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Abstract

Many studies have demonstrated the prominence of higher-order patterns in excitatory
synaptic connectivity as well as activity in neocortex. Surveyed as a whole, these results
suggest that there may be an essential role for higher-order patterns in neocortical
function. In order to stably propagate signal within and between regions of neocortex,
the most basic - yet nontrivial - function which neocortical circuitry must satisfy is the
ability to maintain stable spiking activity over time. Here we algorithmically construct
spiking neural network models comprised of 5000 neurons using topological statistics
from neocortex and a set of objective functions that identify networks which produce
naturalistic low-rate, asynchronous, and critical activity. We find that the same network
topology can exhibit either sustained activity under one set of initial membrane voltages
or truncated activity under a different set. Yet these two outcomes are not readily
differentiated by rate or criticality. By summarizing the statistical dependencies in the
pairwise activity of neurons as directed weighted functional networks, we examined the
transient manifestations of higher-order motifs in the functional networks across time.
We find that stereotyped low variance cyclic transitions between three isomorphic
triangle motifs, quantified as a Markov process, are required for sustained activity. If
the network fails to engage the dynamical regime characterized by a recurring stable
pattern of motif dominance, spiking activity ceased. Motif cycling generalized across
manipulations of synaptic weights and across topologies, demonstrating the robustness
of this dynamical regime for sustained spiking in critical asynchronous network activity.
Our results point to the necessity of higher-order patterns amongst excitatory
connections for sustaining activity in sparse recurrent networks. They also provide a
possible explanation as to why such excitatory synaptic connectivity and activity
patterns have been prominently reported in neocortex.

Author summary

Here we address two questions. First, it remains unclear how activity propagates stably
through a network since neurons are leaky and connectivity is sparse and weak. Second,
higher order patterns abound in neocortex, hinting at potential functional relevance for
their presence. Several lines of evidence suggest that higher-order network interactions
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may be instrumental for spike propagation. For example, excitatory synaptic
connectivity shows a prevalence of local neuronal cliques and patterns, and propagating
activity in vivo displays elevated clustering dominated by specific triplet motifs. In this
study we demonstrate a mechanistic link between activity propagation and higher-order
motifs at the level of individual neurons and across networks. We algorithmically build
spiking neural network (SNN) models to mirror the topological and dynamical statistics
of neocortex. Using a combination of graph theory, information theory, and
probabilistic tools, we show that higher order coordination of synapses is necessary for
sustaining activity. Coordination takes the form of cyclic transitions between specific
triangle motifs. The results of our model are consistent with numerous experimental
observations in neuroscience, and their generalizability to other weakly and sparsely
connected networks is predicted.

Introduction 1

Network connectivity shapes dynamics in many systems and on many scales, ranging 2

from gene transcription networks to epidemic spreading [1]. In the brain, neocortical 3

architecture supports myriad complex functions. Fundamentally, before any of these 4

functions can occur, signals must travel within and between local circuits and cortical 5

regions. Thus spiking activity propagation is the most basic function that arises from 6

the structure of synaptic connectivity in the brain. 7

Given the fact that the vast majority of excitatory synapses are weak and 8

connections are sparse and recurrent, achieving stable activity propagation is highly 9

non-trivial [2–5]. Theoretical and experimental studies have characterized several 10

architectural features that have the capacity to promote and shape propagating activity, 11

such as a long-tailed weight distribution, excitatory clustering and the balance between 12

incoming and outgoing connections [3, 6–9]. Additionally, dynamical properties of 13

ongoing activity, such as a balance between excitation and inhibition [8] and correlated 14

spiking [10], are shaped by connectivity and in turn impact activity propagation. 15

Experimental results suggest that pairwise correlations alone may be insufficient to 16

explain network dynamics such as propagation. Higher-order patterns in both structure 17

and activity have been reported to be intrinsic features of neocortex [11] and may be 18

key to our understanding of neuronal networks. Excitatory synaptic connectivity 19

displays a prevalence of specific triplet motifs [2, 3] and cliques of neurons [8]. 20

Propagating activity in real neuronal networks exhibit elevated clustering [12–18] that 21

is dominated by triplet motifs which at least in part improves synaptic integration by 22

coordinating the presynaptic pool [19]. Moreover triplet correlations are necessary to 23

recapitulate spatiotemporal spiking patterns [20]. Computationally, they may improve 24

coding [21,22] and enhance perceptual accuracy and the prediction of responses in 25

visual cortex [18,23]. 26

Spiking neural network (SNN) models are a promising avenue for studying the 27

relationship between structure and function in neocortex. Here we use a novel 28

algorithmic approach to build large numbers of sparsely-connected recurrent spiking 29

neural network models to explore the role of higher-order interactions in activity 30

propagation. These models are recurrent and sparsely-connected; they are comprised of 31

excitatory and inhibitory adaptive exponential leaky integrate-and-fire (AdEx) neurons 32

with conductance-based synapses [24]. Connectivity amongst excitatory units is 33

clustered [8]. Network topology parameters are varied and informed by connectivity 34

seen in cortex [3, 6, 7]. We performed grid search to tune network topological 35

parameters to regimes characterized by asynchronous, low rate, and critical activity. 36

Consequently our models closely approximate both the statistics of connectivity as well 37

as spiking activity in neocortex [25–27] . We find that spiking during simulations of the 38
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same SNN topology can either spontaneously stop (truncate) or show sustained spike 39

propagation (complete) on different runs, corresponding to different sets of initial 40

membrane voltages, despite the fact that the runs exhibit epochs during which spike 41

rates and critically are substantially similar. The dichotomy between sustained and 42

truncated trials on the same networks provided us the opportunity to study the 43

necessary conditions of sustained activity in spiking neuronal networks when they are 44

not readily explained by spike rates, criticality or synchrony [28]. 45

Using graph theoretic and probabilistic methods, we find that sustained activity 46

requires cyclic higher-order coordination amongst excitatory neurons. In particular, the 47

network cycles though epochs dominated in turn by three types of triangle motifs with 48

low variance: fan-in triangle motif, followed by middleman and finally fan-out triangles 49

[19]. When a network simulation fails to engage this low variance dynamical regime, 50

spiking activity is not sustained and the simulation truncates. We find that 51

strengthening weights and randomizing topologies in our networks lead to decreased 52

clustering of units into triangle motifs. However, the relative motif ratios and transitions 53

through time are maintained on sustained runs. Together, our results provide a 54

mechanistic account and a possible explanation for the widespread findings of both 55

clustered activity and synaptic connectivity in local neuronal circuits. The predictions of 56

our model are consistent with numerous experimental measures in neuroscience and may 57

be generalizable to other weakly interconnected networks that are not biological brains. 58

Results 59

Network construction and simulation 60

Each spiking neuronal network was comprised of 4000 excitatory and 1000 inhibitory 61

adaptive exponential leaky integrate-and-fire (AdEx) units [24]. Synaptic connections 62

were recurrent, sparse and conductance-based (Fig 1A). Excitatory connection strengths 63

followed a long-tailed, log-normal distribution, where µ = −5.0 ∗ 10−5.0 nS, σ = .5 nS, 64

corresponding to a mean of 1.13 nS and a variance of 0.365 nS (Fig 1B). Networks 65

therefore had a large number of weak connections and few strong excitatory synapses. 66

Connectivity in cortex is clustered [2, 16,17]. Excitatory units were heterogeneously 67

clustered, meaning that the number of units in a cluster varied (mean = 158.40, std = 68

12.27 units per cluster) [8]. The excitatory subgraphs had an average connection 69

density of 0.211 (std: 1.10 ∗ 10−4), of which 22.4% were recurrent (std: 0.02%). Total 70

in-cluster density was 0.389 (std: 3.11 ∗ 10−3) and out-cluster density was 0.196 (std: 71

9.94 ∗ 10−5) (Fig 1C, D). 72

Fig 1. Network Construction and Search A: Our networks were constructed with
4000 clustered excitatory and 1000 unclustered inhibitory units. Probabilities of
connection were drawn from the literature and determined via grid search. Simulation
runs began with 30ms of 20Hz Poisson input onto a subset of 500 units. B: Synaptic
weights followed a log-normal (long-tailed) distribution. Synapses were
conductance-based, so weights are in units of nanosiemens. Connections originating
from inhibitory units were 10x stronger than those from excitatory units. C: For each
network, we defined 50 clusters in total and randomly assigned each excitatory unit to
two of these clusters. This resulted in heterogeneously-sized clusters. Here we show the
cluster size distribution (in counts) for 500 networks. D: Visualization of a subset of 300
clustered excitatory units in our network.

At the beginning of a simulation trial, or run, initial resting membrane voltages were 73

randomly assigned from a uniform distribution of -60 to -50 mV across all units. 74
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Activity was then initiated by 30 ms of 20 Hz Poisson input onto a set of 500 randomly 75

chosen excitatory units (Fig 1A). 76

Algorithmically identifying networks for analysis 77

In order to evaluate large numbers of networks while minimizing sampling bias, models 78

were constructed, simulated, and scored algorithmically. We restricted the search for 79

viable topologies to a range of connection likelihoods bounded by experimental 80

observations [19]. This should not be interpreted to suggest that these connection 81

likelihoods are the only viable solution for realistic spiking activity - we did not 82

comprehensively survey the range of possibilities here. 83

We identified viable topologies iteratively; in the first iteration, we performed a low 84

resolution grid search (Fig 2A). Specifically, we rewired topologies within a limited 85

range of probabilities of connection from excitatory to inhibitory units,pe→i, and the 86

probabilities of connection from inhibitory to excitatory units, pi→e, such that we 87

identified sets of network connection likelihoods that resulted in topologies that 88

successfully propagated spiking activity with low average firing rates and near-critical 89

and low synchrony dynamics, as observed in neocortex [25–27,29–32]. Criticality was 90

measured using a branching parameter that is the ratio of active descendant units to 91

active ancestor units across time [33]. A value of 1 - where the number of active 92

descendants is equal to the number of active ancestors - indicates critical dynamics 93

(Fig 2B). We used a fast, on-line synchrony heuristic (variance of the mean voltage 94

divided by the mean of voltage variances, see Methods) for the sake of grid search speed. 95

A run was considered to be asynchronous if this heuristic value was below 0.5. Runs 96

below this threshold are shown to correspond to a high mean Van Rossum distance, a 97

common measure of spike synchrony [34,35](see Methods). 98

Fig 2. Comparison Between Scores on Complete and Truncated Runs A:
We performed two rounds of grid search for the topological parameters that yielded
consistent low-rate, critical, and asynchronous dynamics. The first search was at a lower
resolution to narrow down our region of interest, and the second was at a finer
resolution. B: One scoring metric we used was branching. The branching parameter
[33] is a proxy for criticality. It measures the ratio of active descendant units to active
ancestor units. A branching value of 1 indicates a balanced (or critical) network, which
is the value we optimized for. C: A raster plot of a single complete 1000ms simulation
on one of our networks. Excitatory units are numbered 1-4000 on the y axis, and
inhibitory units are 4001-5000. D: A raster plot of a single truncated simulation (700ms)
on the same network with the same input.

The first iteration of grid search isolated a region of interest, and we next used a 99

higher resolution grid to find specific topologies each with the same probabilities of 100

connection but differing in the specifics of connections (Fig 2A). To find these 101

topologies we used the best results obtained from the second round of grid search, which 102

were pe→i = 0.22 and pi→e = 0.31. The values for pe→e and pi→i were taken from 103

experimentally measured wiring probabilities in neocortex, and were 0.20 and 0.30 104

respectively [3, 19]. 105

These connectivity parameters were used to generate 2,761 synaptic topologies, 106

where each unique topology is referred to as a network. For each network we created 107

100 sets of input units, with 500 excitatory units per set. We ran 50 simulations on each 108

set of input units, where each simulation starts with different membrane voltages for all 109

units. Each simulation lasted for as long as spiking activity was sustained, up to a 110

maximum of 1 second. The spiking activity of each run on each network was then 111

scored according to the average firing rate, the level of synchrony, how balanced - or 112
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critical - the network was, and the duration of time over which spiking activity was 113

maintained (see Methods). If a network’s average excitatory rate for all of its complete 114

runs was less than 8 spikes/second, we added this network to the set of low-rate 115

networks for subsequent analyses. High-rate networks were eliminated. This yielded a 116

final count of 87 low-rate networks. For each of these networks, we determined the set 117

of input units which led to the most consistently sustained simulations, with the 118

trade-off of rate increasing slightly. We will refer to these as a network’s optimal input 119

units. Optimal input units were used in generating 100 additional runs on each synaptic 120

network, in which only the initial network state (i.e. membrane voltages of all units) 121

varied. This generated a total of 8,700 unique runs, which we then analyzed. 122

Scores on sustained and truncated simulations 123

We found that the same topology was capable of producing both sustained and 124

truncated activity when only initial membrane voltages were varied. A run was 125

sustained (or complete) if it displayed stable activity for the duration of a 1-second trial 126

(Fig 2C). We found that all network simulations which reached 1 second were also able 127

to sustain activity up to 10 seconds. We therefore chose one second as an indication of a 128

network’s ability to sustain activity indefinitely, and as the definition of a successful run. 129

If a network ceased all spiking before reaching the 1-second mark, that simulation was 130

considered truncated or unsuccessful (Fig 2D). Scoring analysis of the network spiking 131

dynamics of rate and branching between the two run types revealed significant overlaps. 132

We grouped truncated runs by their duration. Since network activity tended towards 133

fewer spikes as a run approached truncation, we did not include the final 50ms of any 134

run in the calculation of scores. We also did not consider the stimulus period (initial 135

30ms), as we wished to analyze self-sustained network dynamics rather than 136

stimulus-driven spikes. By focusing our analyses on the middle portion of each run, we 137

find that the rate and branching values of both sustained and truncated populations 138

overlapped substantially. Runs that truncated at 100ms, at 500ms, and runs that were 139

sustained for greater than 990ms shared similar mean excitatory firing rates (9.95, 9.77, 140

and 10.14 spikes/s, respectively). Runs that truncated between 140 and 400 ms tended 141

to have a higher mean rate (15.65 spikes/s), demonstrating that higher firing rates can 142

contribute to instability of a network [28]. The overlap index between truncated run 143

rate and completed run rate was measured to be .27. The overlap index for criticality 144

for the two run types was measured to be .31. In contrast, the synchrony measure was 145

much more discerning between the run types, yielding an overlap index of .0021. We 146

found that Van Rossum spike distance increased (synchrony decreased) as run duration 147

increased. This inverse relationship between synchrony and run duration goes against 148

the intuition that successful spike propagation is at least in part due to synchronous 149

activity [36–42]. Regardless, it was clear that first order spiking statistics did not 150

provide simple explanations of how and why activity was sustained in some cases and 151

truncated in others. 152

Graph theory analysis of simulated networks 153

We considered functional interactions between neurons to provide an explanation for 154

sustained activity. To do so we analytically evaluated the networks using graph theory. 155

In previous work we have defined a taxonomy of active networks to focus our analysis 156

[19]. We refer to the structural connectivity matrix of our models as the synaptic graph 157

(Fig 3A). From each simulation on a synaptic graph, we generated a single functional 158

graph as well as a time series of recruitment graphs at 10ms resolution. 159

We constructed functional graphs using mutual information to quantify pairwise 160

correlations between spiking neurons across each simulation. In order to generate a 161
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Fig 3. Graph and Motif Definitions A: The synaptic graph is the ground-truth
topology of our networks. Based on spiking activity during each simulation, we
construct a series of active synaptic subgraphs - one for each time bin. These are graphs
made of units which spiked in that bin, connected via the same edges as in the synaptic
graph. We infer a single functional graph from whole-trial spiking activity using
confluent mutual information - these graphs represent the functional connectivity of the
network for each simulation trial. The intersection of the functional graph with the
active subgraph for a given time bin yields the recruitment graph for that time bin. B:
The three triangle motifs we examine - fan-in, fan-out, and middleman - are isomorphic
by rotation. When calculating motif clustering, the choice of reference node is key. C:
Calculation of the clustering coefficients of the different triangle motifs on weighted
directed graphs, as defined in Fagiolo 2007. The clustering coefficient is defined as the
ratio of the actual to the possible motif counts.

series of recruitment graphs we identified the intersection of the functional graph with 162

the synaptic subgraph according to the units which were active in each 10ms time step, 163

resulting in one recruitment graph per time step. Weight values of functional and 164

recruitment connections were calculated from mutual information and summarized in 165

the functional graph, rather than taken from the synaptic weight matrix (see Methods). 166

Because of our interest in the relationship between synaptic structure and functional 167

spike propagation, we focused our analysis on recruitment graphs. 168

Triplet Motifs 169

The term ‘motif’ refers to a pattern formed by a group of units in a network. Previously 170

we found that triplet motifs were informative of synaptic integration [19] and also 171

increased the power of encoding models [18,21–23]. Here we focused our analysis on 172

similar patterns of connectivity in the recruitment network, involving groups of three 173

units [43]. 174

From the perspective of a single reference neuron, neighboring neurons can be 175

arranged into four types of triplet motifs: fan-in, fan-out, middleman, and cycle. In 176

isolating one triplet, the fan-in, fan-out, and middleman motifs are isomorphic by 177

rotation, meaning that they only differ due to the choice of reference node (Fig 3B). The 178

relative importance of a motif for a given neuron is measured by its contribution to that 179

neuron’s clustering coefficient (Fig 3C). The clustering coefficient is the weighted ratio 180

of the actual over the possible counts of a particular triplet motif type in which that 181

neuron participates. Individual reference nodes in a given triplet may yield different 182

clustering coefficients due to their specific weights and connections (see Methods). 183

It was possible that each of the algorithmically generated networks had different 184

connection densities and weight distributions, which would impact weighted motif 185

clustering coefficient measures. In this case a measure that incorporated weight and 186

controlled for density would be especially relevant since the recruitment graph density 187

changes in time. We therefore used the measure of clustering propensity [44]. 188

Propensity is the ratio of the clustering coefficients of the recruitment graphs compared 189

to the average clustering coefficients of graphs with the same connection structure but 190

randomly assigned connection weights. The propensity measure allowed us to compare 191

different networks despite different connection densities and also allowed us to assess 192

the impact of specific edge weights on triplet motif clustering coefficients [19,44]. A 193

propensity value of 1 indicates that specific edge weights play a negligible role in 194

clustering, since random edge weights would yield the same clustering coefficients (see 195

Methods). 196
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Density and recurrence statistics 197

As reported above, synaptic networks were 21.1% connected, and 22.4% of connections 198

were reciprocal (Fig 4A, B). The functional networks of complete runs, which were 199

calculated using mutual information and were unique to each run, were more dense and 200

also more recurrent. The functional networks averaged 32.6% (std: 0.6%) connectivity, 201

of which 59.0% (std: 0.4%) were recurrent. Recruitment graphs across time in complete 202

runs were sparser than the synaptic graphs, although only slightly less recurrent (9.5% 203

connected, std: 0.5%, and 16.7% recurrent, std: 0.5%). Functional and recruitment 204

density and recurrence did not differ significantly between complete and truncated runs. 205

Fig 4. Standard Network Triplet Motifs A: Density (ratio of existing to possible
connections) of synaptic, functional (complete vs truncated), and recruitment (complete
vs truncated) graphs across all networks. B: Proportion of existing connections which
are recurrent in synaptic, functional (complete vs truncated), and recruitment
(complete vs truncated) graphs across all networks. C: Comparison of isomorphic
triangle motif clustering propensities on complete and truncated runs across all
networks. D: Trajectories of all runs on a sample network in 3-dimensional isomorphic
motif space. Truncated runs have a larger spread of trajectories and are shown in
orange, complete runs are shown in blue. E: Trajectories of all complete runs alone, on
axes of the identical scale as in panel d. F: Example trajectory of a single run on the
same network, now enlarged (from inset in panel e). The network begins away from the
area of its eventual cyclic trajectory, and the 30ms of Poisson input at the beginning of
the run drives it towards this region.

Triplet motifs in the different graph types 206

We found that the three isomorphic motifs showed equal clustering in the synaptic 207

graphs. This is expected of graphs with random, albeit clustered, synaptic connectivity. 208

Clustering propensity centered at 1.00 (std = 7.8 ∗ 10−5, 7.9 ∗ 10−5, 8.0 ∗ 10−5 for 209

middleman, fan-in, and fan-out) for all three isomorphic motifs (Fig 4C). A value of 1 210

indicates that specific edge weights in synaptic graphs play a negligible role in 211

clustering, since random edge weights would yield the same clustering coefficients. 212

We found that in contrast to the static synaptic graph the dynamic functional and 213

recruitment graphs were not random. The isomorphic motifs’ dominance in the 214

recruitment graphs, or the strength of each motif’s contribution to overall clustering, 215

varied over time in each trial. For complete runs, motif clustering propensities for 216

recruitment graphs (averaged across all time and all topologies) were 1.98 (std = 0.06), 217

1.91 (std = 0.06), and 2.03 (std = 0.07) for middleman, fan-in, and fan-out, respectively. 218

Propensity values greater than 1, as these are, indicate that units in the recruitment 219

graphs are more strongly clustered than would be expected in structurally-matched 220

graphs with randomized weights. Isomorphic motif clustering propensities also varied in 221

recruitment graphs of incomplete runs, with averages of 1.39 (std = 0.23), 1.40 (std = 222

0.23), and 1.43 (std = 0.24) for middleman, fan-in, and fan-out motifs (Fig 4C). 223

Cycling of triplet motifs 224

To evaluate how the three isomorphic motifs co-varied across time for both successful 225

and truncated trials, we plotted motif clustering propensities at each point in time 226

against one another (Fig 1D, E, F). Clustering propensities formed a cyclic trajectory 227

within a restricted region of motif space. This indicates a systematic alternation between 228

over- and under-representation of the three isomorphic motifs in the whole network 229
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relative to what would be expected in edge-matched networks. We found that the cyclic 230

trajectory within this region of motif space was consistent for all low-rate, excitatory 231

clustered networks we examined. We also found the same orderly temporal progression 232

from one isomorphic motif to another when we considered clustering coefficient values. 233

In contrast, truncated simulations were never restricted to this behavior. 234

Motif cycling and sustained activity 235

The motif cycling trajectory was not present at the moment of first spikes in a 236

simulation. Rather, the path started at a point in motif space as determined by the 237

initial membrane voltages of all neurons in the network. Injection of Poisson input 238

drove network activity towards its eventual trajectory (Fig 4F). We identified two 239

distinct types of truncation - in the first and far more common (97.7%) of the two, the 240

simulation trajectory never approached or entered the region in propensity motif space 241

where sustained runs lay. In the second, rarer case, the simulation successfully entered 242

the sustained regime, yet after several hundred ms the trajectory destabilized, resulting 243

in truncated activity. Truncated trajectories did not follow a canonical path. Instead, 244

motif dynamics during truncated runs transited in all directions away from the central 245

region, demonstrating the multitude of ways in which activity structure can lose 246

stability resulting in a failure of spike propagation (Fig 4D). 247

We examined whether the initial distance and input trajectory, which were 248

determined by the initial conditions of the network and the Poisson stimulus, were 249

determinants of successful activity propagation. We found that even if the distance from 250

the cycling region at the end of the stimulus period was minimal, some simulations still 251

failed to enter into and stay within that regime. Others which were still distant from 252

the region after the initial stimulus period continued on a successful trajectory and 253

entered a stable cycling regime. These behaviors point to complex interactions between 254

the network’s internal state and how input onto precise units within that network can 255

influence propagation. 256

Markov Analysis 257

In order to quantify the cycling between isomorphic motifs, we constructed a Markov 258

model for state transitions between dominant isomorphic motifs. We described the 259

network using a probabilistic voting scheme, as opposed to using analog propensity 260

values. A unitary vote is cast by each unit for the motif type for which it has the 261

highest propensity value at some time step. The proportion of total votes for each motif 262

type is used to describe the relative dominance of that motif at that time step. 263

From this time series we constructed a Markov model transitioning between states. 264

We found that the parameters characterizing the Markov process were canonical and 265

low variance, such that successful cycling followed a specific reliable sequence between 266

motifs. In contrast, the Markov parameters in simulations that truncated showed a 267

failure to recruit this low-variance canonical sequence. First and second-order state 268

probabilities and state transition probabilities significantly differed between completed 269

and truncated runs (p < 0.001) (Fig 5A, B). Second-order state conditional 270

probabilities also differed (p < 0.05) (Fig 5C). State probability is the probability of a 271

motif being dominant at a given time. Second order probability is the probability with 272

which a sequence of two motifs will be dominant at some given time. Conditional 273

probability is defined as the probability of a motif given history of previous two motifs. 274

Markov analysis also gave the time scale which characterized motif cycling via the 275

mean time for recurrence. This is defined by the expectation of the hitting time for each 276

motif, given the network is currently dominated by that motif. We define hitting time, t, 277

as Hi = inf {n ≥ 1 : Sn = i|So = i} and our expectation of hitting time, t, as 278
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Fig 5. Markov Comparisons Between Completed and Truncated Runs on
Standard Networks A: Probabilities of state dominance of a triplet motif in
completed (left) and truncated (right) runs. B: Second order state probabilities for
completed (left) and truncated (right) runs. C: Second order conditional state
probabilities for completed (left) and truncated (right) runs. D: Expectation of hitting
time for Markov model of state dominance transitions in completed (left) and truncated
(right) runs. E: Visualization of Markov matrix for state dominance in complete (left)
and truncated (right) runs.

E[t] =
∑∞

n=1 n · p(Hi = n). This gives a mean recurrence time for each motif. We find 279

truncating middleman to have mean 18.59 ms ( std: 6.49 ms), completing middleman to 280

have mean 27.02 ms (std 5.99 ms), truncating fan-in to have mean 18.01 ms (std: 4.61 281

ms) completing fan-in to have mean 12.39 ms (std: 1.27 ms), truncating fan-out to have 282

mean 12.95 ms (std: 3.14 ms), and completing fan-out to have mean: 12.65 ms (std: 283

3.56 ms). Hitting times differed significantly between completed and the small subset of 284

truncated runs that entered this region of propensity (p < 0.001) (Fig 5D). 285

Effects of connectivity weights 286

We hypothesized that the cycling between clustering propensities was necessary for 287

sustained activity due to the weak strength of the majority of individual synapses. 288

Fan-in clustering has the highest probability of remaining in the state of fan-in 289

clustering in the next time point which hints at the greater need for integration. But 290

once integration is sufficient, the motif changes. For our model and for most of the 291

synapses in neocortex, convergence of spikes from multiple sources must occur in order 292

to evoke spikes in a receiving neuron [19]. Consequently we expected that as connection 293

weights increased, the cycling between population-wide isomorphic motifs would lessen. 294

To test this, we strengthened all synaptic weights in the networks that previously 295

scored well from 1.0x to 2.0x original values in increments of 0.1. Simulations were then 296

re-run on these strengthened networks using the same stimulus and initial conditions. 297

At 1.6 times the original weights, networks consistently displayed bursting activity. 298

Consequently we restricted our analysis to networks with weights increased 1.5 times. 299

All runs on these networks reached completion. 300

Increasing weights led to a decrease in all triangle motif propensities, and also led to 301

differences in the Markov characterization. Motif state probabilities differed 302

significantly between completed runs on the original graphs and those on graphs with 303

increased weights (Chi-square test, p < 0.001). Second-order state probabilities, state 304

conditional probabilities, hitting times, and state transition probabilities all differed 305

significantly as well (p < 0.01, p < 0.05, p < 0.005, p < 0.001 respectively), 306

demonstrating the interaction of synaptic reliability on the necessity of this regime 307

(Fig 6). However the trend remained and in all sustained runs a low variance transition 308

from motif to motif occurred. 309

The dynamical motif solution is arrived at regardless of 310

synaptic connectivity statistics. 311

The networks on which we performed all our analyses have excitatory clusters of units. 312

To test whether our results, including the motif cycling phenomenon, are dependent on 313

this structure, we next examined non-clustered Erdős-Renyi (ER) graphs with 314

pi→e = .25 and pe→i = .35. ER graphs had the same pe→e and pi→i values as the 315

clustered networks. We found that transitions between motif types were also present in 316

the activity of sustained runs on ER networks (Fig 7). The relative increase in 317
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Fig 6. Networks with Increased Weights Networks have the same structure as
those seen in figures 4 and 5, but all edge weights have been increased by 1.5 times their
original values.A: Left, density (ratio of existing to possible connections) for synaptic,
functional, and recruitment graphs. Right, recurrence (ratio of recurrent to all existing
connections) for synaptic, functional, and recruitment graphs. B: Clustering propensity
for isomorphic triangle motifs on increased-weight-graph simulations. The y-axis is
scaled to match that of Figure 4C (clustering propensities on original graphs) and Figure
7B (clustering propensities on unclustered ER graphs). C: Probabilities of dominance of
each triangle motif. The dominant motif at a time point is given by the maximum of
mean middleman, mean fan-in, and mean fan-out across units. D: Second order motif
state probabilities for progression of temporal recruitment graphs. E: Probabilities for
each motif to follow a given second order motif. F: Hitting times for each state for the
Markov process defined by motif transition probabilities. G: Trajectories of all complete
runs on a sample network in 3-dimensional isomorphic motif space. In blue are the runs
on the network with its original weights, in orange are the runs on the same network
with weights increased. H: Markov Matrix for transition probabilities between motifs.

clustering in ER graphs when comparing synaptic to recruitment graphs is substantially 318

greater than seen in our graphs with excitatory synaptic clusters. In the synaptic 319

networks, triplet clustering coefficients average 0.11. However, this value increased to 320

0.20, 0.09, and 0.15 for fan-in, fan-out, and middleman motifs in the recruitment graphs. 321

The propensity values for all isomorphic motifs were consistently lower than 1, with 322

means centered at 0.8 (Fig 7). We find that unclustered ER graphs and clustered ER 323

graphs differ significantly (p<.005) in second-order state probabilities, state conditional 324

probabilities, hitting times, and state transition probabilities. As in the case with the 325

increased weights however the qualitative cycling of motifs was present in sustained runs. 326

Fig 7. Unclustered (Erdős-Renyi) Networks A: Left, density (ratio of existing to
possible connections) for synaptic, functional, and recruitment ER graphs. Right,
recurrence (ratio of recurrent to all existing connections) for synaptic, functional, and
recruitment ER graphs. B: Clustering propensity for isomorphic triangle motifs on ER
graph simulations. The y-axis is scaled to match that of Figure 4C (clustering
propensities on original graphs) and Figure 6B (clustering propensities on graphs with
1.5 times increased weights). C: Probabilities of dominance of each triangle motif. The
dominant motif at a time point is given by the maximum of mean middleman, mean
fan-in, and mean fan-out across units. D: Second order motif state probabilities for
progression of temporal recruitment graphs. E: Probabilities for each motif to follow a
given second order motif. F: Hitting times for each state for the Markov process defined
by motif transition probabilities. G: Trajectories of all runs on a sample ER network in
3-dimensional isomorphic motif space. All runs reached completion. H: Markov Matrix
for transition probabilities between motifs.

Discussion 327

This work demonstrates that higher-order structure is required for sustained activity in 328

low-rate recurrent networks such as neocortex. Spikes must traverse the network in a 329

coordinated way, cycling between the dominance of three triplet motifs. The transitions 330

between fan-in, middleman, and fan-out motifs reveal the necessity of balance between 331

distribution of signal and convergence of inputs necessary to integrate those inputs. The 332

presence of these motifs in the recruitment graphs reflects the functional routing of 333
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activity through synaptic connections. When synapses become stronger and more 334

reliable, overall triplet clustering decreases, while the reliability of their transitions 335

remains. Higher order motifs in the recruitment network thus provide a direct link 336

between network activity and the stable activity in that network. 337

Simpler measures, such as rate or synchrony, did not easily explain network stability 338

in our models. Previous work has demonstrated that sustained, asynchronous network 339

activity co-occurs within a specific range of firing rates, supported by a balance between 340

excitatory and inhibitory conductance [28]. Counter-intuitively, networks were unable 341

to continue to spike both when firing rates are low and also when rates are too high. 342

We also found a counter intuitive result in that networks which display asynchronous 343

spiking dynamics tend to sustain activity for longer than networks with more 344

synchronous spikes. Previous work suggests that synchronous spikes are necessary and 345

particularly efficacious for signal propagation to occur [36–42]. For example, one 346

proposed mechanism for communication between two regions is via synchronous spike 347

volleys with coherent phases, which capitalize on the recurrent nature of connections in 348

neocortex [38]. Yet synchrony is intricately tied with rate - transmission speeds are 349

higher when spikes are more synchronous. High-rate and high-synchrony spikes may 350

overwhelm the integrative capacity of downstream units, contributing to instability. Our 351

results lend nuance to a previously-held view that although neocortex displays 352

asynchronous activity, it hinders rather than helps spike transmission. We suggest that 353

certain levels of asynchrony are in fact necessary for spike transmission at the network 354

level just as in the case with firing rate. 355

In addition to being low-rate and asynchronous, our networks were algorithmically 356

constructed to have critical dynamics. A system can be described as critical if it 357

operates near a phase transition or “critical” point. A classic example is a mound of 358

sand, which is said to be at the critical point if each new grain of sand added causes an 359

avalanche of sand following a power law distribution. In neocortex this entails activity 360

that, in the absence of external input, propagates activity without become epileptic or 361

dying off, and which follows a power law distribution in its active population size [33]. 362

However, these are only necessary conditions and not deterministic of all critical 363

systems. The idea that neocortex operates near a critical point has a long history in 364

neuroscience, going back to Alan Turing [45], and has been implicated in a number of 365

desirable properties for neural networks [46]. For example, networks tuned near the 366

critical point display maximum information transmission [33], information storage [47], 367

and computational power [48]. Understood as a branching process, critical activity 368

entails very little structure in activity, namely that the average ratio of descendants to 369

ancestors be 1. 370

Our results provide an explanation for the prominence of higher order motifs in real 371

data. Elevated motif counts have been observed in synaptic connectivity and in 372

recordings of clustered activity in vivo [2, 3, 8, 12–18]. Through mechanisms of learning 373

in neocortex such as STDP, functional patterns may be further strengthened to enhance 374

integration in cortex. We wish to draw attention to the fact that our study focused on 375

the whole-network scale. Individual units spiked only sparsely, making it difficult to 376

continuously track single-unit motifs across small epochs of time since interspike 377

intervals were generally larger. The models we used were constructed to simulate 378

neocortex. The network structures we employed closely match experimental 379

observations [2, 3] and the model units capture many of the statistics of neocortical 380

neurons [5]. Our results provide, first and foremost, an account of the role of 381

beyond-pairwise interactions in the brain. Yet the behavior of these models may reflect 382

necessary features of weakly-connected networks in which integration from multiple 383

sources is necessary for the system to succeed. In such systems it is likely that stability 384

relies on higher-order patterns. For example, the spread of rumours in a social network 385
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relies on integrating interactions. Social networks are small-world networks 386

characterized by clusters, a feature which is present in our model as well as many other 387

systems [49, 50]. The “illusion-of-truth” effect in rumour spreading on a social network 388

has the integrate-and-fire property, where an individual may need to hear a rumour from 389

multiple sources before they reach a confidence threshold to repeat it to others [51]. 390

The necessity of higher-order patterns for stable activity has strong implications for 391

neural coding. Previous work has already demonstrated that correlations enhance 392

coding, with triplet correlations having an advantage over pairwise 393

[5, 16,18,21–23,52–54]. The neural code must rest upon a foundation of stable 394

propagation of spikes, which we have shown in turn rests on higher-order motifs and 395

coordinated integration. Any two spikes must take place within some time interval for 396

them to interact. The asynchronous and critical regime observed in vivo and in our 397

models pushes the limits on what constitutes a cooperative event. In our model, the 398

precise conditions for integration are dictated by the time constants we chose, while in 399

neocortex the same time constants may vary and span some range. Neuromodulation, 400

cognitive state, and a variety of other factors all dictate the requirements which need to 401

be met for integration. Local connectivity certainly plays a large role as well. 402

Consequently the role of higher order interactions in coding and in coordinating 403

synaptic integration may vary by state. 404

Materials and methods 405

Network Structure 406

Our graphs are recurrent and sparsely connected networks of several thousand adaptive 407

exponential leaky integrate-and-fire (AdEx) units with an extra poisson input term [24]. 408

Synapses between all units are conductance-based. This enhances realism by taking 409

neuron-specific state features into account during synaptic integration [24]. Specifically 410

we define our neuron Voltage, V , as. 411

C
dV

dt
= −gl∆t exp (

V − VT
∆T

)− ge(V − Ee)− gi(V − Ei)− gp(V − Ee)− w (1)

adaptation current, w, as 412

τw
dw

dt
= a(V − El)− w (2)

excitatory conductance, ge, as 413

τe
dge
dt

= −ge (3)

inhibtory conductance, gi, as 414

τi
dgi
dt

= −gi (4)

poisson input conductance, gp, as 415

τp
dgp
dt

= −gp (5)
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Spike was said to occur if V > Vt, at a spike V was set to EL, w was incremented by 416

b and ge and gi were incremented by synapse weight if downstream of the spiking 417

neuron. 418

For information on parameters, see S1 Table. Each network is comprised of 1000 419

inhibitory and 4000 excitatory units. Precise wiring probabilities between excitatory 420

and inhibitory populations were determined through grid search within biological 421

constraints. 422

Network synaptic connectivity is heterogeneously clustered [8]. For each network we 423

defined 50 total clusters, with each excitatory unit randomly assigned to two clusters. 424

Clusters thus vary in size and follow a normal distribution. The wiring probability 425

between two units within the same cluster is twice that of units in different clusters. 426

Network cluster sizes range from 111 to 207 excitatory units (mean = 158.40, std = 427

12.27). Inhibitory units are not clustered; their wiring probability is uniform across the 428

graph. 429

Edge weights follow a long-tailed distribution (Fig 1B). Edge weights that originate 430

from inhibitory units have conductances which are ten times greater than those which 431

originate from excitatory units, in accordance with experimental results [55]. 432

Network Simulation 433

Each simulation was recorded at 0.1-ms temporal resolution. A trial began with 30 ms 434

of Poisson input stimulus onto 500 randomly chosen units. After 30 ms the stimulus 435

would cease and activity would propagate naturally through the network. The 436

simulation would continue for as long as spiking activity is sustained, up to a maximum 437

of 1 second. If during a simulation no spikes occur across the network for 100 ms, the 438

network is deemed inactive and the simulation trial is halted. We found that all network 439

simulations which reached 1 second were also able to sustain activity up to 10 seconds. 440

We therefore chose one second as the marker for a network’s ability to sustain activity 441

indefinitely, and as the definition of a successful run. Upon completion each simulation 442

yields an output raster of spike times for every unit in the network. The poisson input 443

train, input units, network topology, and initial conditions of all units were recorded for 444

each simulation. This enabled subsequent analyses and also allowed for re-use of a 445

synaptic graph or re-instantiation of a simulation using some of the original settings 446

while varying others. 447

Parameterization 448

Our models are constructed to parallel the features of biological neural networks, but 449

are also constrained by considerations of computing resources. In a study which 450

modeled cortex with high biophysical and anatomical detail, simplifying the neuron 451

model did not lead to drastic differences in the network’s behavior from the detailed 452

model or from in vivo results. Most qualities remained unchanged, suggesting that in 453

many cases extremely granular models are not necessary to yield experimental insights 454

[24]. Instead, the most important feature for retaining qualitative correspondence are 455

the rules of synaptic connectivity. Therefore we required our models’ connectivity 456

parameters to closely match those of biological neural networks. 457

The probabilities of wiring between excitatory (E) and inhibitory (I) populations in 458

our models were taken directly from or bounded by the results of biological experiments. 459

The wiring probabilities from E to other E units and from I to other I units in 460

neocortex are well-studied, but there is less data on connections from E to I and from I 461

to E. We therefore used an algorithmic approach to find the optimal values. Beginning 462

within a biological range, we used grid search to find values of pe→i and pi→e that led 463
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to successful propagation of activity at the lowest possible rates. We used these optimal 464

wiring rules to construct all synaptic graphs in this study. 465

Two iterations of grid search were used to find the wiring parameters needed to 466

maintain naturalistic spiking for the duration of a simulation (Fig 2A). We searched for 467

the optimal probability of connection from excitatory to inhibitory units, pe→i , and the 468

optimal probability of connection from inhibitory to excitatory units, pi→e , such that 469

networks would propagate activity at the lowest possible rates. In the first iteration, we 470

used a low resolution grid (space size 0.001) to search for pe→i within the range 0.16 to 471

0.24 and pi→e within the range 0.29 to 0.37. These two ranges were taken from known 472

wiring probabilities in neocortex. Each grid space was visited ten times to achieve an 473

average measure of rate and completion. This isolated a region of interest where the rate 474

was lowest, between pe→i values of 0.216 and 0.220, and between pi→e values of 0.309 475

and 0.313. We used a higher resolution grid (space size 0.0001) to explore this region. 476

For all subsequent simulations we used the best results obtained from grid search. 477

The optimal probability of wiring for excitatory to inhibitory units, pe→i , was found to 478

be 0.22, and the optimal value for pi→e was 0.31. The values for pe→e and pi→i were 479

taken from known wiring probabilities in neocortex, and were 0.20 and 0.30 respectively 480

[19]. Based on these wiring rules, we constructed synaptic graphs of networks for 481

simulations. Each synaptic graph is a matrix W where the value in wij denotes the 482

weight of the directed connection from unit i to unit j. 483

Scores 484

To evaluate the biological realism of constructed networks, we computed several 485

measures of network activity for both excitatory and inhibitory subpopulations. 486

Networks were evaluated on rate, defined as average spike frequency over the course of 487

each trial. Networks were also evaluated on branching parameter as a measure of 488

network criticality [33]. A branching value of 1 indicates that for every ‘ancestor’ unit 489

that is active, there is an equal number of ‘descendant’ units active at the next time 490

step. On average, the number of units active over the course of a trial in a critical 491

network stays constant. Networks were further evaluated on their level of synchrony, 492

since biological networks display asynchronous activity. In order to evaluate synchrony 493

rapidly enough to make grid search feasible, a heuristic for synchrony was computed as 494

the variance of mean signal normalized by the mean variance of each neuron. A 495

threshold of 0.5 was considered appropriate for network asynchrony. The threshold was 496

evaluated empirically by examining rasters for Poisson spiking neurons with variable 497

coupling, where coupling was change to rate parameter by connected neurons spiking. 498

Branching, was mathematically defined as: 499

σ =

nmax∑
d=0

d · p(d), (6)

p(d) =
∑

avalanches

(
nΣa|d

Σna

)(
nmax − 1

nmax − na

)
(7)

where σ is the branching parameter, d is the number of descendants, nmax is the 500

maximum number of active neurons, na is the number of ancestor neurons, nd is the 501

number of descendant neurons, nΣa|d is the number of ancestor neurons in all avalanche 502

events that involved d descendants, and nΣa is the total number of neurons involved in 503

avalanches. The branching parameter describes the network as a whole; it cannot be 504

calculated for isolated units. For a given simulation, we calculated network branching at 505

discrete, sequential time steps throughout. We used the same temporal resolution (5 ms) 506

as used for determining the functional graph; all spikes at time t are ancestors, and all 507
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spikes from t+ 5 to t+ 20 ms are descendants. We then averaged the network branching 508

parameter across all time steps to get the overall branching score for that simulation. 509

For the sake of computational efficiency during grid search, synchrony was defined as 510

the variance of the mean voltage divided by the mean of voltage variances. To evaluate 511

the accuracy of this rapid measure, we compared its results with pairwise Van Rossum 512

spike distance [34,35] (S1 Fig ). We used Van Rossum spike distance as our measure 513

for each simulation’s synchrony score outside of the initial grid search. In this way we 514

are able to generate a multitude of network topologies that produce naturalistic spiking 515

activity. 516

Triplet Motifs 517

The clustering coefficients for the four triplet motifs are calculated in the following 518

manner [43]: 519

Let ti denote the actual number of triplets of a motif type in the neighborhood of 520

unit i, and Ti denote the maximum number of such triplets that unit i could form. We 521

will build intuition by beginning with the case of a binary directed graph, or an 522

unweighted connectivity matrix. Let A represent this graph, with aij = 1 indicating the 523

presence of a directed connection from node i to node j. Raising the matrix A to the 524

nth power yields the number of paths of length n between nodes i and j. 525

Let us first consider the cycle motif; in order for unit i to participate in a cycle, it 526

must have an edge directed to a second unit, that second unit must have an edge 527

directed to a third unit, and that third unit must have an edge pointing back to unit i. 528

The path length is 3, and it both begins and ends at unit i. Thus we calculate A3 and 529

extract the values along the diagonal, or A3
ii. This gives the number of actual cycle 530

motifs unit i forms. 531

Counts of the three isomorphic motifs are calculated in a similar way, but they 532

require the additional involvement of AT . Taking the transpose of graph A reverses the 533

directionality, so that connections from i to j are now those from j to i. We would like 534

to trace a path of length 3 from i back to i to form an isomorphic triangle, but exactly 535

one of the steps must be against the true direction of that edge (Fig 3). Beginning with 536

a middleman reference node, the first step is ‘with the flow’, the second step is invariably 537

‘against the flow’, and the final step back to i is again ‘with the flow’. Therefore 538

AATAii gives the number of actual middleman motifs unit i forms. Since fan-in and 539

fan-out motifs are isomorphic to middleman by rotation, we simply rotate which step is 540

‘against the flow’ to yield the count of fan-in and fan-out motifs. The number of actual 541

fan-in motifs unit i forms is ATA2
ii, and the number of fan-out motifs is A2AT

ii. 542

Now that we can calculate the actual counts, the possible counts of each motif Ti are 543

easily intuited as a combinatorics problem. Let us begin again with the cycle motif. To 544

form a cycle, node i requires one edge directed towards it and one edge directed away 545

from it. The number of possible pairs of in and out edges from node i is calculated by 546

multiplying the out-degree of node i with the in-degree of node i. In-degree and 547

out-degree refer simply to the number of edges that are directed in or out of a given 548

node. Some edges may be bidirectional - these cannot be part of a true cycle motif. The 549

number of bidirectional edges is subtracted from the product of in- and out-degrees. 550

The final Ti for the cycle motif is 551

Ti = dini d
out
i − d↔i (8)

The Ti for middleman is in fact equal to that for cycle, since forming a middleman 552

has the same requirements - one edge directed inward paired with one edge directed 553

outward. 554
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A fan-in motif requires two edges directed in towards the reference node. There are 555

dini number of choices for the first inward edge. Once that choice has been made, there 556

are dini − 1 choices remaining for the second inward edge. Thus we multiply the two to 557

yield Ti for the fan-in motif. 558

Ti = dini (dini − 1) (9)

Fan-out is similar - we simply substitute in-degrees with out-degrees since a fan-out 559

motif requires two edges directed out from the reference node. Ti for the fan-out motif 560

is thus 561

Ti = douti (douti − 1) (10)

Now that we have both the actual and possible counts for each motif type, the 562

triplet clustering coefficients of node i are simply their ratios. That is, 563

C?
i =

t?i
T ?
i

(11)

If we were interested in binary graphs, we would end here. However, our graphs of 564

interest have weights associated with each directed edge. There are multiple ways to 565

account for edge weights when calculating clustering coefficients. One way is to consider 566

only the weights of the two edges that are incident to reference node i. Alternatively, the 567

weights of all three edges in a triplet can be taken into consideration. The latter is the 568

chosen method, since we desire a measure of central tendency. The total contribution of 569

a triplet to the clustering coefficient is thus the geometric mean of its weights. 570

Let W denote our weighted directed graph. For a triplet in this graph with edge 571

weights wij , wih, and wjh, the geometric mean is (wij · wih · wjh)
1
3 . We can extend this 572

to the entire graph by, Instead of using a binary graph as matrix A in the calculation of 573

ti, using A = W
1
3 , which is the matrix that results from taking the cubic root of every 574

entry in W . We also note that this formulation is invariant to the choice of reference 575

node in a triplet. Incorporating weights only modifies the value of ti. It remains a 576

measure of the actual triplets present - instead of counts it is now a weighted measure. 577

The denominator Ti still refers to maximum possible counts. It follows that the 578

clustering coefficient for node i can only be 1 (maximum) when its neighborhood truly 579

contains all triplets that could possibly be formed and every edge in each triplet is at 580

unit (maximum) weight. The complete clustering coefficient formulas of weighted 581

directed graphs are given in 3. 582

Active Subgraphs 583

For any small span of time in a trial, only a subset of all units in the graph will be 584

active. The subset of units which spike in some defined time window form the active 585

subgraph for that time window. We binned spikes into a temporal resolution of 10 ms, 586

so that each complete 1-second simulation resulted in 99 time bins. For each time bin t 587

we defined an active subgraph. If a unit spiked within time bin t, that unit will be part 588

of the active subgraph for time bin t. All units which did not spike within that 589

particular time bin are not included in that particular active subgraph. Since there are 590

99 time bins for a complete 1-second simulation, there are also 99 active subgraphs in 591

sequence. Edge weights between units in an active subgraph are equal to those from the 592

corresponding edges (between active units) in the ground truth synaptic graph. 593
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Functional Subgraphs 594

We calculated motifs in the underlying synaptic graphs and found that all four 595

clustering coefficients were equivalent when averaged across each graph, as expected. 596

To apply motif analysis to activity, we needed to infer functional graphs from spiking 597

activity to summarize network dynamics. Directed edge weights in a functional graph 598

represent the likelihood of a functional relationship in the activity between every pair of 599

units. 600

We used mutual information (MI) to infer functional graphs from all spikes across 601

the course of a trial, regardless of the trial’s duration (complete or truncated). This 602

results in a single functional graph for each trial. We chose to perform functional 603

inference using the full spike set because this yields functional graphs with higher 604

fidelity and greater sparsity. 605

The MI method we used is the confluent mutual information between spikes. At a 606

conceptual level, an edge inferred from unit i to unit j using confluent MI means that 607

unit j tends to spike either in the same time bin or one time bin after unit i spikes. 608

Since spikes are binned at 10ms resolution, this method encompasses a delay of 0 to 20 609

ms. This delay is appropriate because we found that presynaptic spikes yielded a 610

maximal response from all postsynaptic neurons at a delay of 5 to 20 ms. 611

Mathematically, we defined an indicator function on the spike train of neuron j, s(j) 612

evaluating to 1 in the case where there is a spike at time t or t+ 1, an indicator function 613

on the spike train of neuron i, t(j), evaluating to 1 in the case where there is a spike at 614

time t, and considered the mutual information between them. The resulting networks 615

were further processed by removing weights corresponding to neurons with negative 616

pairwise correlations. Networks were then re-expressed to minimize skewness, and 617

background signals were removed by accounting for background signal and considering 618

weights as the residual resulting from linear regression on background strength. Finally 619

we considered the z-normalized residual graph to account for heteroskedasticity [56]. 620

This yields weighted values, for which we establish 0 as a threshold. All positive normed 621

residual MI values are included in the full functional graph. 622

Recruitment Graphs 623

The recruitment graph represents both the activity and the underlying connections of a 624

network. A recruitment graph is defined separately for each 10 ms time bin of a given 625

trial, thus yielding a temporal sequence of graphs. Each graph is calculated as the 626

intersection of the functional graph, which is unique to every trial, and the active 627

subgraph, which is unique to every 10 ms time bin. All edges in the recruitment graph 628

come from underlying synaptic wiring, contained in the active subgraph, while edge 629

weight values come from the inferred functional graph. In other words, for all edges 630

i→ j where wfunctional,ij > 0 in the confluent MI functional graph and wsynaptic,ij > 0 631

in the active subgraph of time bin t, the edge in the recruitment graph for time bin t 632

takes on the value of wfunctional,ij . All other recruitment graph edges have value 0. 633

Just like the sequence of active subgraphs, there are 99 sequential recruitment 634

graphs at 10 ms temporal resolution for every complete 1-second simulation trial. 635

Triplet clustering coefficients were calculated for every unit on each 10 ms recruitment 636

graph, then averaged across the population to yield the whole-network clustering 637

coefficients for that 10 ms time window. These methods allow us to observe how motif 638

clustering changes in the recruitment graphs across time. 639
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Clustering Propensity 640

Networks may have very different connection densities, which would impact motif 641

clustering coefficients. This is especially true as the active subnetwork changes in time, 642

and for ER networks in comparison to clustered model graphs. We therefore used 643

weighted and unweighted clustering propensity which enables meaningful comparisons 644

between networks with different connection densities. 645

Our measure of weighted propensity begins with calculating the triplet motif 646

clustering coefficients for each unit in the recruitment graph of every time bin. Then, 647

for each time bin t we generate ten simulated graphs. These graphs have the same edges 648

as the original recruitment graph at time t, with edge weights randomly sampled from 649

the underlying distribution of functional edge weights. Motif clustering coefficients are 650

calculated for units in each of the simulated graphs, then averaged for each unit and 651

each motif type. The clustering coefficients of the units in the original graph at time t 652

are normalized by the average of the ten simulated graphs’ clustering coefficients, 653

yielding the unit-wise clustering propensity at time t for each triplet motif. We used 654

these values to perform all unit-wise motif analysis. In order to examine motifs at a 655

whole-network level, for each motif type at time t we average across all units with 656

nonzero clustering propensity values for that motif type. 657

Unweighted propensity is calculated similarly, considering the functional networks’ 658

unweighted directed clustering to that expected in both an ER graph as well as a small 659

world graph. Thus, in addition to controlling for density, weighted propensity also 660

measures the extent to which the specific edge weights in the recruitment graph impact 661

triplet motif clustering, while unweighted propensity measures the same for specific 662

structure of the recruitment graph. A weighted propensity of 1 indicates that specific 663

edge weights play a negligible role in clustering, since random edge weights would still 664

yield the same clustering coefficients, while an unweighted propensity of 1 indicates that 665

the specific structure of the network is not important for clustering. 666

Erdős-Renyi Graph Simulations 667

Unclustered ER Graph simulations were done from population consisting of 1000 668

excitatory neurons, 200 inhibitory neurons and 50 poisson input neurons. These 669

populations were connected with pee = .2, pii = .3, pie = .25 and pei = .35. Synaptic 670

weights relative to leak conductance were drawn from a log normal distribution 671

(mean=.60, variance = .11), with i to e connections scaled up 50% [19]. 672

Overlap Index 673

Overlap Index was used to measure the degree of overlap between two probability 674

distributions. It is defined as O =
∑
i

min pi1, pi2, where i is histogram bin index. If two 675

distributions do not overlap at all they will have an overlap index of 0, if they are 676

identical they will have an overlap index of 1. 677

Probability Vectors 678

To quantify the cyclic transitions between relative prominence of motifs over time, we 679

examined the dominant motif of the network for a given recruitment graph. We define 680

the dominant motif of a graph as the maximum of the demeaned propensities for 681

middleman, fan-in, and fan-out. We consider the demeaned values of each motif in order 682

to account for the different relative magnitudes of motifs without affecting scaling in the 683

cycle structure. Examining first order probabilities, which is the probability of a motif 684

dominating a recruitment graph in a given run, on the time series of recruitment graphs 685
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from completed and truncated runs shows that there is a significant difference between 686

the distributions defining these values across each type of run. 687

To further characterize the transitions between different dominant motifs we fit a 688

Markov model to the series of dominant motifs across recruitment graphs in both 689

truncated and completed networks. We again find a significant different (p < .001 for all 690

markov parameters). This all suggests that the failure to propagate found in some 691

networks is tied to the inability to recruit the cyclic structure that we find to be a 692

hallmark of successful propagation. 693

Statistical Testing: Two-Sample Chi Squared Test 694

P values for comparisons between distributions of different types of network activity 695

were done by two sample chi square test. 696

Supporting information 697

S1 Fig. Synchrony Measure Comparison. A common measurement for 698

synchrony is the Van Rossum spike distance [34,35]. Greater distances between spike 699

pairs indicate more asynchronous dynamics. However, for the sake of speed during grid 700

search, we used a rapid measure of synchrony (see Methods). We observe a strong 701

correlation between the two measures when we used both to examine the final set of 702

runs that we used for analysis. . 703

S1 Table. Neuron Parameters. Parameters used for simulation of adaptive 704

exponential integrate and fire neurons. 705

Parameter Name Value
C membrane capacitence 281 pF
gL leak conductance 30 nS
EL leak reversal potential -70.6 mV
EE excitatory reversal potential 0 mV
EI inhibitory reversal potential -75 mV
VT spike threshold -50.4 mV
∆T slope factor 2 mV
τw adaptation time constant 144 ms
τe excitatory time constant 10 ms
τi inhibitory time constant 3 ms
τp poisson time constant 3ms
a subthreshold adaptation 4 nS
b spike triggered adaptation .0805 nA
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