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Abstract 6 

Current human genome sequencing assays in both clinical and research settings 7 

primarily utilize short-read sequencing and apply resequencing pipelines to 8 

detect genetic variants. However, structural variant (SV) discovery remains a 9 

considerable challenge due to an incomplete reference genome, mapping errors 10 

and high sequence divergence. To overcome this challenge, we propose an 11 

efficient and effective whole-read assembly workflow with unsupervised graph 12 

mining algorithms on an Apache Spark large-scale data processing platform 13 

called ConnectedReads. By fully utilizing short-read data information, 14 

ConnectedReads is able to generate haplotype-resolved contigs and then 15 

streamline downstream pipelines to provide higher-resolution SV discovery 16 

than that provided by other methods, especially in N-gap regions. Furthermore, 17 

we demonstrate a cost-effective approach by leveraging ConnectedReads to 18 

investigate all spectra of genetic changes in population-scale studies. 19 

 20 

Background 21 

Whole-genome sequencing (WGS) is increasingly used in biomedical research, 22 

clinical, and personalized medicine applications to identify disease- and drug-23 

associated genetic variants in humans, all with the goal of advancing precision 24 

medicine [1]. At present, next-generation sequencing (NGS, also called short-25 

read sequencing (SRS)) is a well-established technology used to generate 26 

whole-genome data due to its high throughput and low cost [2]. Resequencing, 27 

especially of human samples, is one of the popular applications of NGS. This 28 

process maps raw reads against a reference genome and determines all kinds of 29 
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 2 

genomic variations, including single nucleotide polymorphisms (SNPs) and 1 

indels as well as genetic rearrangements and copy-number variants (CNVs) [3]. 2 

However, a fundamental flaw in the resequencing pipeline is that it ignores the 3 

correlation between sequence reads; thus, resequencing does not fully and 4 

properly utilize sequence data and may generate inconsistent alignments, 5 

which make variant calling, especially structural variant (SV) calling, more 6 

complicated [4, 5]. Since the human reference genome is incomplete and 7 

contains many low-complexity regions, assembling sequence reads without 8 

reference bias would be a proper way to overcome the above challenges. 9 

Nonetheless, assembly-based approaches for WGS data suffer from several 10 

computational challenges, such as high computing resource requirements and 11 

long turnaround times. 12 

In this article, we propose an efficient whole-read assembly workflow with 13 

unsupervised graph mining algorithms on an Apache Spark large-scale big data 14 

processing platform called ConnectedReads. By leveraging the in-memory 15 

cluster computing framework of Apache Spark [6], ConnectedReads takes less 16 

than 20 hours to assemble 30-fold human WGS data and generates 17 

corresponding long haplotype-resolved contigs for downstream analysis, such 18 

as read mapping, variant calling or phasing. To evaluate the performance of 19 

ConnectedReads, we use 68 high-confidence insertions in the NA12878 sample 20 

detected by svclassify as SV benchmarks [7]. To demonstrate the ability of 21 

ConnectedReads, three samples from different populations are used. Through 22 

ConnectedReads, we are able to investigate unique non-reference insertions 23 

(UNIs) and non-repetitive, non-reference (NRNR) sequences from population 24 

datasets [8, 9]. Furthermore, ConnectedReads provides high resolution for SVs, 25 

especially on insertions. In conclusion, ConnectedReads optimizes NGS reads 26 

to generate long haplotype-resolved contigs, not only reducing mapping error 27 

but also streamlining SV detection. 28 

 29 
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 3 

Results 1 

Data preparation 2 

To assess the utility of ConnectedReads, three WGS datasets from three 3 

different ethnic groups were selected from publicly available databases, as 4 

listed in Table 1, including NA12878 of European ancestry, NA24694 of Asian 5 

ancestry, and NA19240 of African ancestry. In addition, the samples were 6 

sequenced by three different Illumina platforms, namely, the NovaSeq 6000 7 

(NA12878), HiSeq 2500 (NA24694), and HiSeq X Ten (NA19240) platforms. 8 

Therefore, we believe that these datasets are representative of the majority of 9 

read-world data. 10 

 11 

Table 1. Description of WGS datasets 12 

Sample Platform Coverage Description Source 

NA12878 NovaSeq 6000 30X HG001 (Population: CEU) *a 

NA24694 HiSeq 2500 30X HG006, Father of The Han Chinese GIAB Trio *b 

NA19240 HiSeq X Ten 35X Yoruba (Nigeria) (Population: YRI) *c 

Data sources: 13 

*a https://www.ebi.ac.uk/ena/data/view/ERR2438055 14 

*b https://www.ncbi.nlm.nih.gov/sra/SRX1388455 15 

*c https://www.ncbi.nlm.nih.gov/sra/SRX4637790 16 

 17 

Evaluations 18 

The results for the datasets in Table 1 obtained by applying the ConnectedReads 19 

workflow with default settings are listed in Table 2. ConnectedReads is clearly 20 

able to reduce the number of contigs and total base pairs by more than 96% and 21 

87%, respectively. Since ConnectedReads generates haplotype-resolved contigs 22 

based on paired-end information, any two contigs would not be assembled 23 

together without sufficient support for paired-end information or overlaps. 24 

Although ConnectedReads aims to construct more accurate haplotype-aware 25 

contigs rather than longer ones, it is usually able to construct several contigs of 26 

more than 30 Kbps. In addition, there are 1,402,511, 1,224,389 and 2,082,886 27 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 20, 2019. ; https://doi.org/10.1101/776807doi: bioRxiv preprint 

https://doi.org/10.1101/776807
http://creativecommons.org/licenses/by-nc/4.0/


 4 

contigs of >=1 Kbps for NA12878, NA24694 and NA19240, respectively. 1 

Furthermore, the length of contigs is strongly correlated with coverage and read 2 

length. The deeper the coverage is, the longer the contigs that can be generated 3 

are. 4 

 5 

 6 

 7 

Table 2. Description of the contigs of three datasets generated by 8 

ConnectedReads. 9 

Sample NA12878 NA24694 NA19240 

Number of contigs 16,348,524  18,900,370  18,261,647  

Total base pairs (bps) 10,466,069,046  9,925,886,082  14,093,570,587  

Average length 640  525  772  

Longest contig 37,619  33,904  32,145  

# of singletons (<=151) 8,351,671  11,305,117  8,355,394  

>=1 Kbps 2,899,483  2,470,630  4,487,568  

>=2 Kbps 1,402,551  1,224,389  2,082,886  

>=5 Kbps 263,878  256,178  277,357  

 10 

ConnectedReads offers two advantages for downstream analysis. One is 11 

mapping recovery, and the other is SV detectability. Both of these advantages 12 

are described comprehensively by the following experimental results and case 13 

studies. 14 

 15 
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 1 

Fig. 1. Mapping recovery of NA12878 (short reads vs. ConnectedReads). 2 

BWA and minimap2 are adopted for the short-read data and 3 

ConnectedReads contigs, respectively. Recovery Rate = # recovered / (# 4 

recovered + # uncovered).  5 

 6 

First, mapping recovery is the best way to evaluate the advantage of 7 

ConnectedReads. According to the evolution of NGS technology in recent years, 8 

longer reads can reduce two kinds of mapping errors, namely, false mapping 9 

and uncovered regions based on the reference genome [10]. However, it is hard 10 

to determine whether a mapping record is false because of several complicated 11 

situations, such as sequencing errors, an incomplete reference genome, high 12 

sequence divergence and SVs [5]. Therefore, the recovery rate is a proper 13 

measurement for evaluating the performance of ConnectedReads and SRS. 14 

Recovery refers to the regions of the reference genome that have no short reads 15 

mapped by using Genome Analysis Toolkit (GATK) Best Practices (i.e., BWA-16 

MEM) [11] but have mapping records in the ConnectedReads dataset by using 17 

minimap2 [12]. In terms of NA12878 mapping recovery, as illustrated in Fig. 1, 18 

there is a 15%-90% recovery rate for each chromosome (excluding chrY). For 19 

example, chr1 has 319,018 uncovered bps with SRS, but 135,253 bps (42.4%) 20 

can be recovered by ConnectedReads. The best recovery rate (89.6%) is on 21 

chr21, and the worst recovery rate (15.4%) is on chr17. Large regions are often 22 
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 6 

recovered when large deletions occur. Overall, ConnectedReads is able to 1 

reconstruct the mapping information for uncovered regions in the reference 2 

genome by using SRS data, and it may be the best candidate complementary to 3 

Illumina short-read data. 4 

 5 

 6 

Fig. 2. Number of SV vs. MAPQ (NA12878). The priority order used for 7 

counting is insertion > deletion > soft-/hard-clipped sequence. Any two 8 

SVs will be merged if their distance is less than 50 bps. This means that if 9 

one insertion and one deletion are encountered in the same location, only 10 

one insertion is counted. 11 

 12 

Second, SV detection remains a challenge in SRS [13]. Using ConnectedReads 13 

technology will significantly mitigate this challenge because ConnectedReads 14 

has the same competitive advantage as long-read sequencing (LRS) from 15 

Nanopore [14] and PacBio [15]. The longer the read is, the more correct the 16 

mapping result is and the more easily SVs can be found. Fig. 2 shows the 17 

numbers of insertions and deletions identified in NA12878. The method is 18 

simply based on a CIGAR string generated by minimap2. When the threshold 19 

of mapping quality (MAPQ) is increased, fewer insertions and detections are 20 

identified. Since several alignment records with an MAPQ of 0 were falsely 21 

mapped in our investigation, the threshold of MAPQ was set to 1 in the 22 
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 7 

following experiments to balance the precision and sensitivity of SV detection. 1 

In addition, several recent studies have revealed that every human genome has 2 

approximately 20,000 SVs that span at least 10 million bps [16, 17]. 3 

ConnectedReads identifies 21,855 SVs, and the number of SVs is similar to that 4 

obtained in previous studies [16, 17]. 5 

 6 

 7 

Fig. 3. SV length distribution of NA12878. The peak at a length of 251-300 8 

is attributed primarily from Alu elements. 9 

 10 

Furthermore, an interesting phenomenon is observed when the insertions and 11 

deletions shown in Fig. 2 are sorted by length (Fig. 3). Based on the 1000 12 

Genomes Project and several studies [18, 19], the number of SVs decreases as 13 

the length of the SVs increases. Therefore, the majority of the SVs are small 14 

indels (<50 bps). Then, the trend of the distribution slightly decreases as the 15 

length of the SVs increases, except for the peak at 250-300 bps. This change is 16 

due to abundant Alu elements whose body lengths are approximately 280 bases 17 

[20]. In addition, several studies have reported this phenomenon when using 18 

PacBio LRS [16]. Therefore, ConnectedReads is able to complement SRS in not 19 

only mapping coverage but also SV detection. 20 

 21 
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 8 

Comparison against a high-confidence 1 

truth set 2 

To evaluate the sensitivity of ConnectedReads in SV detection, the benchmark 3 

dataset collected by svclassify [7] is used. Since insertions are more difficult to 4 

detect than deletions, the 68 high-confidence insertions from svclassify are 5 

chosen as the insertion benchmarks in this paper. Additionally, two well-known 6 

variant callers are selected for performance evaluation: pbsv [21] for PacBio 7 

LRS and FermiKit [22] for Illumina SRS. Both FermiKit and ConnectedReads 8 

adopt assembly-based approaches to prevent reference bias. The results for the 9 

insertion benchmark data are listed in Table 3. PacBio LRS data are usually able 10 

to cover the whole region of most SVs, so pbsv achieves a 91.2% detection rate. 11 

However, FermiKit detects only 28 insertions since it aims to construct the 12 

complete sequence for each insertion. Since most WGS samples are sequenced 13 

by SRS and have a coverage of approximately 30X, it is quite hard to reconstruct 14 

the complete sequence (including novel insertions) through de novo assembly. 15 

Therefore, ConnectedReads provides a naïve insertion caller to relax the 16 

constraint by proposing three levels of detection, namely, completely detected, 17 

partially detected, and potentially detected. The ConnectedReadsINS caller has 18 

a strict criterion because it is based on both completely detected and partially 19 

detected insertions. The ConnectedReadsSV caller has a lenient criterion 20 

because it accommodates all three levels of detection. As shown in Table 3, 21 

ConnectedReadsINS and ConnectedReadsSV achieve 86.8% and 95.6% detection 22 

rates, respectively, indicating that ConnectedReads is able to achieve the same 23 

level of insertion-detection performance as PacBio LRS. Therefore, the above 24 

experimental results give us confidence to investigate SVs in population-scale 25 

data. 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 
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 9 

Table 3. Long insertion benchmarks in NA12878 from svclassify 1 

Method Detection rate (%) 
Number of insertions  

with complete sequences 

pbsv (PacBio)* 91.2 62 

FermiKit 41.2 28 

ConnectedReadsINS 86.8 32 

ConnectedReadsSV 95.6 32 

*The result of pbsv from NIST’s Genome in a Bottle (GIAB) project is available at ftp://ftp-2 

trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/analysis/PacBio_pbsv_05212019/HG001_GRCh38.pbs3 

v.vcf.gz 4 

 5 

Therefore, ConnectedReads is competent at SV detection, especially for 6 

insertions. Then, the next question that we are interested in is how many unique 7 

SVs exist in each population. According to Kehr’s findings (in Table S4 of [9]), 8 

there are 372 SVs in all Icelanders. After removing redundant SVs and merging 9 

adjacent SVs, 248 distinct SVs are represented as the second set of benchmark 10 

data in this paper. We are eager to know whether these 248 SVs are unique to 11 

Icelanders or shared by all populations. Therefore, the three samples from 12 

different continents shown in Table 1 are processed by ConnectedReads, and 13 

then minimap2 is used to generate alignment records for their ConnectedReads 14 

contigs. Then, we manually evaluate whether the 248 SVs exist in the three 15 

samples and show the result in Table 4. More than 95% of the SVs found in all 16 

Icelanders are found in the three different populations, and only one SV cannot 17 

be found in any of the three given samples. It is obvious that most common SVs 18 

in Icelanders are not unique to Icelanders. Additionally, approximately 40 SVs 19 

should not be classified as SVs in the given samples because they are composed 20 

of multiple small variants. More details will be discussed in the next section. It 21 

is believed that ConnectedReads provides us with better resolution than other 22 

tools to observe SVs. 23 

 24 

 25 

 26 

 27 

 28 
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 10 

Table 4. The SV benchmarks from all Icelanders. 1 

Sample Race 
Detected Undetected 

SV Multiple small variants Not found Uncovered 

NA12878 Caucasian 204 39 2 3 

NA24694 Asian 198 40 2 8 

NA19240 African 205 39 1 3 

 2 

Discussion 3 

Accuracy of insertion length 4 

In the above section, ConnectedReads not only was complementary to the 5 

resequencing pipeline of SRS in terms of uncovered regions but also was able 6 

to detect SVs, especially long insertions. For example, at least 85% of long 7 

insertions can be detected by ConnectedReads, and 32 insertions are 8 

completely constructed, as shown in Table 3. Interestingly, most of the 9 

insertion sequences constructed by ConnectedReads are shorter than those in 10 

the report provided by svclassify. Since svclassify leverages Spiral Genetics to 11 

identify the 68 high-confidence insertions, PacBio LRS is adopted as an 12 

independent reference. As shown in Fig. 4(a), most of the insertions identified 13 

by ConnectedReads are apparently shorter than those identified by Spiral 14 

Genetics. However, Fig. 4(b) shows that 24 of 32 insertions have identical 15 

lengths when identified by PacBio and ConnectedReads. In addition, the 16 

remaining insertions have only slight differences. The difference between the 17 

results from svclassify and ConnectedReads could have two major causes. First, 18 

sequencing-related issues, including wet-laboratory processes and sequencing 19 

platforms, should be the main cause. Second, the different data analysis 20 

pipelines will lead to different results, especially when using different genome 21 

references. ConnectedReads and PacBio adopt HG38, but svclassify uses HG19. 22 

For comparison, the insertions provided by Spiral Genetics are transferred to 23 

HG38 by using UCSC LiftOver [23]. The step for transforming the coordinates 24 

might also lead to inconsistencies. Regardless, ConnectedReads with SRS can 25 

construct complete and accurate insertion sequences as well as PacBio LRS can. 26 

 27 
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 1 

Fig. 4. Comparison of insertion lengths among three approaches. (a) Spiral 2 

Genetics vs. ConnectedReads, (b) PacBio vs. ConnectedReads. The gray 3 

dashed line is the 1:1 line. The green and blue dashed lines in (a) and (b), 4 

respectively, represent the moving average of the comparison. 5 

 6 

Granularity of SV detection 7 

Another interesting phenomenon shown in Table 4 caught our attention. 8 

Although common SVs in Icelanders exist in different populations, 9 

approximately 40 of the SVs should not be classified as SVs (³ 50 bps) because 10 

they are composed of multiple small variants, as illustrated in Fig. 5. Fig. 5(a) 11 

and Fig. 5(b) contain only 13 SNPs and 13 deletions spanning 60 bps and 80 12 

bps, respectively. When many adjacent variants occur in any individual, most 13 

mapping tools have limited information with which to correctly arrange reads 14 

with many adjacent variants and then straightforwardly choose to either 15 

employ soft/hard clipping or categorize them as unmapped. This limitation will 16 

somehow guide most variant callers to identify these regions as SVs. 17 

ConnectedReads can prevent such false mapping and help variant callers detect 18 

the adjacent variants correctly and precisely. 19 
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 1 
(a) Multiple SNPs 2 

 3 
(b) Multiple deletions 4 

Fig. 5. Examples of NRNR sequences (multiple small variants). (a) Thirteen 5 

adjacent SNPs in the intron of SRGAP1. (b) Thirteen adjacent deletions in 6 

the intron of BICC1. 7 

 8 

Furthermore, ConnectedReads is able to mitigate the impact on downstream 9 

analysis due to the incomplete human reference genome. The most recent 10 

human genome still has many ambiguous areas (N-gaps), and they are mainly 11 

located in centromeres and telomeres. Fig. 6 illustrates that two ambiguous 12 

gaps can be assembled by using ConnectedReads and that the sequences are 13 

totally identical among the three individuals from different populations. This 14 

finding gives us strong confidence that most humans might have the same 15 
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sequence in the two N-gap regions. By randomly selecting two Chinese adults, 1 

the occurrence of identical sequences in the N-gap regions is confirmed by 2 

Sanger sequencing, as performed by a Clinical Laboratory Improvement 3 

Amendments (CLIA)-certificated laboratory. The length of the ambiguous 4 

region in Fig. 6(a) should be corrected from 382 to 223 bps. In addition, the 5 

length of ambiguous regions in Fig. 6(b) should be shortened from 45 to 31. 6 

Based on these cases, ConnectedReads is able to provide a cost-effective 7 

approach with which to complete the human reference genome. 8 

 9 

(a) N-gap near centromere of chr1 10 

 11 

(b) N-gap near centromere of chr20 12 

Fig. 6. The contigs from three individuals cross the entire N-gap regions 13 

near the centromere of (a) chromosome 1 and (b) chromosome 20. Based 14 

on the alignment result, the sequences in the N-gap are identical among 15 
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the three individuals. (a) The genomic location of IGV is 1 

chr1:124,977,874-124,978,413 of HG38. (b) The genomic location of IGV 2 

is chr20:29,447,807-29,447,908 of HG38. 3 

 4 

Correctness of sequence assembly 5 

The next topic for the evaluation of ConnectedReads is correctness. To 6 

comprehensively investigate the sequence assembly correctness of 7 

ConnectedReads, insertion sequences, soft-clipped sequences and unmapped 8 

contigs are selected and then identified as being from Homo sapiens or just 9 

chimeric DNA sequences resulting from false reconstruction. After removing 10 

sequences with a length < 1,000 bps, there are 37, 384 and 411 insertions, soft-11 

clipped sequences and unmapped contigs, respectively. By using BLAST to find 12 

any homologous sequences in the National Center for Biotechnology 13 

Information (NCBI) non-redundant sequence (nr) database, each sequence can 14 

be identified as human or not. As shown in Fig. 7, 35.1%, 46.6% and 37.7% of 15 

the insertions, soft-clipped sequences and unmapped contigs are identical to 16 

Homo sapiens DNA sequences in the nr database. As the threshold of similarity 17 

is continuously lowered, more evidence can be found to support the sequence 18 

assembly correctness of ConnectedReads. However, there are six sequences 19 

without any support when the threshold is set to 20%. Two of the contigs have 20 

low-complexity content, and two are matched to several entries but with less 21 

than 10% support. The last two unmapped contigs (CONTIG-8337086 and 22 

CONTIG-15793805) are more than 10 Kbps in length. CONTIG-15793805 23 

covers all of CONTIG-8337086 in reverse-complement mode, so CONTIG-24 

15793805 is represented and shown in Fig. 8. CONTIG-15793805 is almost fully 25 

covered by several Homo sapiens sequences, some of which overlap. Therefore, 26 

these non-reference contigs constructed by ConnectedReads are all from Homo 27 

sapiens. Based on the above findings, ConnectedReads achieves high data 28 

correctness. 29 

 30 
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 1 

Fig. 7. Distribution of BLAST queries for non-reference sequences identified 2 

by ConnectedReads. (a) From insertions, (b) from soft-clipped sequences 3 

and (c) from unmapped contigs. The x-axis shows the similarity of the 4 

query results by BLAST. NUI means that the matched result is annotated 5 

as a non-reference unique insertion. Homo sapiens means that the 6 

matched result is from Homo sapiens or Human BAC. 7 

 8 
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Fig. 8. BLAST result for CONTIG-15793805. Six long Homo sapiens contigs 1 

are identified with low E-values. Since some of them overlap, the 2 

alignment result gives us strong confidence in the data correctness of 3 

ConnectedReads. 4 

 5 

Translocation-based insertions 6 

Furthermore, another way to evaluate the data correctness of ConnectedReads 7 

is to check whether there is any translocation. If any two unrelated sequences 8 

are incorrectly assembled together, it will cause a fake translocation event, in 9 

which a contig is mapped to multiple chromosomes. Table 5 lists the 13,686 10 

contigs with multiple alignment records on two chromosomes in sample 11 

NA12878. After removing singletons and filtering out low-MAPQ records 12 

(MAPQ < 60), 71 qualitied contigs are represented by 22 translocation groups. 13 

 14 

Table 5. Translocation-based insertions in NA12878. 15 

Item Number 

Number of contigs mapped on at least two chromosomes 13,686 

Number of contigs after removing singletons 2,075 

Number of qualified contigs  71 

Number of high-confidence translocation groups 22 

Number of translocation-based insertions 8 

 16 

Interestingly, eight translocation groups have one clear breakpoint on one 17 

chromosome but two breakpoints on another chromosome. As shown in Fig. 18 

9(a), for example, CONTIG-6374680 and CONTIG-1880453 have identical 19 

breakpoints at chr3:110694547. However, CONTIG-6374680 and CONTIG-20 

1880453 have their own breakpoints at chr1:108952231 and chr1:108952660, 21 

respectively. Thus, in NA12878, the 430-bp sequence in intron 1 of CLCC1 is 22 

inserted at chr3:110694547. Fig. 9(b) also shows that the 697-bp sequence in 23 

exon 10 of BTBD7 is inserted into intron 1 of SLC2A5. These translocation 24 

groups are called translocation-based insertions. ConnectedReads proposes a 25 

naïve way to investigate these translocation-based insertions. In summary, 26 
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ConnectedReads not only constructs genome sequences precisely but also 1 

facilitates SV detection by mitigating reference mapping bias. 2 

 3 

 4 

(a) Insertion sequence from CLCC1 intron 1 5 

 6 

 7 

(b) Insertion sequence from BTBD7 exon 10 8 

 9 

Fig. 9. Examples of translocation-based insertions. (a) The 429-bp sequence 10 

from intron 1 of CLCC1 is inserted at chr3:110,694,547. (b) The 697-bp 11 

sequence from exon 10 of BTBD7 is inserted into intron 1 of SLC2A5. 12 

 13 

Conclusions 14 

ConnectedReads leverages SRS to generate long haplotype-resolved contigs 15 

such as those produced by 3rd-generation sequencing technologies (i.e., PacBio 16 

and Nanopore) to not only prevent mapping errors but also facilitate SV 17 

discovery. In summary, ConnectedReads can serve as an NGS gateway for 18 

streamlining downstream data analysis, such as false positive prevention, SV 19 

detection, and haplotype identification. 20 
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Materials and methods 1 

Workflow 2 

ConnectedReads leverages Apache Spark [6], a distributed in-memory 3 

computing framework, to accelerate its whole workflow, as illustrated in Fig. 10. 4 

To fully utilize the power of the distributed framework, the preprocessing step 5 

involves splitting a large compressed file into several small files and then 6 

uploading those files into the Hadoop distributed file system (HDFS) since 7 

most of the WGS samples exist in two separate FASTQ files in GZIP format. 8 

First, we adopt Apache Adam [24], as shown in Fig. 10(a), to transform data 9 

from FASTQ format to column-based Parquet format for data parallel access. 10 

To facilitate data processing in the following steps, we extend Adam to not only 11 

encode paired-end information and barcodes into the read name column but 12 

also place all reads in different subfolders based on their sequencing quality and 13 

sequence complexity. Then, we propose a distributed suffix tree algorithm with 14 

supervised graph mining on Spark to mitigate the influence of improper string 15 

graph construction due to sequencing errors. Using an outlier detection 16 

algorithm on a suffix tree, the process in Fig. 10(b) can be configured as a highly 17 

sensitive error detector for low-coverage regions. After that, we are able to 18 

adopt the parallel string graph construction shown in Fig. 10(c) to represent the 19 

relation of each qualified read and the read overlaps by suffix-prefix 20 

information. More details are available in our previous paper [25]. Based on the 21 

string graph, we propose the parallel haplotype-sensitive assembly (HSA) 22 

depicted in Fig. 10(d) to construct haplotype-resolved contigs; the detailed 23 

procedure of this module will be described in the next session. For example, 24 

these generated contigs (Fig. 10) include (i) heterozygous SNPs, (ii) 25 

heterozygous deletions, (iii) heterozygous insertions and (iv) homozygous SNPs. 26 

In summary, ConnectedReads transforms noisy short reads with low quality 27 

and sequencing errors to long and qualified contigs with clear haplotype 28 

information. 29 
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 1 

Fig. 10. Workflow of ConnectedReads. (a) Parallel data transformation. (b) 2 

Parallel error correction. (c) Parallel string graph construction. (d) 3 

Parallel haplotype-sensitive assembly (HSA). 4 

 5 

Parallel HSA 6 

ConnectedReads adopts a string graph, a lossless data representation that is 7 

fundamental for many de novo assemblers based on the overlap-layout-8 

consensus paradigm [26, 27], to represent the overlaps of each read. Here, we 9 

propose a Spark-based HSA based on a string graph. By leveraging GraphFrame 10 

[28], HSA is able to perform efficient and scalable graph traversal operations 11 

and supervised graph mining algorithms on Apache Spark. Before introducing 12 

the detailed algorithms of HSA, we formally define the notations of the 13 

sequencing data and string graph that we will use in the following sections. 14 

Definitions and notation 15 

Let G(V, E) be a directed graph and S, T Í V. We define V = {v1,v2, …,vk} and 16 

E(S, T) to be the set of edges going from S to T, i.e., 17 

|V| = k and E(S, T) = { eij Î E : vi Î S, vj Î T and i < j £ k }. 18 

Definition 1. Let R be the set of short reads and RRC be the reverse 19 

complement set of R. G and GRC are the string graphs based on R and RRC, 20 

respectively. If eij exists in G and i, j Î R, then emn also exists in GRC and 21 

m,n Î RRC such that m and n are the reverse complements of j and i, 22 

respectively. 23 

We define GEXT(V, E) to be the expanded graph of vertices V Î R È RRC and 24 

edges E to be the set of edges in either G or GRC. 25 
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Definition 2. Let IN(vi) and OUT(vi) be the number of in-degree and out-1 

degree edges of vi, respectively. We define a vertex vi to be 2 

Singleton if IN(vi) = 0 and OUT(vi) = 0; 3 

Start(S) if IN(vi) = 0 and OUT(vi) = 1; 4 

Terminator(T) if IN(vi) = 1 and OUT(vi) = 0; 5 

Bridge(B) if IN(vi) = 1 and OUT(vi) = 1; 6 

and Ambiguity(A) if IN(vi) ¹ 1 or OUT(vi) ¹ 1. 7 

Definition 3. We define the priority order of the vertex labels to be T > S > 8 

B and A. 9 

This means that B could be relabeled as S or T. Once a vertex becomes T, it will 10 

always be T regardless of what the graph property propagation is. 11 

To keep the depth information in FASTQ format, a new quality encoding 12 

function is proposed. 13 

Definition 4. Let L and N be the numbers of layers for quality and depth, 14 

respectively. L*N should be 42 if Phred33 is adopted. Let Q[i] and D[i] be 15 

the quality and depth of the i-th base of the given contig, respectively. We 16 

define the quality encoding function EncoderQ[i] and the depth encoding 17 

function EncoderD[i] to be 18 

𝐸𝑛𝑐𝑜𝑑𝑒𝑟([𝑖] = -
𝑄[𝑖] − 𝑜𝑟𝑑("! ")

𝑁
5 ∗ 𝑁 19 

𝐸𝑛𝑐𝑜𝑑𝑒𝑟7[𝑖] =

⎩
⎪
⎨

⎪
⎧
0						𝑖𝑓	𝐷[𝑖] == 1								
1						𝑖𝑓	2 ≤ 𝐷[𝑖] < 4		
2							𝑖𝑓	4 ≤ 𝐷[𝑖] < 7		
3							𝑖𝑓	7 ≤ 𝐷[𝑖] < 11…
𝑁 − 1	𝑖𝑓	𝐷[𝑖] ≥ 200

 20 

 In addition, we define the quality-depth (QD)-encoding function 21 

EncoderQD[i] to be 22 

𝐸𝑛𝑐𝑜𝑑𝑒𝑟(7[𝑖] = 𝑐ℎ𝑟(𝐸𝑛𝑐𝑜𝑑𝑒𝑟([𝑖] + 𝐸𝑛𝑐𝑜𝑑𝑒𝑟7[𝑖] + 𝑜𝑟𝑑("!")) 23 

System flow 24 

In Fig. 11, HSA makes use of five modules, namely, (a) string graph expansion, 25 

(b) vertex connectivity classification, (c) the Start-Bridge-Terminator (S-B-T) 26 

traversal algorithm, (d) the ploidy-based routing algorithm and (e) the triplet 27 

traversal algorithm. To simplify the following graph traversal algorithms, each 28 

vertex and its reverse complement should be separated in a string graph. This 29 
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means that the string graph G generated by Fig. 10(c) should first be expanded 1 

by Definition 1 and named GEXT, which contains G and GRC. For that reason, Fig. 2 

11(a) generates the expanded string graph with all reads and their reverse 3 

complements. After removing all singletons in GEXT, the remaining vertices will 4 

be classified by the vertex connectivity classification module shown in Fig. 11(b) 5 

into four classes, which are defined in Definition 2: start (S), bridge (B), 6 

terminator (T) and ambiguity (A). To generate haplotype-sensitive contigs, the 7 

graph traversal/pairing algorithms shown in Fig. 11(c-e) are proposed based on 8 

the above properties of vertices and described comprehensively in the next 9 

section. 10 

 11 

 12 

Fig. 11. Parallel haplotype-sensitive assembly (HSA). (a) String graph 13 

expansion. (b) Vertex connectivity classification. (c) S-B-T traversal 14 

algorithm. (d) Ploidy-based paired algorithm. (e) Triplet traversal 15 

algorithm. 16 

 17 

Graph mining algorithms 18 

ConnectedReads leverages Apache Spark and its derived packages to propose 19 

three efficient and scalable graph algorithms for large graphical datasets, i.e., 20 

string graphs. Spark GraphFrame is a powerful tool for performing distributed 21 

computations with large graphical datasets. In addition, Spark Dataset is a 22 

type-safe interface that provides the benefits of resilient distributed datasets 23 

(RDDs) and Spark SQL optimization. By leveraging GraphFrame and Dataset, 24 

we propose several Spark-based graph traversal/routing algorithms for HSA 25 

with high performance and scalability. 26 

 27 
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 1 

Fig. 12. An example to demonstrate the graph preprocessing workflow for the 2 

S-B-T traversal algorithm. (a) Expanded string graph. (b) Propagated 3 

string graph. (c) Terminator-intensive propagated string graph. 4 

 5 

From our observations of NGS sequencing data, two challenges must be 6 

overcome if we want to enhance the performance of graph operation for HSA. 7 

The first challenge in the string graph involves long diameters, and the second 8 

challenge is how to properly connect the vertices with multiple in-/out-degrees. 9 

Taking NA12878 as an example, more than 90% of the vertices are B, and the 10 

longest diameter from S to T is more than 500. This means that the traversal 11 

algorithm must perform the propagation operation in at least 500 iterations 12 

from one vertex (S) to another vertex (T). For most graph frameworks, the 13 

performance of a graph algorithm is strongly related to the number of iterations 14 

for its traversal operation. Here, we propose the S-B-T traversal algorithm, 15 

shown in Fig. 11(c), to connect all vertices from S to T via all adjacent Bs. By 16 

following Definition 3, the data preprocessing flow for the expanded string 17 

graph is applied, as illustrated in Fig. 12. First, all vertices before and after any 18 

vertex A should be relabeled as T and S, respectively. To overcome the long-19 

diameter problem, the mechanism used to relabel B to T by customized random 20 

selection is applied to shorten the diameter of the given graph, and then, the 21 

terminator-intensive propagated string graph is acquired. Based on the 22 

terminator-intensive graph, the S-B-T traversal algorithm, which integrates a 23 

belief propagation algorithm with iterative graph merging, is able to 24 

theoretically reduce the time complexity from O(N) to O(√𝑁) (N: the number 25 

of iterations for graph propagation). 26 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 20, 2019. ; https://doi.org/10.1101/776807doi: bioRxiv preprint 

https://doi.org/10.1101/776807
http://creativecommons.org/licenses/by-nc/4.0/


 24 

When each simple routing path (i.e., S to T via Bs) is completely traversed and 1 

merged into a single vertex in the new graph, the majority of the vertices have 2 

multiple in-/out-degrees. Therefore, we have to solve the second challenge - 3 

how to select a proper routing path in the multiple-in-/out-degree graph. Many 4 

useful indicators enable us to perform correct routing, such as read pairs, 5 

barcodes and read overlaps. The pseudo code of the ploidy-based pairing 6 

algorithm shown in Fig. 11(d) is as follows: 7 

def ploidy_based_pairing(G: GraphFrame for string graph, N: int for ploidy) { 8 

Candidates = ∅ 9 

  Va = all of As in G 10 

for each v Î Va { 11 

  Iv = the set of vertices point to v 12 

  Ov = the set of vertices pointed by v 13 

  Dv = de_noise(Iv, v) 14 

  T = ∅ 15 

  for each u Î Dv { 16 

    (t, s) = find_best_matching(u, v, Ov)    #t: triple ; s: score 17 

    if s ³ MIN_THRESHOLD then 18 

      add (t, s) into T 19 

  } 20 

  sort T by score 21 

  add the top N triples from T into Candidates 22 

} 23 

return Candidates 24 

} 25 

To mitigate false assembly due to sequencing errors, the function de_noise() 26 

is used to remove the noisy vertices in Iv by using a naïve clustering algorithm 27 

based on the read-pair information in this paper. In addition, the function 28 

find_best_matching() adopts a tripartite clustering algorithm based 29 

primarily on the number of supports from read-pair information in (u, v), (u, 30 

Ov) and (v, Ov) to find the best combination for sequence assembly. Using the 31 

ploidy-based pairing algorithm, we obtain sufficient information to overcome 32 

the second challenge and then apply the triplet traversal algorithm shown in 33 

Fig. 11(e) to construct the haplotype-sensitive contigs by traversing the 34 

aggregated graph from each S to T via the triple set generated by the ploidy-35 
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based pairing algorithm. The triplet traversal algorithm involves almost the 1 

same procedures as the S-B-T traversal algorithm, except for the linkage of 2 

vertexes. In summary, HSA leverages Apache Spark to efficiently generate 3 

haplotype-sensitive contigs from a large string graph. 4 

Performance 5 

Here, sample NA12878 is processed by ConnectedReads on our Spark cluster. 6 

It takes approximately 18 hours for the 30X WGS sample; the detailed 7 

performance of ConnectedReads is described in Table 6. 8 

 9 

Table 6. Execution time for NA12878 10 

Module Time (hours) # Executors # Cores per executor 

(a) Parallel data transformation 1.9 9 17 

(b) Parallel error correction 8.1 15 8 

(c) Parallel string graph construction 4.3 9 17 

(d) Parallel haplotype-sensitive assembly 4.0 9 17 

Data export from HDFS to local disk 0.05 9 4 

Total 18.3     

*There are 9 computing nodes (each node has two E502650 v4 with 512 GB of memory) 11 

 12 

QD encoder/decoder 13 

Since ConnectedReads not only connects reads with their overlaps but also 14 

aggregates identical reads, the size of ConnectedReads contigs will be reduced 15 

by at least 90% in comparison with that of contigs from short-read data. 16 

However, the downstream analysis tools might not work well due to the loss of 17 

depth information. We have to take the depth information into consideration 18 

and keep the output compatible with FASTQ format. Therefore, the QD encoder 19 

and decoder are proposed based on Definition 4 to mitigate the impact on 20 

information loss. The mechanism of the QD-encoding function is quite flexible, 21 

allowing it to fit most use cases. For example, if the depth information is more 22 

critical than quality, (L, N) = (3, 14) is the best choice. Fig. 13 provides an 23 

example to demonstrate how the QD encoder transforms short reads into 24 

ConnectedReads contigs. The data reduction rate is approximately 77% (from 25 
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144 characters to 33 characters in both sequence and quality). In addition, Fig. 1 

14 shows the result of applying the QD-decoding function. The recovery rate in 2 

terms of sequences and quality is 95.8% (138/144) and 47.3% (71/144), 3 

respectively. Therefore, ConnectedReads provides an efficient QD-decoding 4 

tool for some use cases that heavily leverages depth information. 5 

 6 

Fig. 13. An example application of the QD encoder (taking (L, N) = (3, 14) as 7 

an example). 8 

 9 

 10 

Fig. 14. An example application of the QD decoder (taking (L, N) = (3, 14) 11 

and read length = 15 as an example). 12 

 13 

Availability of data and materials 14 

Data: The raw sequencing data discussed in this manuscript are deposited on 15 

the European Bioinformatics Institute (EBI) and NCBI websites. NA12878 is 16 

available from https://www.ebi.ac.uk/ena/data/view/ERR2438055; NA24694 17 

and NA19240 are available from 18 

https://www.ncbi.nlm.nih.gov/sra/SRX1388455 and 19 

https://www.ncbi.nlm.nih.gov/sra/SRX4637790, respectively. 20 
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Codes: The source code and scripts for the ConnectedReads workflow and the 1 

related experiments discussed in this paper are available at 2 

https://github.com/atgenomix/connectedreads. 3 

Abbreviations 4 

CNV: Copy number variant 5 

HDFS: Hadoop distributed file system 6 

HSA: Haplotype-sensitive assembly 7 

LRS: Long-read sequencing 8 

NGS: Next-generation sequencing 9 

NRNR: Non-reference, non-repetitive 10 

QD: Quality depth 11 

RDD: Resilient distributed dataset 12 

SRS: Short-read sequencing 13 

SV: Structural variant 14 

UNI: Unique non-reference insertion 15 

WGS: Whole-genome sequencing 16 
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