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26 Abstract

27 Studies that optimize the haploid technique in the removal of maize lines are necessary. 

28 Between the stages that mostly requires attention and it is directly related to the success of 

29 the technology is the correctly separation of induced haploids and diploids. Morphological 

30 markers are commonly used but have strong influence of the environment, and laboratory 

31 methods have been developed and may be more efficient. Thus, the objective was to study 

32 the use of the anatomical analysis tool, through the analysis of young maize leaf for use as 

33 the indirect markers in the identification of ploidys. The hybrids were crossed with the KEMS 

34 haploid inducer. The seeds crossed, were selected according to the R-navajo marker and 

35 submitted to two different protocols of chromosome duplication. Plants that survived to the 

36 duplication protocols were acclimated in greenhouse and then transferred to the field. After 

37 the self-polinization of the DH0 plants, the DH1 seeds were taken to the field, divided into 

38 treatments according to the parentals and duplication protocols. At the vegetative stage V4 of 

39 the plants, leaf tissue samples were collected to the evaluation of the amount of DNA and 

40 identification of ploidys and anatomical analysis. The nuclear DNA review of each sample 

41 was performed for the comparison in histograms of the position of G1 peak to the G1 peak of 

42 the internal or external reference standard. A high accuracy came to validate an anatomical 

43 tool, through the variables studied in this work, as a marker in the differentiation of ploidis in 

44 maize plants, and it can be used in selection programs. The anatomy made in some letters is 

45 a non-destructible technique and, together with a flow cytometry technique, can be used as 

46 an indirect method in haploid cutting programs at the initial stage of the identification of 

47 seedlings.

48

49

50
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52 Introduction

53 The success of a breeding program that aims at the production of maize commercial 

54 hybrids lies in the fact of obtaining elite lines. Among all the steps, this is considered to be 

55 the most time-consuming and costly, and the technology of double haploid emerges as a 

56 way of reducing time in obtaining these lines [1]. 

57 The rapid production of homozygotic lines allows a better exploitation of genetic 

58 variability and increases the efficiency of selection. Homozygous plants will have the 

59 maximum additive variance, the effects of dominance and epistasis, and the advantages in 

60 the selection of quantitative, superior characteristics [2]. In addition, the decrease of the 

61 costs with labor, use of smaller experimental area and anticipation of profits in commercial 

62 programs for maze breeding have made this technique a great success. 

63 The production of double- haploid lines involves four main steps: in vivo induction of 

64 haploidy, identification of possible haploids, chromosome doubling and the self-fertilization of 

65 lines obtained for increment of seeds [3]. However, the success of this methodology is still 

66 dependent on the use of inductors with high capacity of induction, a precise system of 

67 identification and differentiation of haploid and diploid seeds, as well as efficient and 

68 reproducible protocols of chromosome doubling [4]. 

69 The doubling of the chromosome number spontaneously or induced by the application of 

70 mitotic agents e.g., colchicine, retrieves the diploid condition and restores fertility [5]. The 

71 action mechanism of colchicine involves the irreversible connection to tubulin dimers, 

72 causing a conformational change and preventing the polymerization of mitotic spindle, and 

73 as a result, the newly duplicated chromosomes are not separate and the core reorganizes 

74 with the number of duplicated chromosomes [6]. However, not all cells of the treated tissue 

75 polyploidize, which can lead to the formation of chimeras, i.e., tissues or plants with duplicate 

76 sectors and others unduplicated ones [7] called mixoploids. Truly duplicated lines resulting 

77 from this process are called duplicate or double haploids (DHs).
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78 There are several methods for certification of polyploidization, being flow cytometry the 

79 most used one [8]. Flow cytometry is a reliable and fast method, because it allows the 

80 analysis of a large number of cells and of different tissues [9]. In experiments with double 

81 haploids, flow cytometry allows vigorous seedlings and detected as diploids in the 

82 histograms are discarded before the step of field, reducing time and space. In addition, flow 

83 cytometry allows the analysis of the efficiency of the protocol of chromosome doubling, since 

84 it is not possible to confirm if the response of seedlings to duplication was positive [10–12]. 

85 Another tool that is being studied as a marker in the differentiation of ploidies in plants is 

86 the leaf anatomy, being the leaf considered the component with greater ability to adapt to 

87 environmental conditions. Highly flexible, leaf anatomy is influenced by environmental 

88 factors, such as, irradiation (leaves of sunlight/shade, [13], nutrients [14], drought [15] and 

89 ozone [16,17]. Changes in the leaves characteristics, such as those related to the thickness 

90 of the leaf blade, parenchymas, epidermis and number of stomata for example, and that are 

91 highly associated with the photosynthetic potential of plants, are used in studies of genetic 

92 selection by the use of morphological and anatomical markers. Additionally, they are highly 

93 heritable characteristics, i.e., can be passed to their offspring [18]. 

94 The cytoanatomic characterization is a methodology that allows the identification of 

95 haploid and supposed polyploidy in plants subjected to chromosome doubling. The study of 

96 measurement and comparison of stomata, based on the principle that the length of the same 

97 normally increases with the number of chromosomes, is the most commonly cited in the 

98 literature [19].

99 The number of stomata in association with other leaf anatomical characteristics, has 

100 already been mapped to different levels of ploidy in studies with coffee plants [20]. For this 

101 species, the greater the number of stomata the higher the ploidy. In the case of Coffea 

102 canephora, a reduction in the stomatal density is higher in the tetraploid level for some 

103 cultivars [20]. [21], observed in Citrus that the size and density of stomata varied according to 

104 ploidy level, where the triploids showed a higher number of stomata when compared to 
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105 diploid plants. A similar result was observed by [22], who stated to be possible the use of 

106 anatomical markers for purposes of selection of citrus with different levels of ploidy. 

107 Ploidy is well studied from the point of view of genetics and genomic perspective, but the 

108 morphological and anatomical aspects related to these differences in the amount of DNA, 

109 remain poorly studied in maze plants. Analyzing the anatomical characteristics of young 

110 leaves of maize, capable of discriminating the different ploidies and extrapolate these results 

111 in diploid and haploid discrimination on the optimization of the process of obtaining double 

112 haploid is of extreme importance.

113 Thus, the objective of this work was to study the use of anatomical tool, through the 

114 analysis of the characteristics of young leaves of maize for use as indirect markers in the 

115 identification of ploidies, and through future studies, to extrapolate the use of this marker in 

116 the identification of haploids in the initial stage of the process of obtaining double haploids. 

117

118 Material and methods

119 The seeds used in this work were obtained from an experiment previously developed by 

120 [23] through the cross between four simple hybrids (DKB393, GNS 3225, GNS 3264, GNS 

121 3032) with the haploid inducer KEMS, used as male parental. Seeds from these crosses 

122 were separated by staining of the embryo and endosperm and selected as possible haploids 

123 according with the marker R-navajo [24].

124 The authors submitted the haploid seeds to two chromosome duplication protocols, and 

125 the plants that survived the field, called DH0, that produced pollen and had stigma style in 

126 synchronism, were self-fertilized, resulting in DH1 generation.

127 Thus, in this present work, in order to evaluate the maintenance of DH in future 

128 generations, the DH1 ears were harvested and the seeds threshed and dried at room 

129 temperature up to 12% moisture level at the point of physiological maturity. The seeds were 

130 then mixed and divided into treatments as shown in Table 1. These seeds were then stored 

131 in a cold chamber at 10 ° C until the following experiments were carried out.
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132 Table 1. Treatments taken for the field in the harvest season 2014/2015, established in 

133 accordance with the parental and the protocols of chromosome doubling. 

Materials Identification 

Treatments Hybrids Protocols

1 DKB393 1

2 DKB393 2

3 GNS3225 1

4 GNS3225 2

5 GNS3264 1

6 GNS3264 2

7 GNS3032 1

8 GNS3032 2

134

135 In the harvest season 2014/2015, the total number of seeds DH1 for each treatment, 

136 was taken to the field and the experimental design was a randomized complete blocks with 

137 eight treatments with four replications. Each block was composed by lines of 10 meters of 

138 length, with spacing of 80 cm between rows and among plants of 25 cm, and sowing of a 

139 seed per hole. The collection of leaf material occurred in young stage of the plant maize, with 

140 4 replicates collected at random within each treatment. 

141 In the case of leaf anatomy, 5 replicates were performed for each repetition in the 

142 laboratory, five blades of 10 sections each, were made, and the top five fields were 

143 photographed and subsequently measured. The following were measured:  thickness of the 

144 leaf blade (ELF), thickness of the parenchyma (PAR), thickness of the upper epidermis 

145 (EES) and lower epidermis (EEI), polar diameter of the stomata in the upper face (DPS) and 

146 lower (DPI), equatorial diameter of the stomata of superior face (DES) and lower face (DEI) 

147 and stomatal density on the upper surface (DS) and lower (DI).  For that, in the vegetative 
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148 stage V4 which corresponds to the development of four leaves, leaf tissue samples were 

149 collected. 

150 For that, in the vegetative stage V4 which corresponds to the development of four 

151 leaves, leaf tissue samples were collected. 

152 For both evaluations, the medial portion of the young leaves fully developed, was cut 

153 into segments of approximately 3 cm in length and wrapped in aluminum paper duly 

154 identified per plant. Aluminum papers remained in a polystyrene box containing recyclable 

155 crushed ice, until the time of transportation to the laboratory of tissue culture of plants of the 

156 Department of Agriculture of UFLA. 

157 At the opening of each envelope of aluminum, part of the samples of leaf tissue was 

158 used for the quantification of DNA and part to the anatomical analysis. Therefore, young leaf 

159 tissue samples of maize were crushed under ice, in Petri plates containing 1 mL of cold 

160 buffer LB01,  to obtain  nuclear suspension [25], which was added 2,5µL RNase and stained 

161 with 25 µL of propidium iodide (1 mg mL-1). The species Vicia faba (quantity of DNA of 26.9 

162 pg/2C) was used as an external standard of reference and for each sample at least 10 

163 thousand cores were analyzed. Each suspension was analyzed in flow cytometry 

164 FacsCalibur (Becton Dickinson). The histograms obtained were evaluated by the WinMDI 

165 software 2.8 (2009) for the evaluation of the peaks of DNA. The estimate of the nuclear DNA 

166 content (pg) of each sample was performed by comparing the position of the peak G1 with 

167 the peak G1 of the internal standard or external reference.

168 For this comparison the following expression was used:

169

170 (1)Q = (𝐸
𝑆)𝑥 𝑅

171

172 Where:

173 Q is the quantity of DNA of the evaluated sample (pg/2C).  

174 E is the position of the G1 peak of the sample.  
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175 S is the position of the peak G1 reference standard and  

176 R is the quantity of DNA of the standard sample (26.9 pg/2C).   

177 By the quantity of DNA it was possible to make inferences about the ploidy level of the 

178 evaluated genotypes.

179 As mentioned, the other part of the samples of leaf tissue was immediately fixed in 

180 FAA50, (formaldehyde: acetic acid: ethanol, 5:5:90) for 48 h. Then, the samples were 

181 removed from the fixative solution, rinsed and stored in 70% ethanol solution [26]. At this 

182 moment the samples were transported to the Laboratory of Anatomy and morphogenesis of 

183 Plant Biology Department of the Federal University of Viçosa, where permanent slides were 

184 made  using portions of the leaf that were dehydrated in ethyl series included in historresin 

185 (methacrylate), according to the manufacturer's recommendations. Transverse sections of 

186 leaf were sectioned in automatic advance rotary microtome (model RM2155, Leica 

187 Microsystems Inc., Deerfield, USA) with 5 μm thick, arranged on histological slides and 

188 stained with toluidine blue [27], to the limbal micro morphometry.

189 For the stomata evaluations, fragments of the central part of the leaf blade were 

190 sectioned from material stored in alcohol 70%. The samples were clarified by means of the 

191 technique of Diaphanization, described by [28] and modified for the species, having been 

192 clarified in methanol for 48 hours and then in lactic acid for 6 hours in water bath for 98 ºC 

193 and assembled into lactic acid. After the staining procedure, the samples were immersed in 

194 ethanol 80, 70 and 50%, and later were rinsed in distilled water. The histological slides with 

195 leaf fragments were mounted on glycerol-jelly Images of the slides of cross cuts and 

196 diaphanization were obtained under a light microscope (model AX-70 TRF, Olympus Optical, 

197 Tokyo, Japan) coupled to a digital camera (model Zeiss AxioCam HRc, Göttinger, Germany) 

198 and a microcomputer with the program to capture images Axion Vision, having been digitized 

199 and stored in a microcomputer. For the analysis, 10 distinct fields of each sample were 

200 measured by means of Image-Pro® Plus software (version 4.1, Media Cybernetics, Inc., 

201 Silver Spring, USA). 
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202 The analyzes were performed for all characters with the estimation of variance 

203 components and the prediction of random effects using the approach of mixed models, the 

204 method of restricted maximum likelihood/best linear unbiased prediction (REML/BLUP) [29]. 

205 For this, the following statistical model was used:

206

207 = Xr + Za + Wp + e (2)𝑦 

208

209 Where:

210 : vector of data; 𝑦

211 R: vector of the effects of repetition (assumed as fixed) added to the overall average; 

212 A: vector of genotypic effects among treatments (random), being a ~ NMV (0, I ). O  𝜎2
𝑔

213  is the variance associated with genotypic among treatments; 𝜎2
𝑔

214 p: vector of genotypic effects among  treatments (random), being p ~ NMV (0, I ). O  𝜎2
𝑝

215  is the variance associated with the parcels effects;𝜎2
𝑝

216 e: vector of random errors, and ~ NMV (0, I ). O   is the variance associated with 𝜎2
𝑒 𝜎2

𝑒

217 the residual effects;

218 X, Z and W: incidence matrices for r, and p, respectively.

219 The heritability in the average of treatments ( ) and accuracy were estimated, and ℎ 2
𝑚

220 the significance of the random effects as the genotypic variance among treatments ( ) were 𝜎2
𝑔

221 tested by the Likelihood Ratio Tests (LRT) where the analyses of deviance were obtained for 

222 each character evaluated [30].

223 These statistical analyzes were performed using the software SELEGEN-

224 REML/BLUP [29]. 

225

226 Results
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227 For all the evaluated characteristics the accuracy was classified as very high [31], 

228 with values above 87.0%. On average, the heritability ( ) of the characteristics was also ℎ 2
𝑚

229 high with values above 84.0%, what indicates good reliability of data (Table 2). The 

230 heritabilities of treatments ranged from 76.0% (EES) to 98.0% (DEI) among the evaluated 

231 characteristics, which demonstrates that in the anatomic evaluation in this experiment, the 

232 largest part of the variation observed is due to genetic causes to the detriment of 

233 environmental variations [32].

234 The genotypic variance was highly significant by the LRT test and likelihood ratio for 

235 the characters related to the thickness of the leaf blade (ELF), stomatal density of both the 

236 upper surface (DS), as well as the lower surface (DI), thickness of the parenchyma (PAR), 

237 thickness of the upper epidermis (EES) and lower epidermis (EEI), polar and equatorial 

238 diameter of upper epidermis (DES and DPS) and lower (DEI and DPI), according to  LRT (P 

239 < 0.01), characterizing these characteristics as good candidates to be inserted in a breeding 

240 program as markers. It was possible to realize that the characteristics related to the 

241 thickness of the lamina and those related to the stomata were the ones that showed higher 

242 heritability, followed by the thickness of the parenchyma. The thickness of the epidermis, 

243 even with high heritability, were lower (Table 2). 
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244 Table 2. Summary of ANADEV and estimates of genetic parameters in the evaluation of maze hybrids for traits. Thickness of the leaf 
245 blade (ELF), thickness of the upper epidermis (ESS), thickness of the parenchyma (PAR), thickness of the lower epidermis (EEI), equatorial 
246 diameter of the stomata in the upper face (DES), polar diameter of the stomata in the upper face (DPS), Equatorial surface of the stomata in the 
247 lower face (DEI), polar diameter of the stomata of the lower phase (DPI) and stomata densities of   upper surfaces (DS) and lower (DI) of the 
248 leaf. 

Parameters ELF EES PAR EEI DES DPS DEI DPI DS DI

VGbetween ( )𝜎2
𝑔

0.000235*
*

0.000011*
*

0.000092*
*

0.000007*
*

0.000013*
* 0.00001**

0.000024*
*

0.000011*
*

44.539206*
*

286.20*
*

LRT among 
treatments 82.36 14.84 60.19 28.25 134.79 125.70 200.61 189.59 20.36 67.65

VGwithin ( )𝜎2
𝑝

0.000002 

ns
0.000001 

ns
0.000001 

ns
0.000000 

ns
0.000000 

ns
0.000000 

ns
0.000000 

ns
0.000000 

ns 0.8338 ns
1.2856 

ns

LRT within treatment 0.00 0.01 0.00 0.00 0.01 0.01 0.07 0.00 0.01 0.00
h²mg (%) 93.2** 76.2** 91.0** 84.2** 96.8** 96.2** 98.1** 97.3** 84.8** 94.9**

ACgen (%) 96.6 87.3 95.4 91.8 98.4 98.1 99.0 98.7 92.1 97.4
249 ** Significant and ns  Non significant by the likelihood ratio test (LTR), with 1% of probability. 
250
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251 The anatomical differences observed were obtained through anatomical cuts 

252 and diaphanization of samples. It was possible to observe a difference in leaf blade as 

253 the thickness (Fig 1) and quantity and size of the stomata (Fig 2).

254
255 Fig 1. Cross-sectional cuts of maze leaves collected after a process of 
256 chromosome doubling with use of colchicine. Haploid material (A), diploid (B), 
257 Double haploid (C), triploid (D) and tetraploid (E). ELF= thickness of leaf blade, PAR= 
258 thickness of parenchyma, EP=epidermis and ES= stomata. The bars represent 50 µm. 
259

260 Fig 2. Adaxial surface (A to E) and abaxial (F through J) of maze leaves collected 
261 after a process of chromosome doubling with use of colchicine. Haploid material 
262 (A and F), diploid (B and G), Double haploid (C and H), triploid (D and I) and 
263 tetraploid (E and J). The bars represent 50 µm and arrows indicate stomata.
264

265 In Table 3, it is observed that the treatment 7 presented the highest values of 

266 ELF, ESS, EEI and held until the third position in the ranking for PR, DEI, DS. While 

267 the treatment 6 occupied until the second position to ELF, ESS, PR, DPS and DPI. The 

268 treatments 1 and 5 occupied the last two positions to ELF, EES, PR, EEI, DES, DPS, 

269 DEI and DPI. 

270
271 Table 3. Genotypic averages and ranking of treatments for the anatomical 
272 characteristics related to leaf blade. Leaf blade thickness (ELF), thickness of the 
273 upper epidermis (ESS), thickness of the parenchyma (PAR), thickness of the lower 
274 epidermis (EEI), equatorial diameter of the stomata in the upper face (DES), polar 
275 diameter of the stomata in the upper face (DPS), polar and equatorial diameter of the 
276 stomata in the lower face (DEI) and (DPI), stomatal density of the upper surfaces (DS) 
277 and lower (DI) of maze  leaves collected after a process of chromosome doubling with 
278 use of colchicine.
279

ELF EES PAR EEI DES
Treat.  BLUP𝑿 Treat.  BLUP𝑿 Treat.  BLUP𝑿 Treat.  BLUP𝑿 Treat.  BLUP𝑿

7 0.1375 7 0.0305 6 0.0858 7 0.0234 8 0.0378
6 0.1334 6 0.0284 7 0.0843 3 0.0215 3 0.0075
3 0.1237 2 0.0284 3 0.0761 8 0.0208 1 0.0075
8 0.1211 3 0.0284 8 0.0760 6 0.0189 4 0.0075
2 0.1112 8 0.0261 4 0.0664 2 0.0188 2 0.0075
4 0.1062 4 0.0249 2 0.0654 4 0.0173 7 0.0075
1 0.0957 5 0.0238 1 0.0621 1 0.0160 6 0.0075
5 0.0932 1 0.0218 5 0.0586 5 0.0155 5 0.0075

Mean 0.1152 - 0.0266 - 0.0719 - 0.0190 - 0.0113
DPS DEI DPI DS DI

Treat.  BLUP𝑿 Treat.  BLUP𝑿 Treat.  BLUP𝑿 Treat.  BLUP𝑿 Treat.  BLUP𝑿
8 0.0315 8 0.0433 8 0.0325 5 60.5125 5 110.2138
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6 0.0270 3 0.0369 6 0.0284 1 51.5084 1 93.7531
3 0.0260 7 0.0326 3 0.0277 7 51.4221 4 93.4814
5 0.0238 6 0.0320 2 0.0240 6 51.2206 7 82.2563
7 0.0233 1 0.0300 5 0.0235 4 49.0210 6 78.8012
4 0.0233 2 0.0291 4 0.0235 3 46.3618 2 73.8440
2 0.0230 5 0.0288 7 0.0236 2 43.5809 3 70.7177
1 0.0213 4 0.0286 1 0.0214 8 37.8325 8 51.1355

Mean 0.0249 - 0.0326 - 0.0255 - 48.9325 - 81.7754
280

281 The importance or contribution of each analyzed variable as a possible marker 

282 in the separation of the tested plants, demonstrates greater relevance of the thickness 

283 of the leaf blade and the stomata, while the thickness of epidermis little contributed to 

284 the separation of plants. (Fig 3).  

285  
286 Fig 3. The relative importance of the characteristics evaluated in the separation 
287 of the valuated materials. 
288

289 In parallel to the anatomical analyzes and with the aim of inferring the real 

290 ploidies observed in the tested materials, the DNA quantification was performed by flow 

291 cytometry technique in 32 selected plants (Table 4). The histograms obtained by this 

292 method allows for the identification of the ploidy level of the individuals tested through 

293 the location of the G1 peak of the sample on the axis of the relative intensity of 

294 fluorescence (Fig 4). The dominant peaks generated in the histograms are relative to 

295 the quantity of DNA of the cores in the G1 phase of the cell cycle. The estimate of the 

296 ploidy level is done by comparing the G1 peaks of the histogram of a sample with the 

297 peak of a plant-standard with known ploidy [25].

298 Maize diploids have the peak G1, located in the region of relative intensity of 

299 fluorescence, soon after the mark of 102 (Fig 4A). The haploids have lower relative 

300 intensity of fluorescence and the peak G1 is located to the left of the mark of 102, i.e., 

301 dislocated in the direction of the x axis (Fig 4B). Whereas the triploids and the 

302 tetraploids have still greater intensity than the diploids, locating at the right of the mark 

303 of 102 and with higher peaks (fig not shown). Whereas the Double haploid plants, are 

304 those that have ploidies haploid/diploid type (Fig 4C). 
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305 Usually, an association of the histogram obtained with a histogram of a 

306 standard plan is performed, for example, Vicia faba, used by [10,11,33]. The use of 

307 standard allows to obtain the quantity of DNA contained in the sample.

308

309 Fig 4. Histograms of ploidies detected by flow cytometry in maize plants 
310 collected after a process of chromosome doubling with use of colchicine. A. 
311 Diploid Plant B. Haploid Plant. C. Double haploid Plant. Vertical axis = number of 
312 read cores; horizontal axis = relative intensity of fluorescence. The arrows show the 
313 peaks G1 and G2 and the external standard of reference.  
314

315 Table 4. Identification of the ploidy level in agreement with the analysis of flow 
316 cytometry and flow of 32 plants evaluated divided by treatment.  
317

Treatments Ploidies found
Haploid
Haploid
Haploid

1

Double haploid
Haploid
Diploid
Diploid

2

Diploid
Diploid
Diploid
Haploid

3

Diploid
Haploid
Diploid
Diploid

4

Haploid
Haploid
Haploid
Haploid

5

Haploid
Diploid
Diploid
Diploid

6

Diploid
Diploid
Diploid
Diploid

7

Diploid
Triploid
Triploid8
Diploid
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Tetraploid
318  

319

320 Discussion

321 It was possible through the analysis of mixed model to verify the existence of 

322 variability in the anatomical characteristics, i.e., there is a difference among the tested 

323 materials (P < 0.01) (Table 1). In addition, these variables showed a quality required for 

324 insertion in a breeding program, with the aim of separation of evaluated materials [34]. 

325 The heritability and accuracy obtained were high in accordance with the classification 

326 made by [31] (Table 1). The fact of the evaluated anatomical characteristics have 

327 potential for use in selection programs is of extreme importance, since these 

328 characteristics may be associated with the photosynthetic potential of plants, i.e., the 

329 productive capacity of plant material, leaves, roots and seeds. 

330 The thickness of the leaf blade (ELF), has a crucial role not only in the capacity 

331 of carbon fixation by the chloroplasts of the palisade parenchyma, but also by the 

332 internal storage of CO2 by sponge parenchyma [35]. While the stomata are the 

333 channels of influence of CO and the flow of water vapor. For the plants to be effective, 

334 they must balance the gaseous exchanges carried out through these structures to 

335 maximize the absorption of CO2 for photosynthesis and minimize the loss of water 

336 through transpiration. Thus increasing the efficiency of the use of the water and 

337 consequently the plasticity of the plant in the face of environmental changes. A 

338 program that aims at obtaining hybrids with greater adaptive capacity, seems a major 

339 bottleneck of agriculture through the global climate changes [36].

340 The stomata behavior, therefore, controls the volume of CO2 in the intercellular 

341 spaces of the leaf for photosynthesis. Even if the maze as plant of C4 metabolism is 

342 able through the mechanisms of CO2 concentration, to maintain an adequate quantity 

343 of C for photosynthesis [37], the stomatal density and the size of the stomata are 
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344 important characteristics to maximize efficiency. Once that, in spite of the area of the 

345 pores of the stomata represent less than 3% of the total area of the leaf, about 98% of 

346 all the absorbed CO2 and water lost occurs by these pores [38].

347 The anatomical characteristics of the stomata define the stomatal conductance 

348 (gs), theoretical maximum [39], i.e., the functionality of the same and also influence the 

349 speed of response. The maximum gs relates to the size and density of stomata, which 

350 can be influenced by the environment of growth [40,41]. However, as in this study, all 

351 the plants were grown in the same environment, we can consider that the density and 

352 the pattern of size, influenced by the atmospheric concentration of CO2, water 

353 availability [42] and light [43], varied according to the genetic characteristics of each 

354 tested hybrid. This reinforces the importance of the anatomical characters as early 

355 markers of separation of hybrids used in this study.

356 Experimental evidences showed that the density of stomata is negatively 

357 correlated with the stomata size [40,41]. The interaction/correlation among stomata 

358 size and density, and the impact on stomatal function has received much attention, 

359 particularly with reference to the evolution of the performance and plasticity in plants 

360 [41]. Evidence from several studies have also suggested that smaller stomata respond 

361 faster than larger stomata, an observation that has been explained in the context of 

362 relations surface-volume and the requirement for ck to boost the movement [44].

363 The selection of plants grown with changes in the density of stomata to increase 

364 the performance of plants has been widely exploited [38,45], with limited success.  The 

365 increase of the stomatal density can increase the gs and the photosynthetic rate can 

366 become 30% greater in conditions of high brightness [46]. 

367 The increase of photosynthesis can encourage the increase in weight, as 

368 already mentioned. Increase in the weight of seed has also been associated with 

369 induced polyploidy [47]. What can potentiate the vigor and germination of seeds, 

370 favoring the formation of a more homogeneous stand. However, the manipulation of 
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371 functional stomate responses is clearly more complicated, requiring a thorough 

372 understanding of the metabolism of the manipulated plant. 

373 The use of these anatomical characteristics of the leaf is widely used for 

374 identifying the levels of ploidy in many species of plants, such as alfalfa [48], 

375 Gossypium [49], Dactylis [50], ryegrass [51], wheat [52] and Bromus inermis [53,54]. In 

376 coffee the density of stomata decreased while its size increased with an increase in the 

377 ploidy level, with the lower density found in the tetraploids and higher in the diploids 

378 [20]. Genotypic differences in stomatal frequency and length of the guard cells were 

379 also observed in barley [55], soybean [56] Triticale [57,58]. These studies demonstrate 

380 the possibility of the use of anatomical markers with mechanism for identification of 

381 ploidy.

382 In the present, it is verified the contribution of the ten variables evaluated in 

383 separate studied plants and coincides with what is reported in the literature in relation 

384 to the great importance of the stomata. Carefully observing the relative contribution of 

385 each trait, it is verified that the variables associated to the stomata represent, 

386 altogether, approximately 50% of the contribution of separation (Fig 3). 

387 The high contribution of leaf blade is due to its constitution. The leaf blade is 

388 composed by parenchyma, in which chloroplasts and spaces for CO2 storage are 

389 located, in addition of course, all the other components of the leaf. Therefore its 

390 relevance is easily understandable and the importance of variables related to the 

391 stomata is also evident, reinforcing what is already described in several academic 

392 articles. 

393 In addition it is possible to suggest that the anatomic variables, as possible 

394 markers were efficient on grouping even partially the hybrids (Tables 2 and 3). 

395 Behavior that reinforces what has been described above, where the traits were efficient 

396 anatomical markers for various crops. The treatments that showed higher averages for 

397 the analyzed variables were classified as diploids (Table 3), in general with averages 

398 exceeding the haploids (Table 2). 
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399 The increase in ploidy level may be the main driving force to facilitate the plants 

400 breeding, as it provides important phenotypic effects, such as increasing the size of the 

401 cells and organs, and sometimes a larger force and biomass, and additional molecular 

402 and phenotypic variation that may arise soon after the formation of the polyploids. This 

403 behavior can be attributed to the effect "gigantism", in which plants with higher ploidy 

404 may have increased the size of their structures [19]. The treatments 6 and 7 (diploids), 

405 for the characteristics related to leaf blade (ELF and PAR), showed higher averages to 

406 the haploids (Table 2). However the effect "gigas" was not observed to hybrids tri and 

407 tetraploids, as reported in bulbophyllum ipanemense [59]. 

408 Significant effects on the ploidy level, and the anatomical and morphological 

409 characteristics, such as leaf dry mass and thickness of the epidermis, have already 

410 been reported in Brassicas [60] and characteristics such as leaf thickness and 

411 photosynthetic rate, for rice [61]. The increase in the leaves thickness and total mass of 

412 plants may result in greater energy expenditure, however, as the maze is a plant of 

413 Kranz anatomy, there is not so much spent on histodifferentiation of juxtaposed layers 

414 of palisade parenchyma, since these cells are found around the cells of the sheath of 

415 the beam. Therefore the gain in leaf thickness would contribute not only to the increase 

416 of the total mass of the leaf, but also to the increase of empty spaces. These spaces 

417 play an important role in the CO2 reserve for photosynthesis and because it does not 

418 require energy to histodifferentiation, being less costly in terms of energy.

419 The size of the cells and the thickness of the components were positively 

420 correlated with the ploidy level also in potatoes [62]. With the increase of the genome, 

421 the gigantism in cells and organs is widely observed and associated with the 

422 increments in the photosynthetic rate [63]. The increase of photosynthesis is attributed 

423 to the increase of the tissues, increased capacity for storage of CO2, and increase of 

424 gs. The size of the epidermal cells, cells, can also be associated with the ploidy level of 

425 the material under observation [47]. In addition to the increase in the activity of multiple 

426 enzymes such as hydrolases and expansins [64]. 
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427 The effect "giga" was also related in previous studies with modifications of cell 

428 wall through a loosening, which enables a higher rate of growth of plants and 

429 phenotypic changes. This loosening is assigned to a higher expression of genes of 

430 expansin enzyme in rice [65,66], tobacco [67,68] and Arabidopsis [69,70]. The role of 

431 expansins would be to induce the extent of cell wall, generating larger cells, higher 

432 plants and longer roots. So in these cases, the cell expansion associated with the 

433 ploidy is related to the increase of molecular signaling for synthesis of genes of 

434 expansin and may lead to an increase in weight of structures, as in tomato [71]. 

435

436 Conclusions

437 The thickness of the leaf blade and the size of the stomata are highly heritable 

438 traits in maize.

439 The obtained high accuracy validates the anatomical tool through the variables 

440 studied in the present work, as a marker in the differentiation of ploidies in maize 

441 plants, which may be employed in programs for selection of hybrids.

442 The anatomy made in young leaves of maze is a non-destructible technique 

443 and in conjunction with the technique of flow cytometry, can be used as indirect method 

444 in programs to obtain double haploids, in the initial stage of identification of seedlings. 
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