taxonomic profile of the samples varied greatly, the functional capacity of the 212 
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samples was fairly consistent across samples (Additional Figure 4). Full data on functional 213 

potential can be found in Additional Data 3. 214 

Antimicrobial Resistance Gene Profile 215 

 We used the DeepARG machine-learning program[98] to detect resistance genes in the 216 

metagenomic samples. Across all samples, the most abundant class of ARG was “multidrug”, 217 

followed by “macrolide-lincosamide-streptogramin” (MLS), and “tetracycline”. The most 218 

common specific gene detected was the multidrug resistance rpoB2 variant of the RNA polymerase 219 

beta subunit, followed by the MLS resistance gene macB and a multidrug ABC transporter (Figure 220 

2B). LEfSe analysis revealed no ARG biomarkers of either pre- or post-levofloxacin samples. Full 221 

data on ARG composition can be found in Additional Data 4. 222 

However, we were able to detect changes in specific ARG classes and genes that 223 

corresponded with the detection of antimicrobial-resistant organisms in two subjects. Subject A 224 

acquired MRSA at the 12-month timepoint, and a bloom of this species to 25.0% could be detected 225 

in the metagenomic taxonomic data (Figure 3A, Additional Figure 2B). While the overall level of 226 

ARGs did not notably increase at this timepoint, there was a clear expansion in beta-lactam 227 

resistance genes (Figures 3B, Additional Figure 5B), including the mecA/mecR1/mecI operon, 228 

which regulates expression of the low-affinity penicillin-binding protein mecA (PBP-2A)[99-102] 229 

(Figure 3C). This operon is characteristic of MRSA strains[99-102], supporting the culture-based 230 

classification of this S. aureus isolate as MRSA. 231 

Similarly, Subject B acquired multidrug-resistant E. coli (resistant to the beta-lactams 232 

ampicillin/sulbactam, cefazolin, ceftazidime, and ceftriaxone and to the fluoroquinolone 233 

ciprofloxacin) at the three-month timepoint, and the proportion of this species expanded to 47.3% 234 

of the population in the corresponding sample (Figure 3D, Additional Figure 2C). Accordingly, 235 
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this sample showed a notable increase in the relative abundance of ARGs, which was in large part 236 

driven by an increase in a number of multidrug resistance genes (Figure 3E); there was also a clear 237 

increase in several beta-lactam resistance genes, including the low-affinity penicillin-binding 238 

protein genes PBP-1A, PBP-1B, and penA (PBP2) as well as class C beta-lactamase genes[103-239 

108], and several fluoroquinolone resistance genes, including the transporters patA and mdtK [109-240 

113] (Figure 3F-G).  241 

Despite the acquisition of multidrug-resistant P. mirabilis at the three-month timepoint in 242 

Subjects C and D, there was no corresponding increase in ARGs. ARG levels stayed approximately 243 

the same in Subject C (0.372% at baseline and 0.384% at three months) and decreased in Subject 244 

D from 0.482% at baseline to 0.364% at the three-month timepoint (Figures 2B, Additional Figure 245 

5D-E). However, this corresponds to the taxonomic data; levels of P. mirabilis were low and stable 246 

in Subject C (0.55% at baseline and 0.61% three months later), and while P. mirabilis made up 247 

13.8% of the population at baseline in Subject D, it underwent a reduction to 2.3% at the three-248 

month timepoint (Figures 2A, Additional Figure 2D-E). Taken together, this data indicates that 249 

our metagenomics pipeline can detect blooms of AMR pathogens and that the corresponding 250 

change in ARG levels aligns with culture-based detection of MDROs. At the same time, 251 

metagenomic analysis of some samples found blooms of pathogens and ARGs that were not 252 

associated with culture-based MDRO detection. 253 

Attribution of ARG Density to Specific Species 254 

 While total ARG density within samples did not vary by levofloxacin administration, there 255 

was significant variability between samples. In fact, most samples had similar baseline levels of 256 

ARGs of 0.3% to 0.4% of the total reads, while only a few samples rose above this value to between 257 

0.6% and 0.8%. Close inspection of the taxonomic composition of the samples revealed that 258 
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samples with higher levels of ARGs tended to have blooms of one or more of the Proteobacteria 259 

species E. coli and P. mirabilis and the Firmicutes species E. faecalis, strains of which are common 260 

pathobionts[114-120] (Figure 4A). Confirming this association, correlation analysis between ARG 261 

levels and the sum of the relative abundances of these three species showed a strong and significant 262 

positive correlation (r = 0.791, R2 = 0.6254, p  <0.0001, Pearson’s correlation; Figure 4B). This 263 

suggests that in samples with higher-than-baseline ARG levels, ARG abundance is being driven 264 

by high relative abundance of these three species. 265 

However, there were two notable exceptions: Samples E9 and H6 had high levels of ARGs 266 

without corresponding blooms of these three species. However, P. stuartii bloomed to 41.9% 267 

relative abundance in Sample E9 and S. haemolyticus bloomed to 36.9% in Sample H6 (Figure 268 

2A, Additional Figure 2F&I). Both species have long been associated with AMR phenotypes[93, 269 

94, 121-127] and were not found at high levels in other samples, but could explain the higher ARG 270 

abundance in these samples (Figure 4A). Supporting this possibility, an examination of the ARGs 271 

in Sample H6 showed a distinct profile relative to other samples, with high levels of staphylococcal 272 

resistance genes including fluoroquinolone resistance gene norB and macrolide-streptogramin 273 

resistance gene msrA [128-131](Figures 2B, 3I-L). Accordingly, addition of P. stuartii and S. 274 

haemolyticus abundances to the analysis resulted in a stronger correlation (r = 0.933, R2 = 0.8706, 275 

p < 0.0001, Pearson’s correlation; Figure 4C). 276 

To more rigorously examine the relationship between the species of interest and ARG 277 

levels, we performed metagenomic assembly and binning to compare the levels of ARGs in these 278 

organisms to levels in other common and abundant species, including likely commensals and 279 

potential pathogens (Figure 4D). Specifically, we analyzed bins that passed various quality 280 
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controls (Additional Table 3) and corresponded to species identified by Kraken2/Bracken2 to 281 

make up greater than 0.1% of their source samples (Additional Table 4). 282 

As anticipated, we found that the levels of ARGs in bins from E. coli and P. mirabilis were 283 

consistently high compared to other species analyzed. In fact, E. coli had the highest average ARG 284 

density of any species analyzed, while P. mirabilis was the fifth-highest. Notably, the ARG 285 

composition of the bins of these species from samples in which MDROs were detected (B3, C3, 286 

and D3) did not appear to be different from those of other samples (Additional Figure 6A-B), 287 

although it is possible that some resistance genes were carried on plasmids that were not assembled 288 

into genomes. P. stuartii had the second-highest average ARG density, reflecting the expansion of 289 

ARGs detected in sample E9, where this species bloomed to 41.9% of the population. The third 290 

and fourth positions were taken by the single bins constructed for Klebsiella oxytoca and 291 

Morganella morganii, other Proteobacteria with pathogenic potential[132-134]. P. aeruginosa 292 

bins rounded out the top six, with similar levels to the other top species. However, as K. oxytoca 293 

and M. morganii were never present at greater than 3% and P. aeruginosa bloomed in only two 294 

samples, they did not significantly contribute to overall ARG density in the cohort. Importantly, 295 

high ARG density was not a universal feature of Proteobacteria, or even of pathogenic 296 

Proteobacteria; bins constructed for the Campylobacter species C. hominis and C. ureolyticus had 297 

universally low ARG levels. Additionally, while we could not construct a high-quality bin for O. 298 

urethralis, the low ARG densities in the samples in which this species bloomed (C0 and C3) 299 

suggests that it also has low genomic ARG content. This suggests that high ARG density among 300 

the Proteobacteria analyzed was restricted to the Gammaproteobacteria class, primarily of the 301 

order Enterobacterales but also including Pseudomonadales. 302 
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We were only able to construct two good-quality bins for E. faecalis, which varied in their 303 

ARG levels, particularly on the basis of bacitracin resistance. On average, while the two bins did 304 

not have ARG levels as high as the Proteobacteria of interest, they did rank among the highest of 305 

the Firmicutes bins tested. We were also able to create a single bin for S. haemolyticus from 306 

Sample H6 in which it made up 36.9% of the population. This bin had an ARG density higher than 307 

the average for any other non-Proteobacteria species, supporting its role in the high ARG levels 308 

found in the corresponding sample. As expected from the analysis of the total ARG population of 309 

that sample (Figure 3G), the staphylococcal resistance genes norB and msrA were found in this 310 

bin. We were also able to create two bins for S. aureus, including from sample A12 where MRSA 311 

was detected. The A12 bin contained the characteristic MRSA gene mecA while the H6 bin did 312 

not, suggesting that the S. aureus strain found in H6 was not MRSA (Figure S6C). In general, bins 313 

from the phyla Actinobacteria (including Bifidobacterium and Corynebacterium species) and 314 

Bacteroidetes (including Bacteroides and Parabacteroides species) had low ARG levels. Full data 315 

on the ARGs and classes found in species-level bins can be found in Additional Data 4.  316 

Prediction of ARG Density from Species Abundances 317 

Our initial analysis only considered the eleven subjects for whom we had longitudinal 318 

metagenomics data due to their receiving levofloxacin. We also had access to a larger dataset: 319 

shotgun metagenomics had been performed on a further 67 samples for a related study. In this 320 

case, the data was not longitudinal and encompassed an array of antibiotic treatment conditions 321 

across 67 subjects, providing a diverse set of taxonomic and ARG data on which to test whether 322 

the relationship between E. coli, P. mirabilis, and E. faecalis and ARG density held true. As an 323 

initial test, we performed the same correlation analyses between species of interest and ARG levels 324 

as on the levofloxacin dataset, finding that both the simple and complex models showed significant 325 
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correlation (r = 0.7179, r2 = 0.5154, p < 0.0001 and r = 0.7627, r2 = 0.5817, p<0.0001, respectively; 326 

Pearson’s correlation; Figure 5A-B). This provided initial support for the trend being present in 327 

the wider dataset. 328 

We then created a multiple linear regression model to predict ARG density using the 329 

relative abundances (RA) of the three main species of interest in the initial levofloxacin dataset, 330 

with the following equation: (ARG density) = 0.003482 + 0.006221(E. coli RA) + 0.006248(P. 331 

mirabilis RA) + 0.006920(E. faecalis RA) (Figure 5B). We then used this equation to predict the 332 

ARG density in the larger metagenomics dataset and found that it was able to accurately predict 333 

the true ARG level of those samples, with predicted and actual values correlating significantly (r 334 

= 0.7139, r2 = 0.5096, p<0.0001; Pearson’s correlation; Figure 5C). As before, there were a few 335 

notable outliers with higher ARG levels than predicted by the model; those three samples 336 

contained high levels of P. stuartii, P. aeruginosa, or Klebsiella pneumoniae This maps well to 337 

the fact that we observed high levels of ARGs in bins constructed from P. stuartii, P. aeruginosa, 338 

and the related species K. oxytoca (Figure 4D).  339 

We also created a multiple linear regression model that incorporated the relative 340 

abundances of P. stuartii and S. haemolyticus, which caused outliers from the original species-341 

ARG correlation: (ARG density) = 0.003253 + 0.006715(E. coli RA) + 0.006748(P. mirabilis RA) 342 

+ 0.003461(E. faecalis RA) + 0.01123(S. haemolyticus RA) + 0.007569(P. stuartii RA) (Figure 343 

5E). As before, we tested this equation against the larger dataset, and found that it slightly 344 

increased the accuracy of the predictions; specifically, it eliminated the outlier which had high P. 345 

stuartii levels and slightly improved the correlation between predicted and actual ARG levels (r = 346 

0.7753, r2 = 0.6012, p<0.0001; Pearson’s correlation;  Figure 5F). However, the simpler model is 347 

more broadly applicable, as blooms of P. stuartii and S. haemolyticus are relatively uncommon. 348 
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Similarly, while Klebsiella spp. and P. aeruginosa may also contribute to high ARG density in 349 

samples, they do not bloom as commonly in this cohort as the core predictive species of E. coli, P. 350 

mirabilis, and E. faecalis.  351 

These results indicate that in this population, levels of only a few key species could predict 352 

the majority of ARG abundance beyond background levels. Both the core predictive species (E. 353 

coli, P. mirabilis, E. faecalis) and others that are associated with high ARG levels in samples (P. 354 

stuartii, S. haemolyticus, P. aeruginosa, Klebsiella spp.) are pathogens and/or pathobionts. 355 

Monitoring levels of these species may be helpful in elderly, institutionalized populations, as these 356 

patients may be vulnerable to developing or transmitting AMR infections from high-level carriage 357 

of these species. 358 

 359 

DISCUSSION 360 

 Overall, we found that the microbial composition of the gut microbiome of elderly patients 361 

with advanced dementia was quite variable, both between subjects and over time within the same 362 

subject. Even in the absence of antimicrobial treatment, there was notable fluctuation in the 363 

abundance of a number of species, including pathobionts such as E. coli, P. mirabilis, and E. 364 

faecalis. When comparing the taxonomic composition, functional potential, and resistome of pre- 365 

and post-levofloxacin samples, we did not observe any significant differences. One potential 366 

reason for this finding is that oral levofloxacin is well-absorbed by the host, with greater than 99% 367 

bioavailability[52, 53, 135-137], and therefore may not be directly available to the luminal 368 

microbiota of the lower gastrointestinal tract at high levels. Furthermore, other studies have 369 

suggested that levofloxacin has a relatively minor impact on the gut microbiome, primarily 370 

reducing levels of Enterobacterales[55-61], and it may be less-associated with Clostridiodes 371 
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difficile-associated diarrhea outbreaks than other antimicrobials, including other 372 

fluoroquinolones[138]. 373 

Additionally, in this cohort, levofloxacin was typically administered at least two weeks 374 

prior to collected timepoints, potentially allowing sufficient time for the microbiome to recover 375 

from or shift away from its immediately post-antibiotic state.  Furthermore, the impacts of 376 

levofloxacin on the gut microbiome may be dependent upon the initial state upon administration. 377 

If the microbiome is initially relatively diverse and healthy, antibiotic administration may be 378 

disruptive and allow blooms of atypical dominant species such as members of Proteobacteria; 379 

such an occurrence might be observed in Subject F, where a diverse Bacteroides-dominated 380 

microbiome was overtaken by several Enterobacterales after levofloxacin treatment (Additional 381 

Figure 2G). Alternatively, if the microbiome is initially dominated by one or more pathogens, 382 

antimicrobial administration may correct such blooms and allow for the restoration of a diverse 383 

community, as might have occurred in Subject E as a P. stuartii bloom was eliminated (Additional 384 

Figure 2F).  385 

Finally, since the pre-existing temporal instability of this community was high, 386 

levofloxacin-related changes may not be detectable through the noise of this cohort’s general 387 

microbiome instability. In contrast to our observations, studies in adults have generally found that 388 

the within-subjects dissimilarity is much lower than between-subjects dissimilarity, in line with 389 

the fact that the gut microbiome tends to be relatively stable within the same subject over time – 390 

including in an elderly cohort[33, 34, 41, 139, 140]. This suggests that the gut microbiomes of the 391 

subjects in this study were less stable than that of other cohorts, potentially suggesting that this 392 

institutionalized population with advanced functional impairment is more prone to infections or 393 

has weaker immune systems than young healthy adults or even community-resident elderly adults. 394 
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Interestingly, despite the taxonomic variability, the functional composition of the cohort was 395 

relatively similar across samples and subjects. This is in line with previous studies of the human 396 

gut microbiome, which suggest that variable taxa can fill the same functional niches, resulting in 397 

a more similar functional composition across individuals despite inter-individual differences in the 398 

taxonomic composition[33, 35, 141]. 399 

 As all of the subjects had been given an antibiotic, we were particularly interested in the 400 

antibiotic resistance profile of the subjects before and after levofloxacin administration. However, 401 

as observed in the taxonomic and functional data, there was no apparent association of any ARG 402 

genes or classes with either pre- or post-levofloxacin status. This may be due to the fact that 403 

levofloxacin did not have any specific impacts on the resistome of this cohort, or due to the factors 404 

that may have concealed any impacts of levofloxacin, as discussed above. However, we were 405 

particularly intrigued by the finding that ARG density in a particular sample could be linked to the 406 

abundance of a few key species. E. coli, P. mirabilis, and E. faecalis are all pathobionts that are 407 

often found at low levels in a healthy microbiome, but bloomed frequently at various timepoints 408 

across a majority of our subjects. All three species can cause severe illness, have been previously 409 

observed to colonize nursing home residents, and include well-known multidrug-resistant 410 

strains[11-13, 28, 30, 32, 68, 75, 114-120, 142]. In fact, three of the subjects (B, C, and D) are 411 

known to have acquired multidrug-resistant strains of E. coli and P. mirabilis during the study. 412 

However, we observed an association between these three species and ARG levels across the entire 413 

sample set (Figure 4B), and the ARG composition of the bins of E. coli and P. mirabilis from 414 

samples where MDROs were detected were not distinct from their other bins (Additional Figure 415 

6A-B). This suggests that metagenomic sequencing may allow the identification of antimicrobial-416 

resistant organisms that escape detection via culture-based techniques, although it is also possible 417 
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that the multidrug-resistant isolates contained ARG-carrying plasmids that were not captured by 418 

our assembly and binning strategy. 419 

 A major implication of this finding is that metagenomic analysis could be a particularly 420 

useful tool to track antimicrobial resistance in institutions like nursing homes and hospitals, 421 

particularly with the capability to construct contigs and bins that allow examination of specific 422 

genomes. In this case, it has allowed us to connect the high levels of ARGs in certain samples with 423 

correspondingly high levels of specific pathobionts, which had high proportions of ARGs within 424 

their genomes even in samples where MDROs were not detected. In a vulnerable population 425 

already prone to infections and carriage of MDROs, metagenomics could be a useful surveillance 426 

tool to assess the prevalence or transmission of ARGs in long-term care facilities. 427 

Importantly, all of the subjects in our study were institutionalized in nursing homes, and 428 

there exists significant potential for transfer of bacteria between patients. As all but two of our 429 

subjects (C and G) lived in different homes, we could not directly examine this possibility 430 

ourselves, but it is possible that the high abundance of pathobionts and/or ARGs in our cohort is 431 

related to the spread of isolates within nursing homes. This also raises the possibility that we would 432 

not find a similar association between pathobionts and ARG levels in a healthy or community-433 

based elderly cohort, who might be less likely to harbor or transmit such high levels of these 434 

bacteria. However, if an association between particular “sentinel” species and ARGs holds true in 435 

other elderly institutionalized populations, qPCR detection of the loads of these such pathobionts 436 

may allow for prediction of resistant bacterial outbreaks before they occur.  437 

 In addition to the increased potential for spread of resistant strains through institutions, 438 

there are some other potential explanations for the association between ARGs and these particular 439 

species. In particular, all of the species that we found to be associated with ARG density are 440 
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potential human pathogens, can be grown in vitro, and have been previously associated with AMR 441 

phenotypes. ARGs, as well as mobile genetic elements carrying them, from these species may be 442 

better-studied than those from organisms less likely to pose a threat to human health, including gut 443 

commensals. If ARGs from these organisms are well-represented in databases, it could potentially 444 

bias analyses based on these databases toward detecting pathogen- over commensal-associated 445 

ARGs. However, there has been significant work done on the resistome of the human commensal 446 

microbiome, including functional metagenomics to detect new ARGs. These have found that 447 

commensal anaerobes may serve as significant reservoirs of ARGs, and may in some cases 448 

contribute to the transfer of resistance to pathobionts[143-150]. Commensal carriage of 449 

antimicrobial resistance genes may correspond to the baseline level of 0.3-0.4% ARGs observed 450 

in samples without pathobiont dominance.  451 

 Some limitations to the findings of this study must be acknowledged. First, as for all 452 

database-based methodologies, we are limited by accuracy and completeness of those databases. 453 

While the human gut microbiome is fairly well-characterized, there may be so-called microbial 454 

dark matter that is not well-represented in the taxonomic database used for species identification. 455 

We also used a database composed of bacterial and archaeal genomes, excluding consideration of 456 

bacteriophage and microbial eukaryotes from our analyses. As mentioned, database representation 457 

is particularly relevant for our ARG analysis, as the genes in this database may be skewed towards 458 

easily-culturable and pathogenic source species, and our analysis may have missed ARGs found 459 

in commensal or unculturable gut species. Additionally, critics have noted that some genes found 460 

in ARG databases used have unclear links to resistance phenotypes, and may perform regulatory, 461 

efflux, or other functions not always related to antimicrobial resistance[143, 151]. 462 
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Second, we were limited by the original SPREAD population, in which few subjects 463 

received only a single antimicrobial during the course of the study; this makes it difficult to say 464 

whether the temporal variability we observed was widespread in the cohort, although the fact that 465 

there were frequently high pathobiont levels observed in the larger metagenomics dataset we used 466 

to test our multiple linear regression suggests that this may be the case. Third, in this study we 467 

worked with rectal swabs, which are similar but not identical to fecal samples and may be 468 

susceptible to cross-contamination from urinary pathogens or skin flora, particularly in incontinent 469 

advanced dementia patients[152-155]. Fourth, metagenomic assembly has limitations. It cannot 470 

create bins of all species found in a given sample, genome reconstruction is based on the isolates 471 

present in the database used, and analysis of assembled genomes may exclude consideration of 472 

plasmids – which are often sources of ARGs. Finally, as we analyzed metagenomic data, we cannot 473 

comment on the actual antimicrobial resistance phenotypes of the communities or individual 474 

bacteria that we studied. 475 

 476 

CONCLUSIONS: 477 

 The gut microbiome was highly variable both between and within subjects, with frequent 478 

blooms and reductions of bacterial species both before and after levofloxacin treatment. We did 479 

not observe a consistent impact of levofloxacin on specific taxa or functions, levels of 480 

antimicrobial resistance genes, or overall microbiome diversity in these subjects. However, while 481 

we could not link levofloxacin to antimicrobial resistance gene levels, there were a number of 482 

samples that had higher relative abundances of these genes. In our original metagenomics dataset, 483 

we were able to identify that levels of these genes could be linked to blooms of specific bacterial 484 

species, including E. coli, P. mirabilis, and E. faecalis. We were able to build a model to predict 485 
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total ARG levels in a sample from the relative abundance of these species, and confirm the validity 486 

of this model in a larger metagenomics dataset from the rest of the SPREAD study, including 487 

subjects taking a range of antibiotics. Furthermore, use of metagenomic assembly and binning 488 

allowed us to confirm that our species of interest carry greater ARG densities than other abundant 489 

members of the microbiome, even in subjects where MDROs were not detected by culturing. 490 

This demonstrates that there is a significant amount of information that can be obtained 491 

from metagenomic assembly and binning. With sufficient depth, powerful computational tools 492 

allow whole genomes to be assembled from short-read metagenomic sequencing, which permits 493 

interrogation of the likely features of species of interest in complex microbial communities. In our 494 

case, we were able to confirm the association between pathobiont blooms and ARG levels in the 495 

gut, showing that the genomes of pathobionts contained a greater proportion of ARGs than gut 496 

commensals such as Bacteroides and Bifidobacterium species. This suggests that while the 497 

commensal microbiota are known to serve as reservoirs of antimicrobial resistance, in this cohort 498 

blooms of pathobionts may serve as the driver of ARG levels in the gut microbiome. Given how 499 

frequently these blooms occurred, special attention should be paid to these species in dementia 500 

patients in long-term care facilities, a vulnerable group which is often immunocompromised, 501 

frequently administered medication including antimicrobials, and may carry MDRO at relatively 502 

high levels. 503 

 504 

Abbreviations 505 

A:A   Aminoglycoside:Aminocoumarin 506 

AG   Aminoglycoside 507 

AMR   Antimicrobial Resistant 508 
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ARG   Antimicrobial Resistance Gene 509 

BC   Bacitracin 510 

BL   Beta-Lactam 511 

Bracken2  Bayesian Reestimation of Abundance with KrakEN2 512 

DP   Diaminopyrimidine 513 

FFM   Fosfomycin 514 

FMM   Fosmidomycin 515 

FQ   Fluoroquinolone   516 

GP   Glycopeptide 517 

GO   Gene Ontology 518 

HUMANn2  Human Microbiome Project Unified Metabolic Analysis Network 2 519 

KEGG   Kyoto Encyclopedia of Genes and Genomes 520 

LEfSe   Linear Discriminant Analysis Effect Size 521 

MD   Multidrug 522 

MDRO  Multidrug-Resistant Organism 523 

MLS   Macrolide-Lincosamide-Streptogramin 524 

MP   Mupirocin 525 

MRSA   Methicillin-resistant Staphylococcus aureus 526 

NM   Nitromidazole 527 

OZ   Oxazolidinone 528 

PATRIC  Pathosystems Resource Integration Center 529 

PC   Phenicol 530 

PMT   Pleuromutilin 531 
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PMX   Polymyxin 532 

PT   Peptide 533 

QIIME2  Quantitative Insights Into Microbial Ecology 2 534 

TC   Tetracycline 535 

SPREAD  Study of Pathogen Resistance and Exposure to Antimicrobials in Dementia 536 

UC   Unclassified 537 

 538 

METHODS 539 

Sample Collection and Preparation 540 

Subjects: 541 

 Eleven subjects were chosen from the SPREAD cohort based on the following inclusion 542 

criteria: at least two consecutive rectal swabs were collected from the subject during the study, 543 

subjects had received a single oral course of levofloxacin during the study (average course of 8 544 

days), and subjects received no other antimicrobials during the study or in the 3 months prior to 545 

the first sample collection. Of the 11 subjects, 10 were female and 10 were white, while ages 546 

ranged from 72 to 101. Five subjects lived through the entire sample collection period, while the 547 

other six passed away at some point prior to the final collection; between this attrition, one sample 548 

that was not collected, and three samples that were not well-sequenced, we had a total of 38 usable 549 

metagenomic samples (Figure 1A; Additional Tables S1-2). All samples were collected under 550 

SPREAD, which was approved by the Institutional Review Board at Hebrew Life[31]. 551 

Sample Collection: 552 

 Samples were collected by insertion of sterile double-tipped swabs (Starswab II; Starplex 553 

Scientific Inc., Ontario, Canada) into the anus of the subject. The first swab was used to identify 554 
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multidrug-resistant organisms (including methicillin-resistant S. aureus, vancomycin-resistant 555 

enterococci, and multidrug-resistant Gram-negative organisms such as E. coli, P. mirabilis, P. 556 

aeruginosa, or P. stuartii) via culturing techniques as described previously[156]. The second swab 557 

was frozen in 20% glycerol at -80°C for DNA extraction and sequencing. 558 

Sample Processing: 559 

 Frozen rectal swabs were thawed and placed into 96-well plates, before extraction using 560 

the PowerSoil DNA Isolation Kit (MOBIO, West Carlsbad, CA) according to the manufacturer’s 561 

instructions. DNA concentrations were measured using a Nanodrop 1000 (Thermo Scientific, 562 

Waltham, MA) and extracted DNA was stored at -20°C until further use.  563 

16S rRNA Amplicon Sequencing 564 

Sequencing: 565 

 The V4 hypervariable region of the 16S rRNA gene was amplified according to Earth 566 

Microbiome Project protocols. Amplification was performed using Illumina-adapted universal 16S 567 

primers 515F and 806R under the following conditions: 3 minutes at 94°C, 45 cycles of [45 568 

seconds at 94°C, 60 seconds at 50°C, 90 seconds at 72°C], 10 minutes at 72°C. All reactions were 569 

prepared using 5 PRIME polymerase 1X HotMasterMix (5PRIME, Gaithersburg, MD) and run in 570 

triplicate to alleviate primer bias. Triplicates were pooled before cleaning with a PCR Purification 571 

Kit (Qiagen). These products were quantified using the Qubit dsDNA High Sensitivity Assay Kit 572 

(Invitrogen, Eugene, OR) and samples were pooled in equimolar amounts. Sequencing was 573 

performed using the Illumina MiSeq platform located at the New York University Langone 574 

Medical Center Genome Technology Core. Sequences can be found under the BioProject 575 

accession number PRJNA573963 (http://www.ncbi.nlm.nih.gov/bioproject/573963). 576 

Data Processing: 577 
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 Data processing was performed using the QIIME2 (v 2019.1) pipeline[96]. The Divisive 578 

Amplicon Denoising Algorithm 2 (DADA2) method was used to quality-filter sequences and 579 

categorize amplicon sequence variants (ASVs)[157], and the SILVA (release 132) 99% identity 580 

V4 classifier was used to assign taxonomy to ASVs[158]. See Additional File 1 for more 581 

information. Taxonomic relative abundances were exported at the genus level for further analysis. 582 

Output data can be found in Additional Data 2. 583 

 584 

Shotgun Sequencing 585 

Sample Preparation and Sequencing: 586 

 Extracted DNA (2 ng DNA in 50 uL buffer) was sheared to 450bp using a Covaris LE220 587 

system. Library preparation was performed using a Biomek FXP Automated Liquid Handling 588 

Workstation (Beckman Coulter) with the KAPA HyperPrep Kit (Roche), with 12 cycles of PCR. 589 

Final libraries were normalized and pooled, with 20 samples per poor. Each pool was run on 2 590 

lanes of an Illumina HiSeq 4000 using the paired-end 2x150bp protocol. Library preparation and 591 

sequencing was performed at the New York University Langone Medical Center Genome 592 

Technology Core. Sequences can be found under the BioProject accession number PRJNA573963 593 

(http://www.ncbi.nlm.nih.gov/bioproject/573963) for the levofloxacin dataset and under the 594 

BioProject accession number PRJNA531921 (https://www.ncbi.nlm.nih.gov/bioproject/531921) 595 

for the test dataset. 596 

Data Processing: 597 

 Raw shotgun sequencing reads were processed using Kneaddata (v0.6.1) to remove 598 

contaminating human sequences from the dataset[159]. Briefly, the kneaddata function was used 599 
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with the Bowtie2 Homo sapiens database (v0.1)[160] to remove contaminating host reads from 600 

the sequencing files. See Additional File 1 for more information. 601 

Taxonomic Classification: 602 

 Kraken2, a taxonomic classifier that maps shotgun sequencing k-mers to genomic 603 

databases, was used to assign taxonomy to kneaddata-processed shotgun sequencing reads[70]. 604 

Briefly, the kraken2-build function was used to create a custom database containing the “bacteria” 605 

and “archaea” from NCBI libraries, and the kraken2 function was used to run the kneaddata-606 

filtered shotgun sequencing reads against this database and assign taxonomy. While Kraken2 does 607 

not estimate species abundances, Bracken2 (Bayesian Reestimation of Abundance with KrakEN) 608 

uses the taxonomy assigned by Kraken2 to estimate the number of reads per sample that originate 609 

from individual species[71]. The Kraken2 database was used to create a Bracken-compatible 610 

database using the bracken-build function, and the Kraken2 report files for each sample were run 611 

against the Bracken database using the bracken function for the phylum, genus, and species levels. 612 

Phylum- and species-level relative abundance outputs were formatted for biomarker discovery 613 

using LEfSe. The kraken-biom function was used to convert the Bracken report files into a biom 614 

file for import into R. Output data can be found in Additional Data 1. Relative abundance plots 615 

were generated in GraphPad Prism v8. 616 

Taxonomic Diversity Analysis: 617 

 Alpha and beta diversity analyses were performed using the phyloseq (v1.27.2)[161, 162] 618 

and vegan (v2.5-4)[163] packages in R (v3.4.3). Briefly, the biom file was imported into a 619 

phyloseq object. The phyloseq estimate_richness function was used to obtain Shannon’s Diversity 620 

Index values for all samples, while the vegan phyloseq::distance and ordinate functions were used 621 
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to generate a Bray-Curtis matrix and PCoA values. See Additional File 1 for more information. 622 

Data was exported as csv files for formatting, and plotting was performed in GraphPad Prism v8. 623 

Gene and Pathways Analysis: 624 

 The Human Microbiome Project Unified Metabolic Analysis Network 2 (HUMAnN2) 625 

pipeline was used to profile the presence and abundance of genetic pathways in our samples[97]. 626 

Briefly, the humann2 function was used with the kneaddata-filtered metagenomic sequences to 627 

estimate genes and MetaCyc pathways present in the samples based on the UniRef90 database, 628 

files were joined using the humann2_join_tables function and the full tables were de-leveled using 629 

the humann2_split_stratified_table function. The unstratified gene-level abundances were 630 

converted to both GO terms and KEGG orthologs using the humann2_regroup_table function, and 631 

the humann2_renorm_table function was used to normalize the MetaCyc pathway, GO term, and 632 

KEGG ortholog tables by computing relative abundance. These relative abundance tables were 633 

formatted for biomarker discovery with LEfSe. Additionally, the, and LEfSe was also used to 634 

analyze pre- and post-treated samples using both outputs. See Additional File 1 for more 635 

information. Output data can be found in Additional Data 3. Plots were generated in Graphpad 636 

Prism 8. 637 

Resistome Analysis: 638 

 The ARG content of the samples was analyzed using DeepARG-SS, a deep learning model 639 

that can predict ARGs from short-read metagenomic data[98]. We first analyzed the data using the 640 

deeparg function with the -reads flag. The mapped ARGs output was then imported into R, where 641 

it was processed to obtain tables of the ARGs detected per sample at both the specific gene and 642 

antibiotic class levels. The ARGs detected were normalized to the number of reads per sample. 643 
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Additionally, after metagenomic assembly and binning was performed (see below), 644 

individual bins were analyzed using DeepARG-LS, a deep learning model optimized to predict 645 

ARGS from gene-level input. The DNA_features output from selected bins was analyzed using the 646 

deeparg function with the -genes flag to analyze whether the levels or identity of ARGs could be 647 

linked to specific species of interest. The ARGs detected were normalized to the number of features 648 

per bin. All output data can be found in Additional Data 4. Plots were generated in GraphPad Prism 649 

8. 650 

Metagenomic Assembly and Binning: 651 

To further examine the ARGs present in the samples, kneaddata-filtered reads were 652 

uploaded to the web-based Pathosystems Resource Integration Center (PATRIC)[164]. Reads 653 

were assembled into contigs using the auto option of the Assembly service, which provides both 654 

raw output contigs from specific assembly algorithms and contigs of the “best” assembly as judged 655 

by the in-house PATRIC script ARAST. We ran the assembly using two different inputs: reads 656 

that had been processed by kneaddata as pairs, which has the advantage of utilizing mate-pairing 657 

information for longer total reads, and reads that had been processed by kneaddata after pairs were 658 

concatenated into a single file, which has the advantage of keeping reads whose mates failed 659 

trimming. 660 

Both the raw SPAdes assembly algorithm contigs[165] and the best assembly contigs were 661 

then processed using the Metagenomics Binning service, which assigns contigs to specific 662 

organisms and annotates the bin’s genome. Quality measures were used to define bins as either 663 

“good”, “acceptable”, or “bad” according to the criteria in Additional Table 3, and only “good” or 664 

“acceptable” bins were used moving forward. When more than one binning strategy (paired 665 

assembly or single assembly, SPAdes contigs or best contigs) called a particular bin as “good” or 666 
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“acceptable”, quality measures from the four strategies were compared and the highest-quality bin 667 

for a given species of interest was chosen for ARG analysis.  Finally, only bins of species present 668 

at 0.1% or greater relative abundance in the corresponding sample were selected for further 669 

analysis. A list of bins used, their source, and quality measures can be found in Additional Table 670 

4. 671 

Taxonomic Biomarker Analysis: 672 

 LEfSe was used to identify potential biomarkers distinguishing levofloxacin-treated 673 

samples[95]. In all cases (taxonomic abundances, MetaCyc pathways, KEGG orthologs, GO 674 

terms, ARGs), data was formatted into csv files and uploaded to the Galaxy webserver. LEfSe was 675 

run under default parameters for biomarker detection, comparing either all pre-levofloxacin to all 676 

post-levofloxacin or immediately pre-levofloxacin to immediately post-levofloxacin. LEfSe was 677 

also used to compare genus-level taxonomic abundance outputs from Kraken2/Bracken2 and 678 

QIIME2, again under default parameters. 679 
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 714 

FIGURE LEGENDS 715 

Figure 1: Subject Overview and Diversity Metrics 716 

(A) Metagenomics sequencing was performed on longitudinal samples from eleven subjects from 717 

SPREAD who had received a single course of levofloxacin during their participation in the study. 718 

Points represent collection of samples, at intervals of approximately 3 months, relative to 719 

administration of levofloxacin. (B) Shannon diversity over time of all subjects. The dashed line 720 

indicates administration of levofloxacin. p = 0.175 for immediately pre-levofloxacin vs. 721 

immediately post-levofloxacin samples and p = 0.1006 for all pre-levofloxacin vs. all post-722 

levofloxacin samples; Mann-Whitney test. (C) PCoA analysis of Bray-Curtis Dissimilarity. Solid 723 

arrows connect immediately pre- with immediately post-levofloxacin samples, dashed arrows 724 

connect other sequential samples, and dotted arrows connect samples where an intermediate 725 

sample is missing. (D) Within-subjects Bray-Curtis Dissimilarity of sequential samples. p = 0.6248 726 

between pre-levofloxacin samples, post-levofloxacin samples, or pre-post levofloxacin samples; 727 

ANOVA). (E) Overall within-subjects, T0 between-subjects, and overall between-subjects Bray-728 

Curtis Dissimilarity. p = 0.0262 for overall within-subjects vs. T0 between-subjects and p = 0.0175 729 

for overall within-subjects vs. overall between-subjects; t-test with Welch’s correction. 730 

 731 

Figure 2: Relative Abundances of Species and Antimicrobial Resistance Genes 732 

(A) Relative abundance of the most-abundant species across all samples, with all other species 733 

grouped in the “other” category. Species are grouped by genus and phylum, and are ranked within 734 
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those levels by average relative abundance across all samples. Broad color categories distinguish 735 

phylum (Proteobacteria are red, Bacteroidetes are blue, Firmicutes are green, and Actinobacteria 736 

are purple), while different species of the same genus are given the same specific background 737 

color. Red lines indicate levofloxacin administration; dashed lines indicate usage between 738 

consecutive timepoints, while dotted lines indicate usage where the immediately post-levofloxacin 739 

sample is missing (B) Relative abundance of the most-abundant antimicrobial resistance genes 740 

(ARGs) across all samples. Specific ARGs are grouped by the class of antimicrobials they provide 741 

resistance to. Broad color categories distinguish class (Multidrug RGs are blue, MLS RGs are red, 742 

etc.), while related gene categories (ex: the mec operon or mex efflux proteins) are given the same 743 

specific background color. All ARGs were normalized to the total number of reads. 744 

 745 

Figure 3: Antimicrobial Resistance Gene Profiles Reflect Taxonomic Observations 746 

(A) Relative abundance of species in Subject A, showing a bloom in S. aureus at T12. (B) Relative 747 

abundance of ARG classes in Subject A, showing an expansion in beta-lactam resistance genes at 748 

T12. (C) Relative abundance of beta-lactam resistance genes in Subject A, showing increases in 749 

the mecA/mecI/mecRI operon at T12. (D) Relative abundance of species in Subject B, showing a 750 

bloom in E. coli at T3. (E) Relative abundance of ARG classes in Subject B, showing an expansion 751 

in multidrug, beta-lactam, and fluoroquinolone resistance genes at T3. (F) Relative abundance of 752 

multidrug resistance genes in Subject B, showing increases in various ARGs at T3. (G) Relative 753 

abundance of fluoroquinolone resistance genes in Subject B, showing increases in genes including 754 

patA and mdtK at T3. (H) Relative abundance of beta-lactam resistance genes in Subject B, 755 

showing increases in genes including penicillin-binding proteins and class C beta-lactamase at T3. 756 

(I) Relative abundance of species in Subject H, showing a bloom in S. haemolyticus at T6. (J) 757 
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Relative abundance of ARG classes in Subject H, showing increases in MLS and fluoroquinolone 758 

resistance genes. (K) Relative abundance of MLS resistance genes in Subject H, showing an 759 

increase in staphylococcal resistance gene msrA and others at T6. (L) Relative abundance of 760 

fluoroquinolone resistance genes in Subject H, showing an increase in staphylococcal resistance 761 

gene norB  and others at T6. 762 

 763 

 764 

Figure 4: Relationship of ARG Levels to the Relative Abundance of Specific Pathobionts 765 

(A) Correspondence between the relative abundances of key species of interest (E. coli, P. 766 

mirabilis, E. faecalis, P. stuartii, and S. haemolyticus) and total ARG density in each sample. (B) 767 

Correlation between the sum of the relative abundances of E. coli, P. mirabilis, and E. faecalis and 768 

the total ARG density in each sample (r = 0.791, R2 = 0.6254, p  <0.0001; Pearson’s correlation). 769 

(C) Correlation between the sum of the relative abundances of E. coli, P. mirabilis, E. faecalis, P. 770 

stuartii, and S. haemolyticus and the total ARG density in each sample (r = 0.933, R2 = 0.8706, p 771 

< 0.0001; Pearson’s correlation). (D) Average ARG density in bins of species across all samples 772 

in which we were able to construct a bin for that species. Specific genes are grouped and colored 773 

by their ARG class, and bins are grouped by phylum and ranked by their total average ARG density 774 

within that phylum. 775 

 776 

Figure 5: Prediction of ARG Density From Relative Abundance of Specific Pathobionts 777 

(A) Correlation between the sum of the relative abundances of E. coli, P. mirabilis, and E. faecalis 778 

and the total ARG density in each sample in the test dataset (r = 0.7139, r2 = 0.5096, p<0.0001; 779 

Pearson’s correlation). (B) Correlation between the sum of the relative abundances of E. coli, P. 780 
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mirabilis, E. faecalis, P. stuartii, and S. haemolyticus and the total ARG density in each sample in 781 

the test dataset (r = 0.7753, r2 = 0.6012, p<0.0001; Pearson’s correlation). (C) Multiple linear 782 

regression of relative abundances of E. coli, P. mirabilis, and E. faecalis to ARG density in samples 783 

in the levofloxacin dataset (38 samples). (D) Correlation between the predicted ARG density and 784 

actual ARG density in the test dataset (67 samples) based on the relative abundances of E. coli, P. 785 

mirabilis, and E. faecalis. (E) Multiple linear regression of relative abundances of E. coli, P. 786 

mirabilis, E. faecalis, P. stuartii, and S. haemolyticus to ARG density in samples in the 787 

levofloxacin dataset (38 samples). (F) Correlation between the predicted ARG density and actual 788 

ARG density in the test dataset (67 samples) based on the relative abundances of E. coli, P. 789 

mirabilis, E. faecalis, P. stuartii, and S. haemolyticus. 790 

 791 

 792 

ADDITIONAL FILES 793 

Additional Figure 1: Relative Abundances of Phyla Across and Within Subjects 794 

(A) Relative abundance of phyla in all samples, ranked by average across all samples. (B-L) 795 

Relative abundances of phyla by subject, ranked by average within each subject. 796 

 797 

Additional Figure 2: Relative Abundances of Species Across and Within Subjects 798 

(A) Relative abundance of species in all samples, grouped by genus and phylum and ranked within 799 

those levels by average relative abundance across all samples. (B-L) Relative abundances of phyla 800 

by subject, grouped by genus and phylum ranked within those levels by average within each 801 

subject. Coloring is the same as in Figure 2A. 802 

 803 
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Additional Figure 3: Comparison of Genus-level Classifications by Metagenomics and 16S rRNA 804 

Analysis 805 

(A) Relative abundances of genera called by both QIIME2 and Kraken2/Bracken2, where pairs of 806 

stacked bars indicate the same sample as measured by both methods. (B) Genera called by LEfSe 807 

as associated with either QIIME2 or Kraken2/Bracken2. Each genus is colored according to its 808 

source phylum. 809 

 810 

Additional Figure 4: Relative Abundance of Gene Ontology Terms Across All Samples 811 

(A) Relative abundances of the top 250 most-abundant GO terms, representing broad functional 812 

categories, across all samples. A significant proportion are “unmapped” or “ungrouped”, as not all 813 

UniRef90 gene families can be mapped to a GO term. 814 

 815 

Additional Figure 5: Relative Abundance of Antimicrobial Resistance Genes Within and Across 816 

Subjects 817 

(A) Relative abundance of species in all samples, grouped and ranked within class by average 818 

relative abundance across all samples. (B-L) Relative abundances of ARGs by subject, grouped 819 

and ranked within class by average relative abundance within each subject. Coloring is the same 820 

as in Figure 2B. 821 

 822 

Additional Figure 6: Comparison of MDRO and non-MDRO Bins of the Same Species 823 

(A) ARG density in all E. coli bins across samples. (B) ARG density in all P. mirabilis bins across 824 

samples. (C) Beta-lactam ARG density in all S. aureus bins across samples.  825 

 826 
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Additional Table 1: Metadata on levofloxacin cohort from SPREAD 827 

This table lists the age, biological sex, and race of all subjects, whether a multidrug-resistant 828 

organism (MDRO) was detected in the subject at any timepoint, the duration of levofloxacin 829 

administration, and the reason for which they were administered levofloxacin. For MDROs, the 830 

specific organism detected and the antimicrobial agents it was found to be resistant to are also 831 

listed. 832 

 833 

Additional Table 2: Overview of longitudinal sample collection from levofloxacin cohort from 834 

SPREAD 835 

This table lists all samples from the levofloxacin cohort that were collected, sequenced, or analyzed 836 

in this study. Samples that were successfully analyzed are marked with a “yes”, while samples that 837 

could not be collected, sequenced, or analyzed are marked with a “no”. For samples that were not 838 

analyzed, a reason is also provided according to the following key: SD = subject deceased at this 839 

timepoint, NC = sample was not collected, NS = sample was not sequenced, SP = sample 840 

sequenced poorly. 841 

 842 

Additional Table 3: Bin selection quality cutoffs 843 

This table lists the cutoffs used to determine whether a bin was “good” or “acceptable” to be used 844 

in further analysis, or “bad” enough to be discarded. Briefly, “good” bins had to meet the “good” 845 

cutoffs for all five criteria measured, “acceptable” bins could have a maximum of two “acceptable” 846 

criteria as long as all others were “good”, and “bad” bins contained any criterion below the “bad” 847 

cutoffs. 848 

 849 
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Additional Table 4: Bins selected for DeepARG analysis 850 

This table lists all of the bins generated by PATRIC that were selected based on the criteria in 851 

Additional Table 3 to be analyzed using DeepARG. It includes all quality scores used to assess bin 852 

quality, as well as the PATRIC reference genome used to annotate the bin. 853 

 854 

Additional Table 5: BioProject Sample Identifiers for Test Dataset 855 

This table lists the sample names used in this study, the SPREAD IDs, and the BioProject 856 

PRJNA531921 sample names for the shotgun metagenomics sequencing files of the 67-sample 857 

dataset used to test the multiple linear regression developed from the levofloxacin dataset. 858 

 859 

Additional Data 1: Taxonomic Classifications from Shotgun Metagenomics Kraken2/Bracken2 860 

This file includes the relative abundances of the taxonomic classifications at the phylum, genus, 861 

and species level for both the initial levofloxacin-treated dataset (tabs 1, 2, and 3) and the second, 862 

larger test dataset (tabs 4, 5, and 6). Additional Table 5 links the sample names used for the test 863 

dataset in this study with their identifiers in BioProject PRJNA531921. 864 

 865 

Additional Data 2: Taxonomic Classifications from 16S rRNA Sequencing QIIME2 866 

This file includes the relative abundances of the taxonomic classifications at the phylum (tab 1) 867 

and genus (tab 2) level for the initial levofloxacin-treated dataset. 868 

 869 

Additional Data 3: Metagenomic Classifications from HUMANn2  870 

This file includes the relative abundances of the MetaCyc pathway (tab 1), KEGG ortholog (tab 871 

2), and GO term (tab 3) outputs for the initial levofloxacin-treated dataset. 872 
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 873 

Additional Data 4: Antimicrobial Resistance Gene profiles from DeepARG 874 

This file includes the relative abundances of antimicrobial class and specific resistance genes  at 875 

the phylum, genus, and species level for the initial levofloxacin-treated dataset (tabs 1 and 2), the 876 

second, larger test dataset (tabs 3 and 4), and the bins generated by PATRIC (tabs 5 and 6). 877 

Additional Table 5 links the sample names used for the test dataset in this study with their 878 

identifiers in BioProject PRJNA531921. 879 

 880 

Additional File 1: Code Used for Analysis 881 

This file includes all of the analysis code used for QIIME2, Kraken2 and Bracken, Phyloseq, 882 

HUMANn2, and DeepARG.  883 
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