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Abstract	
	
Gene	 expression	 noise	 is	 not	 just	 ubiquitous	 but	 also	 variable,	 and	 we	 still	 do	 not	
understand	 some	 of	 the	 most	 elementary	 factors	 that	 affect	 it.	 Among	 them	 is	 the	
residence	time	of	a	transcription	factor	(TF)	on	DNA,	the	mean	time	that	a	DNA-bound	
TF	remains	bound.	Here,	we	use	a	stochastic	model	of	transcriptional	regulation	to	study	
how	this	residence	time	affects	gene	expression.	We	find	that	the	effect	of	residence	time	
on	 gene	 expression	 depends	 on	 the	 level	 of	 induction	 of	 the	 gene.	 At	 high	 levels	 of	
induction,	 residence	 time	 has	 no	 effect	 on	 gene	 expression.	 However,	 as	 the	 level	 of	
induction	decreases,	short	residence	times	reduce	gene	expression	noise.	The	reason	is	
that	 fast	 on-off	 TF	 binding	 dynamics	 prevent	 long	 periods	 where	 proteins	 are	
predominantly	synthesized	or	degraded,	which	can	cause	excessive	fluctuations	in	gene	
expression.	As	a	consequence,	short	residence	times	can	help	a	gene	regulation	system	
acquire	 information	about	 the	cellular	environment	 it	operates	 in.	Our	predictions	are	
consistent	 with	 the	 observation	 that	 experimentally	 measured	 residence	 times	 are	
usually	modest	and	lie	between	seconds	to	minutes.		
	
Introduction	
		
All	gene	expression	 is	noisy.	 It	produces	mRNA	and	protein	molecules	whose	numbers	
fluctuate	 randomly.	 Such	 noise	 is	 caused	 by	 stochastic	molecular	 interactions,	which	
include	 interactions	 between	 transcription	 factors	 and	 DNA,	 and	 by	 the	 stochastic	
synthesis	 and	 degradation	 of	 molecules	 (1,2).	 Gene	 expression	 noise	 affects	multiple	
biological	 processes.	 For	 example,	 it	 can	 promote	 phenotypic	 diversity,	 influence	 the	
coordination	of	gene	expression,	 trigger	 cell	 differentiation,	and	 facilitate	 evolutionary	
transitions	 (1–7).	 Furthermore,	 noise	 can	 also	 reduce	 a	 cell’s	 ability	 to	 acquire	
information	about	its	environment.	Such	information	is	essential	whenever	cells	need	to	
respond	 to	 changing	 environments	 (8,9).	 It	 is	 acquired	 by	 signaling	 pathways	 that	
modulate	the	activity	or	concentration	of	transcription	factors	(TFs),	which	up-regulate	
or	down-regulate	effector	genes.	Thus,	reducing	gene	expression	noise	can	increase	the	
ability	of	a	regulated	gene	to	capture	information	about	a	TF’s	changing	concentration	or	
activity,	which	is	fundamental	to	produce	an	optimal	cellular	response	to	environmental	
change	(10).		
	
Gene	 expression	 regulation	 is	 being	 studied	 by	 many	 researchers	 whose	 insights	
improve	our	capacity	to	control	and	modify	living	systems	(11–14).	However,	we	still	do	
not	fully	understand	how	some	elementary	properties	of	the	interaction	of	a	TF	with	its	
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binding	 site	 on	 DNA	 affect	 the	 stochastic	 dynamics	 of	 gene	 expression	 and	 the	
acquisition	of	 information	(15).	One	of	 these	properties	 is	a	TF’s	residence	 time	on	 its	
DNA	binding	site	–	the	mean	time	that	a	TF	remains	bound	to	DNA.	The	residence	time	is	
equal	to	the	inverse	of	the	dissociation	rate	kd	between	a	TF	and	DNA.	Theoretical	and	
experimental	 work	 has	 shown	 that	 the	 dissociation	 rate	 can	 affect	 gene	 expression,	
affect	 the	size	of	gene	expression	bursts	(16–19),	 and	modulate	gene	expression	noise	
(20–23).	 However,	 it	 is	 difficult	 to	 discern	 whether	 the	 dissociation	 rate	 affects	 gene	
expression	by	altering	the	residence	time	or	the	affinity	between	a	TF	and	DNA,	because	
both	depend	on	the	dissociation	constant	kd	(affinity	is	given	by	the	ratio	Keq=kd/ka	[M],	
where	ka	is	association	rate	between	a	TF	and	DNA).		
	
Many	 TFs	 bind	 DNA	 transiently,	 with	 residence	 times	 ranging	 between	 seconds	 and	
minutes	 (24–35).	Such	TFs	 include	MYC,	 p53,	 and	 glucocorticoid	 receptors,	which	 are	
involved	in	fundamental	processes	such	as	apoptosis,	DNA	repair,	DNA	maintenance,	and	
stress	responses.	They	also	include	pioneer	TFs	that	directly	interact	with	chromatin	and	
open	it	(36–38).	The	duration	of	a	TF’s	residence	time	on	a	specific	binding	site	can	vary,	
even	 for	 different	 tissues	within	 the	 same	 organisms,	 by	 chromatin	modifications	and	
the	 interaction	 of	 the	 TF	with	 other	molecular	 components	 (24,39,40).	Such	 variation	
implies	that	residence	time	may	play	a	role	in	regulating	gene	expression.	Nevertheless,	
we	do	not	know	how	residence	time	affects	gene	expression	noise,	because	of	limitations	
in	experimental	 technology.	 For	 example,	 it	 is	difficult	 to	measure	 residence	 time	 and	
simultaneously	 quantify	 the	 rate	 of	 gene	 expression.	 It	 is	 also	 hard	 to	 quantify	 the	
number	 of	 TF	 binding	 events	 at	 a	 specific	 binding	 site	 in	 a	 given	 time	 (16,24,31).	
Moreover,	 it	 is	 challenging	 to	 experimentally	modify	 only	 residence	 time	without	 also	
affecting	affinity.	
	
Here	 we	 circumvent	 these	 limitations	 through	 a	 stochastic	 model	 of	 gene	 expression	
regulation.	With	this	model,	we	study	how	residence	time	affects	gene	expression	noise	
and	the	amount	of	information	acquired	by	a	gene	expression	system.	Our	analyses	show	
that	the	effect	of	residence	time	increases	as	the	level	of	induction	of	a	gene	decreases.	
At	high	 induction	 levels,	 residence	 time	has	no	effect	on	gene	expression.	However,	 as	
induction	levels	decrease,	shorter	residence	times	reduce	the	amount	of	gene	expression	
noise	and	produce	more	regular	gene	expression	dynamics.	Shorter	residence	times	also	
increase	 a	 gene	 regulation	 system’s	 capacity	 to	 acquire	 information	 about	 the	
concentration	 of	 a	 TF.	 In	 sum,	 shorter	 residence	 times	 improve	 a	 gene’s	 response	 to	
changes	in	its	cellular	environment.		
	
Results	
	
Model	and	main	concepts	
	
We	 use	 a	 two-state	 model	 of	 gene	 expression	 that	 represents	 the	 transcriptional	
activation	 and	 inactivation	 of	 a	 gene.	 In	 this	 model,	 TF	 molecules	 associate	 and	
dissociate	 from	 the	gene’s	 transcription	 factor	 binding	 site	 (DNAbs)	at	 rates	ka	 (M-1s-1)	
and	kd	(s-1),	 respectively.	The	regulated	gene	 is	expressed	only	when	 its	binding	site	 is	
bound	by	a	TF,	in	which	case	the	gene	is	transcribed	into	mRNA	at	rate	k1.	The	resulting	
mRNA	 is	 then	 translated	 into	 protein	molecules	 at	 rate	k2.	 Finally,	mRNA	 and	 protein	
molecules	degrade	at	rates	d1	and	d2,	respectively	(Fig.	1a).		
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Residence	 time	 is	 the	 average	 life	 span	 or	 half-life	 (t1/2)	 of	 the	 TF-DNAbs	 complex.	 In	
other	words,	residence	time	quantifies	the	stability	of	this	complex	(Fig.	1b).	Affinity	is	
quantified	with	 the	equilibrium	 constant	Keq.	 The	 equilibrium	 constant	 is	equal	 to	 the	
concentration	 of	 free	 TF	 at	 which	 half	 of	 all	 binding	 sites	 are	 occupied.	 A	 high	
equilibrium	 constant	 is	 equal	 to	 a	 low	 affinity,	 because	 it	 means	 that	 a	 large	
concentration	 of	 TF	 is	 required	 to	 occupy	 50%	 of	 binding	 sites.	 For	 a	 given	 TF	
concentration,	 the	probability	 that	a	binding	site	 is	occupied	 increases	with	 increasing	
affinity	(Fig.	1c).		
	
Although	both	affinity	and	residence	time	depend	on	the	dissociation	rate	kd,	they	can	be	
modified	independently	from	each	other.	Changing	the	dissociation	rate	will	modify	the	
residence	 time,	 but	 it	 can	 leave	 the	 affinity	 unchanged	 if	 the	 association	 rate	 changes	
appropriately	 to	 keep	 the	 ratio	 kd/ka	 constant.	 Conversely,	 by	 changing	 only	 the	
association	rate,	affinity	can	be	modified	without	altering	residence	time.	
	
Notice	that	affinity	and	TF	concentration	jointly	determine	the	level	of	induction	of	gene	
expression,	because	a	gene	is	more	likely	to	be	active	when	the	concentration	of	free	TF	
is	higher	than	its	affinity	to	DNA.	Conversely,	when	this	concentration	is	lower	than	the	
affinity,	the	gene	will	tend	to	be	inactive.	One	can	increase	the	level	of	a	gene’s	induction	
by	increasing	either	TF	concentration	or	affinity	(Fig.	1d).	Below	we	change	the	level	of	
induction	 by	 modifying	 TF	 concentration,	 but	 changing	 affinity	 itself	 yields	 the	 same	
observations	(see	Sup	Inf	1).	
	
We	 simulate	 gene	 regulation	 dynamics	 using	 Gillespie’s	 algorithm	 (41),	 which	
reproduces	 the	 stochastic	 dynamics	 of	 many	 chemical	 systems,	 using	 biologically	
meaningful	 values	 of	 all	biochemical	parameters	 (Sup	Table	 1	 and	Methods).	Because	
both	 the	mRNA	 and	 protein	 output	 of	 our	 modeled	 gene	 regulation	 system	 behave	
qualitatively	identically,	we	focus	on	the	protein	output	below	(see	Sup	Figs	for	mRNA).	
	
Short	 residence	 times	 reduce	 gene	 expression	 noise	 and	 modulate	 gene	
expression	dynamic		
	
We	 first	 study	 the	 effect	 of	 residence	 time	 and	 affinity	 on	 gene	 expression	 noise.	 To	
quantify	 noise,	 we	 quantified	 the	 size	 of	 the	 temporal	 fluctuations	 in	 the	 number	 of	
proteins,	as	the	difference	between	the	maximal	and	the	minimal	number	of	expressed	
protein	molecules	(𝑁!!"# − 𝑁!!"#),	and	averaged	this	difference	over	1000	simulations.	
Two	 alternative	noise	measures,	 the	 coefficient	 of	 variation	 and	 the	 Fano	 factor	 yield	
identical	observations	(see	Sup	Inf	2	and	Sup	Fig	1).		
	
In	 these	 simulations,	 we	 varied	 residence	 time	 within	 the	 interval	 [1s,1h],	 TF	
concentration	within	 the	 interval	 [10-11M,10-7M],	 and	 set	 the	 affinity	 to	 10-9M.	 Notice	
that	the	TF	concentration	interval	ranges	two	orders	of	magnitude	below	and	above	the	
affinity,	 which	 implies	 that	 the	 level	 of	 gene	 induction	 ranges	 from	 almost	 always	
inactive	 to	 almost	 always	 active.	 Hence,	 high	 and	 low	 TF	 concentration	 values	
correspond	to	high	and	low	induction	levels,	respectively.		
	
At	 the	highest	TF	concentration,	residence	 time	does	not	affect	noise	(Fig.	2a;	Sup	Fig.	
2a).	However,	as	the	TF	concentration	decreases,	a	longer	residence	time	increases	noise	
(Fig.	 2a;	 Sup	 Fig.	 2a).	 For	 example,	 individual	 protein	 expression	 trajectories	 at	
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extremely	 short	 (t1/2=1s)	 and	 long	 (t1/2=1h)	 residence	 times	 are	 very	 similar	 at	 the	
highest	TF	concentration	(Fig.	2b;	Sup	Fig.	2b).	However,	as	TF	concentration	decreases,	
long	residence	times	cause	sporadic,	but	large	fluctuations	in	protein	expression	(Fig.	2c	
and	d;	Sup	Fig.	2c	and	d).	
	
To	understand	 these	observations,	notice	 that	when	the	TF	concentration	 is	very	high,	
the	level	of	induction	is	high	because	a	TF	molecule	is	bound	to	DNA	most	of	the	time.	In	
this	 case,	gene	expression	resembles	 that	of	a	 constitutive	gene,	regardless	of	 the	TF’s	
residence	 time.	 In	 consequence,	 gene	 expression	 noise	 is	 only	 determined	 by	 the	
degradation	 and	 synthesis	 rates	 of	 mRNA	 and	 protein	 (1,2).	 In	 other	 words,	 it	 is	
independent	of	residence	time	(Fig.	2a	and	b;	Sup	Fig.	2a	and	d).		
	
This	is	no	longer	true	as	the	TF	concentration	decreases.	In	this	case,	the	probability	that	
a	TF	is	bound	to	DNA	at	any	one	time	decreases,	and	longer	residence	times	increase	the	
average	 amount	of	 time	 that	 a	TF	 is	either	bound	or	unbound.	 In	other	words,	 longer	
residence	 times	produce	 longer	periods	of	active	and	 inactive	gene	expression.	During	
active	 periods,	 proteins	 are	 produced,	 whereas	 during	 inactive	 periods,	 previously	
expressed	proteins	decay.	Thus,	longer	residence	times	lengthen	both	active	and	inactive	
periods,	which	results	in	large	fluctuations	in	the	number	of	proteins	(Fig.	2c	and	d;	Sup	
Fig.	 2c	 and	 d).	 Reducing	 the	 residence	 time	 (at	 constant	 induction)	 decreases	 the	
duration	of	both	active	and	inactive	periods	by	the	same	amounts.	As	a	result,	expressed	
molecules	 accumulate	 and	 decay	 for	 shorter	 time	 periods,	 and	 fluctuations	 in	 these	
molecules	become	smaller	(Fig.	2a-d;	Sup	Fig.	2a-d).		
	
In	contrast	to	its	effects	on	noise,	residence	time	does	not	affect	the	mean	level	of	protein	
expression,	 which	 only	 depends	 on	 the	 level	 of	 induction	 (Fig.	 2e;	 Sup	 Fig.	 2e).	 The	
reason	is	that	the	frequency	of	both	protein	production	and	degradation	events	(i.e.,	the	
mean	 number	 of	 proteins	 produced	 and	 degraded	 in	 a	 given	 period	 of	 time)	 is	 not	
affected	by	residence	time,	regardless	of	the	level	of	induction	(Fig.	2f;	Sup	Fig.	2f	and	3a	
and	b).	However,	as	 the	 level	of	 induction	decreases,	shorter	 residence	 times	decrease	
variation	in	the	frequency	of	production	and	degradation	events	(Fig.	2f;	Sup	Fig.	2f	and	
3a	 and	 b).	 As	 a	 consequence,	 protein	 expression	 is	 more	 homogeneous	 at	 shorter	
residence	 times,	 because	 protein	 production	 and	 degradation	 events	 alternate	 more	
regularly,	except	at	the	very	lowest	affinities	(Sup	Inf	3	and	Sup	Fig.	3c-f).	
	
Residence	time	and	information	
	
Due	to	noise,	the	regulation	of	gene	expression	transforms	a	concentration	of	a	TF	into	a	
distribution	of	expressed	mRNA	and	protein	molecules.	Different	TF	concentrations	may	
produce	 overlapping	 distributions	 of	 expressed	 molecules,	 in	 which	 case	 information	
about	 TF	 concentration	 gets	 lost.	 Reducing	 gene	 expression	 noise	 can	 reduce	 this	
overlap	 and	 thus	 also	 the	 amount	 of	 lost	 information.	 (Fig.	 3a)	 (10).	Because	 shorter	
residence	 times	 reduce	gene	expression	noise	 (Fig.	 2),	we	hypothesized	 that	 they	also	
increase	 the	 amount	of	 information	protein	which	expression	 levels	 contain	about	 the	
concentration	 of	 the	 regulating	 TF.	To	 find	 out,	we	quantified	 the	mutual	 information	
between	protein	expression	and	TF	concentration.	Mutual	information	is	an	information	
theoretical	 quantity	 that	 encapsulates	 the	 reduction	 in	 uncertainty	 about	one	 random	
variable	provided	by	knowledge	about	another	random	variable	(42)	(see	Methods).	To	
quantify	 mutual	 information,	 we	 performed	 2500	 stochastic	 simulations	 of	 gene	
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expression	 dynamics	 for	 each	 of	 n	 evenly	 distributed	 TF	 concentrations	 within	 the	
interval	 [10-7M/n,10-7M],	 exploring	 affinity	 values	within	 the	 interval	 [10-12M,10-4M].	
This	range	includes	affinity	values	below	the	minimal	TF	concentration,	where	induction	
is	 low	 regardless	 of	 TF	 concentration,	 and	 above	 the	 maximal	 concentration,	where	
induction	is	high	regardless	of	TF	concentration.		
	
In	 earlier	work,	we	have	 shown	 that	 the	 amount	 of	 information	 that	 gene	 expression	
levels	 contain	 about	 the	 concentration	 of	 the	 regulating	 TF	 depends	 on	 the	 affinity	
between	a	TF	and	its	binding	site.	At	very	low	affinities,	gene	regulation	is	insensitive	to	
TF	 concentration,	 such	 that	 gene	 expression	 conveys	 little	 information.	 At	 very	 high	
affinities,	 the	 level	 of	 gene	 induction	 is	 high	 for	 all	 TF	 concentrations,	 such	 that	 gene	
expression	 also	 conveys	 little	 information	 –	 it	 is	 similar	 to	 that	 of	 a	 constitutively	
expressed	gene	for	all	TF	concentrations	(43).	Our	current	work	shows	that	this	pattern	
holds	regardless	of	residence	time	(Fig.	3b;	Sup.	Fig.	4a).	
	
In	 contrast,	 residence	 time	 does	 affect	 acquired	 information	at	 intermediate	 affinities.	
Specifically,	even	though	the	mean	number	of	expressed	molecules	does	not	depend	on	a	
TF’s	 residence	 time	 on	 DNA	 (Fig.	 2e;	 Sup.	 Fig.	 2e),	 their	 variability	 decreases	 with	
shorter	residence	 times	 (Fig.	2a).	As	a	result,	as	 residence	 time	decreases,	 the	overlap	
between	 protein	 distributions	 decrease	 (Fig.	 3c	 and	 d;	 Sup	 Fig.	 4b	 and	 c),	 which	
increases	 the	 amount	 of	 acquired	 information	 (Fig.	 3b;	 Sup	 Fig.	 4a).	 In	 sum,	 under	
conditions	 where	 a	 gene	 regulation	 system	 can	 acquire	 information,	 shortening	
residence	time	increases	the	amount	of	acquired	information.	
	
Discussion	
	
Previous	theoretical	and	experimental	work	showed	that	gene	expression	noise	can	be	
modulated	by	the	dissociation	rate	kd	of	a	DNA-bound	TF	(16–23),	but	this	work	did	not	
distinguish	between	the	effects	of	residence	time	and	affinity.	This	distinction,	however,	
is	important	because	both	properties	depend	on	the	dissociation	rate	but	have	different	
effects	 on	 gene	 expression	 dynamics.	Here,	we	 study	 these	 properties	 separately,	 and	
show	 that	 short	 residence	 time	 can	 reduce	 expression	 noise,	 while	 in	 general	 noise	
increases	as	affinity	decreases	(Fig	2).		
	
Our	 results	 also	 show	 that	 the	 effect	 of	 residence	 time	 on	 gene	 expression	 is	 not	
independent	from	affinity.	When	a	gene	is	highly	induced,	residence	time	does	not	affect	
gene	expression.	However,	as	the	level	of	induction	decreases,	short	residence	times	can	
help	 produce	 less	 noisy	 expression.	 Short	 residence	 times	 effectively	 fragment	 gene	
activity	into	short	periods	of	active	and	inactive	expression,	which	prevents	the	excessive	
accumulation	and	depletion	of	proteins,	 and	 thus	also	excessive	stochastic	variation	 in	
gene	expression.	Similarly,	the	effect	of	affinity	on	noise	depends	on	residence	time.	 In	
particular,	 the	 effect	 of	 affinity	 is	 reduced	 when	 residence	 time	 decreases.	 However,	
noise	 can	 even	decrease	with	decreasing	 affinity	when	 residence	 times	are	 very	 short	
and	in	the	range	of	seconds	(Fig.	2a).	
	
In	 previous	 work,	 we	 showed	 that	 expressed	 proteins	 harbor	 information	 about	 the	
concentration	of	a	TF	regulating	their	expression,	if	the	TF’s	affinity	to	regulatory	DNA	is	
of	 the	 same	 order	 of	 magnitude	 as	 its	 concentration	 (43).	 Here,	 we	 show	 that	 this	
behavior	 is	 independent	 of	 residence	 time.	 However,	 because	 shorter	 residence	 times	
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render	gene	expression	less	noisy,	the	overlap	between	protein	expression	distributions	
resulting	 from	 different	 TF	 concentrations	 decreases.	 Consequently,	 shorter	 residence	
times	increase	the	ability	of	a	gene	regulation	system	to	distinguish	between	different	TF	
concentrations.		
	
Recent	technological	advances	will	permit	experimental	verification	of	our	observations.	
First,	 in	 the	 last	decade	methods	 to	quantify	 the	ability	of	 a	regulated	gene	 to	acquire	
information	about	the	concentration	of	a	TF	have	become	standardized	(10,44).	Also,	the	
effect	of	residence	time	on	noise	can	be	quantified	with	techniques	that	simultaneously	
quantify	 TF-DNA	 binding	 events	 and	 the	 production	 of	 mRNA	molecules,	 which	 are	
being	 developed	 (16).	 It	 is	 especially	 difficult	 to	 obtain	 multiple	 alleles	 of	 a	 TF	with	
different	 residence	 times	 without	 also	 altering	 the	 TF’s	 affinity	 to	 DNA.	 However,	
because	our	model	shows	that	affinity	affects	gene	expression	by	changing	the	induction	
level	 at	 a	 specific	 TF	 concentration,	 our	 observations	 hold	 regardless	 of	 whether	one	
varies	TF	concentration	or	affinity	(Sup	Inf	1).	Hence,	to	test	the	effect	of	residence	time	
on	noise	and	information	acquisition,	one	can	compensate	for	any	change	in	affinity	by	
adjusting	a	gene’s	induction	level	with	TF	concentration.		
	
Our	two	state	model	of	gene	regulation	is	simple	and	does	not	represent	processes	such	
as	the	binding	of	RNA	polymerases	to	DNA	explicitly	(45).	However,	previous	work	has	
shown	 that	 the	 two	 state	model	 produces	 similar	 gene	 expression	 dynamics	 as	more	
complex	 models	 (19),	 suggesting	 that	 our	 main	 results	 may	 hold	 for	 such	 models.	
Nevertheless,	each	additional	regulatory	requires	time,	which	may	constrain	the	amount	
of	time	that	a	TF	must	be	minimally	bound	to	DNA	before	it	can	affect	gene	expression	
(46).	 Future	 work	 also	 needs	 to	 consider	 other	 kinetic	 parameters	 regulating	 gene	
expression,	 such	 as	 the	 mRNA	 synthesis	 rate,	 because	 noise	 and	 information	 can	 be	
affected	by	these	parameters	(1,2,20,22,47–49).		
	
Our	 results	 are	 in	 agreement	 with	 previous	 work	 and	 complement	 this	 work.	 For	
example,	experimental	evidence	suggests	that	the	affinity	of	essential	regulators	of	gene	
expression,	such	as	NF-κB	and	TBP,	modulates	gene	expression	noise	(50,51).	Moreover,	
a	model	based	on	the	binding	dynamics	of	Sox2	and	Oct4,	 two	important	regulators	of	
the	pluripotency	of	stems	cells,	showed	that	long	residence	times	reduce	the	sensitivity	
of	 gene	 expression	 to	 TF	 concentration,	 because	 TFs	 with	 long	 residence	 times	 are	
bound	to	DNA	most	of	the	time	regardless	of	their	concentration	(26,31).	Another	study	
showed	 that	 negative	 regulatory	 feedback	 loops	 in	 general	 suppress	 noise	 more	
effectively	when	residence	times	are	short	(23).		
	
Our	 work	 also	 helps	 solve	 an	 apparent	 contradiction	 between	 experimental	 and	
theoretical	 work	 about	 the	 importance	 of	 residence	 time.	 In	 particular,	 it	 has	 been	
predicted	 that	 longer	residence	 times	 facilitate	gene	expression,	because	 they	 increase	
the	probability	of	a	successful	activation	of	gene	expression	by	TFs,	by	providing	longer	
time	 for	 other	 components,	 such	 as	polymerases,	 to	 successfully	bind	DNA	 (24,25,52–
54).	Experimentally	measured	residence	times,	which	are	generally	short	and	lie	within	
seconds	to	minutes	(24–35),	are	inconsistent	with	this	prediction.	Our	work	shows	that	
residence	 time	does	not	 affect	 average	 gene	 expression	 levels.	 Instead,	 residence	 time	
reduces	expression	 noise	 and	 can	 help	 signaling	 systems	 acquire	 information	without	
modifying	the	probability	of	a	successful	activation	of	gene	expression,	which	can	help	
explain	why	short	residence	times	may	be	prevalent	in	nature.		
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Methods	
	
Two-state	model	of	gene	expression	
	
To	 study	 how	 a	 transcription	 factor’s	 (TF’s)	 residence	 time	 on	 DNA	 affects	 gene	
expression,	we	built	a	gene	expression	model	in	which	a	TF	binds	to	a	DNA	binding	site	
(DNAbs)	 to	 regulate	 the	 expression	 of	 a	 nearby	 gene.	TF	molecules	 associate	with	 the	
DNA	binding	site	at	a	rate	ka	(M−1s−1),	and	dissociate	from	it	at	a	rate	kd	(s−1).	Only	when	
the	TF	is	bound	to	DNA	does	transcription	occur	(at	a	rate	k1	[s−1]).	Transcribed	mRNA	
molecules	are	degraded	at	a	rate	d1	(s−1).	Proteins	are	translated	from	mRNA	molecules	
at	a	rate	k2	(s−1),	and	degraded	at	a	rate	d2	(s−1).	
	
Stochastic	simulations	
	
To	 simulate	 the	 behavior	 of	 our	 gene	 expression	 model,	 we	 use	 Gillespie’s	 discrete	
stochastic	 simulation	 algorithm	 (41),	 using	 the	 numpy	 python	 package	 for	 scientific	
computing	 (http://www.numpy.org/).	 Gillespie’s	 algorithm	 captures	 the	 stochastic	
nature	of	chemical	systems.	It	assumes	a	well-stirred	and	thermally	equilibrated	system	
with	constant	volume	and	temperature.	The	algorithm	requires	the	probability	pj	that	a	
chemical	 reaction	 Rj	 occurs	 in	 a	 given	 time	 interval	 [t,t+τ).	 This	 probability	 pj	 is	
proportional	 to	 both	 the	 reaction	 rate	 and	 the	 number	 of	 reacting	molecules.	For	 the	
reversible	 bindings	 of	 TF	 molecules	 to	 DNA,	 the	 association	 probability	 pa	 and	 the	
dissociation	probability	pd	are	given	by	
	

𝑝! =
𝑘!
𝑉𝑁!

𝑁!𝑁!	

𝑝! = 𝑘!𝑁!" ,	
	
where	V	 is	 the	 reaction	volume,	NA	 is	Avogadro’s	number,	 and	NT,	ND,	 and	NTD	are	 the	
numbers	of	TF	molecules,	DNA	binding	sites,	 and	TF-DNAbs	complexes.	Notice	 that	 the	
dissociation	of	TF-DNAbs	complexes	is	a	first-order	reaction,	which	is	independent	of	the	
volume	 in	which	 the	 reaction	 takes	place.	 In	 contrast,	 the	association	of	TF	molecules	
with	DNA	binding	sites	is	a	second-order	reaction,	which	is	inversely	proportional	to	the	
volume.	
	
The	 probabilities	 pmRs,	 pmRd,	 pPs	 and	 pPd	 of	 mRNA	 transcription,	 mRNA	 degradation,	
protein	synthesis,	and	protein	degradation	are	given	by	
	
𝑝!"! = 𝑘!𝑁!"	
𝑝!!! = 𝑑!𝑁!" 	
𝑝!! = 𝑘!𝑁!" 	
𝑝!! = 𝑑!𝑁! ,	
	
respectively.	In	these	expressions,	the	quantities	NTD,	NmR	and	NP	are	the	numbers	of	TF-
DNA	 complexes,	mRNA	molecules	 and	 of	 protein	 molecules,	 respectively.	 Because	 we	
model	a	haploid	organism	with	only	a	single	non-leaky	DNA	binding	site,	the	probability	
of	mRNA	synthesis	can	be	reduced	to	
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𝑝!"! = 𝑘!	
	
when	the	DNA	is	bound	by	the	transcription	factor	(NTD=1),	and	to	
	
𝑝!!! = 0	
	
when	it	is	unbound	(NTD=0).		
	
Initial	conditions	for	simulations	
	
We	 assume	 that	 the	 TF	 a	 concentration	 of	 10-7M	 corresponds	 to	 a	 few	 thousand	 TF	
molecules	 per	 cell,	 a	 realistic	 number	 in	 animal	 and	 yeast	 cells	 (55,56).	 Because	 we	
model	only	one	binding	site,	the	concentration	of	free	TF	is	not	substantially	affected	by	
the	binding	of	a	single	TF	molecule	to	DNA.	We	therefore	do	not	distinguish	between	the	
free	 and	 the	 total	 TF	 concentration.	 After	 this	 simplification,	 to	 determine	 the	 initial	
conditions	of	our	model,	we	calculate	the	probability	𝑁!" that	the	binding	site	is	bound	
by	a	TF	molecule	as	
	

𝑁!" =
𝑁!

𝐾!" + 𝑁!
	

	
where	NT	 is	 the	 total	number	of	TF	molecules.	We	selected	the	 initial	state	of	 the	DNA	
(𝑁!"!)	at	random	with	binomial	probability	𝑁!"	(i.e.,	𝑁!"! = 1	if	the	DNA	is	bound	by	a	
TF	molecule,	and	zero	otherwise.	It	follows	that	
	
𝑁!! = 1− 𝑁!"! 	
𝑁!! = 𝑁! − 𝑁!"! 	
	
where	𝑁!! 	is	the	initial	state	of	the	number	of	non-bound	DNA	binding	site	and	𝑁!! 	is	the	
number	 of	 free	 TF	 molecules.	 As	 the	 initial	 state	 of	 the	 number	mRNA	 and	 protein	
molecules	we	used		
	

𝑁!"! = 𝑁!"
𝑘!
𝑑!
	

𝑁!! = 𝑁!"
!!
!!

!!
!!
,	

	
which	 are	 the	 expected	 average	 number	 of	 mRNA	 and	 protein	 molecules	 for	 a	
constitutively	expressed	gene	(2),	multiplied	by	the	probability	that	the	DNA	is	bound	by	
a	TF	molecule.		
	
Information	quantification	
	
The	number	of	molecules	of	any	chemical	species	in	a	cell	or	in	a	unit	volume	fluctuates,	
because	molecules	are	produced	and	decay	stochastically.	We	use	Shannon’s	entropy	to	
quantify	 the	 unpredictability	 caused	 by	 such	 stochastic	 fluctuations	 in	 the	 number	 of	
transcription	factor	molecules	as	
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𝐻 Pr(𝑇𝐹) = − 𝑝(𝑁!)log!𝑝(𝑁!)
!!"#$

!!!
!!"#$
!

,	

	
where	Pr(TF)	 is	 the	distribution	of	 the	number	of	 transcription	 factor	molecules	 (NT),	
and	p(NT)	 is	 the	probability	 that	 the	 system	contains	N	molecules	of	 the	 transcription	
factor.		
	
To	 estimate	 information	 we	 performed	 simulations	 from	 n	 different	 numbers	 of	
transcription	 factor	 molecules	 that	 were	 evenly	 distributed	 within	 the	 interval	
[NTmax/n,NTmax]	(n<NTmax).	For	this	reason	
	
𝐻(Pr(𝑇𝐹)) = log!𝑛.	
	
TF-DNA	binding	triggers	the	transcription	of	mRNA	molecules	that	are	then	translated	
into	protein	molecules.	We	use	the	number	of	mRNA	NmRNA	and	protein	molecules	NP	as	
the	system’s	response	or	output,	which	we	denote	as	O.		
	
A	gene	expression	system	acquires	information	when	the	number	of	expressed	proteins	
or	mRNA	reflects	the	number	of	transcription	factors.	This	information	can	be	quantified	
via	the	mutual	information		
	
𝐼 𝑇𝐹;𝑂 = 𝐻 Pr(𝑇𝐹) − 𝐻 Pr(𝑇𝐹 𝑂) ,	
	
a	widely	used	quantity	in	information	theory	(42).	It	is	equal	to	the	difference	between	
the	entropy	H(Pr(TF))	and	 the	 conditional	 entropy	H(Pr(TF|O)),	which	 represents	 the	
entropy	of	the	number	of	transcription	factor	molecules	for	a	given	number	of	mRNA	or	
protein	molecules.	 In	 other	words,	 the	mutual	 information	 I	quantifies	 the	 amount	 of	
information	that	the	number	of	expressed	mRNA	or	protein	molecules	harbors	about	the	
number	of	transcription	factor	molecules.		
	
Noise	quantification	
	
The	model	 produces	 a	 probability	 distribution	 of	 the	 number	 of	 mRNA	 and	 protein	
molecules	 for	 any	given	number	of	 transcription	 factor	molecules	NT.	 This	 response	 is	
thus	a	conditional	probability	distribution,	which	we	write	as	
	
Pr (𝑁!!"# ≤ 𝑁! ≤ 𝑁!!"#|𝑇𝐹 = 𝑁!)Pr(NOmin<NO<NOmax|TF=NT),	
	
where	 NOmin	 and	 NOmax	 are	 the	 minimal	 and	 maximal	 number	 of	 	mRNA	 or	 protein	
molecules,	 respectively.	We	performed	1000	 simulations	 to	 estimate	noise	using	 three	
different	 measures.	 The	 size	 of	 the	 fluctuation,	 Fano	 factor	 and	 the	 coefficient	 of	
variation.	The	size	of	the	fluctuations	was	quantified	as	the	average	difference	(𝑁!!"# −
𝑁!!"#).	 Fano	 factor	 as	 the	 variance	 of	 the	 response	 distribution	 divided	 by	 its	 mean	
(σ2(NP)/𝑁! ).	 Coefficient	 of	 variation	 as	 the	 standard	 deviation	 of	 the	 response	
distribution	divided	by	its	mean	(σ(NP)/𝑁!).	
	
Parameter	values	
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Our	simulations	considered	biologically	sensible	parameter	ranges.	Specifically,	 for	TF-
DNAbs	 binding,	 empirical	 data	 suggests	 that	 usually	Keq<10-8	and	 can	 reach	 picomolar	
(10-12M)	 or	 even	 smaller	 values	 (46,55,57–60).	 Because	 experimental	 research	 has	
shown	that	residence	time	varies	 from	seconds	to	tens	of	minutes	(24,27,29),	we	used	
dissociation	rates	producing	residence	time	within	this	interval	[1s,1h].		
	
For	 mRNA,	 experimentally	 measured	 half-lives	 usually	 lie	 in	 the	 range	 of	 seconds	 to	
hours	 (61–64).	 Protein	 half-lives	are	 usually	 longer	 than	mRNA	half-lives	 (65)	and	 lie	
between	hours	and	days	(63,66).	Taking	all	this	information	into	consideration	we	chose	
mRNA	half-lives	of	~3.3min,	and	protein	half-lives	of	~1.5h.	We	assumed	that	the	ratio	
k2/k1	of	the	protein	synthesis	rate	to	the	mRNA	synthesis	rate	exceeds	1.0	(67).		
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Fig	 1.	 Schematic	 description	 of	 the	 model	 and	 main	 concepts.	 (a)	 ka	 and	 kd	 correspond	 to	 the	 association	 and	
dissociation	rate,	respectively;	k1	and	k2	correspond	to	the	mRNA	and	protein	synthesis	rate,	respectively;	d1	and	d2	
correspond	to	the	mRNA	and	protein	degradation	rate,	respectively.	Relationships	of	both	residence	time	and	affinity	
with	(b)	the	stability	of	the	TF-DNAbs	complex,	and	(c)	TF-DNAbs	binding	probability.	(d)	Relationship	of	affinity	and	TF	
concentration	with	the	level	of	induction.		
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Fig	2.	Effect	of	residence	time	on	the	size	of	the	fluctuations	in	expressed	protein	molecules.	(a)	Mean	fluctuation	size	
in	the	number	of	protein	molecules	(y	axis)	at	different	levels	of	induction	as	a	function	of	residence	time	(x	axis).	(b-
d)	Example	time	trajectories	of	the	number	of	protein	molecules	NP	at	three	different	levels	of	induction.	Analyses	of	
(e)	mean	number	of	protein	(𝑁!)	(f)	mean	and	coefficient	of	variation	of	the	frequency	of	protein	production	events.	
(b-d)	Red	 and	 blue	 lines	 show	 data	 for	 short	 (1s)	 and	 a	 long	 (1h)	 residence	 times,	 respectively.	 (a,	 e	 and	 f)	High	
(TF=10-7M),	intermediate	(TF=10-9M)	and	low	(TF=10-11M)	levels	of	induction	are	indicated	in	the	color	legend	below	
the	figure.	
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Fig	 3.	 Residence	 time	 and	 information.	 (a)	 Schematic	 explanation	 of	 the	 relationship	 between	 noise	 and	 acquired	
information.	The	panel	shows	hypothetical	response	protein	distributions	produced	by	two	different	stimuli	at	a	high	
(right)	 and	 a	 low	 (left)	 level	 of	 gene	 expression	 noise.	 (b)	Acquired	 information	 at	 different	 residence	 times	 as	 a	
function	 of	 the	 affinity	 (Keq)	 between	TF	molecules	 and	DNA.	 (c	 and	 d)	Distributions	 of	 the	 number	 of	 expressed	
proteins	NP	at	three	different	TF	concentrations	(see	color	legend)	with	a	long	(c),	and	a	short	(d)	residence	time.	In	c	
and	d,	Keq	=10-9M.		

	
Supplementary	figures	
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Sup	 Fig	 1.	Effect	of	 residence	 time	on	Fano	 factor	 and	 coefficient	of	 variation.	 (a	 and	 c)	Fano	 factor	 and	 (b	and	d)	
coefficient	of	variation	in	the	number	of	expressed	protein	(a	and	b)	and	mRNA	(c	and	d)	molecules	as	a	function	of	
residence	 time	 (x	axis)	 at	 a	 high	 (TF=10-7M),	 intermediate	 (TF=10-9M)	 and	 low	 (TF=10-11M)	 levels	 of	 induction,	 as	
indicated	by	the	color	legend	below	the	figure.	
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Sup	Fig	2.	Effect	of	residence	time	on	the	size	of	the	mRNA	fluctuations.	(a)	Mean	fluctuation	size	in	the	number	of	
mRNA	molecules	(y	axis)	at	a	high	(TF=10-7M),	intermediate	(TF=10-9M)	and	low	(TF=10-11M)	level	of	induction,	as	a	
function	of	residence	time	(x	axis).	(b-d)	Example	time	trajectories	of	the	number	of	expressed	mRNA	molecules	NmRNA	
obtained	from	the	simulation	of	the	model	at	three	different	levels	of	induction.	Red	and	blue	lines	show	data	for	short	
(1s)	 and	 	 long	 (1h)	 residence	 times,	 respectively.	 Analyses	 of	 (e)	 mean	 number	 of	 mRNA	 (𝑁!"#$)	 (f)	 mean	 and	
coefficient	of	variation	of	the	frequency	of	mRNA	production	events	at	high	(TF=10-7M),	intermediate	(TF=10-9M),	and	
low	(TF=10-11M)	TF	concentrations,	as	indicated	in	the	color	legend	below	the	figure.	
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Sup	Fig	3.	Residence	time	and	both	production	and	degradation	events.	Mean	and	standard	deviation	of	(a)	protein	
and	(b)	mRNA	degradation	events.	(c	and	e)	Mean	and	(d	and	f)	standard	deviation	of	the	number	of	consecutive	(c	
and	 d)	 protein	 and	 (e	 and	 f)	mRNA	 production	 events	 as	 a	 function	 of	 residence	 time	 (x	 axes).	 All	 analyses	were	
performed	at	high	(TF=10-7M),	intermediate	(TF=10-9M)	and	low	(TF=10-11M)	affinity	values	(see	color	legends)	
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Sup	Fig	4.	Residence	time	and	acquired	information	quantified	through	mRNA	expression.	(a)	Information	acquired	at	
different	residence	times	as	a	function	of	the	affinity	(Keq)	between	TF	molecules	and	DNA.	(b	and	c)	Distributions	of	
the	number	of	proteins	NP	produced	at	 three	different	TF	concentrations	with	a	 long	 (b),	 and	a	 short	 (c)	 residence	
time.	In	c	and	d,	Keq	=10-9M.	
	

	
Sup	 Fig	 5.	Effect	of	 residence	 time	on	Fano	 factor	 and	 coefficient	of	 variation.	 (a	 and	 c)	Fano	 factor	 and	 (b	and	d)	
coefficient	of	variation	in	the	number	of	protein	(a	and	b)	and	mRNA	(c	and	d)	molecules	as	a	function	of	residence	
time	(x	axes)	at	high	(Keq=10-11M),	intermediate	(Keq=10-9M)	and	low	(Keq=10-7M)	affinity	values,	as	indicated	by	the	
color	legend	below	the	figure.	
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Sup	Fig	6.	Effect	of	residence	time	on	the	expression	dynamic	of	protein	molecules.	(a)	Mean	fluctuation	size	in	the	
number	of	protein	molecules	(y	axis)	at	high	(Keq=10-11M),	intermediate	(Keq=10-9M)	and	low	(Keq=10-7M)	affinities,	as	
a	function	of	residence	time	(x	axis).	(b-d)	Example	time	trajectories	of	the	number	of	protein	molecules	NP	obtained	
from	the	simulation	of	the	model	at	the	three	different	affinities.	Red	and	blue	lines	show	data	for	short	(1s)	and	long	
(1h)	 residence	 times,	 respectively.	Analyses	 of	 (e)	mean	 number	 of	 proteins	 (𝑁!),	 and	 (f)	mean	 and	 coefficient	 of	
variation	of	the	frequency	of	protein	production	events.	
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Sup	Fig	7.	Effect	of	residence	time	on	time	on	the	expression	dynamic	of	mRNA	molecules.	(a)	Mean	fluctuation	size	in	
the	number	of	mRNA	molecules	(y	axis)	at	high	(Keq=10-11M),	intermediate	(Keq=10-9M)	and	low	(Keq=10-7M)	affinity	
values,	as	a	 function	of	 residence	 time	(x	axis).	 (b-d)	Examples	 time	 trajectories	of	 the	number	of	expressed	mRNA	
molecules	NmRNA	at	three	different	affinity	values.	Red	and	blue	lines	show	data	for	short	(1s)	and	long	(1h)	residence	
times,	respectively.	Analyses	of	(e)	mean	number	of	expressed	mRNA	molecules	(𝑁!"#$),	and	(f)	mean	and	coefficient	
of	variation	of	the	frequency	of	mRNA	production	events	
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Sup	Fig	8.	Residence	time	and	both	production	and	degradation	events.	Mean	and	standard	deviation	of	(a)	protein	
and	(b)	mRNA	degradation	events.	(c	and	e)	Mean	and	(d	and	f)	standard	deviation	of	the	number	of	consecutive	(c	
and	 d)	 protein	 and	 (e	 and	 f)	mRNA	 production	 events	 as	 a	 function	 of	 residence	 time	 (x	 axes).	All	 analyses	were	
performed	at	high	(Keq=10-11M),	intermediate	(Keq=10-9M)	and	low	(Keq=10-7M)	affinity	values	(see	color	legends)	
	
	
Sup	Table	1.	Parameter	values	used	for	the	simulations.	kd,	k1,	k2,	d1,	d2	units	are	s-1.	ka	units	are	M−1s−1.	
The	concentration	of	the	TF	is	in	M.	
	

	 ka	 kd	 k1	 k2	 d1	 d2	 TF	conc	
Fig	2	

Sup	Fig	1a	
[2.7*105,	108]	 [2.7*10-4,1]	 0.01	 0.011	 0.005	 0.00022	 	[10-11,10-7]	
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and	b	
Sup	Fig	3a,	
c	and	d	
Fig	3	 [2.7,	1.012]	 [2.7*10-4,1]	 0.01	 0.011	 0.005	 0.00022	 [10-11,10-7]	

Sup	Fig	1c	
and	d	

Sup	Fig	2	
Sup	Fig	3b,	
e	and	f	

[2.7*105,	108]	 [2.7*10-4,1]	 0.01	 NA	 0.0001	 NA	 [10-11,10-7]	

Sup.	Fig	4	 [2.7,	1.012]	 [2.7*10-4,1]	 0.01	 NA	 0.0001	 NA	 [10-11,10-7]	
Sup	Fig	5a	
and	b	

Sup	Fig	6	
Sup	Fig	8a,	
c	and	d	

[2.7*103,	1010]	 [2.7*10-4,1]	 0.01	 0.011	 0.005	 0.00022	 10-9	

Sup	Fig	5c	
and	d	

Sup	Fig	7	
Sup	Fig	8b,	
e	and	f	

[2.7*103,	1010]	 [2.7*10-4,1]	 0.01	 NA	 0.0001	 NA	 10-9		

	
Supplementary	information	
	
1.	Affinity	and	induction	level	
	
As	 explained	 in	 the	main	 text,	 the	 affinity	 of	 a	 TF	 to	 its	 DNA	 binding	 site	 and	 the	 TF	
concentration	determine	the	induction	level	of	a	gene	(Fig	1d).	Hence,	we	hypothesized	
that	the	effect	of	affinity	on	gene	expression	could	be	reproduced	by	a	change	in	the	TF	
concentration.	 To	 find	 out,	 we	 repeated	 all	 our	 analyses,	 but	 instead	 of	 varying	 the	
affinity,	 we	 set	 it	 to	 a	 constant	 value	 of	 10-9M.	We	 then	 varied	 the	 TF	 concentration	
within	 the	 interval	 [10-7M,10-11M].	 Analogous	 to	 our	 analysis	 in	 the	 main	 text,	 this	
interval	 includes	 TF	 concentrations	 two	 orders	 of	 magnitude	 above	 and	 below	 the	
affinity.	 Hence,	 at	 the	 highest	 TF	 concentration,	 the	 level	 of	 induction	 is	 high	 and	 the	
regulated	gene	 is	almost	always	active.	Conversely,	at	 the	 lowest	TF	concentration,	 the	
level	of	induction	is	low	and	the	regulated	gene	is	almost	always	inactive.	We	were	able	
to	reproduce	all	observations	we	had	made	by	varying	affinity	through	the	variation	of	
TF	 concentrations.	 Most	 importantly,	 as	 the	 level	 of	 induction	 decreases,	 shorter	
residence	times	reduce	noise	(compare	Fig	2,	Sup	Fig.	1	and	Sup	Fig	2	with	Sup	Fig.	5-7),	
producing	a	more	homogenous	and	regular	dynamic	of	gene	expression	(compare	Sup	
Fig.	3	with	Sup	Fig.	8).	Hence,	our	observations	show	that	affinity	affects	gene	expression	
dynamics	mainly	through	its	effect	on	gene	induction.	
	
2.	Residence	time	and	strength	of	noise	
	
To	study	the	effect	of	residence	time	and	affinity	on	the	level	of	gene	expression	noise,	
we	also	quantified	 the	Fano	 factor,	and	 the	 coefficient	 of	 variation	of	 gene	 expression.	
The	Fano	factor	is	equal	to	the	variance	in	the	number	of	expressed	molecules	divided	by	
its	mean	(σ2(NP)/𝑁!),	while	the	coefficient	of	variation	is	equal	to	the	standard	deviation	
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divided	 by	 the	 mean	 (σ(NP)/𝑁! ).	 Both	 measures	 provide	 information	 about	 the	
dispersion	of	the	distribution	of	expressed	molecules	relative	to	its	mean.		
	
The	 Fano	 factor	 and	 the	 coefficient	 of	 variation	 display	 the	 same	 behavior	 as	 the	
standard	 deviation	 in	 the	 number	 of	 expressed	 molecules	 (i.e.,	 the	 size	 of	 the	
fluctuations).	When	a	gene	is	highly	induced	at	the	highest	affinity	value,	residence	time	
does	not	 affect	 any	of	 these	quantities	 (Sup	Fig.	 1).	 As	 explained	 in	 the	main	 text,	 the	
reason	is	that	the	regulated	gene	behaves	like	a	constitutive	gene	in	this	case,	where	the	
fluctuations	 of	 protein	 concentrations	 around	 their	 mean	 do	 not	 depend	 on	 a	 TF’s	
residence	time	(Fig.	2a	and	d;	Raj	and	van	Oudenaarden	2008).		
	
At	the	opposite	extreme,	as	induction	approaches	zero,	longer	residence	times	increase	
the	Fano	factor	and	the	coefficient	of	variation.	The	reason	is	that	longer	residence	times	
produce	 larger	 fluctuations	 in	 the	 number	 of	 expressed	 molecules	 (Fig.	 2a).	 Not	
surprisingly	 then,	 the	variance	 in	protein	number	 is	higher	 for	 longer	residence	 times,	
which	increases	the	strength	of	noise	(Sup	Fig.	1),	because	the	mean	protein	and	mRNA	
expression	is	not	affected	by	residence	time	(Fig.	2e;	Sup	Fig.	2e).	In	sum,	similar	to	our	
results	 in	 the	 main	 text,	 as	 the	 level	 of	 induction	 decreases,	 the	 amount	 of	 noise	
decreases	with	residence	time.		
	
3.	Protein	and	mRNA	production	and	degradation	events	
	
Because	 shorter	 residence	 times	 (at	 submaximal	 induction)	 reduce	 variation	 in	 the	
frequency	 of	 protein	 production	 and	 degradation	 events,	 we	 hypothesized	 that	
production	and	degradation	events	 should	alternate	more	 regularly	 at	 short	 residence	
times,	such	that	the	number	of	consecutive	production	events	(i.e.,	the	number	of	protein	
production	 events	 without	 any	 intervening	 degradation	 event	 should	 decrease).	 To	
validate	this	hypothesis,	we	quantified	the	number	of	consecutive	production	events	at	
different	levels	of	induction	and	residence	times.	When	induction	is	high,	residence	time	
does	 not	 affect	 the	 number	 of	 consecutive	 production	 events	 (Sup.	 Fig.	 3c	 and	 e),	
because	gene	expression	resembles	that	of	a	constitutive	gene	at	all	residence	times	(Fig.	
2a	and	b).	However,	as	 induction	decreases,	shorter	residence	times	decrease	both	the	
mean	and	standard	deviation	number	of	consecutive	production	events	(Sup	Fig.	3c-f),	
showing	that	production	and	degradation	events	alternate	more	frequently.		
	
One	exception	to	this	pattern	occurs	at	the	lowest	level	of	induction.	Here,	the	mean	and	
standard	deviation	of	the	number	of	consecutive	production	events	reaches	a	maximum	
at	intermediate	residence	time	and	decreases	as	the	residence	time	increases	(Sup	Fig.	
3c-f,	yellow).	We	believe	that	the	reason	is	that	most	production	events	tend	to	occur	in	
a	few	but	long	periods	of	active	gene	expression	when	the	induction	level	is	low	and	the	
residence	 time	 is	 long.	 During	 these	 long	 periods	 of	 active	 gene	 expression,	 protein	
expression	behaves	as	for	a	highly	induced	gene,	which	has	a	smaller	mean	and	standard	
deviation	 of	 the	 number	 of	 consecutive	 production	 events	 (Sup.	 Fig.	 3c-f).	 Notice,	
however,	 that	 this	 dynamic	will	 still	 produce	 high	 levels	 of	 noise,	 because	mRNA	 and	
protein	molecules	will	fluctuate	between	very	low	and	very	high	levels	(Fig	2a;	Sup	Fig.	
2a).	In	conclusion,	the	more	frequent	alternation	of	production	and	degradation	events	
observed	at	shorter	residence	times	produce	a	more	regular	and	less	noisy	dynamic	of	
expression.	
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