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Abstract

In this study, we employed a novel method for prediction of (macro)molecular

properties using a swarm artificial neural network method as a machine learning ap-

proach. In this method, a (macro)molecular structure is represented by a so-called

description vector, which then is the input in a so-called bootstrapping swarm artificial

neural network (BSANN) for training the neural network. In this study, we aim to

develop an efficient approach for performing the training of an artificial neural network

using either experimental or quantum mechanics data. In particular, we aim to cre-

ate different user-friendly online accessible databases of well-selected experimental (or

quantum mechanics) results that can be used as proof of the concepts. Furthermore,
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with the optimized artificial neural network using the training data served as input for

BSANN, we can predict properties and their statistical errors of new molecules using

the plugins provided from that web-service. There are four databases accessible using

the web-based service. That includes a database of 642 small organic molecules with

known experimental hydration free energies, the database of 1475 experimental pKa

values of ionizable groups in 192 proteins, the database of 2693 mutants in 14 proteins

with given values of experimental values of changes in the Gibbs free energy, and a

database of 7101 quantum mechanics heat of formation calculations.

All the data are prepared and optimized in advance using the AMBER force field

in CHARMM macromolecular computer simulation program. The BSANN is code for

performing the optimization and prediction written in Python computer programming

language. The descriptor vectors of the small molecules are based on the Coulomb

matrix and sum over bonds properties, and for the macromolecular systems, they take

into account the chemical-physical fingerprints of the region in the vicinity of each

amino acid.

1 Introduction

Recently, neural network method has seen a broad range of applications in molecular mod-

eling.1 In Ref.,2 a hierarchical interacting particle neural network approach is introduced

using quantum models to predict molecular properties. In this approach, different hierarchi-

cal regularization terms have been introduced to improve the convergence of the optimized

parameters. While in Ref.,3 the machine learning like-potentials are used to predict molec-

ular properties, such as enthalpies or potential energies. The degree to which the general

features included in characterizing the chemical space of molecules to improve the predictions

of these models is also discussed in Refs.4,5 Tuckerman and co-workers6 used a stochastic

neural network technique to fit high-dimensional free energy surfaces characterized by re-

duced subspace of collective coordinates. While very recently7 a comparison study has been
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performed between neural network approach and Gaussian process regression to fit the po-

tential energy surfaces. One of the recognized problems in using machine learning approaches

in prediction free energy surfaces is the inaccurate representation of general features of the

surface topology by the training data. To improve on this, a combination of metadynamics

molecular dynamics with neural network chemical models have also proposed.8 It is worth

noting that in the prediction of free energy surfaces, an accurate representation of the re-

duced subspace can be important. For that, Wehmeyer & Noé9 have used the time-lagged

auto-encoder to determine essential degrees of freedom of dynamical data.

Machine learning approaches have also been in the field of drug-design, for instance,

in predicting drug-target interactions,10 and it is a promising approach. In particular, the

method is used in combination with molecular dynamics to predict the ligand-binding mech-

anism to purine nucleoside phosphorylase,11 and it accurately identifies the mechanism of

drug-target binding modes.

In this study, we employed a novel method for prediction of (macro)molecular properties

using a swarm artificial neural network method as a machine learning approach. In this

method, a (macro)molecular structure is represented by a so-called description vector, which

then is used as input in a so-called bootstrapping swarm artificial neural network (BSANN)

for training the neural network. We aim to develop an efficient approach for performing the

training of an artificial neural network using either experimental or quantum mechanics data.

In particular, we created different user-friendly online accessible databases of well-selected

experimental (or quantum mechanics) results that can be used as proof of the concepts.

Furthermore, with the optimized artificial neural network using the training data served as

input for BSANN, we can predict properties and their statistical errors of new molecules

using the plugins provided from that web-service.

There are four databases accessible using the web-based service. The database of 642

small organic molecules with known experimental hydration free energies,12 which well-

studied in Ref.;13 the database of 1475 experimental pKa values of ionizable groups in 192
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proteins (including 153 wild-type proteins and 39 mutant proteins);14–17 the database of 2693

mutants in 14 proteins with given values of experimental values of changes in the Gibbs free

energy;18,19 and a database of 7101 quantum mechanics heat of formation calculations with

the Perdew-Burke-Ernzerhof hybrid functional (PBE0).5,20

All the data are prepared and optimized in advance using the AMBER force field21

in CHARMM macromolecular computer simulation program.22 The BSANN is the code

for performing the optimization and prediction written in Python computer programming

language. The descriptor vectors of the small molecules are based on the Coulomb matrix

and the sum over bonds properties, and for the macromolecular systems they take into

account the chemical-physical fingerprints of the region in the vicinity of each amino acid.

2 Materials and Methods

2.1 Artificial Neural Network

Machine Learning (ML) approach provides a potential method to predict the properties of a

system using decision-making algorithms, based on some predefined features characterizing

these properties of the system. There exist different ML methods used to predict missing

data or discover new patterns during the data mining process.23 Neural networks method

considers a large training dataset, and then it tries to construct a system, which is made up

of rules for recognizing the patterns within the training data set by a learning process.

In general, for an ANN with K hidden layers (see also Figure 1), the output Yi is defined
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as

Yi = f



LK∑
lK=1

f


LK−1∑
lK−1=1

f


· · · f


L2∑
l2=1

f


L1∑
l1=1

f

(
n∑
j=1

XjWjl1 + bl1

)
︸ ︷︷ ︸

input layer︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

Wl1l2 + bl2)︸ ︷︷ ︸
1st hidden layer

· · ·


︸ ︷︷ ︸

2nd hidden layer

· · ·


︸ ︷︷ ︸

···

WlK−1lK + blK


︸ ︷︷ ︸

(K − 1)th hidden layer

WlK i + bi


︸ ︷︷ ︸

Kth hidden layer

(1)

Here, W and b are considered as free parameters, which need to be optimized for a given

training data used as inputs and given outputs, which are known. To optimize these param-

eters the so-called loss function is minimized using Gradient Descent method:25

S (W,b) =
m∑
i=1

(
Y 0
i − Yi

)2
(2)

where Y0 represent the true output vector. For that, the gradients of S (W,b) with respect
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Figure 1: Illustration diagram of an artificial neural network (ANN). It is characterized by

an input vector of dimension n, K hidden layers of l
(1)
L1
, l

(2)
L2
, · · · , l(K)

LK
neurons each, and an

output vector of dimension m.24

to W and b are calculated:25

∆W = −
(
∂S (W,b)

∂W

)
b

(3)

∆b = −
(
∂S (W,b)

∂b

)
W

To avoid over-fitting, which is one of pitfalls of the machine learning approaches,26 the

following regularization terms have been introduced in literature:

∆′W = γw (∆W + γ1W) (4)

∆′b = γw (∆b + γ1b)

where γw is called learning rate for the gradient and γ1 is called the regulation strength.

Usually, the Gradient Descent method often converges to a local minimum, and hence

it provides a local optimization to the problem. To avoid that a new Bootstrapping Swarm

Artificial Neural Network method is proposed in the literature,24 which is introduced in the

following.
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2.2 Bootstrapping Swarm Artificial Neural Network

The standard ANN method deals with random numbers, which are used to initialize the

parameters W and b; therefore, the optimal solution of the problem will be different for

different runs. In particular, we can say that there exists an uncertainty in the calculation

of the optimal solution (i.e., in determining W and b.) To calculate these uncertainties in

the calculation of the optimal parameters, W and b, we introduce a new approach, namely

bootstrapping artificial neural network based on the method proposed by Gerhard Paass,27

or similar methods.28 In this approach, M copies of the same neural network are run in-

dependently using different input vectors. Here, we implement that at regular intervals, to

swap optimal parameters (i.e., W and b) between the two neighboring neural networks,

which is equivalent to increasing the dimensionality of the problem by one; that is, if the

dimensionality in each of the replicas is d = K × L, then the dimensionality of the boot-

strapping artificial neural network based on the method is d+ 1. Figure 2 shows the layout

of this configuration.

Furthermore, to achieve a good sampling of the phase space extended by the vectors W

and b, we introduce two other regularization terms similar to the swarm-particle sampling

approach. First, we define two vectors for each neural network, namely WLbest
n and bLbest

n ,

which represent the best local optimal parameters for each neural network n. In addition,

we also define WGbest and bGbest, which represent the global best optimal parameters among

all neural networks.

Then, the expressions in Eq. 4 are modified by introducing these two regularization terms
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as the following:

∆′′Wn = γw (∆Wn + γ1Wn (5)

− γ2U(0, 1)
(
Wn −WLbest

n

)
− γ3U(0, 1)

(
Wn −WGbest

))
∆′′bn = γw (∆bn + γ1bn

− γ2U(0, 1)
(
bn − bLbest

n

)
− γ3U(0, 1)

(
bn − bGbest

))
for each neural network configuration n, n = 1, 2, · · · , M . Here, U(0, 1) is a random

number between zero and one, and γ2 and γ3 represent the strength of biases toward the

local best optimal parameters and global best optimal parameters, respectively. The first

term indicates the individual knowledge of each neural network and the second bias term

the social knowledge among the neural networks. This method is called here, Bootstrapping

Swarm Artificial Neural Network (BSANN). Then, the weights, Wn, and biases, bn, for each

neural network n are updated at each iteration step according to:

Wnew
n = Wold

n + ∆′′Wn (6)

bnew
n = bold

n + ∆′′bn

2.3 (Macro)molecular Feature Description

To construct data-driven models, such as in the ML approach, we will need to specify a

list of physical and chemical properties of the input (macro)molecule that contain necessary

information about the system. Here, the input data will be presented by a vector of length

N , called X. That process is called feature description, and the input data are called feature

descriptors.

Often, a so-called Simplified Molecular Input Line Entry System (SMILES) is used to

represent a small molecule as a string of letters.29 In such case, the atoms could be encoded
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Figure 2: Layout of the Bootstrapping Swarm Artificial Neural Network (BSANN) as
adopted by.24 It is characterized by M different input vectors each of dimension n, K hidden
layers of l

(1)
L1
, l

(2)
L2
, · · · , l(K)

LK
neurons each, and M different output vectors each of dimension

m. Every two neighboring neural networks communicate regularly with each other by swap-
ping the optimized parameters.

by a single integer number, such as H= 1, C= 2, N= 3, and so on, or by the nuclear charge

Z, such as H= 1, C= 6, N= 7, and so on.30 It can be seen that it creates an (unnecessary)

relationship between the input data, namely H<C<N, which could influence on the network

performance. Other encoding models are also suggested, for instance, representing each

atom of the input molecule by the following fingerprint: H= [1 0 0 · · · ], C= [0 1 0 · · · ],

N= [0 0 1 · · · ], and so on.30 However, these fingerprints do also have drawbacks because the

dimensions of the encoding vector depend on the number of atoms in the structure and may

vary from molecule to molecule; also, based on this model, the atoms belonging to the same

group in periodic table of elements do not behave the same.

In this study, we used the so-called Coulomb matrix, C, to encode the molecular features,

which contains both the geometrical information of the three-dimensional structure and the

atom type in the molecule.20 For any two atoms i and j in a given input molecule, the matrix
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element Cij is defined as:

Cij =


Z2.4
i

2
, i = j

ZiZj
rij

, i 6= j
(7)

where Zi is the atomic number of the ith atom and rij is the distance between the atoms i

and j. The fingerprint represented by the Coulomb matrix, C, has some advantages, such

as it takes into account the three-dimensional molecular structure, and it is invariant under

rotational and translation of the structure. To calculate C for a given molecular structure,

we need the nuclear charges for each atom and the Cartesian coordinates of the atomic

positions taken from the equilibrium geometry. However, note that C is not invariant under

the permutations of the atom order in molecule. Therefore, the spectrum of eigenvalues of

matrix C can be used as a fingerprint of the molecule, since they are invariant under both

rotation/translation and permutations of the rows and columns. A second feature descriptor

that we used in this study is the so-called sum over bonds, which is a numerical descriptor

representing the vector of bond types present in a molecule, similar to.31 If Nb is the number

of unique bonds in the dataset of the compounds studied, then a vector with dimensions Nb

is constructed for each molecule with entry either zeros or the integers giving the frequency

of appearance for each bond type in molecular structure. This fingerprint descriptor vector

has a unique length within the dataset. Then, the vector descriptor of the sum over bonds is

concatenated at the end of the Coulomb matrix descriptor. To construct the input descriptor

vector for a macromolecule, we introduced the following model. For example, suppose we

would like to calculate the change on the Gibbs free energy upon the mutations (either single

or multiple mutations) or perform pKa calculations for a selected residue in a protein. We

label each residue or nucleotide of the input sequence with an ID from 1 to 24. That is, we

form a descriptor vector with length N1 = 24, X1, which is a vector of zeros and ones defined
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as the following:

X1 =

VAL · · · THR · · · ← mutation point

↓ · · · ↓ · · ·

0 1 0 · · · 1 · · · ← descriptor vector

↑ ↑ ↑ · · · ↑ · · ·

ALA VAL LEU · · · THR · · · ← A. A. dictionary

where A. A. dictionary represents the dictionary of the all amino acids. In addition, to

characterize the environment around any mutation point, we determine another descriptor

vector, namely X2 with length N2 = 24, which is defined as the following. For each mutation

point amino acid i, we determine the nearest neighbor amino acids k = i1, i2, · · · , in.n., based,

for example, on the center of mass distance. Then, the jth element X
(2)
j of the vector X2 is

defined as a modified ‘Coulombic matrix‘:

X
(2)
j =

∑
i

in.n.∑
k=i1


1

rik
, k = j

0, k 6= j

(8)

where the first sum runs over all point mutation amino acids, and the second sum runs over

all nearest neighbors of amino acids i. In Eq. 11, rik denotes the center-to-center distance

between the two amino acids. To take into account the polarity of the amino acids, we

introduce a binary vector of dimension Np = 3, such that

X(1)
p = [1 0 0] , X(2)

p = [0 1 0] , X(3)
p = [0 0 1] (9)

where X(1) represents a non-polar amino acid, X(2) represents an uncharged polar amino

acid, and X(3) represents a charged polar amino acid. In addition, we also added another

component to the net vector, which is a real value representing the percentage of the buried

part of the amino acids (%SASAburied), which is defined as the ratio of the buried surface
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with the solvent accessible surface area of the amino acid in the protein structure, and it is

represented by the vector X4. Note that vector X4 can also include other properties, such

as the temperature, concentration of the salt and pH value of the experiment; therefore, we

can write:

X4 = [%SASAburied T c pH · · · ] (10)

where T , c, and pH are the temperature (in kelvin), concentration (in molar) and pH,

respectively.

To determine the descriptor vector of the macromolecule, such as protein, we concatenate

the vectors X1, X2, X
(i)
p and X4 into a net descriptor vector X with length N = 55. Note

that in the expression given by Eq. 11, other properties can be encoded. For example, we

can encode the dielectric properties in the vicinity of each amino acid in the structure by

modifying Eq. 11 as follows:

X
(2)
j =

∑
i

in.n.∑
k=i1


1

εirik
, k = j

0, k 6= j

(11)

where εik is the dielectric constant of the environment in the vicinity of the mutated amino

acid i, which can be taken a simple distant dependent dielectric constant between the amino

acid i and its nearest neighbor k: εik = Drik, whereD is a constant, or even other complicated

distance dependence functions.32,33 However, in this work, other more complicated distance

dependent dielectric constant is considered, such as the sigmoidal function:32,33

ε(r) =
εw +D0

1 + k exp (−κ (εw +D0) r)
−D0 (12)

where r is the distance between two amino acids, εw = 80 is the dielectric constant of water,

D0 = 8, κ = 0.5/(εw + D0), k = (εw − εp) / (D0 + εp) with εp = 2 being the dielectric

constant of protein. A plot of the ε(r) versus the distance r is presented in Figure 3 for both

simple function of the distance of dielectric constant and sigmoidal distance dependence
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function of the dielectric constant. Here, sigmoidal function gives a smooth variation of

the dielectric constant screening the electrostatic interactions from 2 (which is the dielectric

constant of the internal protein) to 80 (which is the dielectric constant of bulk water, as

shown in Figure 3.

Figure 3: Dielectric constants as a function of the distance r between the amino acids for
the two cases: ε = Dr with D = 8, and dielectric constant given by Eq. 12 for εw = 80 is
the dielectric constant of water, D0 = 8, κ = 0.5/(εw + D0), k = (εw − εp) / (D0 + εp) with
εp = 2 being the dielectric constant of protein.

Note that these fingerprints of the structures are rotation and translation invariant. Fur-

thermore, as a sequence of the amino acids in a macromolecular structure, the protein data

bank, RCSB PDB,34 can be used that is unique. Therefore, the descriptor vector X is unique

representation of a macromolecule in a dataset. In addition, the descriptor vector X has the

same length for any set of the macromolecules used as input.

It is important to note that if the chemical sample space of the input descriptor vector

becomes quite large, then the so-called principal components analysis 35 can be performed to

reduce the degrees of freedom.

3 Web-based Services

3.1 Structure

Figure 4 shows a flowchart of the offered web-based services. It consists of several databases

using different experimental or quantum mechanics data. In particular, it includes the
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hydration free energies of molecules database;12 the heat of formation (or standard enthalpy

of formation) of small molecules using quantum mechanics calculations with the Perdew-

Burke-Ernzerhof hybrid functional (PBE0).;5,20 pKa values experimentally calculated for

different amino acids in different proteins;14–17 the experimental changes on the Gibbs free

energies of the mutant proteins.18,19

The clients are the personal computers (PCs), where the users with a login account will

be able to access the first layer of the provided web-based services from the main computer,

namely the server. With that first session login, the users will be allowed to access and

manipulate the data from different databases. In particular, the users can read the data

from each database in a tabular form, which then can be copied and pasted in the local

computer. Besides, the users can see some statistics about the data included in each dataset,

allowing for a judgment of the distribution of the data. Also, the users are allowed using

the forms provided on the web to upload new data in a particular database. These data

will initially be marked as “not checked“, but after the main administrator of the web-based

services verifies the authenticity of the information, the data will be added to the existing

database. That can allow the databases to increase the amount of information in the future.

Using the data for each dataset, the main administrator, frequently, performs the op-

timization of the artificial neural network parameter using an exhaustive machine deep-

learning approach by employing the BSANN python code, internally in the server. Note

that only specific users are also allowed to perform the optimization on the server using

special Login information. Then, the second session of login, for specific users, is allowed to

use other services of our tools. In particular, those specific users can use web-based services

online to design and optimize novel molecules. Then, using the optimized artificial neural

network parameters with the training data, they can predict different properties provided for

these molecules. It is interesting to note that the external plugins use graphical interfaces,

making the services very user-friendly.
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Figure 4: The flowchart of the web based services.

3.2 Datasets

There are four databases served using that web-based service. The first database contains

642 small organic molecules, for which we know the experimental hydration free energies,12

which has also been subject to our previous studies.36 The second database contains 1475

experimental pKa values of inozable groups in 192 proteins both wild type (153 proteins)

and mutated (39 proteins).14–17 The third database has 2693 experimental values of the

Gibbs free energy changes in 14 mutant proteins.18,19 The last database has 7101 quantum

mechanics heat of formation calculations5 (and the references therein), the so-called QM7,

which is a subset of the so-called GDB13 molecules, optimized at the quantum mechanics

level with the Perdew-Burke-Ernzerhof hybrid functional (PBE0).20

In Figure 5, we show the distribution of the average experimental pKa for each residue

in the wild-type and mutated proteins of the database.

In Figure 6, we show the distribution of the percentage of each type of mutation in the

database for which we know either ∆∆G or ∆∆GH2O, namely 1: single mutation; 2: double
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Figure 5: Average experimental pKa for each residue in the wild-type (A) and (B) mutants
proteins of the database.

mutations, and so on, up to 6: six mutations.

All the data are prepared and optimized in advance using AMBER force field21 in

CHARMM macromolecular computer simulation program. The BSANN code performing

the optimization and prediction is in Python computer programming language. The descrip-

tor vectors of the small molecules are based on the Coulomb matrix and the sum over bonds

properties, and for the macromolecular systems they take into account the chemical-physical

fingerprints of the region in the vicinity of each amino acid.

Software implementing the methods discussed in this study is free for download from

the website "https://github.com/kamberaj/bsann".Also, from the same website, the

database of all molecular structure and topology files, used in our calculations prepared

using general AMBER force field, can be accessed via the web-based service.
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Figure 6: Percentage of each type of mutation in database for which we know either ∆∆G
(A) or ∆∆GH2O (B). 1: single mutation; 2: double mutations, and so on, 6: six mutations.

4 Results

In this section, we show some results of the predictions using different datasets. For that

consider a method to learn a function from a finite dataset D of input-output pairs, namely

(X,Y), where X is the feature descriptor input vector for each atom and Y is the reference

output vector for each atom, such as the hydration free energy, change on the Gibbs free

energy, heat of formation, amino acid pKa, and so on. The dataset is then split into a

training dataset Dtrain used for learning (or gaining experience) and a validation dataset

Dvalid used for testing the knowledge, such that

D = Dtrain ∪ Dvalid

In this study, we will discuss the ability of the training dataset to optimize the parameters

of the artificial neural network as a function of the size of the training dataset. In particular,

we intend to determine optimal average interval of the confidence such that the error in

17

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2019. ; https://doi.org/10.1101/779496doi: bioRxiv preprint 

https://doi.org/10.1101/779496
http://creativecommons.org/licenses/by-nc-nd/4.0/


prediction of a value is small; that is, determining the average confidence interval within

which we can predict with a certain confidence level (such as 95 %) the value of any new

validation data.

It is important to note that “optimal“ here does not the necessary mean small value of the

average interval. Instead, an optimal average interval is one that provides the highest value

of the confidence level, within which most of the predicated values lie in. In the following

discussion, we will use the term “match“ for such cases, that is, when the prediction interval

of error coincides with that provided by the experimental value using statistical confidence

of 95 %, which is verified using the so-called Student t-Distribution.

To determine the average confidence interval, we used the following statistical justifi-

cation.37 Suppose that there are Ntrain training data points, and n is the number of the

neural networks defining the bootstrapping model given above. Then, the 100(1 − α) %

bootstrapping confidence interval of the average value for each data point prediction is given

by: (
Ȳi − ci,u

σi√
n
, Ȳi − ci,l

σi√
n

)
(13)

where σi is the unbiassed standard deviation obtained from the bootstrapping data distribu-

tion. ci,u and ci,l are the upper and lower critical values, respectively, determined from the

empirical distribution function F of the bootstrapping dataset as:

F (ti = ci,u) = 1− α/2

F (ti = ci,l) = α/2

where ti is the studentized bootstrapping random variable obtained from the data points of

the ith prediction.37 Then, the average statistical error from all prediction Ntrain data points
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is calculated using the chain rule as follows:

cuσ =

√√√√Ntrain∑
i=1

(ci,uσi)
2 (14)

clσ =

√√√√Ntrain∑
i=1

(ci,lσi)
2 (15)

where it is assumed that the statistical errors obtained for each of the training data points

are independent, which is indeed the case. Then, the average 100(1 − α) % bootstrapping

confidence interval of the average value for each data point prediction is defined as:

(
Ȳi − cu

σ√
n
, Ȳi − cl

σ√
n

)
(16)

Eq. 16 is used to determine the upper and lower bound of the average values in all our

predictions shown in the graphs of the following discussions. Note that in practice, the

Student t-distribution can be used to approximate the distribution of the bootstrapping

dataset, and hence cl = −cu = tn−1,α/2, which is the critical value for the t-distribution. In

this study, the confidence level was α = 0.05.

4.1 The hydration free energy database

Table 1 summarizes the Pearson coefficient, mean average error (MAE) (in kcal/mol), root

mean square error (RMSE) (in kcal/mol) and Matches (in %) for different lengths of training

dataset. Predictions are based on the neural network parameters optimized using only the

training dataset. Our results show that an MAE value as small as 1.192 kcal/mol is obtained

in the validation dataset, corresponding to a Pearson coefficient of 0.886 and an RMSE of

1.770 kcal/mol, for a size of the training dataset of 350 molecules (or equivalently, 84 % of

the overall dataset). For that case, the percentage of matches between the predicted and

experimental values is 81.5 % with an 95 % statistical confidence.
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Table 1: Pearson coefficient, MAE (in kcal/mol), RMSE (in kcal/mol) and Matches (in %) for
different numbers of training data. Predictions are based on the neural network parameters
optimized using only the training data set.

Pearson MAE (kcal/mol) RMSE (kcal/mol) Matches (%) Set Size
0.964 0.539 1.135 97.3 all dataset 415
0.998 0.168 0.231 100.0 training dataset 300
0.883 1.507 2.124 90.4 validation dataset 115
0.970 0.442 1.040 93.7 all dataset 415
0.999 0.170 0.228 97.3 training dataset 330
0.852 1.495 2.254 80.0 validation dataset 85
0.984 0.353 0.742 94.9 all dataset 415
0.998 0.197 0.266 97.4 training dataset 350
0.886 1.192 1.770 81.5 validation dataset 65
0.988 0.272 0.628 92.8 all dataset 415
0.998 0.176 0.258 93.4 training dataset 380
0.878 1.313 1.988 85.7 validation dataset 35

In Figure 8, we present scatter plots of the experimental hydration free energies and

predicted free energies for two different training data sizes, N = 330 and N = 380 molecules.

Errors are calculated using the bootstrapping method and the straight line represents the

function f(x) = x. Besides, we have indicated the 95 % bootstrapping confidence interval of

error with parallel lines. Results show that a training dataset of size 380 molecules determines

better the confidence interval than the training dataset of size 330 molecules. That is because

the distribution of the data points of the training dataset influences on the topology of the

input data, and thus, larger the input dataset more insights into the structure of the data

distribution can be revealed.

We also used a larger dataset of 630 molecules to train and test the neural network,

as shown in Figure 8. For this case, we used 560 (equivalent to 89 % of the total size of

the dataset) data points to train the neural network, and the rest about 70 data points

for validation (or equivalently, about 11 % of the entire dataset). Our results show an

improvement of the predictions when compared with the smaller dataset, as used above;

that can be shown by our results presented in Figure 8, indicating that all the validation

data points lie inside the 95 % bootstrapping confidence interval. For this dataset, the
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Figure 7: Parity plots between the experimental hydration free energy and predicted free
energies. Errors are calculated using the bootstrapping method and the straight line rep-
resents the function f(x) = x. The dataset size was 415 molecules. The straight red lines
represent the boundary of the 95 % bootstrapping confidence interval of error.

following values of MAE, RMSE, and Pearson correlation coefficient R were obtained: For

the training data, MAE= 0.208 kcal/mol, RMSE= 0.286 kcal/mol and R = 0.997; for the

validation data, MAE= 0.732 kcal/mol, RMSE= 1.050 kcal/mol and R = 0.945.

Figure 8: Parity plots between the experimental hydration free energy and predicted free en-
ergies. Errors are calculated using the bootstrapping method and the straight line represents
the function f(x) = x. The dataset size was 630 molecules. The straight red lines repre-
sent the boundary of the 95 % bootstrapping confidence interval of error. For the training
dataset: MAE= 0.208 kcal/mol, RMSE= 0.286 kcal/mol and R = 0.997; for the validation
dataset: MAE= 0.732 kcal/mol, RMSE= 1.050 kcal/mol and R = 0.945.
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4.2 The pKa of amino acids in proteins

Table 2 presents the results of the predictions on both the training and validation datasets.

The size of the entire dataset is N = 953 pKa calculations. Our results indicate that the

Pearson correlation coefficient is above 0.95 in both training and validation dataset. On the

training dataset, the smallest MAE and RMSE were 0.104 kcal/mol and 0.164 kcal/mol,

respectively. For the validation dataset, the smallest MAE and RMSE values were 0.269

kcal/mol and 0.416 kcal/mol, respectively, obtained for the size of the training dataset about

89 % of the entire dataset. In addition, the matches between the experimental and predicted

values of the pKa on the validation dataset is 82 % with a statistical confidence of 95 %.

Table 2: Pearson coefficient, MAE (in kcal/mol), RMSE (in kcal/mol) and Matches (in
%) for different numbers of training data. Predictions are based on the neural network
parameters optimized using only the training dataset. The sizes of the datasets are N = 953
and N = 1240 pKa calculations.

Training data Validation data
Ntrain % Matches MAE RMSE Pearson Matches MAE RMSE Pearson

of data %
kcal

mol

kcal

mol
%

kcal

mol

kcal

mol
N = 953

750 79 92 0.104 0.164 0.998 74 0.419 0.742 0.951
800 84 91 0.144 0.238 0.996 78 0.310 0.565 0.961
850 89 89 0.118 0.176 0.997 82 0.269 0.416 0.992

N = 1240
800 65 99 0.034 0.058 1.000 81 0.451 0.843 0.940
1000 81 99 0.037 0.075 1.000 83 0.413 0.738 0.962
1100 89 98 0.038 0.073 1.000 84 0.295 0.485 0.983

In Figure 9, we present the predicated and experimental pKa values graphically as a

scatter plot. In addition, we show the average 95 % bootstrapping confidence interval of

error of the predicated values within the training dataset. The plots are created for two

training data sizes, respectively, 84 % and 89 % of the entire dataset. Interestingly, our

results indicate that almost all the validation data predication of pKa values lie inside the

average bootstrapping confidence interval of error when 89 % of the dataset is used in training

the neural network.
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Figure 9: Parity plots between the experimental pKa values and predicted pKa values.
Errors are calculated using the bootstrapping method and the straight line represents the
function f(x) = x. The size of the dataset was N = 953. The straight red lines represent
the boundary of the 95 % bootstrapping confidence interval of error.

To check the influence of the dataset size on the learning efficiency from the data, we

optimized the neural network for a larger dataset of 1240 pKa calculations. We implemented

three different training datasets for the optimizations of the neural network to check the

influence of the size of the training data set and the length of the entire dataset, which

determine the topology of the input data. We notice that the dataset with Ntrain = 1100

(which is about 89 % of the entire dataset) data points for training provided the best

optimization. The results are summarized in Table 2, and plotted in Figure 10. Our results

show that the MAE decreases about twice for the same percentage of data in the training

set taken from a smaller dataset, namely MAE= 0.038 kcal/mol; a smaller RMSE is also

obtained for this dataset of about 0.073 kcal/mol. Furthermore, it can be see that the

percentage of matches on the training dataset increases to 95 % with a perfect Pearson

correlation between the experimental and the predicted of about R = 1.000. Moreover, our

results show (Figure 9) that the average 95 % bootstrapping confidence interval of error is

larger, and all the predicted values of pKa of the validation set lie within bootstrapping

confidence interval.
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Figure 10: Parity plots between the experimental pKa values and predicted pKa values.
Errors are calculated using the bootstrapping method and the straight line represents the
function f(x) = x. The size of the dataset was N = 1240. The straight red lines represent
the boundary of the 95 % bootstrapping confidence interval of error.

4.3 Quantum mechanics database

The results of the predicted values of the heat of formation from the quantum mechanics

calculations using PBE0 method are shown in Figure 11. The size of the dataset is 7000

molecules. We used two different sets of the training data with lengths 3000 (or equivalently

43 % of the size of the dataset) and 5000 (or equivalently, approximately 71 % of the entire

dataset). Our results indicate excellent performance of the predictions using the optimized

neural network on the validation data; using just 43 % of the entire dataset for training of

the neural network, and the test on the validation data show just a few data are outside the

predicted average 95 % bootstrapping confidence interval of error, and when 71 % of the

total data are used for training, then all the tested calculations from the validation dataset

lie inside the 95 % bootstrapping confidence interval. Interestingly, our results indicate that

the optimization of the neural network and hence the increase on the experience for a deep-

learning are strongly influenced by the length of the data in the dataset. That explains that

the topology of the input dataset plays an important role on the experience gained from the

training of the neural network. In the following discussion, we argue that this should be

related to the topology of the input data.
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Figure 11: Parity plots between the quantum mechanics heat of formation values and pre-
dicted values. Errors are calculated using the bootstrapping method and the straight lines
represent the boundary of the 95 % bootstrapping confidence interval of error. Quantum
mechanics heat of formation is calculated using the PBE0 method.

5 Discussion

In this work, we intend to establish a methodology for an automated machine-like deep

learning approach for predicting different (macro)molecular properties. In particular, for

a training dataset of molecules, D created of Ntrain pairs (Xi, Yi) for i = 1, 2, · · · , Ntrain,

where the vector X denote the feature descriptor vector of dimension Nfeatures × Ntrain and

Y of dimensions Nproperties × Ntrain the reference values. That aims to obtain an estimate

of the probability P (Y?|D,X?) to predict the output Y? =
(
Y ?
1 , Y

?
2 , · · · , Y ?

properties

)
of an

optimized neural network for any input test data-point X? = (X?
1 , X

?
2 , · · · , X?

features). This

calculation is now an automated process since the black box is trained to predict the output

value described by the probability P (Y?|D,X?), which makes the parameterization of the

force fields a very efficient automation process.

However, the accuracy in estimation of P (Y?|D,X?) is a data-driven process, and the

prediction of Y? depends on the used training dataset. In particular, it depends on the

diversity of the feature descriptors for the dataset of molecules, that is, the amount of

Nfeatures. Besides, it depends on the size of the dataset, Ntrain. Both the diversity of the

feature descriptors of the compounds and the size of the dataset are interconnected; however,

a large size dataset is practically difficult to be established due to the lack of the experimental
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data, and quantum mechanics data may be expensive to obtain. Besides, increasing the

dimensions of the input feature descriptor vector, Nfeatures×Ntrain, is equivalent to increasing

the amount of information processed by the computer, and hence it increases the amount of

the irreversible heat generated during the processing.38 That is related to another computer

term, namely “big-data” processing. In the following discussion, we will try to quantify the

weight of the big-data information by using physical interpretation of information and the

principle of the equivalence mass-energy-information.39,40 That will allow us to establish an

equivalence between the (necessary) amount of the input training data for accurate prediction

of P (Y?|D,X?) and the limit of the amount of the information that can be processed by a

computer considering the heat generated during the computer processing, and so the amount

of the external work necessary to process that big-data of information by a computer.

Mass of information

For that, consider that the input feature descriptor vectors are represented in binary form,

that is, as zeros and ones. Then, the size of the input matrix of features for all training

dataset of compounds is:

B = NtrainNfeatures (bits) (17)

Based on the Landauer principle,38,39 process of adding information into the storage device

requires some work done by an external agent:

W ≥ kBT ln 2 (18)

where kB is the Boltzmann’s constant (kB = 1.38064× 10−23 J/K) and T is the temperature

of the environment in kelvin. That work is necessary to change the physical conditions of the

environment to add one bit of information into the storage device, which equals the amount
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of heat generated for creating one but of information in the storage device, and hence:

∆hbit ≥ kBT ln 2 (19)

Note that has already been measured experimentally (see, for example, Ref.40 and the ref-

erences therein). Then, the minimum total amount of the heat generated for storing B bits

in a storage device at T = 300 K is

∆Hbits = (kBT ln 2)B ≈ 0.018B eV (20)

knowing that 1 eV = 1.602× 10−19 J.

For example, suppose that we have 104 training data points and Nfeatures = 100 for each

compound (see also Figure 12), then the total minimum amount of heat generated is:

∆Hbits = 0.018× 106 eV = 18 keV (21)

Furthermore, the minimum amount of heat generated for adding one feature (or equivalently,

one single bit of information) to each compound of the training dataset is

∆Hbits = 0.018× 104 J = 0.18 keV (22)

Using the Einstein principle of the mass-energy equivalence, the rest energy of a particle

with mass m is given

E = mc2 (23)

where c denotes the speed of light in vacuum, c = 3.00 × 108 m/s. Eq. 23 indicates a

well-known fact that particles (such as photons) with zero rest mass have zero rest energy.

In analogy with mass-energy principle of special theory of relativity, another principles has
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been postulated of the mass-energy-information equivalence:40

∆hbit = γmbitc
2 (24)

where mbit denotes the mass of one bit of information in SI units of kilogram, and γ is

γ =
1√

1− v2

c2

where v would represent the speed of storing the information.

Therefore, we have

γmbit =
kBT ln 2

c2
(25)

That indicates that when T = 0 K (absolute zero temperature), then mbit = 0 kg. We can

assume that absolute zero temperature corresponds to the case when there is no information

stored in the device; therefore, for an empty digital storage device mbit = 0, and then every

added bit of information increases the mass by40

γ∆mbit =
kBT ln 2

c2
(26)

For example, at room temperature of the environment, T = 300 K, we have

γ∆mbitc
2 = 0.018 eV

or

γ∆mbit ≈ 3.19× 10−38 kg

If we consider only the energy of the bit stored in the digital device at rest, then γ = 1, and

∆mbit ≈ 3.19× 10−38 kg
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That could give an indication of how fast the bit information moves, the speed of the storing

the information in the digital storage device. If we consider again the case of the 104×102 =

106 bits of the training data, then the total increase on the mass of the digital device is:

∆Mbits = 18 keV

Besides, the increase of the mass of information for adding one bit of information to each

input feature descriptor vector of the 104 training data is

∆Mbits = 0.18 keV

It is interesting to emphasize how beneficial could be if instead of cooling systems to invent

a method of how to reuse all that energy released in the form of the irreversible heat.

In addition, one should also consider the energy generated in the form of the irreversible

heat by computer processing of that data, as shown in Figure 12. Similar analysis can be

followed in that case.

Figure 12: A diagram of the storage and computer processing of the input information. Mbits

gives the mass in kilogram of the amount of information stored in device in bits based on the
mass-energy-information equivalence principle;40 ∆mbit denotes the increase of the mass by
adding one bit to the storage device; ∆hprocessing gives the amount of the (irreversible) heat
released during the computer processing of the information.39
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Note that we can also take advantages of new advanced computer architectures to de-

velop new more efficient algorithms. In particular, quantum architecture of the quantum

computing can be useful in developing the so-called quantum artificial neural networks.41–43

In analogy with quantum computing, the quantum bit, the so-called the qubit, can be intro-

duced:

| φ〉 = α | 0〉+ β | 1〉

where | 0〉 and | 1〉 are the basis vectors, given as

| 0〉 = (1, 0)T , | 1〉 = (0, 1)T

and α and β are complex numbers such that | α |2 and | β |2 give the probability of measuring

the state | 0〉 and | 1〉, respectively, and hence | α |2 + | β |2= 1. Based on the quantum

artificial neural network model, every input vector can be represented by a qubit, namely

| Xi〉, for i = 1, 2, · · · , Ntrain. The output of some layer j is then

| Yj〉 = F̂

(
N∑
i=1

Ŵij | Xi〉+ | bj〉

)

where N is the number of neurons, F̂ is the quantum operator activation function, Ŵji is a

2n× 2n matrix operator with n being the number of qubits acting on the input | Xi〉 (where

n = 1 in that case, as suggested elsewhere44). Here, | bj〉 qubit denotes the bias term. A

learning rule has also been proposed to update the matrix elements Ŵij to the desired output

qubit | oj〉 as follows:

Ŵij(t+ 1) = Ŵij(t) + γw (| oj〉− | Yj(t)〉) 〈Xi | (27)

| b̂j(t+ 1)〉 =| b̂j(t)〉+ γw (| oj〉− | Yj(t)〉)

where γw is the usual learning constant rate, a number between 0 and 1, and t is the
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iteration step. A comparison of different proposed quantum artificial neural network models

is presented in Ref.44

Based on the above formalism, then every qubit representing the feature descriptor vec-

tors will increase the mass of the information for 104 training data by

∆Mqubit = 0.18 keV

which is 100 times smaller than the classical artificial neural network.

Topological Data Analysis

It has been argued elsewhere24 that the diversity of the feature descriptors of the compound

database is essential to increase the range of the test data that can be predicted since the

machine learning methodology works very well in interpolating the new data points, but suf-

fers on extrapolating new data outside the range covered by the training dataset. Therefore,

one of the critical future developments of the automated machine learning methodologies is

the choice of the training dataset and the feature descriptors of the chemical compounds.

In Ref.,24 a topological data analysis tools is discussed to analyze the feature descriptors

of the molecules, which will be introduced in the following. The topological data analysis

(TDA) is a field dealing with the topology of the data to understand and analyze large and

complex datasets.45,46 Here, we are analyzing the dataset represented by a vector of feature

descriptors of length N and each data point has a dimension D:

X = {x1, x2, · · · , xN}, xi = {xi1, xi2, · · · , xiD} (28)

For example, N may represent the number of molecules in the dataset and D number of

specific features for each molecule. Moreover, as in Ref.,24 we assume that the data of the

dataset are hidden in a “black box”, for example, a database, and also, they are about to

be used by a machine learning, which is another “black box”. In such a situation, knowing
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about the topology of the data (e.g., the sparsity of the data points) is of great interest.

Note that the TDA is applicable even when the user has access to the data, that is, the

structure of the molecules of the dataset is known a priory. In such a situation, the TDA

can be applied to determine the topology of the key feature descriptors for each molecule.

Note that the TDA is employed to reveal the intrinsic persistent features of the DNA and

RNA.47,48 Therefore, the construction of the topological spaces upon the input data of a

machine learning approach can be applied for each dimension separately, namely to the

time series of the form Xd = {x1d, x2d, · · · , xNd}, or for each molecular structure, namely

Xk = {xk1, xk2, · · · , xkD}. But, it can also apply to both dimensions at the same time, for

instance, by constructing the input data in the form of the following time series obtained by

aligning feature descriptors of the molecular structures in one dimension:

X = {x11, · · · , x1D, x21, · · · , x2D, · · · , xN1, · · · , xND} (29)

In that case, the input vector of the feature descriptors is a time series of length Ntrain = ND.

Then, to determine the topological space for this dataset, we first define a distance σ > 0.

The Vietoris-Rips simplicial complex R(X, σ) or simply Rips complex for each k = 1, 2, · · ·

as a k-simplex of vertices Xk
i = {xi1 , xi2 , · · · , xik} such that they satisfy the condition that

the mutual distances between any pair of the vertices is less than σ:

d(xik , xil) ≤ σ, ∀xik , xil ∈ Xk
i (30)

With other words, a k-simplex is part of a R(X, σ) for every set of k data points that are

distinct from each-other at a resolution σ and hence the Rips complexes form a filtration of

the data from the dataset at a resolution σ. That is, for any two values of the resolution σ

and σ′ such that σ < σ′, then

R(X, σ) ⊆ R(X, σ′)
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where ⊆ denotes the subset.

All the vertices of a k-simplex can be connected in a two-dimensional space by undirected

edges forming a graph, which can have different two-dimensional shapes. Figure 13 illustrates

how to build simplicial complexes using a set of point cloud data by increasing the resolution

value σ.

Figure 13: An illustration of building the simplicial complexes by increasing the resolution
value σ.24

The k-simplex dataset points form a loop that is called hole. By increasing the resolution

σ, the shapes grow, and some of the holes die, and some new holes are born. This process

is the so-called σ loop expansion. The interval between birth and death of a hole is called

persistence interval indicating whether a hole is structurally relevant or just a noise into the

data.

Persistent homology (PH) is an essential tool of TDA, which aims to construct a topo-

logical space gradually upon the input dataset, which is done by growing shapes based on

the input data. Persistent homology measures in this way the persistence interval of the

topological space. The features will be identified as persistent if after the last iteration they

are still present.

This procedure is analog to systematic coarse-graining and is of crucial importance for

any attempt at capturing natural feature descriptors in terms of a few relevant degrees of

freedom, and thus they form the essential philosophical basis of a dataset for the machine

learning approaches.
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We can argue that the fundamentals of the PH notions on the relevance or irrelevance

of perturbations in the data analysis are crucial, and the persistence homology can be con-

sidered as necessary as the renormalization group theory in statistical physics when applied

to equilibrium phenomena in understanding the relevant or irrelevant interactions. In this

analogy, the resolution scaling σ on the topological data analysis can be considered similar

to the characteristic correlation length scale that determines the judgment of the strong

interactions and correlations renormalization group theory.49

Feature descriptor vectors in higher dimensions

Note that in our discussion above, the feature descriptor vectors for each compound are

considered time invariant, and thus they represent only two- and three-dimensional feature

descriptors of the (macro)molecules. However, higher feature descriptor vectors can also be

constructed, such as four-dimensional feature descriptor vectors by including the time as the

fourth dimension. In that case, to construct the three-dimension part of the feature descriptor

vectors, different conformations of the compounds can be taken into considerations, for

example, as generated from the molecular dynamics simulations. In that case, the three-

dimensional configurations of the compounds generated from the simulations can be mapped

in a three-dimensional grid, where the centers of the grid points will represent the average

positions of each atom obtained from its fluctuations after the configurations are aligned to

remove the overall translation and rotation motion of the compounds. Therefore, the feature

descriptor vectors obtained from these average structures mapped in a three-dimension grid

are translation and rotation invariant. A review of such higher dimensional descriptor vectors

is discussed in Ref.50

34

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2019. ; https://doi.org/10.1101/779496doi: bioRxiv preprint 

https://doi.org/10.1101/779496
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 Conclusions

In this study, we presented a web-based service for automation of (macro)molecular proper-

ties predictions using a new algorithm integrated into a machine learning approach. That

web-service is made up of four different databases of both molecular and macromolecular

systems properties. Each database has a user- friendly interface that provides the possibility

to upload information into the database, which then is verified by the main administrator of

the service. Besides, the clients can perform statistics on the web related to each database,

obtaining in this way the information contained in each database in a tabular or graph

format.

Besides, our web-based service provides other tools and plugins for prediction of the prop-

erties of the new (macro)molecular systems using a newly developed deep-learning approach

based on the bootstrapping swarm artificial neural network. Furthermore, we showed, in

this study, how to create input descriptor vector for the artificial neural network for both

small molecules and macromolecular systems. The descriptor features included both the

two-dimensional (macro)molecular fingerprints and the three-dimensional structure of the

systems. Moreover, we presented a statistical approach of how to estimate the bootstrap-

ping confidence interval of the error.

The application of that new algorithm on our data indicated that the topological spaces

of molecular properties description vector on the relevance or irrelevance of perturbations in

the data analysis are crucial. Furthermore, we envision that the persistence homology can

be considered as necessary as the renormalization group theory in statistical physics when

applied to equilibrium phenomena in understanding the relevant or irrelevant interactions. In

this analogy, the resolution scaling factor on the topological data analysis can be considered

similar to the characteristic correlation length scale that determines the judgment of the

strong interactions and correlations renormalization group theory.
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