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 36 
ABSTRACT 37 
The negative effects of data clustering due to (intra-class/spatial) correlations are well-known in statistics to interfere with interpretation 38 
and study power. Therefore, it is unclear why housing many laboratory mice (³4), instead of one-or-two per cage, with the improper 39 
use/reporting of clustered-data statistics, abound in the literature. Among other sources of ‘artificial’ confounding, including cyclical 40 
oscillations of the ‘cage microbiome’, we quantified the heterogeneity of modern husbandry practices/perceptions. The objective was 41 
to identify actionable themes to re-launch emerging protocols and intuitive statistical strategies to increase study power. Amenable for 42 
interventions, ‘cost-vs-science’ discordance was a major aspect explaining heterogeneity and the reluctance to change. Combined, 43 
four sources of information (scoping-reviews, professional-surveys, expert-opinion, and ‘implementability-score-statistics’) indicate 44 
that a six-actionable-theme framework could minimize ‘artificial’ heterogeneity. With a ‘Housing Density Cost Simulator’ in Excel and 45 
fully annotated statistical examples, this framework could reignite the use of ‘study power’ to monitor the success/reproducibility of 46 
mouse-microbiome studies. 47 

 48 
INTRODUCTION 49 

Laboratory mice are critical to understanding human biology in a variety of fields, from inflammatory bowel 50 
diseases, neurology, and cancer, to microbiome and nutrition. In the current era of microbiome research, multiple 51 
factors are becoming evident as sources for confounding. Integrating microbiome science into animal research 52 
necessitates that experiments control for confounding derived from emerging artificial factors, especially the ‘cage 53 
microbiome’,1-5 which we recently discovered causes ‘cyclical microbiome bias’ due to the periodic accumulation of 54 
excrements in mouse cages.1  55 
Understanding the factors that contribute to research heterogeneity will address this need. Primary factors causing 56 
artificial analytical heterogeneity and low study power include putting many mice into one cage, having insufficient 57 
cages per group, and using statistical methods that assume multiple mice in a cage are independent instead of 58 
clustered observations.  59 
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In statistics and science, heterogeneity is a concept that describes the uniformity and variability of an 60 
organism, a surface, or the distribution of data. Sources of study heterogeneity can be natural or artificial. Artificial 61 
heterogeneity refers to study variance introduced by humans or anthropological factors, including animal husbandry 62 
and the ‘cage microbiome’, which non-uniformly affect mouse biology. Fundamental to hypothesis testing, data 63 
heterogeneity determines which statistical methods are needed to decisively quantify if two independent naturally-64 
heterogeneous groups, truly differ. To appropriately select statistics controlling for cage-clustered data, scientists 65 
must be aware of study details, namely, which data points belong to which mice and respective cages in a dataset or 66 
published figure. Unfortunately, these details are often omitted during analysis and in publications, and 67 
misconceptions on heterogeneity, husbandry and analysis may exist among leading research organizations.  68 

To exemplify that scientists are under pressure and need recommendations to prevent bias and improve 69 
animal research quality and reproducibility, in the USA, the National Institutes of Health (NIH), a major federal funding 70 
institution, implemented a mandate in 2014 on ‘Rigor and Reproducibility’6-8 which assures research funding is 71 
constrained unless researchers prove that they consistently yield reproducible results. Our report seeks to illustrate 72 
concepts on study power and intra-class correlation among mice in a cage to support a framework based on six 73 
actionable themes to increase study reproducibility.  74 

Concerning study power, two concepts of expected validity exist: internal and external validity. Both refer to 75 
the statistical expectation that results from a given study are true, reproducible, and not by random chance if a study 76 
is repeated locally (internal), or in another setting (external validity).9-11 Intrinsically, experiments have high internal 77 
validity if appropriate statistics and power are applied, and if data clusters and confounders are avoided. Studies with 78 
experiments in different settings (microbiota, mouse lines) are more likely replicable; but experimental reproducibility 79 
requires appropriate power. Validity thus depends on the study power, which is the probability of not making a type II 80 
error (fail to reject false null hypotheses in favor of true alternatives). Power is a statistical measure from 0 to 1, with 1 81 
indicating highly-powered studies. While power 0.5 yields statistically haphazard results (‘tossing a coin’), powers 82 
>0.8 indicate optimal chance for replication. Power increases with large sample sizes (more mice), but decreases 83 
with clustering of animals in cages by introducing a ‘cage effect’, and intra-class correlation coefficient (ICC) 84 
complexity to the analysis of cage-clustered data. The negative impact of cage clustering is maximum when all mice 85 
of a study group are housed in one cage because it is impossible to differentiate ‘real’ from ‘confounding cage 86 
effects’. The negative impact of clustering is reduced when more cages, with fewer mice per cage, are used per 87 
group (‘less mice-per-cage is more’).  88 

Despite the 5-year-old NIH mandate, the public and federal perception on mouse research reproducibility is 89 
often negative.7,12 However, to our knowledge, there are no scientific studies i) confirming that research 90 
reproducibility is an ongoing issue, ii) defining what role perceptions and academic husbandry practices play on 91 
reproducibility, or iii) predicting the implementability of potential solutions to increase study power, if proposed. To 92 
refine our understanding on research heterogeneity, study power and reproducibility, our study objectives were to i) 93 
verify research methods heterogeneity in current literature, ii) quantify current perceptions on mouse husbandry and 94 
microbiome using a survey, iii) identify potential areas of solution using a Delphi-based strategy, and iv) to quantify 95 
the potential implementability of an evidence-based framework of six Recommendation themes to cost-effectively 96 
increase study power using a grading scale based on perceived clarity, benefit and recommendability.  97 

As an accompanying practical set of tools, we also created i) a simple housing density cost calculator in 98 
Excel that can be used by scientists to determine whether less animals per cage, or more cages per experimental 99 
group suit research budgets, and ii) and provide graphical examples and a fully annotated statistical code to compute 100 
and report analysis of cage-clustered data, and power, for both single- and clustered-caged mice. Post-hoc study 101 
power calculations were deemed cumbersome and non-informative in the past,13 but more sophisticated user-friendly 102 
software now provides emerging methods to compute such important statistics,14 which we propose should be used 103 
to infer and objectively monitor power and reproducibility across mouse research at large.  104 
 105 
RESULTS  106 
 107 
Husbandry heterogeneity and cage-cluster effects are pervasive in current literature. 108 
To identify husbandry factors capable of influencing gut microbiome and study reproducibility, especially mice per 109 
cage (MxCg) and mice per group (MxGr), we reviewed 172 recent studies selected from PubMed searching ‘diet-110 
microbiome-mice’ (Figure 1). From 865 articles published over the past 10 years, 93% were published in the last five 111 
years (Supplementary Materials; https://figshare.com/s/9d0b963e287944233cb1). Of concern, most studies failed 112 
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to report in sufficient detail aspects of animal husbandry (e.g., cage density/sanitation frequency, diet sterility) making 113 
the study of cage-effects and confounding challenging to assess (Figure 2, Supplementary Figure 1). Although 57% 114 
of the studies originated in China and USA (n=52, 30%), it is remarkable that almost 60% of studies across all 115 
countries failed to report animal density (i.e., MxCg). Of the 72 studies that reported density, 30% (22/72) have highly 116 
cage-clustered data; reporting experiments with 5 MxCg. Slightly encouraging, 18% of studies housed mice at lower 117 
densities of £2 MxCg, which is ideal because it increases study power by decreasing cage effects (Figure 2A-C). 118 
Although low animal density could be perceived as an expensive practice, density practices did not correlate with 119 
gross domestic product (GDP; yearly US$/capita) implying that national wealth is not a driving factor for housing mice 120 
individually during experiments. Irrespective of wealth, it was reassuring to identify scientists who publish studies 121 
stating that they exclusively housed mice individually in Belgium, Taiwan, Italy, Finland, Korea, France, Brazil and 122 
Japan15-45 (Figure 2 D-E).  123 

Several husbandry aspects contribute to cage-cage variations and cause cage effects (see Supplementary 124 
Table 1-2). Therefore, it is difficult to substantiate whether the significant effects identified in any given study, where 125 
all mice in a group were housed in one single cage (decreasing study power), were truthfully due to the experimental 126 
intervention and not from the random distribution of cage effects in a laboratory (Figure 2F). To quantify the potential 127 
for ‘cage effect confounding’, we used the ‘total number of cages per group’ (TCgxGr) as a quantitative estimate (see 128 
Methods) to determine the prevalence of studies that conducted experiments using only a few cages per group. 129 
Estimates indicate that studies used on average 4.4±3.2 TCgxGr (notice large SD), of which 39% (28/72) generated 130 
data derived from only 1-2 TCgxGr (Supplementary Figure 1).  131 

Given that cage clusters decrease study power,46-48 experiments conducted with low animal density, ideally 132 
one MxCg, and the reporting of TCgxGr deserves to be highlighted as an exemplary habit.  Despite available 133 
reporting guidelines,49 data illustrates that inadequate reporting of methodological details in published literature 134 
continues in 2019, diminishing the ability to replicate studies. To complement guidelines, we propose to consider 135 
using a standard verbatim paragraph-style format to unify reporting and facilitate future meta-analyses (see below 136 
Recommendation Theme on 'Reporting’).   137 

 
 

Figure 1. Study design to understand artificial heterogeneity in mouse microbiome research. 
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Expertise differences across scientific organizations surveyed. 138 
To further advance our understanding of husbandry heterogeneity, we applied an online survey to 139 

academicians (Supplementary Figure 2). After contacting over 2000 professionals, a total of 166 participants started 140 
the online survey. One-hundred and sixty-three (97%) surveys were completed and used for analysis. The majority of 141 
respondents were from USA (133; 81%, 95%CI=74.3, 87.6) and participants reflected individuals with leading roles in 142 
science (Assistant Professors, Professors, Veterinarians) within the DDRCC, AALAS and GNOTOBIOTIC 143 
organizations (see Methods). The GNOTOBIOTIC respondent set had a smaller number of faculty/veterinary 144 
directors or managers (vs. Postdocs) compared to the DDRCC group (p=0.087, 61.4% vs. 78.8%, Odds ratio [OR] = 145 

Figure 2. Literature on ‘diet, gut microbiome & mice’ illustrates ongoing animal density problematics. 
Published methodologies illustrate variability in husbandry and inconsistent animal density across studies as a major source of cluster-
confounding. a) Schematic representation of factors screened from the methods and results section in peer-reviewed publications. b) 
Distribution of studies that did and did not report animal density. Pie chart shows that most studies (58%) do not report how many animals 
were housed per cage. c) Ranking shows number of studies per country based on the number of studies reporting animal density (78 of 172 
reported). d) Correlation between number of MxCg and GDP US$/capita. Note that the country's GDP does not correlate with number of 
MxCg suggesting experimental animal density practices are not related to wealth of a country. e) Average MxCg used in experiments 
represented by country. f) Summary of studies that reported cage change/sanitation frequency, bedding material and diet sterility (including 
method for diet sterilization; autoclaving, irradiation & dose used). Note that more studies reported ‘cage type’ (e.g., plastic flexible film, 
metal wired, Plexiglas, etc.) than those which reported ‘sterility of diet’ (25% vs 21%). Only one study reported ‘time of fecal collection’ (see 
complementary data in Supplementary Figure 1). 
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2.15 95% CI=0.82, 5.7) but included slightly more participants with access to germ-free (GF) animals compared to 146 
DDRCC (p=0.083, 95.5% vs. 84.6%, OR = 3.82, 95%CI=0.69, 38.5, Figure 3A-B). Multi- and single-cage GF 147 
isolators (used as a proxy for state-of-the-art equipment and knowledge) were most frequently used as a GF-caging 148 
system among those with GF facility access. Collectively, demographic analysis indicates that although statistically 149 
different, all groups had comparable levels of expertise, access to state-of-the-art facilities and knowledge (note p-150 
values and wide 95%CIs; see Figure 3C-D) which is important to inferring that the perceptions acquired herein are 151 
relevant to current research. 152 

Scientific organizations rank similarly 15 husbandry factors that affect the mouse microbiome.  153 
To determine whether differences in knowledge/practices or perceptions on animal husbandry exist due to 154 

the professional nature of each organization, we asked participants to rank, from 1 to 5 (least to most important), how 155 
important each of 15 husbandry factors contribute to variability in mouse research (“Rank how important you believe 156 
each of the following 15 aspects contribute to microbiome research variability)”. Using ‘diet composition’ as a positive 157 
control (as diet affects gut microbes), we found that all groups of professionals ranked each parameter similarly 158 
(mean of ranks for all participants across factors, Kruskal-Wallis p>0.05).   159 

Except for ‘diet composition’, ranked 1st as ‘very important’ by the majority of respondents (>75%), there was 160 
marked heterogeneity in response patterns at the individual level (Figure 4A). Importantly, perceptions of individuals 161 
did not cluster within their professional affiliation, suggesting that the organizations surveyed ‘think’ alike. Instead, we 162 
identified ‘patterns of beliefs/perception’ in academia that reflect ‘types of individuals’, with a given set of research 163 
practices in mind (beliefs), that differs from their peers within their organization (Figure 4A-C). For example, although 164 
‘coprophagia’ ranked 4th overall as a ‘very important’ factor to microbiome variability, fewer than 40% of participants 165 
ranked ‘number of animals per cage’ (ranked 8th) and ‘cage change frequency’ (ranked 9th) as aspects ‘very 166 
important’, even though coprophagia contributes to microbiome confounding depending on the extent of ‘cage 167 
bedding soiledness’ (ranked 12th), which depends on ‘number of animals per cage’ and ‘cage change frequency’.  168 

In the studies reviewed, aspects deemed ‘very important’ by survey respondents were not always reported, 169 
while ‘less important’ factors were frequently reported. This discordant pattern of thinking-reporting was further 170 
illustrated by individual perceptions on ‘bedding type’ (e.g., corncob vs. non-edible wood shavings), ‘cage ventilation’ 171 
type, ‘room temperature’ and ‘room humidity’, all of which contribute to cyclical bedding microbial overgrowth (which 172 

 
Figure 3. Demographics of surveyed professionals on ‘animal husbandry in microbiome research’. 
a) Pooled distribution of job descriptions categorized based on information provided by all respondents. b) Distribution of job descriptions by 
the three largest groups of participants. Notice that the DDRCC group has the largest proportion of faculty (from instructors-to-full 
professors) participating in the survey, but all groups were composed of academicians with comparable job descriptions. More veterinarians 
and project leaders were observed in the AALAS and Gnotobiotic listserv groups. c) Distribution of participants who reported having current 
access to GF animals or facilities (outer pie circle chart) and that would like to have access, or continue working with, GF animals/facilities 
(inner circle chart). Notice that the majority of participants are expected to have high levels of expertise and understanding of GF mouse 
facilities, husbandry, and microbiome knowledge. * and ** indicate subgroups who would like (or not) to change their current GF research 
trends. d) Distribution of respondents who did or did not know about the presence of GF facilities in their institution, and the types of caging 
system used. This question contextualizes the knowledge of respondents in terms of GF equipment/systems. 
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selects for aerobic microbes in cage bedding) and thus cage-cage microbiome variability.1,2,48 Beliefs agreement was 173 
identified between ‘diet composition’ ‘diet sterility’ and ‘water source’ (top 3 ranked factors) illustrating that dietary 174 
intake is perceived as a collective of all aspects consumed orally, including the microbial content of diet (Figure 4D). 175 
Most respondents do not think ‘cage type’ (ranked 14th) is important. The majority of reviewed studies (Figure 2F), 176 
however, reported cage type in their methods, while the ‘very important’ aspect of ‘diet sterility’ was described in only 177 
22% of studies reviewed. Of concern, the ‘time of year/season’ was the least important aspect believed to influence 178 
the microbiome (ranked 15th); however, we have shown that cross-sectional metagenome experiments conducted in 179 
separate seasons produce contrasting results when assessing the role of Helicobacter spp. in spontaneous Crohn’s 180 
disease-like ileitis in mice,3 implying that repeating experiments across seasons may yield unreproducible results 181 
over time.   182 

As a recommendation, repeating experiments to build composite datasets, which often occurs across 183 
seasons, should be conducted with caution unless we understand the effect of season on the microbiome and animal 184 
physiology (see Recommendation Theme on ‘Repeating Experiments’).  185 

 
Figure 4. Ranking of 15 factors believed to cause microbiome research variability is reproducible. 
a) Heat map shows respondent perceptions on the importance of various animal husbandry factors in microbiome research variability. The 
heterogeneity across respondent perceptions illustrates that individual thinking is not related to institutional affiliation. b) Boxplots show 
raw data ranking distribution of respondent perceptions on the importance of various animal husbandry practices. c) Heat map shows the 
overall ranking of variables according to institution. d) Stacked bar graphs show overall ranking of variables. Note that diet composition, 
sterility and drinking water were identified by >50% of individuals as ‘very important’ contributors to microbiome research. Note the 
discordance between coprophagia (ranked 4th) to that of bedding soiledness (‘dirtiness’) and the importance of cage change frequency. 
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Diet-dwelling microbes and homogenizing cage microbiome variability before experiments.  186 
With sub-sterilizing radiation protocols, diets have variable microbial composition even within the same 187 

batch.1,2,50 Survey questions interrogated basic knowledge relevant to irradiation and the degree of diet sterility. When 188 
asked whether standard irradiated commercial diets for mice were sterile, 67% answered that such diets were 189 
‘sterile’. Although diet sterility depends on the irradiation dose, in the case of commercial diets, companies employ a 190 
single, standard dose, insufficient to achieve GF-grade sterility. Of note, no studies reviewed reported irradiation dose 191 
when reporting diet sterility. Thus, unless certified as sterile, diets used during mice rearing and experiments 192 
expectedly contain potentially confounding microbes, primarily spore-formers and gamma-radiation resistant bacteria 193 
and fungi.51 The random distribution of diet-dwelling microbes, bedding-dependent microbial overgrowth and other 194 
cage effect factors are sources of microbiome divergence52 and bias that accumulate across cages as animals are 195 
reared and aged before, or during experimentation.  196 

Since there is no consensus on one single approach to control for cage-cage microbiome variability before 197 
using mice in experiments, we surveyed which methods are used by scientists.52-55 Despite evidence that co-housed 198 

 
Figure 5. Survey responses for animal husbandry practices and cost. a) Venn diagram (n of respondents) on ‘popularity’ of various 
methods used to control cage-cage microbiome variability prior to the experiment. Note ‘fecal homogenization protocol’ compared to others. 
b) Perception contrast between the ‘financial’ and the ‘scientific’ preference when asked what animal density was preferable for a 1-month 
dietary experiment. Of interest, 88% and 35% of the survey respondents believe that 5 MxCg is financially and scientifically preferable than 
housing fewer animals per cage. c) Stacked bar plots show ‘cage change frequency’. Most facilities change cages weekly or every 2 weeks. 
d) ‘Water-type’ in facilities (8.6% ‘did not know’). Note wide array of water sources, including untreated tap, autoclaved tap, acidified tap and 
reverse osmosis, all of which affect the gut microbiota.79 e) Cost analysis example using a customizable spreadsheet calculator 
(Supplementary File 1). Notice the power function correlation between ‘number of cages desired’ in a study and ‘animal density’ with the 
linear costs of husbandry due to payment of ‘basic costs’ in an Animal Resource Center (ARC) and the presumed costs of cage handling by 
a technician paid by the Principal Investigator (PI).   
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mice have varying microbiome patterns56,57 and the recent evidence of cyclical bedding-dependent bias,1 the most 199 
popular combination of methods used to control for cage microbiome variability was ‘cohousing’, ‘use of mixed 200 
bedding’ and ‘increasing the number of animals per cage’ (Figure 5A). The least frequently used method was ‘fecal 201 
homogenization’ (animals exposed to a composite of feces harvested from all mice), yet this method is arguably the 202 
simplest and most effective in homogenizing cage microbiome variability (see Recommendation Themes on ‘Cage-203 
cage microbiome variability BEFORE experiments’ and ‘Dirty cages and time-of-sampling DURING 204 
experiments’). 205 

 206 
Clusters and scientific-financial discordance when housing five mice in a study of five mice.   207 

To interrogate whether cost is a contributing factor to animal housing density practices, we posed two 208 
identical multiple-choice questions that differed only by the assumption of financial vs. scientific preference. The first 209 
question asked, “In a 1-month diet experiment with 5 mice/group, which housing option do you believe is 210 
FINANCIALLY preferable? while the second question replaced the capitalized word ‘FINANCIALLY’ with 211 
‘SCIENTIFICALLY’. The three possible answers were, using ‘5 cages’, ‘2 cages’, or ‘1 cage’. The majority of 212 
participants believe it is both scientifically (54%) and financially (95.7%) preferable to maintain cages with higher 213 
animal density (2-3 or 5 MxCg), which, of concern, introduces cage cluster effects.58 Thus, studies with 5 mice are 214 

 
Figure 6. Beliefs on ‘husbandry and microbiome research variability’ are similar, but professional organizations differ in response to 
questions on practices and knowledge. Normalized principal component analysis of survey respondent data. Superscript asterisks: large or 
small symbols depict the individual response of each participant when asked how important ‘animal density’ was as a factor in influencing the gut 
microbiome.  a) Clustering-based questions about financial vs. scientific feasibility of caging 1, 2 or 5 MxCg. Notice that each cluster (type of 
response patterns) contain individuals from all professional groups, i.e., AALAS.  b) Clustering-based knowledge questions, i.e., irradiated diets. 
Notice the same pattern as in panel A, suggesting that response heterogeneity is not due to group.  c) Normalized and non-normalized 
percentage of variance in entire data set explained by the maximum number of components (questions; n=24) using “animal density” as outcome 
for prediction (which cannot be achieved as large and small symbols occur throughout plot). d) Cloud representation of collective influence of the 
15 questions to predict group separation.  e) Clustering based on 15 ranking-based PERCEPTION questions + 11 Knowledge, Financial vs. 
Scientific feasibility, access to facilities and practices. Although clusters of individuals collectively think very similarly and slightly different than the 
rest, analysis indicate that the different clustering for certain areas in the plot is due to differences in answers related to ‘type of facilities’, or 
practices that are more common among certain groups of professionals.  f) Best achievable clustering of individuals based on relief F scores to 
predict animal density shows surveys from different groups are distinct. 
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underpowered as they consist of only 1-2 cages; commonly seen in studies reviewed. Intriguingly, while 45% 215 
(95%CI=37.3, 52.6) of respondents think that it is more scientifically appropriate to have 1 MxCg, the same 216 
individuals do not think that this practice is economically feasible (Figure 5B), which reflects current literature where 217 
only 15% (95%CI=9.6, 20.3) of studies reported exclusively housing 1 MxCg (see Figure 2C).  218 

 Considering that the majority of respondents’ facilities implement weekly or every 2 weeks ‘cage change’ 219 
protocols, with a wide array of drinking water sources across facilities (Figure 5C-D), our data suggests that cage 220 
change/sanitation (via ‘cage microbiome’), and animal density could contribute greatly to artificial heterogeneity in 221 
mouse research. 222 
To address concerns of cost regarding the number of MxCg in context to ‘cage change frequency’, we developed an 223 
Excel spreadsheet ‘Housing Density Cost Comparison Calculator’. Graphical cost-effectiveness analysis illustrates 224 
that a higher number of MxCg requires more frequent cage changes (Figure 5E, available as 225 
https://figshare.com/s/377fa429bd8cc405fc1b). Overall, costs increase when comparing 5 vs. 1 MxCg linearly over a 226 
continuum of cage cluster possibilities, therefore conducting highly clustered underpowered studies is not necessarily 227 
cheaper. When considering response patterns regarding financial vs. scientific feasibility of animal housing density, 228 
we show that the heterogeneity in respondents’ perceptions is not attributed to institution but instead to professional 229 
organization (Figure 6A-F).  230 

Although scientists could argue that statistical methods exist to control for clustering,58 our analysis of 231 
literature indicates that scientists do not implement cluster-statistics. Since cluster-statistics are not trivial to 232 
implement (e.g., R Statistical Package ‘clusterPower’59), we provide technical guidelines on how to account for 233 
unbalanced MxCg designs, ICC and low sample size using clustered-data statistics (see Recommendation Themes 234 
5-6 on ‘Animal density, clusters, ICC, and power’). 235 
 236 
Implementability of a multi-theme framework to favor study power and reproducibility. 237 

To objectively determine if the ‘Recommendations’ described below (supporting a multi-theme actionable 238 
framework, Figures 1 and 7A) were i) clearly drafted as a sentence (sentence clarity), ii) had the potential benefit to 239 
improve power and reproducibility (potential benefit), and iii) were deemed appropriate for readers to recommend to 240 
others (would you recommend it?), we asked active academicians and scientists conducting research to grade each 241 
recommendation and provide comments to create an ‘implementability grade metric’ (Supplementary Table 3). To 242 
quantify whether the obtained implementability grades were significantly different from random responses, we 243 
compared the distribution of grades to that of a random generator of 30 numbers, from 1-10.  244 

 
Figure 7. Implementability of recommendation theme framework. a) Framework integrating NIH guidelines, and our recommendations. 
b) Implementability grades scores (IGS) for each recommendation. Asterisks indicate IGS were statistically higher than random simulations 
(see statistics details in-text). Line plot connects individual grades. Notice that people who disagree with sentence clarity tend to disagree 
interpreting the potential benefits. High mean grades indicate high potential for implementability. 
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A grade of 1 indicates poor, while a grade 10 means outstanding. Of great practical value for the multi-245 
theme framework proposed, analysis indicated that, collectively, all recommendations are very likely to be 246 
implemented by scientists (mean grade, 8.02±1.4 vs. random grade 5.0, n=20, t-test p<0.001; Figure 7B).  247 

The wording of the final recommendations, underlined with ‘quotation marks and italics’ reflect the improved 248 
version of the expert-graded sentences and comments received during the grading phase. See all comments in 249 
Supplementary Table 4, and a synthesis of the peer-reviewed studies supporting the framework in Supplementary 250 
Table 5. The implementability statistics, rationale (extended version in Supplementary Table 6), and goals for each 251 
Recommendation are described below.  252 
 253 
Recommendation theme 1 on ‘Reporting of diet and husbandry factors’. 254 

Reproducibility will occur only if critical study details are provided in published literature. Our review of 255 
studies combined with the high number of ARRIVE guideline49 citations (>3000) indicates that while ‘checklists’ may 256 
improve reporting quality, they do not ensure reporting with sufficient/consistent detail. A template paragraph for 257 
reporting would enforce uniform transparency, reproducibility, and enable rapid data mining for future meta-analyses, 258 
widely used to help guide the practice of medicine, but scarcely used in basic science. We recommend the ‘Use of a 259 
paragraph-style template to report detailed diet and husbandry factors consistently and reproducibly (e.g., 260 
macronutrient, diet sterility), publishable as accompanying ‘Supplementary Materials’’ (see reporting template in 261 
Supplementary Table 7). The goal is to minimize reporting with insufficient detail or details that are open to 262 
interpretation, yet still suffice standard reporting checklists/guidelines49. The expert-prediction for implementation is 263 
significantly high (grade, 8.7±1.2 with 99.5% probability of being significantly higher than random in 96.7% [n=29] of t-264 
test analysis conducted for 30 simulations with 30 random numbers, mean t-test p=0.005±0.012). Note that ‘text-265 
recycling’ is currently allowed (when clearly justified) based on current code of ethics in scientific publishing.60-62  266 

 267 
Recommendation theme 2 on ‘Cage-cage microbiome variability BEFORE mouse experiments’. 268 

Fecal bacterial profiles can differ widely between cages within a single mouse strain housed under identical 269 
conditions and occurs even across mice produced for experimentation in contained breeding colonies.2,3,63 Our 270 
survey demonstrated that although scientists implement strategies to control for cage microbiome variability before 271 
experiments,2,55,56 there is ample variability of arguably reproducible method combinations used across organizations. 272 
A fecal homogenization protocol wherein all mice are administered a composite of freshly collected feces via oral 273 
gavage for 3 days,54 has been shown to effectively minimize inter-cage gut microbiota heterogeneity before 274 
experimentation.54,55,64 We recommend the ‘Use of a fecal matter-based microbiome normalization protocol (e.g., by 275 
orally administering a homogenous pool of feces from a group of mice intended for experimentation to all the mice at 276 
baseline prior to starting the study) to homogenize the microbial exposure risk across all mice intended for an 277 
experiment, and thus reduce the cage-cage microbiome variability that naturally occurs as animals age during 278 
intensive production of animals for research and experiments.’  The goal is to normalize microbiome variability that 279 
accumulates across cages over the lifespan of mice before experiments. The expert-prediction for implementation is 280 
significantly high (grade, 8.5±0.04; 98.25% probability of higher score vs. random; significant in 86.6% of simulations, 281 
t-test p=0.018±0.03).  Described in 2014 as ‘Inter-subject Pre-experimental Fecal Microbiota homogenization’ 282 
(IsPreFeH),54 this revised microbiome ‘normalization’ protocol, which excludes use of soiled bedding material, in 283 
combination with a reproducible protocol for oral gavage of microorganisms,65 is a scalable solution.  284 
 285 
Recommendation theme 3 on ‘"Dirty cages" and time of sampling DURING experiments’. 286 

Our survey showed ample heterogeneity in timing of mouse cage sanitation protocols despite recent studies 287 
indicating that bedding soiledness (‘dirtiness’) contributes to periodic variations in gut microbiome via 288 
contact/coprophagia.1,52 Mouse experiments would benefit if conducted with cages having reduced animal density (1-289 
2 MxCg) with biological samples systematically collected from clean cages at the same time of day to avoid diurnal 290 
variation.66-68 We recommend to ‘Prevent the uncontrolled accumulation of animal excrements in the cage, i) house 291 
a homogeneous number of animals per cage (ideally at low density, 1 mouse/cage), ii) adjust frequency of cage 292 
sanitation based on animal density, and iii) collect samples 1-2 days after mice have been in clean bedding/cages, 293 
because coprophagia and ‘dirty cages’ affect the mouse physiology and microbiota.’ The goal is to minimize the 294 
uncontrolled permanent contact of mice with their (decomposing) feces. The expert-prediction for implementation is 295 
significantly high (grade, 8.3±0.15; 98.7% of probability of higher vs. random; significant in 96.6% of simulations, t-296 
test p=0.014±0.024). Given that coprophagia (not relevant to humans) and excrements in cages may cause bedding-297 
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dependent cyclical microbiome bias,1 frequent cage replacements (increases with animal density,1 Supplementary 298 
Figure 3), studying/sampling mice in clean cages and/or the use of slatted floors69 deserve emphasis.  299 
 300 
Recommendation theme 4 on ‘Repeating experiments in different seasons’. 301 

As reflected by the literature reviewed and the misconceptions documented in our survey, little is known 302 
about the effect of time of year/season on mouse research heterogeneity.3,63,70 Since it is almost impossible to control 303 
for seasonal variation within long-term, or multiple short-term experiments spanning over several seasons, it is 304 
important to take measures to improve measures taken to improve study variation/reproducibility over time (e.g., food 305 
batch, inter-experiment IsPreFeH). We recommend to ‘Plan and execute statistically powerful designs and do not 306 
repeat underpowered (cage clustered, low sample size) experiments in different seasons (because several 307 
unforeseen factors affecting animal husbandry are challenging to detect and control for in diet and personnel).’ The 308 
goal is to control for the variable effect of season on study reporting and heterogeneity using well-powered designs. 309 
The expert-prediction for implementation is significantly high (grade, 8.1±0.76; 96% probability of higher score vs. 310 
random; significant in 76.6% of simulations, t-test p=0.04±0.062).  We acknowledge that at times replication is 311 
desirable, and also that ‘poor breeding colonies’ often yield insufficient mice to perform final experiments. In this 312 
context, it is advisable to store fresh-frozen feces anaerobically (-80°C with/without cryoprotectants; 7%-DMSO, 10%-313 
glycerol) from initial experimental mice for the colonization of newly available mice, and to store sufficient vacuum-314 
packed diet (-20°C) and supplies to last across experiments.  315 

 316 
Recommendation theme 5 on ‘Animal density, clusters, and study power’. 317 

First, our scoping review identified numerous laboratories publishing clustered MxCg data with few 318 
cages/groups, without the verification of study power/sample sizes, or use of statistics for clustered-data. Then, our 319 
survey and cost simulator showed financial-scientific discordance among scientists when deciding animal densities. 320 
Unless higher densities are scientifically (not only financially) justifiable, housing 1 MxCg could yield more cost-321 
effective and powerful study designs by increasing the number of cages and minimizing the need to use advanced 322 

 
Figure 8. Graphical examples of rapid ‘study power’ calculations and reporting of individually-caged mouse data.  a) Example of 
study power calculation & graphical reporting (post-hoc means after study completion, all datasets are real unpublished data). Intestinal 
inflammation in mice from two groups housed individually after pre-experimental cage microbiome normalization using IsPreFeH (fresh feces 
only; no bedding material). Post-test plot analysis (inset, software screenshot of power vs. sample size) shows that in this case, only 4 mice 
would be needed. Notice p-value and power increase after excluding outliers (dashed circles, N=19).  b) Power analysis for two groups with 
different variance (diet A, narrow SD; diet B, wide SD). Fecal MPO test following a diet intervention illustrates that for this diet, a sample size 
of 10 is sufficient to achieve a well-powered study despite large variance in diet B.  c) Example of importance of data normalization (e.g., 
from raw small changes in millions, 107, to a log scale) in post hoc power analysis. Fluorescence intensity units in a test after intervention 
caused early mortality in diet B. Although the p-value does not change, normalized data (smooth edges of datasets) increases study power 
as it fulfills assumptions of t-tests normality. Since all mice were individually caged, the dataset quality and the early mortality are not due to, 
or are confounded by cage effects. Therefore, despite the small sample size (n=9 vs. 4), this is a well-powered study. The most recent 
version of open-source software G*Power can be downloaded from http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/. See 
Supplementary Figure 4 with step-by-step process to compute powers herein shown. Examples for power and sample size for studies with 
individually caged mice intended for ANOVA or regression analysis are available at https://stats.idre.ucla.edu/other/gpower/. 
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statistics.47,71 We recommend to ‘House one mouse per cage (unless more mice per cage is scientifically justifiable) 323 
and increase the number of cages per group (instead of few cages co-housing many mice which results in cage 324 
clustered-correlated data, lower study power and requires more mice to compensate for study power loss) to 325 
maximize the experimental and statistical value of each animal as a test subject during experimentation.’ The expert-326 
prediction for implementation is moderately significant (grade, 7.7±0.56; 91.4% probability of higher score vs. 327 
random; significant in 63.3% of simulations, p=0.086±0.13).  The goal is to maximize the scientific/test value of each 328 
mouse by promoting individual housing, emphasizing that social stress has been equally demonstrated, irrespective 329 
of sex, for single- and socially-housed mice,72,73  and to promote the use of study power through cost-effective, 330 
reproducible experiments. As expected, this recommendation elicited the most heterogeneous responses, reflecting a 331 
partial reluctance to modify current animal density practices (Figure 7B). To promote implementation and facilitate 332 
the accuracy/reproducibility of reports, we provide three graphical examples of why/how-to compute and report 333 
power/sample sizes for any completed experiment using single-caged mice and intuitive open-access software 334 
(‘G*power’74 in Figure 8A-C, R75, and our STATA code below).  335 

 336 
Recommendation theme 6 on ‘Implementing statistical models to consider ICC in clustered data’. 337 

Depending on the experiment, we recognize that it is not always possible to single-house mice. Our review 338 
showed that scientists often analyze clustered observations using methods that mathematically function under the 339 
assumption of data independence (student T-, Mann-Whitney, One-/Two-way ANOVAs), without implementing 340 
statistics for intra-class (‘intra-cage’) correlated (ICC) cage-clustered data (Multivariable linear/logistic, Marginal, 341 
Generalized Estimating Equations, or Mixed Random/Fixed Regressions).47,76,77 The ICC describes how units in a 342 
cluster resemble one another, and can be interpreted as the fraction of the total variance due to variation between 343 
clusters.47 Housing multiple MxCg as homogeneous densities across study groups is logistically challenging using 344 
few cages. To expand the outreach of our multi-theme framework, and to support scientists with their analysis and 345 
publication of justifiable/clustered experiments, we recommend to ‘Use statistical methods designed for analyzing 346 
clustered data when multiple mice are housed in one cage, and when data points are obtained from mice over time, 347 
to i) properly assess treatment effects, ii) determine the intraclass correlation coefficient for each study, and then iii) 348 
to use that information to rapidly generate experiment-specific, customizable study power tables to aid in the 349 
assessment, re-/design (if more mice or cages are needed), and reporting of adequately powered studies.’  The goal 350 
is to promote and facilitate the implementation of cage-clustered data analysis in mouse research by i) providing 351 
examples demonstrating the misleading effect when univariate methods are used for clustered-mice, and by ii) 352 
making our statistical code available to the public to gain familiarity with protocol principles of cluster-data statistical 353 
tools. Recommendation six is intended to serve as a technical guide supporting the framework, and therefore was not 354 
tested for implementability.  355 

The statistical example we provide is based on data extracted (using ImageJ78 analysis) from a published 356 
dot plot figure in a reviewed study that exclusively reported cohousing 5 MxCg, and where authors compared two 357 
diets using 8 and 9 MxGr (2 TCgxGr; Figure 9A). The published p-value was 0.058, but to emphasize our message, 358 
we slightly/evenly adjusted the extrapolated data to achieve a univariate p<0.050. By simulating 5 possible cage-359 
clustering scenarios, Figure 8 was designed to help visually understand the benefits of computing ICC and 360 
experiment-specific customizable power tables to determine whether more cages/group or mice/cage are needed to 361 
achieve study powers of ideally >0.8.  362 

When using clustered-data methods, we showed that only one of the five scenarios yielded a significant diet 363 
treatment effect (i.e., scenario 2, where all cages were unbiased, having mice with high and low response values, 364 
something unlikely to occur naturally in clustered settings, Figure 9B). Data proves that artificial heterogeneity due to 365 
mouse caging and unsupervised ‘cage-effects’ lead to poor reproducibility (80% of cases would misleadingly show 366 
that the test diet induces an effect on the mouse response). Graphically, we show that the variability of ICC 367 
(computed after running the mixed-effect models) depends on the hypothetical mouse allocation to cages, which in 368 
turn influences the post-hoc estimations of study power (Figure 9C-D).  369 

As a final practical product in this manuscript, we provide the statistical scheme/code in the GitHub 370 
repository (https://github.com/axr503/cagecluster_powercode) to implement this streamlined analysis and compute 371 
comprehensive power tables based on the ICC derived for each simulation to help scientists determine the best mice-372 
to-cage combinations to match resources (Figure 9E). A ‘quick reference’ of actionable steps for all six themes is in 373 
Supplementary Table 8. To expand our implementability strategy for continuous assessment by the international 374 
scientific community the survey is available online (https://forms.gle/LxPCydbySddcndZ7A).  375 



13 
 

 376 

 
Figure 9. Analysis of cage-clustered data, intra-class correlation coefficients and power tables to facilitate study design by the 
number of cages/group and mice/cage. Five scenarios using a single dataset where mice housed as 5 mice/cage illustrate the effect 
of cage clustered data. Raw data extrapolated from one of the 172 reviewed studies.  a) Extrapolated raw data (original published dot 
plot; p-value=0.059). Note that data from the diet ‘W’ group was not normally distributed (A-D p=0.005).  b) Graphical representation of 5 
scenarios considering different cage allocations of 2 cages/group. P<0.05 for the regression analysis (‘Regress’) indicates cage effect. 
Except for scenario 2 (with mice representing the entire data range spectrum for treatment outcome ‘response’; y-axis), note that all 
scenarios are subject to significant cage effect. ‘Diet’, treatment; ‘Cg’, Cage effect.  c) Paired line plot depicting power estimates for the 
same data, without transformation (left) and after log2 transformation (right). Note the best power estimation for raw data may have a 
marked influence on the power estimation based on log2. We advise log2 transformed data for this dataset. d) Line plot depicting power 
calculations for three ICCs, as a function of ICC, (histogram). Power estimations depend on ICC, simulation determined the n MxCg and 
TCgxGr needed to achieve a study power, which changes depending on degree of cage clustering (i.e., ICC, intra-class correlation 
coefficients). e) Power table illustrates the number and distribution of mice using a clustered design to achieve study power. 
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DISCUSSION 377 
 378 

This study and proposed framework were motivated by the identification of a wide heterogeneity in 379 
published methods relevant to diet, microbiome, and the pathogenesis of inflammatory bowel diseases and digestive 380 
health in humans, where mice models are critical to study diseases biology, translational interventions, or to inform 381 
clinical trials for humans. The actionable framework described however applies to any field of modern mouse 382 
research. Although it is impossible to develop a single consensus statement on practices pertaining to experimental 383 
supplies (e.g., bedding type, water, facilities) to accommodate every scientific community/goal, our proposed 384 
implementability statistics indicate that the 6-theme actionable framework described could be widely adopted to 385 
reduce the deleterious impact of these emerging concepts on artificial heterogeneity. This framework especially 386 
designed around reducing animal density, cage dirtiness, and cage microbiome bias, stresses the need of statistical 387 
methods for power and cluster data. 388 

Herein, we confirmed that research methodology continues to vary in published literature, and as 389 
documented by a survey of academicians, such variability may be attributed to well-ingrained heterogeneous 390 
perceptions among scientists concerning how animal husbandry impacts the mouse microbiome. Animal density and 391 
the cost dilemma of how many cages are used to test hypotheses in experiments were deemed amenable for 392 
improvement. Because adjustments to facility settings are not easy to standardize, we propose that the most 393 
experimentally effective strategy to improve study power/reproducibility in the literature is to implement a lower 394 
number of mice per cage. From our analyses, we provide recommendation themes to minimize cage-clustering 395 
effects and implement clustered data analysis methods as a means to reduce artificial heterogeneity.  396 

Although adding more cages to a study increases handling costs, studying ‘less mice per cage is more’ is a 397 
pro-statistically powerful, comparably effective practice. The use of cost as a rationale for conducting cage-clustered 398 
experiments needs conscientious consideration, since housing costs are just a fraction of the research funds required 399 
for tests. Perhaps, institutions could provide discounts to investigators for the cost of housing when conducting 400 
experiments, because fewer MxCg requires less cage changes and experiments are often short-term. Logistically, 401 
since fewer MxCg may be an option limited by space in certain facilities, well-powered and well-analyzed cage-cluster 402 
studies is desirable.  403 

In conclusion, we confirmed that research methodology continues to vary in published literature and as 404 
documented by a survey of academicians. Analyses indicate that the reporting of post-hoc study power calculations, 405 
in the context of the proposed framework, could be objectively used to guide and monitor the research power and 406 
reproducibility across mouse microbiome research at large. 407 
 408 
 409 
 410 
MATERIALS and METHODS 411 

Study overview. As an overall methodological strategy to confirm and quantify the extent to which animal 412 
husbandry variability has been, and continues to be, present in mouse and microbiome research, we first conducted 413 
a quantitative verification of animal husbandry variability in academia i) by screening the recent published peer-414 
reviewed literature (2018-2019) to infer the historic prevalence of prevailing practices that could have influenced 415 
research and ii) by conducting a survey of academicians across relevant professional organizations to determine the 416 
present status on beliefs and knowledge on husbandry practices. Then, we ranked the practices based on relevance 417 
to influence microbiome research, as perceived by respondents, to prioritize/make six recommendations. Lastly, to 418 
document the validity of such recommendations, we conducted a targeted literature search to cite examples enabling 419 
the analysis of such suggestions in future consensus efforts. Using a Delphi-based consensus strategy, these 420 
suggestions were graded for quality to compute heterogeneity and probability statistics for implementability by 421 
investigators. See Figure 1 for illustrated study overview. 422 

Quantification of husbandry methods heterogeneity. As a test topic, we chose to use ‘dietary studies in 423 
mice’ as PubMed search terms to screen (scoping review) original peer-review studies for animal husbandry 424 
practices as of May 3rd, 2019, published literature (see references of identified studies in Supplementary Materials) 425 
To interrogate and quantify perceptions and opinions among academicians on animal husbandry practices that 426 
influence microbiome data variability, a one-time online IRB-approved survey with 11 multiple-choice questions was 427 
administered, via recruitment email, to eligible participants through membership list servers of the following: i) faculty 428 
of 17 NIH National Institute Diabetes and Digestive and Kidney Diseases (NIDDK) Silvio O’Conte Digestive Diseases 429 
Research Core Centers (‘DDRCC’), which provide research support to local and national institutions, ii) registrants of 430 
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the 2018 Cleveland International Digestive Education and Science (IDEAS) Symposium hosted by the Cleveland 431 
DDRCC, Case Western Reserve University (CWRU), iii) registrants of the Taconic Biosciences Webinar titled 432 
‘Cyclical Bias and Variability in Microbiome Research’, iv) members of the American Association of Laboratory 433 
Animal Science (‘AALAS’), and v) members of ‘GNOTOBIOTIC’ ListServ, forum of the National Gnotobiotics 434 
Association.  435 

Six evidence-based recommendations graded for future implementability. To provide evidence-based 436 
suggestions and to support the development of a large-scale consensus report that can be implemented and 437 
beneficial to research, we used a ranking of the survey-derived husbandry practices to prioritize the husbandry topics 438 
deemed influential in mouse microbiome by respondents. Using Google PubMed and keywords contained in the 439 
survey question/topic (e.g., mouse, water), five coauthors cataloged relevant peer-reviewed scientific articles on each 440 
topic (targeted review). The information gathered, as tables, was used as assessment tools by 14 individuals to grade 441 
a table with 5-recommendations drafted by the lead and senior authors in this study. Collectively, the individuals 442 
comprised professional experiences across five research institutions; CWRU, The Scripps Research Institute, Kyorin 443 
University, South Dakota State University, The Ohio State University, University of Chicago, and Cornell University. 444 
To determine if the 5-recommendations could be implemented as a framework, individuals were asked to provide 445 
suggestions, new recommendations, and to grade (1, low; 10, highest) each item for sentence clarity, potential 446 
impact, and recommendability to others (Supplementary Materials). These ‘implementability grades’ numerically 447 
illustrate the potential for variance and adoption of the recommendations by others in mouse research. 448 

Ethical considerations. All research was approved by the Case Western Reserve University Institutional 449 
Review Board (STUDY20180138).  450 

Statistics. For computation purposes, animal/cage density data extracted from the scoping review were 451 
used to create a secondary index. Specifically, the number of animals per group (group size, MxGr) and the number 452 
of mice housed per cage (animal density, MxCg) were used to compute a semi-descriptive index metric of ‘cage 453 
cluster effect’ on each study: ‘estimated number of cages per experimental group’ (i.e., total n of cage clusters per 454 
group, TCgxGr = MxGr divided by MxCg). If a range was provided for animal density (e.g., 1-5), estimations were 455 
computed using the median value within the range, as well as the minimum and maximum values. Average of 456 
estimated center values were used for analysis and graphical summaries. For Figure 9, study selection was based on 457 
the use of 5 mice/cage, and that study results were published as dot plots (allowing us to infer the raw data for our 458 
analysis) in the manuscript. Descriptive statistics for parametric data were employed if assumptions were fulfilled 459 
(e.g., 1-way ANOVA). Non-fulfilled assumptions were addressed with nonparametric methods (e.g., Kruskal-Wallis). 460 
As needed, 95% confidence intervals are reported to account for sample size (e.g., MxCg; surveyed participants) and 461 
for external validity context. Significance was held at p<0.05. Analysis, study powers, and graphics were conducted 462 
with R, STATA, Python 3.0 Anaconda, GraphPad and G*Power.74 G*Power is an open-source power specialized 463 
software for various family of tests; calculations only require p-value (alpha), sample size, and mean±SD to compute 464 
effect size. Excel was used to create a cage handling frequency and cost spreadsheet calculator.  465 

 466 
 467 
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