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Abstract 
Functional positron emission tomography (fPET) is a neuroimaging method involving 
continuous infusion of 18-F-fluorodeoxyglucose (FDG) radiotracer during the course of the 
PET examination. Compared with the conventional bolus administered static FDG PET which 
provides only a snapshot of the averaged glucose uptake into the brain in a limited dynamic 
time window, fPET offers a significantly wider time window to study the dynamics of 
glucose uptake. Several earlier studies have applied fPET to investigate brain FDG uptake 
and study its relationship with functional magnetic resonance imaging (fMRI). However, due 
to the unique characteristics of fPET signals, modelling of the fPET signal is a complex task 
and poses challenges for accurate interpretation of the results. This study applies independent 
component analysis (ICA) to analyze resting state fPET data, and to compare the performance 
of ICA and general linear modelling (GLM) for estimation of brain activation in response to 
tasks.  The fPET signal characteristics were compared using GLM and ICA methods to model 
the fPET visual activation data. Our aim was to evaluate GLM and ICA methods for 
analyzing task fPET datasets and present ICA method in the analysis of resting state fPET 
datasets. Using both simulation and in-vivo experimental datasets, we show that both methods 
can successfully identify task related brain activation. We report fPET metabolic resting state 
brain networks analyzed using the fPET ICA method in a cohort of healthy subjects. 
Functional PET provides a unique method to map dynamic changes of glucose uptake in the 
resting human brain and in response to extrinsic stimulation. 
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1. Introduction 
 

Positron emission tomography (PET) is a powerful neuroimaging method to measure 
molecular processes in vivo in the living human brain. 18-F-fluorodeoxyglucose (FDG) is a 
widely used PET radiotracer for quantitatively measuring cerebral glucose uptake, which can 
be used to infer glucose metabolism in brain imaging studies (Phelps et al. 1979; Reivich et al. 
1985). As one of major energy sources of the brain, the dynamics of glucose metabolism are 
highly correlated with the fluctuations of brain activity (Figley and Stroman 2011). The static 
FDG PET with conventional bolus injection measures the average glucose utilization 
throughout the scan for task (Kushner et al. 1988) or resting state studies (Savio et al. 2017). 
Recent efforts have been made to explore the dynamics of brain glucose metabolism by multi-
frame PET reconstruction following a bolus injection (Jamadar, Ward, Carey, et al. 2019; 
Passow et al. 2015; Tomasi et al. 2017). However, the information of dynamic change of 
FDG uptake using bolus administration is limited due to lack of continuous supply of FDG. 
During 1990s, the idea of continuous infusion was pioneered by Carson and others to 
demonstrate accurate receptor measurements (Carson 2000; Carson et al. 1993). Recently, 
Villien et al. (2014) applied continuous infusion of [18-F]FDG to identify dynamic glucose 
uptake in the brain, and named the technique ‘functional PET’ (fPET). The aim of the fPET 
approach is to maintain a continuous plasma supply of FDG to provide improved sensitivity 
of brain-state changes, and better temporal dynamics than bolus PET to track dynamic change 
of glucose uptake over time. Several studies have demonstrated that fPET can isolate task 
related changes in glucose uptake (Hahn et al. 2016; Hahn et al. 2018; Jamadar, Ward, Li, et 
al. 2019; Rischka et al. 2018; Villien et al. 2014; Jamadar, Ward, Carey, et al. 2019).  

The development of data analysis methods is critically important for correct interpretation and 
inference of neuroimaging findings. There are two major approaches to analyze functional 
brain data: model-based approaches and data-driven methods. The general linear model 
(GLM) is a the most common model-based method using in neuroimaging that interprets each 
voxel in 4D functional images as a linear combination of task design regressors and nuisance 
variables. The estimated parameters are then submitted to parametric statistical tests to 
generate brain activation maps (Friston 2007). The GLM model-based approach has been 
widely used in the analysis of functional MRI (fMRI), EEG and recently in fPET (Hahn et al. 
2016; Villien et al. 2014; Jamadar, Ward, Carey, et al. 2019). In the fPET GLM analysis, the 
time activity signal is represented by the combination of the task regressors, baseline 
regressor, and other nuisance regressors accounting for motion and physiological noises 
(Hahn et al. 2016; Villien et al. 2014). Task-related activated brain regions can be identified 
using the GLM method.  

Compared with model-based methods, data-driven analysis methods such as independent 
component analysis (ICA) explore the intrinsic coherence of the data rather than fitting an 
explicit model. ICA has been widely applied to resting state fMRI (Beckmann et al. 2009; 
Beckmann et al. 2005; Beckmann and Smith 2004; Calhoun et al. 2001a; Damoiseaux et al. 
2006) and task-based fMRI (Calhoun et al. 2006; Calhoun et al. 2001b; McKeown, Hansen, 
and Sejnowsk 2003; McKeown et al. 1998; McKeown and Sejnowski 1998). We have 
previously applied ICA in a visual task fPET experiment to investigate its relationship with 
simultaneously acquired fMRI data (Jamadar, Ward, Li, et al. 2019). In resting state PET, 
ICA has also been applied to bolus-administered FDG PET to investigate brain glucose 
metabolism and connectivity (Savio et al. 2017; Tomasi et al. 2017).  

Modelling of the fPET signal is similar to modelling other functional neuroimaging data such 
as fMRI and electroencephalogram (EEG). However, compared with fMRI in particular, 
fPET signals have several distinct characteristics. Firstly, fMRI measures approximately the 
blood-oxygen-level-dependent (BOLD) signal at each instantaneous temporal sampling point, 
and the task related BOLD response periodically fluctuates around a baseline. By contrast, 
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fPET signals monotonically increase over time and measure the accumulated FDG from the 
beginning of the administration of the tracer to the current acquisition time. Therefore, fPET 
measures a response integrated over time. Secondly, the temporal resolution of fPET signals 
is lower than fMRI (e.g. 1 min vs 2 secs), because of the fundamental limitation of the FDG 
PET count statistics and the PET detector technology (Chen et al. 2018). Thirdly, the BOLD 
response has been extensively studied, e.g., the canonical haemodynamic response function 
(HRF) (Friston et al. 1998; Friston, Jezzzard, and Turner 1994; Lindquist et al. 2009; 
Rajapakse et al. 1998) and balloon models (Buxton, Wong, and Frank 1998; Friston et al. 
2000), whereas the neural basis of real time glucose uptake has not been fully understood due 
in part to the limited availability of experimental data.   

In this paper we have demonstrated the application of the data-driven ICA method for 
analyzing resting state fPET datasets, and compared the performance of GLM and ICA for 
estimation of task fPET brain activations. The aim of the study was to evaluate GLM and ICA 
methods for analyzing task fPET datasets and present ICA method in the analysis of resting 
state fPET datasets. We investigated fPET data modelling and interference procedures in both 
GLM and ICA approaches. Using a simulated task fPET experiment, GLM and ICA methods 
were quantitatively compared and validated. GLM and ICA methods were then applied to an 
in-vivo visual task fPET dataset for comparison and interpretation. Finally, we apply the 
optimized ICA method to analyze resting state fPET data in a cohort of 28 of healthy subjects. 
We hypothesised that resting brain metabolic networks can be obtained using the data driven 
ICA approach.  

2.Materials and Methods 
 

The section provides an overview of methods for analysis of fPET activity signals and brain 
activation mapping, and an overview of the model-based GLM method (Figure 1a) and the 
data-driven ICA method (Figure 1b).  

 

2.1 GLM of fPET datasets 
 

Using GLM, the FDG time activity signal can be modelled as a linear combination of a 
baseline metabolic signal and a task induced activation signal. The baseline represents a 
glucose measure that is independent of any task stimulation, and the activation signal is 
defined as the task induced FDG activity changes (Hahn et al. 2016; Villien et al. 2014).  The 
4D fPET signal can then be modelled as   

 
1

( ) ,
i i

N

baseline baseline task task nuisance nuisance
i

Y X X Xβ β β ε
=

= + + +∑  (1) 

where � is the measured FDG time activity signal at each voxel. �s are the design matrices, 
including a baseline regressor, ���������, task regressors ranging from ����	
  to ����	�  for 
each task stimulus and a nuisance regressor,  �������
� , which includes head motion, 
physiological noise and other noise terms. These design matrices incorporate a priori 
knowledge to parameterize the linear model. �s are the coefficients to be estimated. The noise 
term, �, is assumed to be uncorrelated to the measurements.   

Models of the baseline metabolic regressor and task regressors  

Hahn et al. (2016) and Villien et al. (2014) have demonstrated in their work that the fPET 
signal increases monotonically over time, which is driven by the continuous infusion of FDG 
into the blood stream at constant rate (36ml/hr). The aim of the baseline regressor is to fit the 
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baseline metabolic signal. In general, the baseline metabolic is a nonlinear function and can 
be approximated using a polynomial function, e.g. a third-order polynomial (Hahn et al. 2016) 
that is brain region dependent (Hahn et al. 2016). The task regressors are parameterized as a 
ramp function with slope being one during stimulation and zero during the resting period, 
implying an increased FDG uptake rate due to the task stimulation (Hahn et al. 2016; Villien 
et al. 2014).  

As an alternative approach, Villien et al. (2014) noted that the first order derivative of the 
temporal fPET signals can also be used to fit a GLM. This is because fPET signals are 
accumulated over time. Using this approach, an on-off task design matrix can be applied as in 
the fMRI GLM analysis. However, in practice, fPET data have poor signal to noise 
characteristics (i.e. low FDG counts) due to short temporal binning window, such that the 
derivative operation may dramatically amplify noise.   

Implementation of GLM analysis for subject level and group level fPET 

In single-subject level GLM, multivariate regression was used to estimate the � coefficients. 
One-sample t-test against each task coefficient ����	  was computed for all voxels to generate 
the corresponding activation map and the significant level was false discovery rate (FDR) 
adjusted at the significance level � � 0.1 (Benjamini and Hochberg 1995). The activation 
map was then thresholded at � � 0.1. The mean task FDG activity in the activated region is 
given as � � ������������������� 
 �������
��������
�). 

The implementation of group level GLM analysis was based on a two-level analysis approach. 
In the first level analysis, subjects were first co-registered, and GLM fitting was conducted on 
each subject to estimate � coefficients. Random-effects analysis (Holmes and Friston 1998) 
was then conducted at the group level. The �s weighted by the design contrast coefficients 
from all subjects were then grouped together to conduct statistical tests (e.g. t-test) to derive 
activation maps during the group inference step (Frison and Pocock 1992; Holmes and Friston 
1998).  

 

2.2 Spatial ICA of fPET datasets 
 

In contrast to GLM, independent component analysis (ICA) is a full data driven method 
which has been used widely for both task and resting state fMRI analysis (Calhoun et al. 
2001a; McKeown et al. 1998). In the context of fPET, the spatio-temporal data matrix can be 
represented as a mixture of independent components  

 Y AS=  (2) 

where � is the fPET spatio-temporal data matrix, in which each row contains voxels from 
each dynamic volume and each column contains FDG time activity signals of the 
corresponding voxel; �  is the matrix of independent components, in which each row 
represents a spatial component, and � is the mixing matrix for the corresponding independent 
components. Both �  and �  are unknown. The ICA algorithm aims to estimate �  by 
minimizing mutual information or maximizing of non-Gaussianity (Hyvarinen and Oja). The 
following un-mixing procedure is given by   

 1, where .S WY W A−= =  (3) 

ICA circumvents the requirement for a task design matrix, which is critical in GLM, but 
intrinsically unknown in resting state experiments. However, ICA requires pre-processing of 
fPET signals to remove the global baseline signal (i.e. whole brain averaged FDG update) for 
the accurate estimation of spatial independent components.  
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Removal of global baseline fPET signal 

Unlike GLM, which requires of an accurate model fit of the baseline metabolic signal, ICA 
relies on the statistical distribution of signals themselves (Hyvarinen and Oja 2000). However, 
the baseline FDG uptake in the brain accounts for a large proportion of the overall signal 
variance in the fPET signals, and this should be removed before the ICA unmixing step to 
improve the sensitivity for calculating the spatially independent components. The global 
baseline can be removed by spatially normalizing the data to remove the mean in each voxel 
and dividing the voxel wise standard deviation of the volume. This is equivalent to z-scoring 
the signals, which converts the fPET signal into a regionally relative signal. Following this 
normalization, the brain networks resulting from the ICA method can be interpreted in the 
context of coherent relative signal changes. Importantly, care should be taken, particularly in 
task-based analysis, where the global subtraction of the mean signal can introduce seemingly 
spurious negative correlations.  

Implementation of single-subject spatial ICA of fPET data 

To implement the spatial ICA method on a single subject, a grey matter mask including both 
cerebral and cerebellar grey matter was applied on the 4D fPET data and the masked signals 
were then reshaped into a � � � �� � ��  spatio-temporal matrix � , where the row of  � 
represent the vectorisation of masked volume at each timepoint, and the column of � the 
temporal sequence of each voxel. Principal component analysis (PCA) was applied on � to 
generate the dimension-reduced data, �� � ��� , where �  is orthonormal reduction matrix 
with size of �� � �,  �� � �  (Jolliffe and Cadima 2016). Then, ��  was projected back to the 
original dimension �� � ��� � ����. The rank of ��  is ��  and it approximates the original 
signal. For every row of �� , the global baseline was removed, as described previously. The 
normalized data ���  was then decomposed by an ICA unmixing algorithm (e.g. FastICA 
(Hyvarinen and Oja 1997) or InfoMax (Bell and Sejnowski 1995)) to extract the spatial 
components �. They were then converted to the standard score (z-score), and each component 
was then separated into a positive segment, �� , and a negative segment, ��, to calculate their 
corresponding timecourse. For each positive and negative activation, the corresponding 
timecourse was computed from the normalized data 

������� �
∑ ����������,������

∑ ���������

, and ������� �
∑ ����������,������

∑ ���������

, respectively. 

Implementation of group-level spatial ICA of fPET data 

Group-level spatial ICA can be performed using the temporal concatenation approach, which 
is widely used in group fMRI analysis (Calhoun et al. 2001a). All subjects were co-registered 
using the MNI-152 template. A grey matter mask from the MNI structural atlas (Mazziotta et 
al. 2001) and probabilistic cerebellar atlas (Diedrichsen et al. 2009) were used to mask and 
reshape the 4D fPET data to spatio-temporal matrix for each subject.  

One important factor for group fPET analysis is to remove inter-subject data variability which 
is caused by FDG dose variability, subject physiology, and other experimental factors. The 
procedure of global baseline removal also removed inter-subject data variability. 
Theoretically, ICA is robust to inter-subject variability including signal amplitude, as ICA 
fundamentally unmixes a signal based on the probability distribution of the signal. A pre-
whitening step prior to the ICA decomposition can remove such a variation and speed up the 
convergence for ICA (Hyvarinen and Oja 2000). However, in practice, we employ an 
additional group level PCA to reduce data dimensionality before conducting the group level 
ICA. The group level PCA is based on the variance of the signal cross subjects, with larger 
weighting for data with greater variance. Therefore, the z-scoring step from the global 
baseline removal is performed for each subject to normalize inter-subject variability.  
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The global baseline removed data matrix from all subjects were temporally concatenated to 
from a group spatio-temporal matrix. A group-level PCA was applied to further reduce 
computational complexity. ICA was used to extract group level z-scored spatial components. 
The same procedure described in the single-subject ICA can be followed to calculate 
timecourses for each subject by using the group component. Finally, the group level 
timecourse was derived as the mean of timecourses from all subjects. 

Once group level independent component maps were calculated, subject-specific independent 
component maps were derived by a dual regression approach (Beckmann et al. 2009). To 
achieve this, a subject-specific timecourse was estimated by regressing the group level 
component with the normalized fPET dataset for each subject. Then, the second regression 
was performed by using obtained timecourse to generate subject-specific component maps. 

 

2.3 Simulation Experiments 
 

To validate both GLM and ICA methods for application in fPET experiments, we designed a 
synthetic experiment which included the simulation of kinetic model-based brain activation 
and PET image reconstruction. The kinetic process of FDG was simulated to derive task-
based brain activation. The simulated brain activation was regarded as the ground truth, and 
ICA and GLM were quantitatively compared and evaluated using the simulated data.  

Brain activation simulation 

The FDG metabolism process in the human brain can be modelled as a two tissue 
compartment model (Phelps et al. 1979; Sokoloff et al. 1977) using the following differential 
equations 

 
( ) ( ) ( ) ( )
( ) ( )
( )

.

1 2 3

.

3

. . .

( ) ( )

f p f

m f

t m f

C t k C t k k C t

C t k C t

C t C t C t⎪

= −

=

⎧
⎪

+

⎨

+
⎪

⎪

⎩
=

 (4) 

where �����  is the concentration of FDG in plasma, �����  is tissue/unmetabolized FDG 
concentration, �����  is the metabolized FDG concentration and �����  is the total FDG 
concentration, which is the sum of ����� and �����.  

The total FDG concentration, �����, is corrected by blood occupation fraction,  ��, which is 
given by 

 ( ) ( ) ( )1 ( )i B t B BC t V C t V C t= − +  (5) 

where �� � 0.96 in grey matter and �� � 0.98 in white matter, respectively (Phelps et al.). 
The concentration in whole blood is given by ����� � �1 � 0.85 ������, where  � 0.3 is 
the measured haematocrit for the human brain, and 0.85 is the correction factor (Phelps, 
Grubb, and Ter-Pogossian 1973). The ����� in equation (5) is the time activity of the fPET 
signal based on the given plasma concentration level ����� . The dynamic time activity 
differences between grey and white matters can be derived using the compartment model in 
equations (4)-(5) with tissue specific constant rate "
, "� and "�. We used the constant rate 
parameters from Table I (Lucignani et al. 1993). 

 Grey Matter White Matter 
"
 (mL/min) 0.101 0.047 

"� (min-1) 0.071 0.070 
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"�(min-1) 0.042 0.035 
Table I : Kinetic constant rates for grey matter and white matter in FDG PET 

By substituting the "
 , "�  and "�  into equations (4)-(5), the output ����� was used as the 
metabolic baseline signal at rest. A 20% increment of "� (i.e. a boxcar function) during the 
task periods was simulated in the activated cortical regions (Villien et al. 2014). Two tasks 
were considered. The first one was the activation in the visual cortex and the second one was 
the activation in the left motor cortex. During a 90-min fPET experiment, two sessions of 
visual stimulation were simulated in the visual cortex. The first one was from 20 mins to 30 
mins and the second one started from 70 mins to 80 mins. A single 20-min motor stimulation 
was simulated during the 40 mins to 60 mins of the fPET experiment. 

Ground truth GLM regressor 

The difference between the kinetic model time activity ����� with and without change of "� is 
the time activity signal induced by the task. The task induced time activity curve was used as 
the ground truth GLM regressor in the quantitative comparison between GLM and ICA. 

PET data simulation and image reconstruction 

A T1 weighted Magnetic Resonance (MR) image was used as the template for the simulation 
experiment. The grey matter, white matter and brain cortex labels were segmented by using 
Freesurfer with Desikan-Killiany Atlas (Diedrichsen et al. 2009). The segmented regions 
were masked and co-registered from T1 space to the PET space using the Advanced 
Normalization Tools (ANTs) (Avants et al. 2011). Figure 2 depicts the brain activation 
simulation process. The grey matter and white matter time activity signals were simulated 
based on the kinetic model. The overall grey matter time activity signal was used as the 
metabolic baseline FDG uptake. The task induced time activity signals in the two task brain 
regions were simulated from the change of "� in the kinetic model. The response of "� is not 
a boxcar function. Both TACs demonstrate the overshoot after the end of task stimulation. 

For the simulated 90-min dynamic fPET, the duration of each volume was set to one minute, 
and a total of 90 frames. Each volume was 100 � 100 � 100 voxels with 2 � 2 � 2 mm3 
resolution. The synthetic PET data acquisition was simulated using the following steps. First, 
the dynamic image volumes were filtered by a 4 mm FWHM spatial Gaussian filter to 
simulate the partial volume effect in FDG PET. Then, it was converted to a 344 � 344 � 252 
sinogram volume by radon transform with 252 angles in %0, &' to simulate the projection of 
lines of responses (LORs) in PET data acquisition. The thinning Poisson process (Vardi, 
Shepp, and Kaufman 1985) was used to simulate the low count statistics for dynamic PET 
reconstruction at the level similar to in-vivo experiments. The additive Gaussian noise was 
applied to all sinogram volumes to simulate the electronic and thermal noise. Finally, 
simulated sinograms were reconstructed by maximum likelihood expectation maximisation 
(MLEM) algorithm by using Tomographic Iterative GPU-based Reconstruction Toolbox 
(TIGER) (Ander Biguri 2016). Each reconstructed frame was smoothed by using 10mm 
FWHM Gaussian kernel. 

Quantitative assessment metrics 

To quantitatively compare the activation maps obtained by GLM and ICA in simulation study. 
Two metrics, sensitivity and specificity, are defined as below 

����������� 
%� 

������ �� ��������� ������ ������ ��� ��������� ������

����� ������ �� ������ ������ ��� ��������� ������
� 100 

����������� 
%� 

������ �� ������������ ������ ������� ��� ��������� ������

����� ������ �� ������ ������� ��� ��������� ������
� 100 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2019. ; https://doi.org/10.1101/778357doi: bioRxiv preprint 

https://doi.org/10.1101/778357
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

The sensitivity measures the percentage of correctly identified activated voxels. The 
specificity measures the percentage of nonactivated voxels that have not been wrongly 
activated.  

These metrics were used to compare binary activation maps (t-score map in GLM and z-score 
map in ICA) insides the brain. However, we cannot directly compare t-score and z-score as 
they possess different statistical meaning. In order to compare them, we threshold and 
binarize the activation maps based on their statistical significance levels. In the GLM 
activation maps, sensitivity and specificity are calculated for voxels with positive t-scores 
with significant level � � 0.1  (FDR adjusted). In ICA, we set threshold ( ) 1.6 
corresponding to approximately � � 0.1 for two-tailed normally distributed z-scores. 

 

2.4 In-vivo fPET Experiments 
 

All experiments involving human subjects have been reviewed and approved by the Monash 
University Human Research Ethics Committee, in accordance with Australian Code for the 
Responsible Conduct of Research (2007) and the Australian National Statement on Ethical 
Conduct in Human Research (2007). 

Data and code from this study are available on request from the corresponding author pending 
the institute Ethics approval. 

Task-fPET experiments 

Datasets from six healthy subjects (24.3±3.8 yr, 5 females) were used to compare GLM and 
fPET in a visual task-fPET study. Subjects were scanned using a 3T Siemens Biograph mMR 
(Siemens Healthiness, Erlangen, Germany) MR-PET scanner. The full cohort dataset was 
reported in our previous work in Jamadar et al (2019). 

All subjects were asked to take part in three visual stimulation tasks during scan; the 
experimental design was adapted from Villien et al., 2014. Each subject was infused with 
100MBq (administered dose 95.8±5.9 MBq) FDG at a constant rate (36mL/hr) over 90 
minutes. All subjects were instructed to lie in quietly under resting condition with eye closed 
in the first 20 minutes to allow the sufficient FDG accumulation in the brain, and a series of 
non-functional fMRI scans were conducted during this period. A 10-min full checkerboard 
stimulation started at 20 minutes after subjects were instructed to open eyes. The 
checkerboard was shown on screen for 120-sec, and then 32-sec on and 16-sec off design was 
implemented. During the ‘on’ periods, the visual stimulus was a circular checkerboard of size 
39cm (visual angle 9°) presented on a black background. The checkerboard flickered (i.e., 
fields alternated black/white) at 8Hz. During the ‘off’ periods, subjects rested eyes open while 
viewing a white fixation cross of size 3cm (visual angle 0° 45’) presented on a black 
background. After the first full-checkerboard stimulation, there were 15-min eyes-closed 
resting period followed by two 5-min half hemifield stimulation with 5-min eyes-closed 
resting period in-betweens. Then, there was another 20-min eyes-closed resting period before 
the second 10-min full checkerboard stimulation. The PET data acquired during the first full-
checkerboard were used to validate the GLM and ICA methods. There were thirty minutes 
PET data for each subject, including 10 mins resting before the stimulation, 10 mins full-
checkboard stimulation followed by another 10mins of resting.  

The PET list-mode data were binned into 30 frames (1 min per frame). The pseudo-CT 
attenuation map was used to correct the attenuation for all acquired data (Burgos et al. 2014). 
Ordinary Poisson-Ordered Subset Expectation Maximization (OP-OSEM) (3 iterations, 21 
subsets) algorithm with Point Spread Function (PSF) correction was used to reconstruct 3D 
volumes with matrix size 344x344x127 (Voxels size: 2.09x2.09x2.03 mm3). A guided motion 
correction method using simultaneously acquired MR images was applied to the 4D PET 
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volumes for each subject (Chen et al. 2019). A 12-mm FWHM Gaussian post-filtering was 
applied to each 3D volume. The PET images for each subject were registered to the 2mm 
MNI-152 template. 

Resting state fPET 

For the resting state fPET study, healthy adults (n=28, 19.6±1.7 yr, 21 female) underwent 
simultaneous BOLD-fMRI/FDG-PET on a 3T Siemens Biograph mMR. All subjects were 
instructed to lie quietly at rest with their eyes open. Each subject was infused with 260MBq 
(actual administered dose 234±19 MBq) FDG at a constant rate (36mL/hr) over 95 minutes. 
Several MRI acquisitions were performed during the PET scan; UTE, T1 MPRAGE, T2-SPC, 
pASL, and SWI images were acquired in the first 30-mins; followed by 6 consecutive 10-min 
T2* EPI (TR=2450ms, TE=30ms, FA=90º, 64x64x44, resolution=3x3x3mm3) acquisitions. 
Here, we report the results of the FDG-PET. The PET list-mode data were binned into 60 
frames (1 min per frame) aligned to the 6 EPI sessions.  

The reconstruction and pre-processing procedures were identical to the task fPET experiment. 

 

3. Results 
 
3.1 Simulation Experiments 
 

Simulated fPET images  

A total of 90 frames of PET images were simulated and the length of each frame was 1min. 
The first 10 frames were discarded due to the extremely low FDG counts. The simulated 
fPET images based on the kinetic model were shown in Figure 3. Four image volumes are 
shown at 30 min, 45 min, 60 min and 80 min. Their equivalent FDG activities were 0.34 MBq, 
0.64 MBq, 1.00 MBq and 1.56 MBq during the one minute binning window, respectively. 
The simulation demonstrated the increased FDG activity over time as shown in Figure 2a. 

 

Comparison of GLM and ICA on simulated fPET datasets 

Subject level GLM and ICA were performed on the simulated fPET data. To evaluate the 
performance of GLM, we also used the ground truth regressors for each task, which were 
given in Figure 2c and 2d. For ICA, the number of independent components was set to five. 
Two activation maps obtained from the first component were associated with the two 
designed tasks.  

The results of the visual task using the GLM with the ramp regressor, GLM with ground truth 
regressor, and ICA are shown in Figure 4. Overall, all methods identified the correct 
activation in the virtual cortex (Figure 4a-4c). The curve fitting results in Figure 4d confirmed 
that the FDG activity signal (solid line) can be reasonably fitted by the ramp regressor (dash 
line) with a small degree of error, however the errors become greater at the signals after 70 
mins. When the ground truth regressor was applied, and the fit was nearly perfect (Figure 4e). 
The corresponding activation maps in Figure 4b also provided higher t-score than Figure 4a 
(all � � 0.1, FDR adjusted) compared between the two GLMs. The ICA timecourse in Figure 
4f represents a relatively signal change related to the task, and correctly identified the 
increased FDG time activity during two task stimulation periods from 20min to 30min, and 
70min to 80min.  

The motor task results for the two GLMs and ICA are shown in Figure 5. All three activation 
maps in Figures 5a, 5b and 5c demonstrated consistent activation in the motor region. The 
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actual fitted results (Figures 5c-5e) further confirmed our observation from the visual task 
experiments.  

The sensitivity and specificity of activation maps are provided in Table II. Both visual and 
motor tasks were evaluated. In general, GLM provided better sensitivity than ICA in both 
experiments, but with lower specificity. This suggests that GLM can more accurately identify 
the regions of interest, but with higher number of false activations outside the region of 
interests. By using the ground truth regressors in GLM, we observed noticeable increased 
sensitivity in the visual task experiment. Compared between the two tasks, visual task had 
lower overall sensitivity attributable to its more complex underlying signal shape. All 
methods show specificity above 90% suggesting accurate identification of task related signal 
changes.  

 Sensitivity Specificity 
Motor task Visual task Motor task Visual task 

GLM using ramp 

regressor 
96.9% 79.6% 96.5% 93.3% 

GLM using ground 

truth regressor 
97.5% 86.0% 95.6% 92.4% 

ICA 95.8% 76.7% 98.3% 97.2% 
Table II: Comparison of sensitivity and specificity for GLM using ramp regressor, GLM using ground truth 
regressor and ICA from the simulated visual and motor task experiments. 

3.2 In-vivo fPET Experiments 
 

Task-fPET experiment 

Both GLM and ICA methods were applied on the in-vivo visual task experiment. We 
performed both subject level and group level analyses. During the PCA pre-processing for 
ICA, the number of principle components for each subject was set to twenty, and was further 
reduced to ten during the group level stage. The component related to the visual system was 
selected. 

The group level activation maps are shown in Figures 6 using the GLM and ICA methods, 
respectively. Overall both methods successfully identified activation in the visual cortex 
(Figures 6a and 6c), but the extent of the activations were slightly different across the 
methods by visual comparison. Using ICA, an additional negative brain activation in the 
superior sagittal and straight sinuses was also given in Figure 6d. The fitting curve in Figure 
6b demonstrated an accurate GLM fit at the group level. Similarly, the ICA timecourse in 
Figure 6e also identified increased relative FDG activity uptake (red) during the task 
stimulation and reduced relative uptake (blue) in the negative activation region. Both methods 
demonstrated the clear activation in occipital lobe at group level though they were not 
perfectly overlapped. At subject level, we found consistent ICA activations in five out of six 
individuals, and only four out of six individuals for GLM. The results of each individual 
subject are provided in Supplementary materials I.  

 

Resting state fPET experiment 

As GLM requires a functional regressor that is absent in resting state paradigms, it is ill-suited 
to resting state functional analysis. Thus, only ICA was investigated. The data dimension of 
each subject was reduced to 40 using PCA, and then normalized to remove the global baseline. 
The data dimension of concatenated group data was further reduced to 40. A total of 20 
activation maps were obtained using the FastICA toolbox. Figure 7 presents the orthogonal 
view of all components. Overall, there were two networks located in the frontal lobe (Figure 
7a and 7b), three located in the parietal lobe (Figure 7c-7e), five in occipital lobe (Figure 7f-
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7j), two in the sub-cortical regions (Figure 7k and 7l), one  in cerebellum (Figure 7m), one in 
mesial frontal/parietal (Figure 7n), one in frontal/temporal (Figure 7o) and one  in 
frontal/parietal (Figure 7p). Figure 7q-7t were labelled as noise or mixed signal/noise 
components. Detailed axial views of these activation maps were provided in Supplementary 
materials II. Several networks resemble fMRI resting state networks, such as default mode 
network Figure 7c, primary visual Figure 7f and Figure 7j, secondary visual Figure 7g and 
cerebellum Figure 7m, but others cannot be easily mapped to canonical fMRI resting state 
networks.  

Furthermore, within several resting state metabolic networks, we also observed widespread 
anti-correlated brain regions. These anti-correlated brain regions are shown as positive (red) 
and negative (blue) brain activations (in Figure 7), respectively. 

 

4. Discussion 
 

In this work, we investigated two types of fPET analysis methods including a model-based 
GLM method and a data-driven ICA method. We show that both methods can successfully 
identify task-related FDG activations using both in-silico and in-vivo task-fPET experiments. 
The GLM demonstrates higher sensitivity than ICA probably attributable to the a priori 
knowledge used during data fitting, whereas the ICA shows slightly better specificity in the 
simulation study. Additionally, we found that ICA produced more consistent activations 
across individuals, although a larger investigation is required to validate and quantify this 
discrepancy. In the resting state fPET analysis, the data driven ICA method was able to derive 
brain resting state metabolic networks. 

Unlike fMRI, the analysis of fPET requires an accurate estimation of the cerebral metabolic 
baseline, especially when using GLM. The metabolic baseline accounts for over 90% of the 
total time activity signals; the task-related time activity is only a small percentage of the 
signal. Any residuals in the baseline estimation can introduce bias when fitting the task design 
matrix.  Hahn et al. (2016) applied a 3rd order polynomial to estimate a basal metabolic 
baseline regressor and demonstrated that the metabolic baseline is brain region dependent. 
Compared with GLM, ICA avoids the explicit model-fit for task stimuli, and the baseline 
removal in ICA is simply to remove global signals and maintain regional metabolic variations. 
As a result, ICA reduces false positive activation compared with GLM, as demonstrated in 
our simulation study. 

The GLM analysis of fPET requires an a priori knowledge for the task regressor. A ramp 
function is approximated as the task regressor which has produced reasonably accurate 
activation maps. However, as shown in the simulation study, the ground truth regressor 
actually takes a more complex shape than a ramp function since the FDG activity change is an 
integration effect from the changes in the brain kinetics. This effect was clearly demonstrated 
in the simulation study. The task-only time activity signal increases beyond the duration of 
the task stimulation. Therefore, additional investigation into regressor design is warranted, 
and care should be taken when inferring GLM fitting results in neuroscience applications.  

Compared with fMRI ICA, there are several distinct features in the fPET ICA methods. First, 
the need to normalize data to remove a global baseline as well as to reduce inter-subject 
viability during the group level analysis. Second, widespread anti-correlated brain regions 
within a single independent component are identified using the ICA method. These anti-
correlated regions can potentially lead to interesting findings when evaluating their functional 
metabolic connectivity, however they may be spurious manifestations of the global baseline 
removal, as has been observed in fMRI following global signal regression (Murphy and Fox 
2017). Similar to the application of ICA in fMRI data analysis, the number of independent 
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components is empirically determined (Du and Fan 2013; Hui et al. 2011). However, some 
efforts have been made to mitigate this empirical approach by using minimum description 
length (MDL) (Calhoun et al. 2001b; Li, Adali, and Calhoun 2007). These methods may 
improve the performance of ICA for fPET analysis. 

In this work, a template image and a tissue kinetic model were used to simulate PET sinogram 
data and a thinning Poisson process was used to generate the dynamic PET data. The thinning 
Poisson process has been used by others for the evaluation of PET image reconstruction 
methods (Kim et al. 2018). However, the simulated data would be more realistic if a full 
Monte Carlo simulation of positron emission decay and the PET detection process at the 
coincidence event level (e.g. using the GATE software (Jan et al. 2004)) was used.  

One current limitation of fPET is that the temporal resolution of fPET time activity is 
significantly lower than BOLD fMRI. The temporal resolution of task fPET has been recently 
improved from 1 min (Hahn et al. 2016; Villien et al. 2014) to the below 20 seconds (Jamadar, 
Ward, Carey, et al. 2019; Rischka et al. 2018). However, this is still much slower than the 
seconds or even sub-seconds temporal resolution in BOLD fMRI. It is also worthwhile to note 
that each fPET frame measures the mean FDG activity within the frame duration. Only a 
small fraction of this activity is likely to be due to recent stimulated or spontaneous neural 
responses compared to the integral of all past activity.  

Conventional dynamic PET signals can be modelled using kinetic compartment models 
(Phelps et al. 1979; Sokoloff et al. 1977). The determination of kinetic rate constants could 
potentially be used to analyze variation in fPET FDG uptake across subjects when presented 
with external stimuli. However, the development of parametric analysis methods for fPET 
signal uptake is beyond the scope of this manuscript. Careful design and optimization of the 
fPET analysis method will be a critical step in future studies for interpretation of the fPET 
findings. 

FDG PET imaging has long been a proxy for investigating brain metabolism (Passow et al. 
2015; Tomasi et al. 2017). fPET, extended from the conventional static PET, can potentially 
be useful in the investigation of the complex hemodynamic and metabolic relationship in 
simultaneous MRI and PET study (Wehrl et al. 2013), resting state functional metabolic 
covariation (Amend et al. 2019; Di, Biswal, and Alzheimer's Disease Neuroimaging 2012), 
and application in neurodegeneration studies by assessing metabolic networks (Eidelberg 
2009).  With efforts invested into fPET acquisition methods, e.g. the bolus plus continuous 
infusion, we can further improve its temporal resolution (Jamadar, Ward, Carey, et al. 2019; 
Rischka et al. 2018). Advanced PET image reconstruction can improve the overall PET image 
quality (Pamulakanty Sudarshan, Chen, and P. Awate 2018), and these technological 
improvements can potentially enhance the usefulness of fPET in neuroscience and clinical 
applications.  

 

5. Conclusion  
 

The unique characteristics of fPET signals have been investigated to evaluate analysis 
methods for task and resting state fPET experiments. Using a simulated task fPET experiment, 
we quantitatively evaluated the performance of the model based GLM method and the data 
driven ICA method. Using an in-vivo visual task fPET experiment, activation in the visual 
cortex was identified using both GLM and ICA methods with anatomically similar regions of 
activation identified. Both methods showed a good agreement in the task fPET experiments, 
although the GLM showed slightly better sensitivity than ICA. ICA has proven its 
effectiveness for the resting state fPET analysis. By applying spatial ICA on temporally 
concatenated fPET datasets, we have presented resting state metabolic brain networks in a 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2019. ; https://doi.org/10.1101/778357doi: bioRxiv preprint 

https://doi.org/10.1101/778357
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

cohort of 28 healthy subjects. Overall, fPET provides a unique method to map dynamic 
changes of glucose uptake in the resting human brain and in response to extrinsic stimulation. 
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Figure Captions 

Figure 1:  Overview of fPET data analysis methods (rectangles represent a process and 
parallelograms represent input/output datasets), (a) GLM, and (b) ICA. 

Figure 2: fPET simulation procedures. (a): time activity signals of simulated FDG uptake in 
grey matter (Yellow), white matter (Red) and plasma input function (Black). (b): simulated 
brain FDG uptake with grey matter mask (Yellow), whiter matter mask (red), motor cortex 
mask (Green) and visual cortex mask (Blue). (c) and (d): task induced time activity signals in 
the motor cortex and the visual cortex. The shadowed areas represent task stimulation periods. 
The  k� parameter has increased by 20% during each task. 

Figure 3: Simulated fPET images reconstructed using the TIGER toolbox. The frame length 
is 1 min for all image volumes, consistent with our in vivo data. (a): image at 35min with 
FDG activity 0.34MBq, (b): image at 50min with FDG activity 0.64MBq, (c): image at 
65min with FDG activity 1.00MBq, (d): image at 80min with FDG activity 1.56MBq. It 
demonstrates increased activity signals over time. 

Figure 4: Comparison of the visual task results from the simulation experiment.  (a): 
activation map of GLM using the ramp regressor (p<0.1, FDR adjusted), (b): activation map 
of GLM using ground truth task regressor (p<0.1, FDR adjusted), (c): activation map of ICA 
(z>1.6), (d): GLM fitting using the ramp task regressor, (e): GLM fitting using the ground 
truth regressor, (f): ICA timecourse (z-scored). 

Figure 5: Comparison of the motor task results from the simulation experiment. (a): 
activation map of GLM using the ramp regressor (p<0.1, FDR adjusted), (b): activation map 
of GLM using the ground truth regressor (p<0.1, FDR adjusted), (c): activation map of ICA, 
(d): GLM fitting using the ramp regressor, (e): GLM fitting using the ground truth regressor, 
(f): ICA timecourse (z-scored). 

Figure 6: In-vivo visual experiment results. (a): orthogonal view of GLM activation map (t-
score >3). (b): normalized task fitting curve corresponding to the activation map. (c): 
orthogonal view of ICA activation map in visual cortex. (d): the negative ICA activation map 
shows activation in sagittal and straight sinuses. (e): normalized group timecourse (z-scored) 
corresponding to the activation map. 

Figure 7: fPET resting state brain networks. (a)-(b) present two networks in frontal lobe. (c)-
(e) present three networks in parietal lobe. (f)-(j) present five networks in occipital lobe. (k)-(l) 
presents two networks around ventricle. (m) cerebellum. (n) mesial frontal/parietal. (o) 
frontal/temporal. (p) frontal/parietal. (q)-(t) noise or mixed signal/noise. 
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