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Background: In a previous study, the authors utilized a single dimensional operationalization of species density
that at least partially demonstrated dynamic system behavior.

Purpose: For completeness, a theory needs to be developed related to homology/cohomology, induction of the
time dimension, and system hierarchies.

Method: The topological nature of the system is carefully examined and for testing purposes, species density
data for a wild Dictyostelia community data are used in conjunction with data derived from liquid-chromatography
mass spectrometry of proteins.

Results: Utilizing a Clifford algebra, a congruent zeta function, and a Weierstraß ℘ function in conjunction
with a type VI Painlevé equation, we confirmed the induction of hierarchy and time through one-dimensional
probability space with certain topologies. This process also served to provide information concerning interactions
in the model.

Conclusions: The previously developed “small s” metric can characterize dynamical system hierarchy and in-
teractions, using only abundance data along time development.
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I. INTRODUCTION

In a previous study, the authors developed a system
whereby a static set of species density information can be

∗ S. Adachi: f.peregrinusns@mbox.kyoto-inet.or.jp

utilized to predict dynamics therein by extracting proba-
bilistic information [1]. We developed a new complex sys-
tem measure, “small s”, related to a probability space.
When Nk is the individual density for the k-th ranked
species and is approximated by a logarithmic distribu-
tion with parameters a, b with respect to the ranks of the
values of individual densities,

Nk = a− b ln k, (1)

and

ℜ(s) =
ln N1

Nk

ln k
(k ̸= 1),ℑ(s) = e

ℜ(s)
b E(N), (2)

where E(N) is averaged species density. For k = 1,

ζ(s) = E(N)
N1

for species, where ζ(s) is a Riemann zeta
function. Therefore, it appears doubtful why single-
dimensional information (Nk), with a topology labelled
by rank k, can induce a 3-dimensional system (a, b, ln k,
regarding Nk as free energy, the others as internal energy
or enthalpy, temperature, and entropy, respectively) of
an individual density, accompanied with an even addi-
tional time dimension. To explain this, first of all, we set
a 1-dimensional C∞ manifold with a topology as (B,O)
with s ∈ B. Inspired by the Bethe ansatz (e.g. [2]), we

set three different topologies isomorphic to ∆,C, andĈ
for further clarification of our model. These topologies
naturally invest a cohomology, time dimension, and hier-
archy to the system. Furthermore, we are able to define
a proper topology independently from moduli of mea-
surements with individual numbers and a Galois action
dependent on moduli of it in an evolutionary system
with hierarchy by Galois extension, such as biological
systems in this case. For application to biological hi-
erarchies, this model is tested using protein abundance
data derived from liquid-chromatography mass spectrom-
etry (LC/MS) of HEK-293 cells and species density data
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from a wild Dictyostelia community. Finally, we sought
to evaluate interactions of the constituents of biologi-
cal systems by invoking a Weierstraß ℘ function to es-
timate the strength of homo- and hetero-interactions.
These results serve to further justify our “small s” met-
ric to decipher system dynamics of interest. For exam-
ple, adapted, non-adapted (neutral), and disadapted (re-
pressed) proteins can be classified by expansion of the
model using a Clifford algebra. Furthermore, utilizing
a congruent zeta function elucidates the contribution to
adaptive/disadaptive situations from each hierarchy.

II. FIELD RESEARCH & EXPERIMENTS

II.1. Field Research

Data concerning the number of individuals in each
species were obtained from natural (nonlaboratory) en-
vironments. The sampling is described in [3]. Field
experiments were approved by the Ministry of the En-
vironment, Ministry of Agriculture, Forestry and Fish-
eries, Shizuoka Prefecture and Washidu Shrine (all in
Japan). The approval Nos. are 23Ikan24, 24Ikan72-32,
and 24Ikan72-57. Soil samples were obtained from two
point quadrats in the Washidu region of Izu in Japan.
The number of individual cellular slime molds per gram
of soil was determined by counting the number of plaques
cultivated from soil samples. Species were identified
by morphology and the DNA sequences of 18S rRNA
genes. Samples were obtained monthly from May 2012
to January 2013 inclusive. Relevant calculations were
performed using Microsoft Excel 16.16.13 and SageMath
8.8.

In more detail, sampling occurred using two
100 m2 quadrats in Washidu (35◦3′33′′N, 138◦53′46′′E;
35◦3′45′′N, 138◦53′32′′E). Within each 100 m2 quadrat,
nine sample points were established at 5 m intervals.
From each sampling point, 25 g of soil was collected.
Cellular slime molds were isolated from these samples as
follows. First, one sample from each site was added to
25 ml of sterile water, resuspended, and then filtrated
with sterile gauze. Next, 100 µl of each sample solution
was mixed with 100 µl HL5 culture medium containing
Klebsiella aerogenes and spread on KK2 agar. After two
days of storage in an incubator at 22 ◦C, the number of
plaques on each agar plate was enumerated and recorded.
Note that the number of plaques corresponds to the to-
tal number of living cells at any possible stage of the life
cycle. That is, the niche considered here is the set of
propagable individuals of Dictyostelia; these are not ar-
ranged in any hierarchy or by stage in the life cycle. Also,
note that we did not examine the age or size structure of
organisms, since most of these were unicellular microbes.
Mature fruiting bodies consisting of cells from a single
species were collected along with information regarding
the number of plaques in the regions in which each fruit-
ing body was found. Finally, spores were used to inocu-

late either KK2 for purification or SM/5 for expansion.
All analyses were performed within two weeks from the
time of collection. The isolated species were identified
based on 18S rRNA (SSU) sequences, which were ampli-
fied and sequenced using PCR/sequencing primers, as de-
scribed in [4] and the SILVA database (http://www.arb-
silva.de/). The recipes for the media are described at
http://dictybase.org/techniques/media/media.html.

II.2. Experiments

II.2.1. Cell culture

A human HEK-293 cell line from an embryonic kidney
was purchased from RIKEN (Japan). The sampling is
described in [5]. The original cultures were frozen on ei-
ther March 18, 2013 (3-year storage) or March 5, 2014
(2-year storage). They were subsequently used in exper-
iments between February and June 2016. The strain was
cultured in Modified Eagle’s Medium (MEM) + 10% fatal
bovine serum (FBS) + 0.1 mM nonessential amino acid
(NEAA) at 37 ◦C with 5% CO2. Subculturing was per-
formed in 0.25% trypsin and prior to the experiment, the
original cells from RIKEN were frozen following the stan-
dard protocol provided by RIKEN: in culture medium
with 10% dimethyl sulfoxide (DMSO), they were cooled
until reaching 4 ◦C at −2 ◦C/min, held at that tempera-
ture for 10 min, then cooled until reaching −30 ◦C at −1
◦C/min in order to freeze, held at that temperature for
10 min, then cooled again until reaching −80 ◦C at −5
◦C/min, and finally held at that temperature overnight.
The next day, they were transferred to storage in liquid
nitrogen.

II.2.2. Protein experiments

The HEK-293 proteins were extracted using the stan-
dard protocol for the RIPA buffer (NACALAI TESQUE,
INC., Kyoto, Japan). The sampling is described in
[5]. Approximately 106 harvested cells were washed once
in Krebs-Ringer-Buffer (KRB; 154 mM NaCl, 5.6 mM
KCl, 5.5 mM glucose, 20.1 mM HEPES pH 7.4, 25 mM
NaHCO3). They were resuspended in 30 µl of RIPA
buffer, passed in and out through 21G needles for de-
struction, and incubated on ice for 1 h. They were then
centrifuged at 10,000 g for 10 min at 4 ◦C, followed by
collection of the supernatants. The proteins were quan-
tified using a Micro BCA Protein Assay Kit (Thermo
Fisher Scientific, Waltham, U.S.A.) and further process-
ing was performed using XL-Tryp Kit Direct Digestion
(APRO SCIENCE, Naruto, Japan). The samples were
solidified in acrylamide gel, washed twice in ultrapure wa-
ter, then washed three times in dehydration solution, and
finally dried. The samples were then processed using an
In-Gel R-CAM Kit (APRO SCIENCE, Naruto, Japan).
The samples were reduced for 2 h at 37 ◦C, alkylated
for 30 min at room temperature, washed five times with
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ultrapure water, washed twice with destaining solution,
and then dried. The resultant samples were trypsinized
overnight at 35 ◦C. The next day, the dissolved digested
peptides were collected by ZipTipC18 (Merck Millipore,
Corp., Billerica, U.S.A.). The tips were dampened twice
with acetonitrile and equilibrated twice with 0.1% triflu-
oroacetic acid. The peptides were collected by ∼ 20 cy-
cles of aspiration and dispensing, washed twice with 0.1%
trifluoroacetic acid, and eluted by 0.1% trifluoroacetic
acid /50% acetonitrile with aspiration and dispensing
five times × three tips followed by vacuum drying. The
final samples were stored at −20 ◦C. Before undertak-
ing LC/MS, they were resuspended in 0.1% formic acid,
and the amounts were quantified by Pierce Quantita-
tive Colorimetric Peptide Assay (Thermo Fisher Scien-
tific, Waltham, U.S.A.). This protocol is published at
http://dx.doi.org/10.17504/protocols.io.h4qb8vw.

II.2.3. LC/MS

LC/MS was undertaken by the Medical Research Sup-
port Center, Graduate School of Medicine, Kyoto Univer-
sity with a quadrupole–time-of-flight (Q-Tof) mass spec-
trometer TripleTOF 5600 (AB Sciex Pte., Ltd., Concord,
Canada). Standard protocols were followed. The load-
ing amount for each sample was 1 µg. We extracted the
quantitative data for the unused information for iden-
tified proteins using ProteinPilot 4.5.0.0 software (AB
Sciex Pte., Ltd., Concord, Canada). For further details
see [5].

III. RESULTS

III.1. General guidelines for topological evaluations

We start from a 1-dimensional C∞ manifold with a
topology, (B,O). Note that many aspects of (B,O) can
be explained by the inverse square law by drawing on
forces in the models below.

This partial topology of O means, for example, a reg-
ular automorphism on ∆, f(∆) = {eiθ z−α

1−ᾱz ; z ∈ B, θ ∈
R, α ∈ ∆} can explain anything emanating from the set
of f , for example, isomorphism to R3 space as shown
in [1], and explored in more detail below. An appar-
ently neutral particle system introduced with hierarchies
by Galois extension could be Gal(Q(ζn)/Q) ∼= (Z/nZ)×
when ζn is a cyclotomic field. If GCD(n,m) is 1,
Gal(Q(ζnm)/Q) ∼= Gal(Q(ζn)/Q)×Gal(Q(ζm)/Q). This
would lead to a Kummer extension decomposed to species
with p identity [1].

For a topology of C, f(C) = {az + b; z ∈ B, a, b ∈ C}
and isomorphic to R4, later indicated as (3 + 1) dimen-
sions with a time dimension. Obviously interaction of a
complex metric, e.g. s2, w2 in [1], can induce a time

dimension. For a topology of Ĉ, f(Ĉ) = {az+b
cz+d ; z ∈

B, a, b, c, d ∈ C} and isomorphic to R6(R3 × R3), later

indicated by letting R4 compact by inducing a hierarchy
as in [1].
Fundamentally, a simply connected subregion without

holes such as a Riemann surface induced during hierar-
chization is isomorphic and holomorphic to either ∆,C,
or Ĉ. Schwarz-Christoffel mapping enables a conformal
transformation from polygons to one of those regions, and
the Widely Applicable Information Criterion (WAIC) has
a central role as an analogy to logarithmic velocity in
fluid mechanics calculated from D [1]. Without singular-
ity, this is straightforward to consider and we focus on
the case for singular points. As in the Bethe ansatz [2],
a single dimension z with a particular topology is able to
induce both a (3+1)-dimensional system and hierarchies.

III.2. O ∼= ∆ case

The Riemann-Roch theorem states

l(D)− l(K −D) = deg(D)− g + 1, (3)

where D is a divisor, K is a canonical divisor, and g is
a genus number. Let TB be a bundle. An interaction,
TB×̃TB :=

∪
p∈B TpB × TpB, becomes a 3-dimensional

C∞ manifold. Let open base elements of the manifold
be x, y, z, and the planes on the bases be X,Y, Z. If we
consider interactions of these bases, the left term of Eq.
(3) is 3, from g = 10 and deg(D) = 12.
Let F

F (z) = q
∞∏

n=1

(1− qn)2(1− q11n)2 =
∞∑

n=1

c(n)qn (4)

be a totally real number field of degree g over Q, and
K be a totally imaginary quartic extension of F . Let
D and Dint be simple algebras over K with D = es/b.
Let G = GU(D,α) with α being a second kind involu-
tion of D. Take a 3-dimensional ℓ-adic system in which
WE = ℜ(s) = ℓ,D× = p = |D|E(ΣN), GLd(E) = v =
lnNk/ ln p, where WE denotes the Weil group of center
E as a Langlands correspondence [6] [1] [5]. ℓ is obviously
an étale (crystalline) topology independent of moduli Nk,
in the sense that a homomorphism of Noetherian local
rings is unramified and flat, and the object is a localiza-
tion of a finitely generated algebra of the origin [1]. These
p(ℓ)-adic geometries are analogical to real differentiables
and Clifford-Klein geometries as calculated later. The
O ∼= ∆ case visualizes both persistence homology p and
étale cohomology l.

III.3. O ∼= C case

A Minkowski metric small s [1] can be utilized for a
time developing model when sin, cos of the metric are
converted to sinh, cosh. However, for more detailed anal-
ysis, another Minkowski metric in our model could be

sM = [ℑ(s)2(∆ℑ(s))2−(∆a)2−(∆b)2−(∆ ln k)2]
1
2 . (5)
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In this sense, the world line of a species is identical
and a different species is non-zero, discretely depending
on ∆ℑ(s). When we take ds2M = a(V1)ds

2
M1, ds

2
M1 =

a(V2)ds
2
M2, and so on. ds2M = ds′2M due to a Lorentz

transformation and ln(sM ) =
∑∞

i=1 ln a(Vi) becomes a
module when 2dsM = 0. A set of species can thus be
characterized by this module of sM . A Lagrangian could
be

L = −ϕℑ(s), (6)

and a Hamiltonian could be

H = −ϕℑ(s)2
√

ℑ(s)2 + (H(t)D)2

ℑ(s)2 − (H(t)D)2
. (7)

We can consider D′ ∼= Dint, G′ ∼= Gint, and a time
dimension is induced by some admissible isomorphisms
(Proposition 2.5.6 in [7]). Note that ‘temperature’ b
and root of time t are closely correlated by t = b argD
[1]. Now consider the Poincaré conjecture, where every
simply connected closed n-dimensional manifold WE is
homeomorphic to n-dimensional sphere Sn. Let a Morse
function be f :WE → [a, b], in which a, b are regular val-
ues. Let f have critical points p, p′ that correspond to in-
dexes λ, λ+1 as time. Consider that Sn−λ−1 and Sλ cross
at a single point; this indicates the status of present. The
exchange of Morse functions would result in no new crit-
ical point appearing and disappearance of critical points
p, p′ (h-cobordism theorem). This is what happens at
the present state following the time arrow. Remark that
p, p′ are linked to a Hecke ring via non-trivial zero points
of Riemann zeta [1], fulfilling the condition of the Yang-
Baxter equation. Thus this phenomenon is closely related
to an analogy to quantum entanglement and face models
[8, 9]. Of course, in the case of species, as species still
exist, they will reappear with different p values in this
model.

In this sense, for any labelling of time points τ ′ ∈ TS∗ ,
a potential for the Petersson-Weil metric is as follows:

ωWP = d(σT (τ ∨⊥ τ∗)− σT (τ ∨⊥ τ ′)), (8)

when ∨⊥ is a quasi-Fuchsian Kleinian group [10]. The
‘mating’ represents the coupling of times corresponding
to p, p′.

Now consider p, p′ as characteristics on a field k, as
in d = p = 0 in [5]. Let E be a singular hyperelliptic
curve of the system. Real D will be a tensor product
of an endomorphism of E on k̄ and Q, approximately.
The resultant D is a quaternion field on Q. Take a set
of lnN as an ℓ-adic rational Tate module as in [5]. D
will only ramify at p, p′ or a point at infinity (c.f. [11]).
This restricts the possible direction of the time arrow to
vanish p, p′ only.
Generally, for species, we draw a picture of time de-

velopment when the observer is at k = 1. For other
observations, we can simply take k → k′ shifts for the
calculations. That is, we can take a cyclotomic field re-
lated to the number of kmax. In this sense, time in the

context of a complex metric can be utilized and the world
line is in web form branched at each cross-section of p and
p′, not in parallel as discussed in some studies. For mov-
ing one distinct world line to another, we need velocity
H(t)D > ℑ(s).
Next, shift from p to l = ℜ(s) following the method

outlined in [1], and simply consider a combinatory func-
tion in a probability space, Γ(s + 1) = sΓ(s). This is
an example of a shift map. If we take a function similar
to a Γ function, we can observe discrete time develop-
ment merely by multiplying a master s function if we
know the particular s. That is, adding a single fractal
dimension in the past world (subtracting a single dimen-
sion from the future world by an observation) results in
a simple multiplication of s and master Γ(s). Therefore,
only evaluating an s of interest is sufficient for this aim.
Similarly, consider the Maass form of the Selberg

zeta function in [1] as calculating the mode of species
dynamics. Stirling’s approximation would be Γ(s) ≈√

2π
s ( se )

s exp( 1
12s ), and considering a first-order approx-

imation of the exponent with (1 + 1/12s) can suitably
approximate the situation with superstring theory of 12
dimensions. For further approximation, we need addi-
tional dimensions. Jacobian mapping independent of a
path λ

Φ(p) = (

∫
λ

φ1, · · · ,
∫
λ

φg) ∈ Cg/tΩZ2g = J
∼
(B) (9)

is one choice. If we know the master Maass form as the
invariant form for ρG(cG) = cGIdW when IdW is an iden-
tity mapping of a system of interest (Stone-von Neumann
theorem; [12–15]), differential operation does not cause
any difference in the form. This ensures the condition
for a suitable D-module and the accompanying derived
category. Thus we can adopt a modified microlocally
analytic b function as ∂b = i∂ as a substitute for the dif-
ferential operation; i.e., ∂2b = −∂2, rotating the form in
the angle of π, and ∂4b = ∂4 = i.d., reverting back to the
original orientation of the form. An Ornstein-Uhlenbeck

operator would be L = −
∑d

i=1 ∂
∗
i ∂i =

∑d
i=1 ∂

2
b . Set-

ting a bounded Baire function h on Rd and f as a so-
lution of Lf = h− < h >,< h >=

∫
Rd h(x)g(x)dx,

E(h(W ))− < h >= E(Lf(W )) means a deviation from
the expected function h value in the future. The oper-
ator ∂b is thus characterized for an operator calculating
a future state. ∂2b could be an element of a D-module
as D ◦ D = i.d. Then ∂b would develop to analogies to
energy or momentum, ∂b/∂t = E or −∂b/∂xk = pxk

as variations of operators. The π/2 rotation of ℑ(s) in
[1] is thus justified by the modified b function. Con-
sidering (3 + 1) dimensions with an interaction of two 2-
dimensional particles, this theory and transactional inter-
pretation of quantum mechanics [16] are suitable. If we
regard ∂kb , k ∈ Z as ideals of a finitely generated Jacobson
radical, Nakayama’s lemma shows maintaining identity
before and after the operation means the module is zero.
Therefore, in this finite case, everything is an observant
and at least an infinite generation is required to achieve
the values out of zeros. That means, if we see something,
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time is infinite. Hironaka’s resolution of singularities at
characteristic 0 implies such a mating of p, p′.
To resolve such a master relation, consider a form of

“velocity” as v ∈ TB. Then take a 2-dimensional space
consisting of s ∈ B. s(v, t) = p(v)+tq(v) as in a Lagrange
equation. The Gauss curvature of this surface K ≤ 0.
K ≡ 0 is only achieved when TB is time-independent,
and this TB with K = 0 is the time-invariant bundle us-
able for TB×̃TB calculation for a 3-dimensional system
and 6-dimensional hierarchies. Additionally, the Legen-
dre transformation of the above equation is X = v, Y =
tv−s, Z = t and {v−q(v)}dY

dv = Y +p(v). K = 0 means
v = 0 and s = p(0) is the required solution. Furthermore,
s can be regarded as a Dirac measure (w is a counterpart
of mass and s = w + 1), and s′ = −s can be regarded as
a Schwartz distribution. Although addition is allowed in
the distribution, generally multiplication is not (we will
illustrate that it is feasible later). However, setting the
differential as ∂2b , it becomes first order with a minus sign
and differentiation by time: t2 is plausible. For instance,∫ ∫

· · ·
V

∫
s∆φdt =

∫ ∫
· · ·
V

∫
φ[∆s]dt+

∫
· · ·
S

∫
s[
dφ

dν
]dS

−
∫

· · ·
S

∫
φ[
ds

dν
]dS,

(10)

where φ is a distribution of interest, s ∈ S, and ν is a
differential by unit area. The first term on the right is
noise, the second is related to fractal structure, and the
third is oscillative behavior. Besides singular points, it
is regular. An entire function considering negative even
singular points of l − n regarding w = s− 1 would be

Zl =
Pf.wl−n

π(n−2)/22l−1Γ( l
2 )Γ(

l+2−n
2 )

, (11)

where at the singular points, k ∈ Z≥0, Z−2k = □kw;□ =

(−1)(
∂4
b

∂x4
1
+

∂4
b

∂x4
2
+ · · ·+ ∂4

b

∂x4
n−1

− ∂4
b

∂t4 ). In the ∅ = ∂B case,

□Z2 = w,□kZ2k = w. This means, periodical popula-
tion bursting/collapsing by negative even w values [1].
For negative odd w values, chaos ensues (Šarkovski, Ste-
fan, Block theorem) [17]. Thus, adopting s, w is suitable
for applying a single-dimensional model. s is a mea-
sure provided it is finite in bounded domains. There-
fore, singular points reflect appearance/disappearance of
fractal structures. In summary, a topology O should be
({m = k} ⊂ N, {ε = b}, {Ω = a}) of Nk = a − b ln k in
[1]. For further details regarding distributions, see [18].

Now let E be an elliptic curve: y2 + y = x3 − x2 as in
[19]. This is equivalent to y(y + 1) = x2(x − 1). If we
consider (3 + 1)-dimensional N = 1 SU(2) without fluc-
tuation, x2 could be mass, (x − 1) could be a goldstino
as spontaneous breaking of supersymmetry, y could be 3-
dimensional fitness D with fluctuation, and y+1 could be
(3 + 1)-dimensional s [1]. The goldstino would represent
temporal asymmetry. In Gaussian ensembles, a complex
system GUE breaks time-reversal and a self-dual quater-
nion system GSE preserves it. Therefore y + 1 preserves

time symmetry and consequently the present y breaks
the symmetry.

t //

Γ

��

Dt

Γ(t)

F (a,b,c;z)

=={{{{{{{{

A Riemann scheme would uniformize the fitness space
as a hypergeometric differential equation.
Now consider

dY

dx
= (

A

x
+

B

x− 1
)Y, (12)

A =

 λ1 + λ3 + λ4 + λ5 λ2 0
0 λ3 + λ4 λ5
0 0 0

 , (13)

B =

 0 0 0
0 0 0

λ1(λ1+λ3+λ5)
λ5

λ1λ2+λ2λ3+λ3λ5)
λ5

λ2 + λ4 + λ5

 .

(14)
This will culminate in a generalized hypergeometric func-
tion 3F2 that satisfies a Fuchs-type differential equation

3E2. If we set proper region ∆ (13 different regions),

y(x) =

∫
∆

sλ1(s− 1)λ2tλ3(t− x)λ4(s− t)λ5dsdt. (15)

x = 0, w = D, s = 1 would result in

y(0) =

∫
∆

sλ1wλ2tλ3+λ4{−(t− 1)}λ5dsdt. (16)

λ1 = λ2 = λ3 = λ4 = λ5 = 1 would be E2 :
−
∫
y(y + 1)x2(x − 1)dxdy form, obviously the integral

of the interaction of two elliptic curves.

C = {s/b} //

exp.

��

C/∧ = C×/DZ

C× = D
time reversal

66nnnnnnnnnnn

For consideration of an interacting 4-dimensional sys-
tem, let us take Painlevé VI equations on a (3 + 1)-
dimensional basis with a single Hamiltonian [20] [21].

The Hamiltonian should be Hk = ∂k ln τ(t) = ∂kτ(t)
τ(t) =

H(t)Nk = Nk

E(ΣN) = ϕ when H(t) is a Hubble parame-

ter [22] [1]. τ(t) is thus an inverse of a Hubble param-
eter, and its kth boundary is a kth species. Note that
the 3-dimensional system represents the smallest possi-
ble number of dimensions whose associativity equations
become non-empty even in the presence of the flat iden-
tity. Furthermore, considering a fundamental group π1 of
C0,n := P1\{z1, ..., zn}, the dimension of representations
ρ of π1 in SL(2,C) is 2(n−3) [22]. If we would like to set
π1 as an étale topology with 0 dimension, n = 3. (3+1)-
dimensional semisimple Frobenius manifolds constitute a
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subfamily of Painlevé VI:

d2X

dt2
=

1

2
(
1

X
+

1

X − 1
+

1

X − t
)(
dX

dt
)2

−(
1

t
+

1

t− 1
+

1

X − t
)
dX

dt

+
X(X − 1)(X − t)

t2(t− 1)2
[(θ∞ − 1

2
)2

+θ20
t

X2
+ θ21

t− 1

(X − 1)2
+ (θ2t −

1

4
)
t(t− 1)

(X − t)2
].

(17)

Recall that the above equation is related to a rank 2
system:

dΦ

dz
= (

A0

z
+

At

z − t
+

A1

z − 1
)Φ, (18)

or

dA0

dt
=

[At,A0]

t
,
dA1

dt
=

[At,A1]

t− 1
(19)

with 4 regular singular points 0, t, 1,∞ on P1. Also,

A0 +At +A1 = −A∞ = diag{−θ∞, θ∞}. (20)

Note that the total sum of the matrix system is equal to
0. Assuming a 3-wave resonant system [23],

∂τu1 + c1∂xu1 = iγ1u
∗
2u

∗
3

∂τu2 + c2∂xu2 = iγ2u
∗
3u

∗
1

∂τu3 + c3∂xu3 = iγ3u
∗
1u

∗
2

(21)

(22)

(23)

An expansion of this model results in the h11V = h12
V̂

mir-

ror symmetry relation for the Calabi-Yau threefolds. Re-
call that matrix Painlevé systems of two interacting sys-
tems

t(t− 1)HMat
VI (α, β, γ, δ, ω; t; q1, p1, q2, p2)

= tr[Q(Q− 1)(Q− t)P 2

+{(δ − (α− ω)K)Q(Q− 1) + γ(Q− 1)(Q− t)

−(2α+ β + γ + δ)Q(Q− t)}P + α(α+ β)Q],

(24)

has 11 parameters.
Now let us convert a Painlevé VI equation to a more

realizable form as in physics. The Painlevé VI equation
is equivalent to

d2z

dτ2
=

1

(2πi)2

3∑
j=0

αj℘z(z +
Tj
2
, τ) (25)

where (α0, ..., α3) := (α,−β, γ, 12 − δ), (T0, ..., T3) =
(0, 1, τ, 1 + τ), and ℘ is the Weierstraß℘ function (The-
orem 5.4.1 of [20]). Furthermore, any potential of the
3-dimensional normalized analytic form

Φ(x0, x1, x2) =
1

2
(x0x

2
1 + x20x2) +

∞∑
n=0

M(n)

n!
e

n+1
r+1 x1xn2

(26)

can be expressed through a solution to the Painlevé VI
equivalent with (α0, ..., α3) = ( 12 , 0, 0, 0), that is,

d2z

dτ2
= − 1

8π2
℘z(z, τ). (27)

When q = D = eiπτ , the Picard solution of the τ func-
tion on the 4 dimensions that corresponds to the c = 1
conformal field blocks in an Ashkin-Teller critical model
would be

τPicard(t) = const · qσ
2
0t

t
1
8 (1− t)

1
8

ϑ3(σ0tπτ ± σ1tπ|τ)
ϑ3(0|τ)

, (28)

where the Jacobi theta function is ϑ3(z|τ) =∑
n∈Z e

iπn2τ+2inz; trMµMν = 2 cos 2πσµν when the pa-
rameter space of (θ0, θt, θ1, θ∞) is M [24] [25] [22] [26].
For other algebraic solutions, see [27]. Let us calcu-
late a Clifford algebra in an n = 3 system [28]. First,
let the representation (ρ, V ) of the algebra Cln fulfill
the condition ρ : Cln ∋ ϕ 7−→ ρ(ϕ) ∈ End(V ) with
ρ(ϕ)ρ(ψ) = ρ(ϕψ). When n is odd, for example, 3, there
are nonequivalent representations:

ρ+ : Cl3 ≃ C(2)⊕ C(2) ∋ (ϕ, ψ) → ψ ∈ End(C2), (29)

ρ− : Cl3 ≃ C(2)⊕ C(2) ∋ (ϕ, ψ) → ϕ ∈ End(C2). (30)

For example, let us calculate a complex v, v′ by ℜ(v) = v,
ℑ(v) = e(ℜ(v)/b)E(N), ℜ(v′) = Nk/ℑ(v), and ℑ(v′) =

e(ℜ(v′)/b)E(N) as in [5]. The next complex v′′ is ℜ(v′′) =
Nk/ℜ(v′) and ℑ(v′′) = e(ℜ(v′′)/b)E(N). We can calculate
v′′′ by the same operator as before. We denote this situ-
ation RRR. Graphing the calculated ℑ(v′′′) values with
their rank among 800 proteins permits classification into
3 groups demarcated based on slope values, namely, val-
ues below 1.01, between 1.01 to 2.00, and above 2.00
(Fig. 1). The 0.30 value of Filamin-A was excluded be-
cause it probably mostly reflects adapted proteins in fi-
broblasts (HEK-293). The irreducible representations in
the raw LC/MS data of [5] are 4-dimensional 1–2 (aver-
age 1.368± 0.004, 99% confidence) in non-adapted situa-
tions and 3-dimensional 1 (average 1.001511± 0.000006,
99% confidence) in adapted situations, respectively (Sup-
plemental Table 1). The remainder are probably re-
pressed (disadapted) proteins. In tensor algebra TB :=⊕∞

n=0B
⊗n, B =

⊕
i∈I RXi, x ∈ X, x ⊗ x − q(x) ∈

R ⊕ B⊗2, x is a single fractal dimension (= w), and
the fractal dimension of q(x) is 1/2, 1 for non-adapted
and adapted stages, respectively [1]. We are thus able
to calculate a characteristic number related to protein
adaptation.

III.4. O ∼= Ĉ case

For the species data set (Table I) [1], consider that a
sequential operation is an exact form. As in [5], setting
operation III as ℜ(v) = v, ℑ(v) = µl = e(ℜ(v)/b)E(N),
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FIG. 1. ℑ(v′′′) values versus their ranks.

ℜ(v′) = E[l] = l = ln(Nk)/ ln(ℑ(v)), ℑ(v′) =

e(ℜ(v′)/b)E(N), ℜ(v′′) = ln(Nk)/ ln(ℑ(v′)), ℑ(v′′) =

e(ℜ(v′′)/b)E(N), v′′′ by ℜ(v′′′) = ln(Nk)/ ln(ℑ(v′′)), and

ℑ(v′′′) = e(ℜ(v′′′)/b)E(N), we have ℜ(v) ≃ ℜ(v′′) ≃ 0,
ℑ(v) ≃ ℑ(v′′) ≃ 0, ℜ(v′) ≃ ℜ(v′′′) ≃ 0, ℑ(v′) ≃ ℑ(v′′′) ≃
0 (Table 1), suggesting that an actual/potential of species
creates an actual/potential appearance of the adapted hi-
erarchy above two layers. Recall that this is a short ex-
act sequence; the morphism ℑ becomes monomorphism
and ℜ(ln) becomes epimorphism. Furthermore, Imℑ is
equal to Kerℜ(ln). Obviously there also exists a ho-
momorphism h : ℑ(v′) → ℜ(v′), h : ℜ(v′′) → ℑ(v′),
h : ℑ(v′′) → ℜ(v′′) or h : ℜ(v′′′) → ℑ(v′′), and the
short exact sequence is a split. These are abelian groups
and ℜ(v′) ≃ ℑ(v) ⊕ ℑ(v′), ℑ(v′) ≃ ℜ(v′) ⊕ ℜ(v′′),
ℜ(v′′) ≃ ℑ(v′) ⊕ ℑ(v′′), ℑ(v′′) ≃ ℜ(v′′) ⊕ ℜ(v′′′). The
data show that an actual layer is a direct sum of a po-
tential layer below and a potential layer. The data also
show that a potential of the layer is a direct sum of a real
layer and a layer above the layer. Finally, defining a Ga-
lois action Gal(L/K), actions defined by ℜ(v′)/ℑ(v) ≃
ℑ(v′), ℑ(v′)/ℜ(v′) ≃ ℜ(v′′), ℜ(v′′)/ℑ(v′) ≃ ℑ(v′′), and
ℑ(v′′)/ℜ(v′′) ≃ ℜ(v′′′) are all Galois, achieving our goal
for defining proper Galois actions with a topology of v for
biological hierarchies. A species is thus likely to emerge
from the interaction of species.

ℜ(v)

ℑ
��

I(ℜ) // ℜ(v′)

ℑ
��

I(ℜ) // ℜ(v′′)

ℑ
��

I(ℜ) // ℜ(v′′′)

ℑ
��

ℑ(v)

ℜ(ln)xxx

;;xxx

I(ℑ)
// ℑ(v′)

ℜ(ln)www

;;www

I(ℑ)
// ℑ(v′′)

ℜ(ln)vvv

::vvv

I(ℑ)
// ℑ(v′′′)

For species [1], consider that a sequential operation in

TABLE I. N values.
N P. pallidum (WE) D. purpureum (WE) P. violaceum (WE)
May 0 76 0
June 123 209 52
July 1282 0 0
August 1561 0 0
September 901 107 0
October 1069 35 0
November 60 0 101
December 190 0 0
January 29 0 0

N P. pallidum (WW) D. purpureum (WW) P. violaceum (WW)
May 0 83 0
June 147 0 0
July 80 215 320
August 1330 181 0
September 809 77 649
October 799 0 107
November 336 0 0
December 711 0 0
January 99 0 0

WE: Washidu East quadrat; WW: Washidu West quadrat
(please see [3]). Scientific names of Dictyostelia species: P.

pallidum: Polysphondylium pallidum; D. purpureum:
Dictyostelium purpureum; and P. violaceum:

Polysphondylium violaceum. N is number of cells per 1 g of
soil. Species names for Dictyostelia represent the

corresponding values. Red indicates ℜ(s) values of species
that were approximately integral numbers greater than or

equal to 2.

the previous sections is an exact form. As in [5], setting
an operation III, we have ℜ(v) ≃ ℜ(v′′) ≃ 0 and ℑ(v) ≃
ℑ(v′′) ≃ 0, but no further (Table 1), suggesting that
an actual/potential of species creates an actual/potential
appearance of the adapted hierarchy above two layers,
which diminishes in the three layers above. This might
reflect effects from different time scales among different
layers [3]. Similar to the previous section, ℜ(v′) ≃ ℑ(v)⊕
ℑ(v′) and ℑ(v′) ≃ ℜ(v′)⊕ℜ(v′′).
From the III morphisms, we can draw a short exact

sequence corresponding to ℜ(v) → ℑ(v) → l = ℜ(v′) →
l × (ℑ(s) = ℑ(v′)) → ℜ(v) = ℜ(v′′),

0 → A(u)
ι→ B(u) sp→ C(u×

√
−1S∗) → 0, (31)

regarding g = l as a specific spectrum of the Schwartz
distribution (or Sato hyperfunction [29, 30]) of a micro-
function sp g [31, 32]. Not only addition, but also multi-
plication is feasible for −s in this regard.

III.5. Congruent zeta function

Hereafter we will adhere to the situation where O ∼= Ĉ.
For the other aspect, instead of ℑ(v′), we can consider
Z/lZ, by 1/l-powered ℑ(v′), state a p-adic number cor-
respondence, and then take a valuation of it. Universal
coefficient theorems [33],

0 → Ext(Hq−1(X,A), G) → Hq(X,A;G)

→ Hom(Hq(X,A), G) → 0,
(32)
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could be described as

0 → µl → E[l] → Z/lZ → 0, (33)

making an exact sequence, with ℜ(s) value in the mid-
dle level between populational ℜ(v) value and its fractal
ℜ(v′′) value. E[l] → Z/lZ is an injection and Z/lZ → 0
an epimorphism. The image of the former is the kernel
of the latter. Homology backwards is a homomorphism
of the cohomology, and the exact sequence splits. These
are abelian groups and E[l] ∼= µl⊕Z/lZ;Z/lZ ∼= E[l]⊕0.
A real level is constituted by a direct sum of a potential
level below and its own potential. A potential level is
constituted by a direct sum of a real level below and a
real level above. E[l]/µl

∼= Z/lZ;Z/lZ/E[l] ∼= 0 are Ga-
lois actions and a representation of an étale topology ℓ is
obtained, concomitantly with information of interactions
among different levels of hierarchies. Species should ap-
pear two layers above the population layer. [3] reports
results where the point mutation rate is on the order of
10−8 and speciation is on the order of 10−25, roughly
above a square of 10−8 over 10−8. This calculation could
be modeled by a simple critical phenomenon of dendro-
gram percolation. In this model, approaching 1/2 − 0
probability of mutation maintenance leads to divergence
in cluster size. Regarding non-trivial ζ(w) = 0 as a seed
for speciation, a ∼ 108 population is on the same order as
a branch for being identical to ancestors or different from
them at each genome base pair. A dendrogram can be
regarded as a phylogenetic tree for dividing cells, which
is common to both asexually propagating organisms and
a constituent of sexually reproducing organisms at the
level of cell division of germ line cells, strictly correlated
to mutation during cell cycle processes. These facts ex-
hibit ℓ and Galois actions can adequately describe inter-
hierarchical interactions.

The logic above would suggest application of
Grothendieck groups. Let the situation be a Noetherian
ring, i.e., B is the ring. Let F (B) be the set of all isomor-
phisms of B-modules. Let CB be the free abelian group
generated by F (B). The short exact sequence above is
associated with (µl) − (E[l]) + (Z/lZ) of CB (() is an
isomorphism). Let DB be the subgroup of CB . The quo-
tient group CB/DB is a Grothendieck group of B related
to potential of s, w layers, denoted by K(B). If E[l] is
a finitely generated B-module, γ(E[l]) would be the im-
age of (E[l]) in K(B). There exists a unique homomor-
phism λ0 : K(B) → G such that λ(E[l]) = λ0(γ(E[l]))
for all E[l] when G is an abelian group of the B-module.
This representation corresponds to the Stone-von Neu-
mann theorem in this restricted situation. B is gen-
erated by γ(B/p) when p corresponds to species in a
biological sense. If B is a principal ideal domain con-
stituting a single niche without cooperation of distin-
guished niches, K(B) ∼= Z, and this is suitable when
considering biological numbers for individuals. Consid-
ering different E[l], Ml, and Nl, and the set of all iso-
morphisms of a flat B-module F1(B), γ1(Ml) · γ1(Nl) =
γ1(Ml ⊗ Nl); γ1(Ml) · γ(Nl) = γ(Ml ⊗ Nl);K1(A) ∼= Z
with tensor products. Furthermore, if B is regular,

K1(B) → K(B) is an isomorphism. The sum of in-
teractions for different niches (not interacting between
distinguished niches) is thus calculable as integers by a
Grothendieck group. If the calculation does not lead to
integers, the situation involves interactions among dis-
tinguished niches. Algebraic expansion of this ring thus
introduces entirely different niches to the original ring.
If a ∈ K, f(x) = xl − x− a, α ∈ K̄, f(α) = 0, α /∈ K(α ∈
∂K), f(x) is irreducible on K, L = K(α) is a Galois ex-
tension, and Gal(L/K) ∼= Z/lZ. α is from the hierarchy
above based on a new ideal.

To unify the sections introducing Galois Hi and the
preceding sections regarding the time arrow, consider
X,Y , which are eigen and smooth connected algebraic
curves on an algebraic closed field.

Hi(Xk̄,Qℓ)
pr∗1−−→ Hi(Xk̄ ×k̄ Yk̄,Qℓ)

∪cl(γ)−−−−→ Hi+2d(Xk̄ ×k̄ Yk̄,Qℓ(d))
pr2∗−−−→ Hi(Yk̄,Qℓ),

(34)

when γ is an algebraic correspondence from Y to X. If
we assume X and Y correspond to different time points,
the above diagram,

γ∗ : Hi(Xk̄,Qℓ) → Hi(Yk̄,Qℓ) (35)

describes the time development of the system. To dissect
the contributions of each component on the time devel-
oping system, let κm be an m-dimensional expansion of
κ, which is a finite field of a residue field of an integer
ring OK on K. When the eigen smooth scheme Y is on
κ,

2d∑
i=0

(−1)iTr(Frobmv ;Hi(Yk̄,Qℓ)) = ♯Y (κm) (36)

[34] [35].
When Y is finite, a congruent zeta function is

Z(Y, T ) = exp(
∞∑

n=1

♯Y (κn)

n
Tn). (37)

Setting

Pi(Y, T ) = det(1− FrobvT ;H
i(Yk̄,Qℓ)) (38)

results in

Z(Y, T ) =
2 dimY∏
i=0

Pi(Y, T )
(−1)i+1

. (39)

To separate each contribution of Hi, consider Weil con-
jectures [36] [37], and Pi(Y, T ) and Pj(Y, T ) are dis-
joint when i ̸= j. Pi(Y, T ) and Tr(Frobmv ;Hi(Yk̄,Qℓ))
are thus calculable and this deciphers each contribution
of Pi(Y, T )s. Examples of the calculation are provided
in Tables II & III. Generally, large positive zeta values
represent highly adapted situations, whereas large neg-
ative zeta values represent highly disadapted situations
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TABLE II. Calculations for Washidu East quadrat

Z (congruent) P. pallidum D. purpureum P. violaceum
May - - -
June 0.009378 151.1 9.272
July - - -
August - - -
September 114.7 30.89 -
October 334.6 -540.4 -
November 0.02561 - -54.13
December - - -
January - - -

P0 P. pallidum D. purpureum P. violaceum
May - - -
June -1.288 -0.06806 -0.1520
July - - -
August - - -
September -1.163 -0.7248 -
October -0.8250 0.02954 -
November -1.002 - 0.1790
December - - -
January - - -

P1 P. pallidum D. purpureum P. violaceum
May - - -
June 0.7635 -10.29 -1.253
July - - -
August - - -
September -133.4 -22.39 -
October -276.1 -15.96 -
November 0.7480 - -9.689
December - - -
January - - -

P2 P. pallidum D. purpureum P. violaceum
May - - -
June -63.23 1.000 0.8886
July - - -
August - - -
September 1.000 1.000 -
October 1.000 0.9999 -
November -29.13 - 1.000
December - - -
January - - -

P. pallidum: Polysphondylium pallidum; D. purpureum:
Dictyostelium purpureum; P. violaceum: Polysphondylium

violaceum. - are undefinable.

and zero values are neutral situations. P0, P1, P2 cor-
respond to ℜ(v),ℜ(v′),ℜ(v′′). For ℜ(v),ℜ(v′′), values
close to zero represent large contributions, and for ℜ(v′),
large values represent large contributions. The inverses
of ℜ(v),ℜ(v′′) scale for ℜ(v′). The important point here
is that by utilizing a congruent zeta function, we can
visualize a contribution from each hierarchy.

From these theorems, we can deduce that P2 is a pen-
cil on elliptic curves with a section of order two and an
additional multisection. Setting ζ = e2πi/3 = (eπi/3)2 on
the initial condition of P2 at the point xa = 0,

t = ζ + 1, X(ζ + 1) =
1

1− ζ
,X ′(t) =

1

3
. (40)

In the PzDom model [1], 1/ℑ(s−1) ≈ eπi/3 for predicting

TABLE III. Calculations for Washidu West quadrat.

Z (congruent) P. pallidum D. purpureum P. violaceum
May - - -
June - - -
July 8.135 0.002196 97.00
August 123.7 29.31 -
September 26.54 -106.1 0.0001892
October 99.51 - 26.36
November - - -
December - - -
January - - -

P0 P. pallidum D. purpureum P. violaceum
May - - -
June - - -
July -0.1936 -2.208 -0.1174
August -1.306 -0.9804 -
September -0.6856 0.08601 -8.157
October -1.141 - -0.7729
November - - -
December - - -
January - - -

P1 P. pallidum D. purpureum P. violaceum
May - - -
June - - -
July -1.483 0.9810 -11.39
August -161.6 -28.74 -
September -18.19 -9.126 1.000
October -113.6 - -20.37
November - - -
December - - -
January - - -

P2 P. pallidum D. purpureum P. violaceum
May - - -
June - - -
July 0.9417 -202.2 1.000
August 1.000 1.000 -
September 1.000 1.000 -647.9
October 1.000 - 1.000
November - - -
December - - -
January - - -

P. pallidum: Polysphondylium pallidum; D. purpureum:
Dictyostelium purpureum; P. violaceum: Polysphondylium

violaceum. - are undefinable.

the future and t is an addition of 1 to interactive (eπi/3)2

if ℜ(s − 1) is neglectable. When in close proximity to
trivial zero points of Riemann ζ, t ∼ 1 and X(t) ∼ 1.
X ′(t) = 1

3 thus represents a (2 + 1)-dimensional system.
System dimensions are thus reduced to 2+1. For re-

producing the kernels, let q be in (Q∞)Γ(H∗). Then,

q(w)dw2 =
12

π
(

∫
H

q(z̄)ℑ(z)2

(z − w)4
|dz|2)dw2, (41)

where w = α/β and z := (αζ + ᾱ)/((βζ + β̄). The term
in parentheses is the reproduced kernel (Prop. 5.4.9 of
[10]).

Now consider q difference Painlevé VI with ĝl3 hierar-

chy. q could be equal to −s, and y(x+ 1) = 1−qx

1−q y(x) =
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(
∑x−1

i=0 q
i)y(x) can be converted from q to −s, when

x→ ∞.
Setting |q| > 1, t as an independent variable, and f , g

as dependent variables,

T (g) =
(f − ta1)(f − ta2)b3b4
g(f − a3)(f − a4)

, T−1(f)

=
(g − tb1)(g − tb2)a3a4
f(g − b3)(g − b4)

,

(42)

where

f = −A12
0

A12
1

, g =
(A12

0 + x1A12
1 )(A12

0 + x1q
α1+1A12

1 )

q(A11
0 (A12

1 )2 −A11
1 A12

0 A12
1 + qβ2+1(A12

0 )2)
.

(43)

A12
0 = qα1+α2+2x1x2ω13w̄32, (44)

A12
1 = qα1+1x1ω11w̄12 + qα2+1x2ω12w̄22, (45)

A11
0 = qα1+α2+2x1x2(1 + ω13w̄31), (46)

A11
1 = −qα1+1x1(1 + ω12w̄21 + ω13w̄31)

−qα2+1x2(1 + ω11w̄11 + ω13w̄31)
(47)

and considering q = −b lnD of the PzDom model
[1], local time development can be easily calculated.
(a1, a2, a3, a4); (b1, b2, b3, b4) have 4 parameters interact-
ing with each other in this soliton equation of similarity
reduction [38] [23]. In other words, we are treating a di-
rect sum of two Virasoro algebras, or a Majorana fermion
and a super-Virasoro algebra [25].

III.6. Further consideration of 1+1 dynamics

There is another way of considering system dynam-
ics with q, starting from a Young tableau. Let S be a
finite or countable set, for example, as the measures of
species density as SpecZ. For ℜ(s) ≤ 1/2, let an absolute
value of an absolute zeta function ζK = ζGm/F1

(x, y) =

| s(x,y)
(s−1)(o,y) |;x, y ∈ S where Gm = GL(1). For ℜ(s) > 1/2,

and let an absolute value of an inverse of an absolute
zeta function ζK = 1

ζGm/F1
(x,y) = | (s−1)(o,y)

s(x,y) |;x, y ∈ S.

ζK becomes a Martin kernel. Let a distance function
Dδ(x, y) =

∑
z∈S Cz(|ζK(z, x) − ζK(z, y)| + |δzx − δzy|),

where δ is the delta function. For a distance space
(S,Dδ), a topology of S determined by Dδ is a discrete
topology and (S,Dδ) is totally bounded. A completion

of (S,Dδ) will be set as Ŝ. Let a Martin boundary

∂S = Ŝ\S be a (d − 1)-dimensional species density not
restricted to a random walk or transition probability. Sd

represents all possibilities of Sd−1 with a time dimen-
sion. Furthermore, a set of Sd−1 can be expressed by a
Young tableau in a Frobenius coordinate system. Taking
a Maya diagram of the tableau distributes the data to
a single dimension. Therefore, the 3-dimensional system

is in fact represented as a 1-dimensional system, a set of
F1 = Fq. In this context, a set of the individual numbers
of species is over Z and a time X is a flat algebra Λ-space
over Z. A Λ-structure on X is ψp : X → X, where ψ is
X ×SpecZ SpecFpc

. In other words, Λ = Z[Gal(Z/Fpc
)].

pc = 1 when there is no hierarchy/period in our anal-
ysis and, for example, pc = 2 in protein or species
data sets described above. Therefore, the hierarchy ex-
tends from F1 to F2. Mn/F1

= HomGm/F1
(An,An) =

ζK ;GLn/F1
= AutGm/F1

(An) = Sn and thus s ∈ Gm and

s− 1 ∈ F1 when ℜ(s) ≤ 1/2 and s− 1 ∈ Gm and s ∈ F1

when ℜ(s) > 1/2. q ∈ Gm and Spec(q) is Spec(s) or
Spec(s − 1). Since D = es/b is calculable in [1] with a
root of time t, temperature bt at time point t2 and tem-
perature bt−1 at time point (t−1)2 when time is properly
scaled, the dynamics of q can be calculated by this basal
information. See [39] for further details in this respect as
relates to Grothendieck’s Riemann Roch theorem. This
is another explanation as to why a 1-dimensional system
with a certain topology leads to 3 + 1 dynamics.

III.7. ℘ as evaluations for interactions

Take Wallis’ formula:

lim
n→∞

1√
n
· 2 · 4 · • • • · (2n)
1 · 3 · • • • · (2n− 1)

=
√
π. (48)

The upper product of even numbers could be a product
of bosonic multiplications, and the lower product of odd
numbers could be that of fermionic multiplications. The
square of them divided by n as an average number of
actions would result in π. π is thus the number ratio
of boson multiplications and fermion multiplications. In
other words, an area of a circle corresponds to boson ac-
tions and the square of the radius corresponds to fermion
actions. Globally there are ∼ 3 times more bosonic ac-
tions than fermionic actions. For further expansion for
the bosonic even −w (without w = 0) with µ(n) = 1

[1], Weierstraß ℘(1/n) =
∑negative even ̸=0

w=−2 (1/n)w and a
((w/2+1)×n)(n×1) matrix would calculate a set of patch
quality Pw of bosons involving a future status of w = −2.
Similarly, even −s with µ(n) = −1 [1], −℘(1/n) =

−
∑negative even ̸=0

s=−2 (1/n)s, and a ((s/2 + 1) × n)(n × 1)
matrix would calculate a set of patch quality −Ps of
fermions involving a future status of s = −2. Regard-
ing w = s−1, P (w) = Pw−Ps=w+1 = ζ(w)+n+n2 and
the Riemann ζ function can be related to patch quality.
Population bursts with these even w (odd s) could be
calculated by Pw → +∞ with negative even w (negative
odd s), or in lower extent of bursting, Ps → ∓∞ with
w → 1∓ 0(s→ 2∓ 0). Since P (0) ̸= 0 and P (0) → +∞,
considering P (w) = ℘(1/n)+℘(1/n)/n and ak, bk as zero
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TABLE IV. Weierstraß ζ values.
Weierstraß ζ WE P. pallidum WE D. purpureum WE P. violaceum
May
June 2.290e15 - 5.081e15*I 5.648e51 + 1.513e52*I 3.036e32 + 1.2783e32*I
July
August
September -9.284e28 - 2.716e28*I -1.501e23 + 3.448e23*I
October -3.307e36 - 2.666e37*I -1.220e35 - 2.047e35*I
November 3.579e14 - 1.003e15*I 2.065e59 + 9.395e59*I
December
January

Weierstraß ζ WW P. pallidum WW D. purpureum WW P. violaceum
May
June
July 2.329e35 + 1.735e35*I 7.052e8 - 2.352e10*I 4.950e53 + 1.630e54*I
August -4.121e28 - 1.547e28*I -1.075e22 + 3.286e22*I
September 1.493e39 + 1.008e39*I 6.076e48 + 1.023e49*I 1.220 + 0.02924*I
October -4.379e28 - 1.562e28*I -1.440e22 + 4.328e22*I
November
December
January

WE: Washidu East quadrat; WW: Washidu West quadrat;
P. pallidum: Polysphondylium pallidum; D. purpureum:

Dictyostelium purpureum; P. violaceum: Polysphondylium
violaceum. Weierstraß ζ are calculated from ℘ on an elliptic

curve [0, 1], expanded to 30-th order. Constants of
integration were neglected for ζ′ = −℘.

points and poles of the function,

fP (1/n) = CP

∞∏
k=1

℘(1/n)− ℘(ak)

℘(1/n)− ℘(bk)

×
∞∏
k=1

℘(1/n)/n− ℘(ak)/n

℘(1/n)/n− ℘(bk)/n
= 0

(49)

because the constant CP = 0 when w = 0 [40]. Thus
w = 0(s = 1) means every singularity can be considered
as a zero ideal adopting fP . w → 0 means a general limit
of limw→0

ln s
w = 1. We can regard a logarithm of s as a

fitness when the fitness is sufficiently small. A fixed point
of the observer at s = 1 implies everything combined
to the zero ideals. If we regard Weierstraß ζ(z; Λ) =
1
z +

∑
w∈Λ∗( 1

z−w + 1
w + z

w2 ) (not Riemann zeta) as a
distribution function, an additive operation for fractal
dimensions s1, s2 results in

ζ(s1 + s2) = ζ(s1) + ζ(s2) +
1

2

℘′(s1)− ℘′(s2)

℘(s1)− ℘(s2)
. (50)

This means the third term on the right is a contribution
of different fractal hierarchies, besides a direct sum of
distribution functions. Tables IV to VII— present val-
ues for the Weierstraß zeta function, Weierstraß ℘, ℘′,
and interaction terms. Note that at Washidu West in
September, Pv-Dp-Pp interacted strongly in that order.
In October, there is also a strong interaction of Pv-Pp.
Compared with Washidu West, Washidu East exhibited
weaker interaction and was dominated by Pp.
For further clarification, regarding ℘ as an elliptic func-

tion,

℘′2 = 4℘3 − g2℘− g3 (51)

is a normal form without multiple root. Rationals exist,
F (℘(u)), G(℘(u)) as Legendre canonical forms of elliptic

TABLE V. ℘ values.
℘ WE P. pallidum WE D. purpureum WE P. violaceum
May
June 1.709e16 + 9.720e15*I -2.966e51 + 1.066e51*I -1.304e32 + 2.778e32*I
July
August
September 5.052e28 - 1.081e29*I -5.829e23 - 4.100e23*I
October 1.694e37 - 1.838e35*I 1.622e35 - 7.066e34*I
November 3.600e15 + 1.691e15*I -9.903e58 + 2.100e58*I
December
January

℘ WW P. pallidum WW D. purpureum WW P. violaceum
May
June
July -1.334e35 + 1.676e35*I 1.259e11 + 1.727e10*I -2.717e53 + 7.949e52*I
August 2.719e28 - 4.871e28*I -6.167e22 - 3.546e22*I
September -5.774e38 + 7.958e38*I -1.837e38 + 7.905e37*I -0.8200 + 4.042*I
October 6.491e22 - 1.137e22*I 3.434e17 - 1.790e18*I
November
December
January

WE: Washidu East quadrat; WW: Washidu West quadrat;
P. pallidum: Polysphondylium pallidum; D. purpureum:

Dictyostelium purpureum; P. violaceum: Polysphondylium
violaceum. ℘ were calculated from an elliptic curve [0, 1],

expanded to 30-th order.

TABLE VI. ℘′ values I.
℘′ WE P. pallidum WE D. purpureum WE P. violaceum
May
June 3.841e16 - 5.488e16*I 1.938e50 + 5.613e50*I 2.450e32 + 1.2734e32*I
July
August
September -1.181e29 - 7.904e28*I -9.494e23 + 8.939e23*I
October 1.048e36 - 1.027*I -3.553e34 - 1.217e35*I
November 7.322e15 - 1.234e16*I 2.058e57 + 1.008e58*I
December
January

WE: Washidu East quadrat; WW: Washidu West quadrat;
P. pallidum: Polysphondylium pallidum; D. purpureum:

Dictyostelium purpureum; P. violaceum: Polysphondylium
violaceum. ℘′ were calculated from an elliptic curve [0, 1],

expanded to 30-th order, and differentiated.

TABLE VII. ℘′ values II.
℘′ WW P. pallidum WW D. purpureum WW P. violaceum
May
June
July 1.162e35 + 9.874e34*I 1.594e11 - 6.432e11*I 1.231e52 + 4.372e52*I
August -5.395e28 - 4.181e28*I -9.400e22 + 1.055e23*I
September 4.088e38 + 3.182e38*I 3.442e47 + 6.318e47*I 14.97 - 8.365*I
October -5.744e28 - 4.312e28*I -1.223e23 + 1.360e23*I
November
December
January

WE: Washidu East quadrat; WW: Washidu West quadrat;
P. pallidum: Polysphondylium pallidum; D. purpureum:

Dictyostelium purpureum; P. violaceum: Polysphondylium
violaceum. ℘′ were calculated from an elliptic curve [0, 1],

expanded to 30-th order, and differentiated.

TABLE VIII. Hetero-interaction terms.
hetero-interaction WE WW
Pp-Dp (June) 0.001160 - 0.09419*I Pp-Dp (Jul) 0.01142 - 0.3558*I
Pp-Pv (June) 0.01818 - 0.4494*I Pp-Pv (Jul) 0.0008154 - 0.08021*I
Dp-Pv (June) 0.001160 - 0.09419*I Dp-Pv (Jul) 0.0008154 - 0.08021*I
September 0.09055 - 0.5885*I August 0.09149 - 0.6049*I
October 0.03433 - 0.3021*I Pp-Dp (Sep) -2.372e8 + 3.704e8*I
November 0.0003791 - 0.05081*I Pp-Pv (Sep) 0.008871 - 0.2633*I

Dp-Pv (Sep) -1.659e8 - 1.791e9*I
October -3.728e5 - 3.975e5*I

WE: Washidu East quadrat; WW: Washidu West quadrat;
P. pallidum, Pp: Polysphondylium pallidum; D. purpureum,

Dp: Dictyostelium purpureum; P. violaceum, Pv:
Polysphondylium violaceum.
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TABLE IX. F values and contributions.
F WE major WW major
Pp-Dp (June) 0.7693+8.182*I Pp Pp-Dp (Jul) 0.5752+5.331*I Dp
Pp-Pv (June) 0.7693+8.182*I Pp Pp-Pv (Jul) 1.262+39.31*I Pp
Dp-Pv (June) 1.258+31.10*I Pv Dp-Pv (Jul) 0.5752+5.331*I Dp
September 3.078+14.99*I Pp August 2.879+13.80*I Dp
October 4.907+38.67*I Dp Pp-Dp (Sep) 1.790+53.12*I Pp
November 0.7481+7.726*I Pp Pp-Pv (Sep) 0.3186+2.028*I Pv

Dp-Pv (Sep) 0.3186+2.028*I Pv
October 2.905+13.93*I Pv

WE: Washidu East quadrat; WW: Washidu West quadrat;
Pp: Polysphondylium pallidum; Dp: Dictyostelium

purpureum; Pv: Polysphondylium violaceum. Major: species
that had a major impact on dynamics.

TABLE X. g2, g3 values I.
Normal form g2 g3 int. const. synch.
Pp-Dp (June) 3.066e103-2.529e103*I -7.698e119+1.343e119*I - + anti
Pp-Pv (June) -2.408e65-2.899e65*I 1.298e81+7.295e81*I + - anti
Dp-Pv (June) 3.066e103-2.529e103 -3.028e135-1.182e136*I - +
September -3.651e58-4.368e58*I -3.373e81-4.044e82*I + + for
October 1.159e75-2.991e73*I -1.859e110+8.674e109*I - + anti
November 3.747e118-1.663e118*I -1.630e134-3.473e132*I - +

integrals, such that any elliptic function f(u) = F (℘) +
G(℘)℘′. Thus a particular state during time procedure ℘′

can be related to any elliptic function form by a particular
pair of Legendre canonical forms. Utilizing Weierstraß ℘
is thus closely related to abstraction of interaction of the
states, with a cube of ℘ itself. Setting Ω as a period
of f(u), the canonical form K(Ω) ∼= C[x, y]/(y2 − 4x3 +
g2x+ g3), where C[x, y] is an integral domain. The ideal
thus characterizes the observation phenomena related to
F,G.
To develop the evaluation, s can be regarded as the el-

liptic function f(u) via p, l double periodicity, and a lin-
ear plot of f(u) against ℘′ shows F,G values. Basically,
due to empirically massive values for ℘′, G ∼ 0 and F
are almost identical to either of the s values selected for
calculating the interaction. By this method, one can eval-
uate which of the interacting partners plays a major role
in the interaction. The results are shown in Table IX; in
WE, the climax species Pp dominated, while in WW, pi-
oneering species Dp and Pv had significant roles [3]. Note
that F,G are solutions for corresponding hypergeometric
differential equations. Thus g2, g3 become apparent dur-
ing the time development process. ω can be calculated by
g2 = 60

∑
ω∈Λ′

1
ω4 , g3 = 140

∑
ω∈Λ′

1
ω6 . Riemann’s theta

relations showed how a (3+1)-dimensional system could
be rearranged to a 2 + 2 system. Table X & XI shows
calculated values for g2, g3 in normal form of the elliptic
curves.

IV. DISCUSSION

Here we move to some more miscellaneous parts asso-
ciated with eliminating fluctuations. Regarding the uti-
lization of hyperbolic geometry (logarithmic-adic space)
and blowing up for resolution of singularity, see our ear-

lier work [5]. From generalized function theories, the
idea of cohomology naturally emerges and if we set op-
erator III in terms of cohomology, the Hp = 0(p ≥ 1)

TABLE XI. g2, g3 values II.
Normal form g2 g3 int. const. synch.
Pp-Dp (Jul) -4.118e70-1.788e71*I 2.322e82+2.096e81*I + - anti
Pp-Pv (Jul) -1.728e107+2.700e107*I -6.829e142+7.054e141*I + + for
Dp-Pv (Jul) 1.691e198-1.728e107*I -3.697e118+1.709e118*I - + anti
August -1.060e58-6.532e57*I -2.706e79-8.852e80*I + + for
Pp-Dp (Sep) -9.168e77-4.559e78*I -5.398e116-7.349e116*I + + for
Pp-Pv (Sep) -1.199e78-3.676e78*I -1.584e79+1.834e78*I + +
Dp-Pv (Sep) 1.099e77-1.162e77*I -3.794e77-5.397e77*I - +
October 1.634e46-5.905e45*I 4.963e63+3.128e64*I - -

int.: positive or negative effect of an interaction term on ℘′

dynamics; const.: positive or negative effect of a constant on
℘′ dynamics; synch.: coupling between g2 and g3 against the

dynamics.

(p are primes and 1) cohomology and the Kawamata-
Viehweg vanishing theorem are fulfilled. This clearly
demonstrates that investment in adaptation in the higher
order hierarchies diminishes chaotic behavior in the hier-
archies. This is because our complex manifold is a Stein
manifold (s is a Schwartz distribution). Furthermore, an
empirical process is already introduced as “Paddelbewe-
gung” in [1], inspired by Hermann Weyl’s work. Other
possible developments for this work include utilizing a
Riemann scheme and hypergeometric differential equa-
tions or Painlevé VI equations for the hierarchical time-
developing model. Consideration of an array of model
types would plausibly allow exploration in relation to
Galois theory and étale cohomology to interpret the hier-
archical structures of natural systems, especially in bio-
logical contexts. This thus represents fruitful terrain for
future research.
Finally, adopting the Atiyah-Singer index theorem, a

twisted (fractal) property, Euler number of
∫
B
e(TB) is

obviously equal to its topological Euler characteristic,
χ(B) =

∑
(−1)ll. Hence, the analytical index of Euler

class (Poincaré dual) should be the same. For evaluation
of agreement, the Chern class should be (−1)ll. On the
other hand, analytically, the Hirzebruch signature (char-
acteristic from species) of B is (−1)n

∫
B

∏n
i=1

pi

tanh pi
,

where pi

tanh pi
=

∑
k≥0

22kB2k

(2k)! p
2k
i . Topologically, this is

equivalent to the L genus.
We are thus able to extend the methodology for the

“small s” metric to characterize dynamical system hier-
archy (adaptation and contributions) and interactions,
using only abundance data along time development.
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