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Abstract8

Neurons in the dorsolateral geniculate nucleus (dLGN) of the thalamus are contacted by
a large number of feedback synapses from cortex, whose role in visual processing is poorly
understood. Past studies investigating this role have mostly used simple visual stimuli and
anesthetized animals, but corticothalamic (CT) feedback might be particularly relevant dur-
ing processing of complex visual stimuli, and its effects might depend on behavioral state.
Here, we find that CT feedback robustly modulates responses to naturalistic movie clips by
increasing response gain and promoting tonic firing mode. Compared to these robust effects
for naturalistic movies, CT feedback effects were less consistent for simple grating stimuli.
Finally, while CT feedback and locomotion affected dLGN responses in similar ways, we
found their effects to be largely independent. We propose that CT feedback and behavioral
state use separate routes to powerfully modulate visual information on its way to cortex.
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Introduction11

Mammalian vision is based on a hierarchy of processing stages that are connected by12

feedforward circuits projecting from lower to higher levels, and by feedback circuits projecting13

from higher to lower levels. Feedforward processing is thought to create feature selectivity14

[1, 2] and invariance to translation, scale, or rotation [2–5], to ultimately enable object15

recognition [6]. Hypotheses about the functional role of feedback circuits include top-down16

attention, working memory, prediction, and awareness [7–12]. Compared to theories of17

feedforward processing, however, there is little consensus on the specific function of feedback18

connections [13, 14].19

Feedback in the visual system targets brain areas as early as the dorsolateral geniculate20

nucleus (dLGN) of the thalamus, where up to 30% of synaptic connections onto relay cells21

are established by corticothalamic (CT) feedback [15]. Direct corticogeniculate feedback is22
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thought to arise from V1 layer 6 (L6) CT pyramidal cells [16, 17], whose role in visual pro-23

cessing has remained elusive for a number of reasons. L6 CT pyramidal cells have notoriously24

low firing rates [18–23] and their deep location within cortex makes them a difficult target for25

in-vivo single cell functional imaging [24] and cell-type specific manipulations using optoge-26

netics [25]. L6 CT pyramidal cells are also challenging to identify in extracellular recordings27

due to the heterogeneity of L6 neurons [16]. The action of CT feedback on dLGN activity28

is generally considered modulatory rather than driving [26], as CT feedback inputs contact29

the distal dendrites of relay cells via mGluR1 metabotropic receptors [27], implying rather30

slow and long-lasting effects on dLGN processing. Since L6 CT pyramidal cells provide both31

direct excitation and indirect inhibition of dLGN via the thalamic reticular nucleus (TRN)32

and dLGN inhibitory interneurons [17, 28], the effects of CT feedback are expected to be33

complex [29].34

Despite the massive number of CT inputs to dLGN, the functional impact of corticogenic-35

ulate feedback remains unclear [30, 31]. In the literature, diverse methods of manipulation36

with different temporal scales, specificity and overall sign (activation vs. suppression), have37

yielded diverse and even conflicting results. CT feedback, for instance, has been shown to38

modulate geniculate spatial integration [32–39], temporal processing [37, 40], response gain39

[38, 41–43], and transitions between tonic and burst firing modes [44, 45]. Other studies,40

however, found that manipulation of CT feedback did not change some or any of these dLGN41

response properties [25, 37, 46–48].42

Most of these previous studies have probed the effects of CT feedback with artificial43

stimuli, and mostly in anesthetized animals; CT feedback, however, might be most relevant44

for processing of dynamic naturalistic information and during wakefulness. Indeed, it has45

previously been suggested that corticogeniculate feedback might be more engaged for mov-46

ing compared to stationary stimuli [17], and for complex dynamic noise textures than simple47

moving bars [49], consistent with a potential role in figure-ground processing [50]. Further-48

more, since the responsiveness of feedback projections [51], including those originating from49

V1 corticogeniculate neurons [31], seem to be affected by anesthesia, CT feedback effects50

should be more evident in alert compared to anesthetized animals.51

Here, we recorded spiking activity in dLGN of awake mice and investigated how CT feed-52

back affected dLGN responses to naturalistic movie clips. In order to achieve reliable, tem-53

porally precise, and reversible suppression of CT feedback, we conditionally expressed chan-54

nelrhodopsin2 (ChR2) in V1 parvalbumin-positive (PV+) inhibitory interneurons, whose55

activation can reliably suppress cortical output [41, 52]. We found that V1 suppression had56

consistent modulatory effects on dLGN responses to movie clips, which could be captured by57

divisive transformations. Effects of CT feedback on dLGN responses to grating stimuli were58

more diverse, likely because their periodicity interacted with mechanisms controlling dLGN59

firing mode. Finally, while geniculate responses during CT feedback suppression resembled60

those during low arousal, we found effects of CT feedback and behavioral state to be largely61

independent. Overall, our results demonstrate that visual information en route to cortex can62

be reliably modulated by extra-retinal influences such as cortical feedback and locomotion,63

which are likely conveyed via different modulatory pathways.64
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Results65

CT feedback modulates dLGN responses to naturalistic movie clips66

To investigate the impact of CT feedback on naturalistic vision we showed head-fixed mice67

short movie clips, and compared responses of dLGN neurons during optogenetic suppression68

of V1 activity to a control condition with CT feedback left intact (Fig. 1). The responses of69

individual dLGN neurons to naturalistic movie clips were characterized by distinct response70

events that were narrow in time and reliable across trials (Fig. 1d, top, example neuron).71

Consistent with the notion that CT feedback has a modulatory rather than driving role [53],72

even during V1 suppression the temporal response pattern remained discernible (Pearson73

correlation r = 0.54, p < 10−6, Fig. 1d,e). Yet, as illustrated in the example neuron, with74

CT feedback intact, firing rates were higher and burst spikes were less frequent (Fig. 1e,75

left). As a consequence, the distributions of instantaneous firing rates in the two conditions76

were significantly different (KS test, p < 10−6), and were more skewed during V1 suppression77

than with CT feedback intact (γ = 2.02 vs. 1.22; Fig. 1e, right).78

We observed similar effects in the recorded population of dLGN neurons, where CT79

feedback enhanced overall responses and promoted tonic mode firing. Indeed, while mean80

firing rates varied ∼ 4 orders of magnitude across the population, they were higher with81

CT feedback intact than with feedback suppressed (13.6 vs. 10.9 spikes/s; linear multilevel-82

model (LMM): F1,162.8 = 12.21, p = 0.00061; Fig. 1f). In addition, CT feedback also83

influenced more fine-grained properties of geniculate responses. First, with CT feedback,84

the mean proportion of spikes occurring as part of a burst event was about half of what we85

observed during suppression (0.051 vs 0.093; LMM: F1,172.8 = 44.3, p = 3.7×10−10; Fig. 1g).86

Second, consistent with the distributions of firing rate for the example neuron (Fig. 1e,87

right) and related to the relative increase of responsiveness in the population (Fig. S2c),88

responses to the naturalistic movie clips with CT feedback intact were, on average, less sparse89

(0.37 vs. 0.46; LMM: F1,169.21 = 51.89, p = 1.8 × 10−11; Fig. 1h), indicating that neurons90

fired less selectively across the frames of the movie. Finally, we also examined the effect91

of CT feedback on response reliability. To quantify reliability, we computed the Pearson92

correlation coefficient of a neuron’s responses between each pair of the 200 stimulus repeats93

per condition, and averaged the correlation coefficients over all pair-wise combinations [55].94

With CT feedback intact, mean response reliability was lower than without feedback (0.1795

vs. 0.19; LMM: F1,169.73 = 15.2, p = 0.00014; Fig. 1i). Importantly, this lower reliability96

did not show any systematic relation to the feedback modulation of firing rates (regression97

slope of −0.018±0.19, estimated slope ± 2 × the estimated standard error, LMM, Fig. 1j).98

Taken together, these results indicate that CT feedback can modulate responses of dLGN99

neurons to naturalistic movie clips. The modulations are consistent with a net depolarizing100

effect, which supports higher firing rates and more linear, tonic firing mode, at the expense101

of sparseness and trial-to-trial reliability.102

V1 suppression decreases dLGN responses to naturalistic movies by reducing response gain103

To better understand the effects of V1 suppression on dLGN firing rate, we next asked104

whether the observed reduction in responsiveness could be explained by a divisive and/or105

subtractive mechanism (Fig. 2). Using repeated random sub-sampling cross-validation, we106

fit a simple threshold linear model (Fig. 2a, inset) to timepoint-by-timepoint responses in107
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Figure 1 (Previous page) CT feedback modulates dLGN responses to wide-field naturalistic movie clips.
(a) Left : Schematic of experimental setup. Head-fixed mice were placed on a floating Styrofoam ball and
visual stimuli were presented on a screen located ∼25 cm away from the animal. Right : ChR2 was condition-
ally expressed in PV+ inhibitory interneurons (green) in all layers of V1 using a viral approach. Extracellular
silicon electrode recordings were performed in dLGN with and without optogenetic suppression of V1. (b)
Coronal section close to the V1 injection site for an example PV-Cre mouse (blue: DAPI; green: eYFP;
Bregma: −3.4 mm). (c) Coronal section at the dLGN (white outline) recording site, same animal as in (b).
For post-mortem confirmation of the electrode position, the back of the probe was stained with DiI (ma-
genta) for one of the recording sessions (blue: DAPI; Bregma: −1.82 mm). (d) Raster plots of an example
neuron for 200 presentations of a 5 s naturalistic movie clip, with CT feedback intact (control condition, top)
and during V1 suppression (bottom). Red : burst spikes; black bar : movie clip presentation; gray bar : V1
suppression. (e) Left : PSTHs for both the feedback (black) and V1 suppression (gray) conditions. Superim-
posed are PSTHs of burst spikes only, separately for feedback (red) and suppression (pale red) conditions.
Right : Corresponding instantaneous firing rate distributions. (f–i) Comparison of feedback vs. suppression
conditions for mean firing rate (f), burst spike ratio (g), temporal sparseness (h), and response reliability (i),
all calculated for the duration of the movie clip. For sample sizes, see Table 1. Purple: example neuron.
Sparseness captures the activity fraction of a neuron, re-scaled between 0 and 1 [54]. Response reliability is
defined as the mean Pearson correlation of all single trial PSTH pairs [55]. (j) Relation between CT feedback
modulation of firing rate and reliability. Feedback effects were quantified with a feedback modulation index
(FMI), where FMI = (feedback− suppressed)/(feedback + suppressed). See also Fig. S2.

suppression vs. feedback conditions, and extracted the slope and threshold of the fit for108

each subsample (Fig. 2b,d). In the two example neurons shown in Fig. 2a-d, the fitted109

slope was significantly smaller than 1 (neuron 2: median slope of 0.66, 95%–CI: 0.63–0.69,110

Fig. 2b; neuron 1: median slope of 0.37, 95%–CI: 0.32–0.41, Fig. 2d), while the threshold111

(x-intercept) was either small or not significantly different from 0 (neuron 2: median of 1.58,112

95%–CI: 0.39–2.91; neuron 1: median of −0.14, 95%–CI: −1.49–0.89). We obtained similar113

results for the population of recorded neurons, where V1 suppression decreased the neurons’114

responses to naturalistic movie clips via a substantial change in gain (slope of 0.76 ± 0.1;115

LMM) without a significant shift in baseline (threshold of 0.013± 1.3; LMM; Fig. 2e). This116

demonstrates that V1 suppression influences responses in dLGN to naturalistic movie clips117

predominantly via a divisive mechanism.118

We noticed that the threshold linear model could predict the effects of V1 suppression119

better for some neurons than for others. We therefore explored whether poor fits of the120

model might be related to our finding that V1 suppression can trigger non-linear, burst-121

mode firing. For instance, the threshold-linear model accurately captured the responses of122

example neuron 2 (median R2 = 0.90, cross-validated; Fig. 2a,b), which exhibited little123

bursting during V1 suppression (burst ratio: 0.007). Neuron 1, in contrast, had a higher124

burst ratio during suppression (0.28) and the prediction (blue) sometimes overestimated or125

underestimated peaks in the actual response (gray), such that the percentage of explained126

variability was rather low (median R2 = 0.29, cross-validated, Fig. 2c,d).127

Indeed, across the population of recorded cells, the model goodness of fit (median R2,128

cross-validated) during V1 suppression was inversely related to the burst ratio (slope of129

−1.4 ± 0.5; LMM; Fig. 2f), consistent with the notion that the highly non-linear, all-130

or-none-like burst mode firing [56] cannot be captured by the threshold-linear model. To131

further investigate the impact of bursting on response transformations by CT feedback, we re-132

computed the PSTHs for each neuron during V1 suppression after removing all burst spikes.133
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Removal of burst spikes allowed our model to capture the effects of V1 suppression even134

better (all spikes: mean R2 = 0.60; non-burst spikes: mean R2 = 0.63; LMM: F1,150.49 =135

7.6, p = 0.0066; Fig. 2g). At the same time, removing burst spikes did not change our136

conclusion that the effect of CT feedback on movie responses was predominantly divisive137

(slope: 0.75± 0.09; threshold: 0.22± 1.33; LMM; Fig. 2h). Indeed, firing mode (all spikes138

vs. non-burst spikes) had no effect on either slope (LMM: F1,153.7 = 0.57, p = 0.45) or139

threshold estimates (LMM: F1,150.64 = 0.21, p = 0.65) of the simple linear model.140

CT feedback modulates dLGN responses evoked by drifting gratings141

Previous studies have investigated the effects of CT feedback using artificial stimuli,142

such as gratings and bars [25, 34, 41, 44]. To relate our findings to these studies, and143

to investigate the role of stimulus type, we next examined the effects of V1 suppression144

during the presentation of drifting gratings (Fig. 3). To approximate the visual stimulus145

configuration used for naturalistic movie clips, we presented full-field gratings drifting in one146

of 12 different orientations, and selected a pseudo-random subset of trials for V1 suppression.147

As expected, we found that responses of single dLGN neurons in the control condition with148

CT feedback intact could be modulated at the temporal frequency (TF, 4 cyc/s) of the149

drifting grating (Fig. 3a1, b1). Similar to previous studies in mouse dLGN [57–59], we also150

encountered some dLGN neurons with tuning for grating orientation or direction (Fig. 3a2,151

b2).152

Remarkably, V1 suppression had mixed effects on dLGN responses to drifting gratings.153

Example neuron 1, for instance, had lower firing rates with CT feedback intact, both in the154

orientation tuning (Fig. 3a2) and the cycle-averaged response to the preferred orientation155

(Fig. 3a3). In addition, with CT feedback intact, there were markedly fewer burst spikes.156

In contrast, example neuron 3 responded more strongly with CT feedback intact (Fig. 3b2,157

b3). Such diverse effects of CT feedback were representative of the recorded population158

(Fig. 3c): V1 suppression during grating presentation reduced responses for some neurons,159

but increased responses for others, such that the average firing rates were almost identi-160

cal (feedback: 14.3 spikes/s, suppression: 14.8 spikes/s) and statistically indistinguishable161

(LMM: F1,67.8 = 0.17, p = 0.68). In contrast to these diverse effects on firing rate, but similar162

to our findings for naturalistic movie clips, intact CT feedback was consistently associated163

with less bursting (burst ratios of 0.036 vs. 0.17; LMM: F1,73.43 = 42.5, p = 7.7 × 10−9;164

Fig. 3d).165

Beyond studying overall changes in responsiveness and firing mode, we next asked how166

CT feedback affected the orientation selectivity of dLGN neurons. We computed orientation167

tuning curves separately for feedback and suppression conditions. For neuron 1, intact CT168

feedback was associated not only with lower average firing rates, but also poorer selectivity169

(OSIs of 0.14 vs. 0.25; Fig. 3a2). In contrast, for neuron 3, orientation selectivity was similar170

during feedback and suppression conditions (OSIs of 0.1 vs. 0.09; Fig. 3b2). These results171

were representative of the population, where CT feedback affected orientation selectivity in172

diverse ways, with virtually no difference in population means (feedback OSI: 0.14; suppres-173

sion: 0.13; LMM: F1,67 = 0.51, p = 0.48; Fig. 3e; see also [25, 46, 47, 60]). For neurons174

with OSI > 0.02 and well-fit orientation tuning curves (R2 > 0.5), preferred orientation175

during feedback and suppression conditions was largely similar, except for some cases where176

it shifted (Fig. 3f).177
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Figure 2 The effect of V1 suppression on dLGN responses to naturalistic movie clips is predominantly
divisive.
(a) PSTHs of an example neuron during CT feedback (black, dotted) and V1 suppression (gray) conditions, for
a random subset of 50% of trials per condition not used for model fitting. Responses during the suppression
condition are approximated by the threshold linear model (blue) based on responses during the feedback
condition. Pale red: PSTH during V1 suppression consisting only of burst spikes. Inset : cartoon of threshold
linear model. (b) Timepoint-by-timepoint comparison of instantaneous firing rates of the PSTHs (derived
from the 50% of trials not used for fitting) during the suppression vs. feedback conditions. PSTH data
points are plotted at 0.01 ms resolution. Blue line: threshold linear model fit. (c,d) Same as (a,b) for a
second example neuron (same as in Fig. 1d,e). (e) Slope and threshold parameters for all neurons. Each
point represents the median for each neuron across 1000 random subsamples of trials. Black points indicate
neurons with slopes significantly different from 1 (95%–CI). (f) Cross-validated model prediction quality
(median R2) vs. burst ratio during V1 suppression. Red line: LMM fit. (g) Model prediction quality with
and without removal of burst spikes. (h) Same as (e) but with burst spikes removed. (e-h) Purple, green:
example neurons; red triangle: LMM estimate of the mean.
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Inspecting the spike rasters at different orientations, we realized that responses of genic-178

ulate neurons appeared to be more strongly modulated at the grating TF during V1 sup-179

pression than when feedback was intact (Fig. 3a1). To test whether V1 suppression affected180

the ability of dLGN neurons to follow the gratings’ temporal modulation, for each neuron we181

computed the amplitude of the response at the stimulus frequency (F1 component) relative182

to the mean response (F0 component) [61, 62] and found that F1/F0 ratios were indeed lower183

when feedback was intact (1.1 vs. 1.3; LMM: F1,69 = 20.01, p = 3 × 10−5; Fig. 3g). To184

explore the impact of CT feedback on the first harmonic response in more detail, we exam-185

ined the cycle average responses to the preferred orientation, and asked how CT feedback186

affected response phase. Similar to the results obtained for the example neurons (Fig. 3a3,187

Fig. 3b3), we found that V1 suppression could advance response phase (Fig. 3h). This188

phase advance occurred more often for neurons whose responses during V1 suppression in-189

cluded a substantial proportion of burst spikes (Fig. 3i, red ; 23 of 26 observations advanced,190

p = 8.8 × 10−5, binomial test) than for neurons whose V1 suppression responses had little191

or no bursting (Fig. 3i, black ; 8 of 14 observations advanced, p = 0.79, binomial test),192

suggesting that the phase advance might be driven by the dynamics of burst spiking. In193

summary, these findings demonstrate that CT feedback can affect response phase, likely via194

its control of firing mode.195

Effects of CT feedback on dLGN firing rates are more consistent for movies than gratings196

Our analyses suggest that the impact of CT feedback on firing rates might be more197

consistent for naturalistic movie stimuli than for gratings. To test this hypothesis, we focused198

on the subset of neurons recorded with both types of stimuli. Indeed, when we compared199

feedback modulation indices (FMI) of firing rates, we found that for movies the overall FMI200

distribution was shifted towards more positive values (0.15 vs. 0.0046; LMM: F1,35 = 13.66,201

p = 0.00075; (Fig. 4a). This difference in FMI was not a consequence of the longer duration202

of V1 suppression during movie clips (Fig. S3). Remarkably, in 12/36 neurons (Fig. 4a,203

filled arrowheads) V1 suppression increased firing rates for gratings (negative grating FMI)204

[41] and decreased firing rates for movies (positive movie FMI), while the opposite effect only205

occurred in 1/36 neurons (open arrowhead). This sign change might be related to stimulus-206

dependent, feedback-mediated changes in bursting, which can drive high frequency firing.207

To test this hypothesis we compared CT feedback modulation of burst ratio for gratings vs.208

movie clips, and found that V1 suppression indeed induced stronger bursting for gratings209

than for movies (mean FMIs: −0.43 vs. −0.28; LMM: F1,33 = 41.9, p = 2.4×10−7; Fig. 4b).210

Thus, the stronger engagement of burst spiking for gratings might antagonize and overcome211

the reduction of firing rates that would otherwise occur during V1 suppression.212

Effects of locomotion on dLGN responses resemble effects of CT feedback, but are independent213

Previous studies have reported that responses of mouse dLGN neurons to grating stimuli214

are modulated by locomotion [63–65]. To assess how these findings extend to more complex215

stimuli, we separated the trials with CT feedback intact according to the animals’ locomotion216

behavior. When we examined the spike rasters and PSTHs of example neuron 1 (Fig. 5a,b),217

we found that, despite preserved temporal features of the responses (Pearson correlation r =218

0.72 between run and sit PSTHs, p < 10−6), firing rates were higher overall during locomotion219

than stationary periods. Additionally, during locomotion, the distribution of firing rates was220
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Figure 3 CT feedback modulates dLGN responses to drifting gratings.
(a) Responses of example neuron 1 (same as in Fig. 1d,e and Fig. 2c,d) to full-field, drifting gratings.
(a1) Raster plot in response to drifting gratings, with trials sorted by grating orientation (10 trials per
orientation, 30◦ steps). Red : burst spikes. (a2) Corresponding orientation tuning curve. Dashed lines
represent spontaneous firing rates in response to medium gray screen. Error bars: standard error of the
mean. (a3) Cycle average response to preferred orientation. Black, gray : cycle average constructed from
all spikes. Red, pale red : cycle average constructed from burst spikes only. Black, red : CT feedback intact;
gray, pale red : V1 suppression. (b) Same as (a), for example neuron 3. (c–h) Comparison of conditions
with CT feedback intact vs. V1 suppression, for mean firing rate (c), burst ratio (d), orientation selectivity
index (OSI) (e), preferred orientation θ (f), F1/F0 (g), and cycle average phase φ (h). Purple, blue: example
neurons. (i) Cumulative distribution of cycle average phase differences between feedback and suppression
conditions. Black : neurons with little burst spiking (ratio of cycle average peak for burst spikes to cycle
average peak for all spikes < 0.1); red : neurons with substantial burst spiking (ratio of cycle average peak
for burst spikes to cycle average peak for all spikes ≥ 0.1).
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Figure 4 Effects of V1 suppression depend on stimulus type.
(a,b) Comparison of the strength of CT feedback effects (feedback modulation index, FMI), during processing
of gratings and movie clips on (a) firing rates, and (b) burst ratio. Neurons are sorted along the ordinate
according to their FMI in response to movies. Black : movie FMI; white: grating FMI. Arrows in (a) highlight
neurons for which feedback modulation switches sign depending on stimulus type. For the statistical analysis
in (b), we excluded the two outliers with highly positive FMIs for gratings, which showed no bursts or only
one burst during V1 suppression. See also Fig. S3.

less skewed (γ = 1.15 vs. 1.45 during stationary trials), with a decrease in low and an increase221

in medium firing rates (KS test, p < 10−6). A similar pattern was observed in the population222

of dLGN neurons, where firing rates were consistently higher for trials with locomotion223

compared to trials when the animal was stationary (13.31 vs. 10.27 spikes/s; LMM: F1,193.2 =224

15.5, p = 0.00012; Fig. 5c). Similar to previous reports using gratings [63, 66], we found225

that bursting was lower during locomotion than stationary periods (0.046 vs. 0.071; LMM:226

F1,186.7 = 28.9, p = 2.3 × 10−7; Fig. 5d). Beyond these established measures, using movie227

clips allowed us to test the effects of locomotion on additional response properties: trials228

with locomotion were associated with lower sparseness (0.40 vs. 0.47; LMM: F1,190.5 = 20.3,229

p = 1.2× 10−5; Fig. 5e) and lower response reliability (0.14 vs. 0.17; LMM: F1,174.9 = 11.8;230

p = 0.00072; Fig. 5f). This locomotion-related decrease of response reliability could be231

related to, but is likely not fully explained by, the increase in eye movements typically232

associated with running (Fig. S4f,g) [63, 67]. These analyses demonstrate that in dLGN,233

processing of naturalistic movie clips is robustly modulated by locomotion. Curiously, in all234

aspects tested, these modulations by locomotion had the same signatures as those of CT235

feedback: increased firing rates, reduced bursting, and decreased sparseness and reliability.236

Since the effects of CT feedback and locomotion closely resembled each other, are the237

effects of locomotion on dLGN responses inherited via feedback from cortex? If so, neurons238

experiencing strong modulation by V1 suppression should also be strongly affected by loco-239

motion (Fig. 6a0). Contrary to this prediction, we found that effects of CT feedback (FMI)240

and behavioral state (run modulation index, RMI) were uncorrelated (firing rate: slope of241

0.057±0.13; burst ratio: slope of −0.11±0.13; sparseness: slope of −0.061±0.20; reliability:242

slope of −0.094± 0.12; Fig. 6a1−4).243

Moreover, if effects of locomotion on dLGN responses were inherited from primary visual244

cortex, such effects should vanish during V1 suppression (Fig. 6b0). However, even during245

V1 suppression, RMIs were significantly different from 0 (firing rate: 0.17±0.08; burst ratio:246
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Figure 5 Effect of locomotion on dLGN responses are robust and resemble those of CT feedback.
(a) Spike raster of example neuron 1 (same as Fig. 1d) in response to a naturalistic movie clip during
locomotion and stationary periods. Top: trials with run speed > 1 cm/s; bottom: trials with run speed
< 0.25 cm/s, both for at least > 50% of each trial. Red : burst spikes. (b) Corresponding PSTHs. Green:
locomotion, orange: stationary; black bar : duration of movie clip. Right : Distribution of firing rates for run
vs. sit trials. (c–f) Comparison of firing rates (c), burst ratio (d), sparseness (e), and reliability (f) during
locomotion and stationary trials. See also Fig. S4.
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−0.16 ± 0.14; sparseness: −0.12 ± 0.02; reliability: −0.11 ± 0.08; Fig. 6b1−4). In fact, the247

degree of running modulation was correlated between feedback and suppression conditions248

(firing rate: slope of 0.48 ± 0.13; burst ratio: slope of 0.37 ± 0.21; sparseness: slope of249

0.44 ± 0.14; reliability: slope of 0.50 ± 0.15; Fig. 6b1−4). Interestingly, for firing rates and250

burst ratios, locomotion effects were slightly stronger, on average, with CT feedback intact251

compared to V1 suppression (RMI firing rate: 0.20 vs. 0.17; LMM: F1,189.7 = 3.7, p = 0.055,252

Fig. 6b1; RMI burst ratio: −0.25 vs. −0.17; LMM: F1,154.7 = 6.3, p = 0.013, Fig. 6b2),253

indicating that these two modulatory influences likely interact.254

Lastly, we also tested the hypothesis that CT feedback might have a stronger impact255

during active behavioral states than during quiescence. If during quiescence feedback circuits256

were already completely disengaged, we should not have been able to observe further effects257

of V1 suppression (Fig. 6c0). This was clearly not the case, because CT feedback effects258

were correlated across behavioral states (firing rate: slope of 0.72± 0.10; burst ratio: slope259

of 0.34± 0.15; sparseness: slope of 0.78± 0.12; reliability: slope of 0.43± 0.14; Fig. 6c1−4).260

In addition, and similar to the slightly stronger RMIs during feedback, we discovered a261

locomotion-dependent feedback effect for firing rates and burst ratios. Feedback effects were262

slightly stronger, on average, during locomotion than during quiescence (FMI firing rate:263

0.17 vs. 0.14; LMM: F1,183.8 = 3.4, p = 0.067; Fig. 6c1; FMI burst ratio: −0.28 vs. −0.20;264

LMM: F1,164.2 = 6.8, p = 0.010; Fig. 6c2). Our ability to observe effects of V1 suppression265

in dLGN while the animal was stationary suggests that CT feedback circuits are engaged266

even under conditions of behavioral quiescence and underscores that effects of CT feedback267

and behavioral state are largely independent. The more subtle interactions we observed268

between the two modulatory systems point towards a final common cellular or network269

effect, potentially related to depolarization levels of dLGN neurons.270

Discussion271

In this study we used naturalistic movies to reveal that corticothalamic feedback can272

have substantial and consistent effects on dLGN responses. First, we show that V1 suppres-273

sion reduces time-varying dLGN firing rates, and leads to increases in bursting, sparseness274

and trial-to-trial reliability. While changes to time-varying firing rates were generally well275

predicted via a divisive reduction in response gain, a simple threshold-linear model could276

not capture the full spectrum of CT feedback effects, which include nonlinearities arising277

from burst spiking. Second, we demonstrate that behavioral state changes from locomotion278

to quiescence affect dLGN responses in a manner that closely resembles V1 suppression. We279

show, however, that the effects of V1 suppression on firing rate, bursting, sparseness and280

reliability are largely independent of modulations by behavioral state, and importantly, that281

effects of locomotion persist even when V1 activity is suppressed. Together, these findings282

demonstrate that behavioral modulations of dLGN activity are not simply inherited from283

cortex. Overall, our findings highlight the fact that dLGN activity can be reliably modu-284

lated by extra-retinal influences such as cortical feedback and locomotion, which exert their285

influences via largely separate routes.286

To manipulate CT feedback, we chose a global V1 suppression approach based on opto-287

genetic activation of ChR2 expressed in local PV+ inhibitory interneurons [41, 46–48, 68].288

ChR2-based activation of local PV+ inhibitory interneurons is likely to result in reliable,289
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Figure 6 The effects of CT feedback and locomotion on movie responses were largely independent and similar
in size.
(a0–c0) Predicted relationships between modulation indices and response measures in different conditions,
assuming dependence in the effects of CT feedback and locomotion. (a) Comparison of modulation by
feedback (FMI) and modulation by running (RMI) for firing rates (a1), burst ratio (a2), sparseness (a3), and
reliability (a4). Running effects were quantified with a run modulation index (RMI), where RMI = (running−
sitting)/(running+sitting). (b) Comparison of modulation by running (RMI) during V1 suppression and CT
feedback intact for firing rates (b1), burst ratio (b2), sparseness (b3), and reliability (b4). (c) Comparison of
modulation by CT feedback (FMI) during locomotion and stationary periods for firing rates (c1), burst ratio
(c2), sparseness (c3), and reliability (c4). Red : LMM fit. Green, purple: example neurons from Fig. 2a,b.
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continuous, and strong suppression of V1 L6 CT neurons, compared to alternative optoge-290

netic approaches involving direct photosuppression of L6 CT neurons. The latter approach291

involves the light-driven pumps archaerhodopsin and halorhodopsin [25, 41], and is chal-292

lenging in terms of light power requirements, temporal decay of sensitivity, and effects on293

intracellular ion homeostasis [68, 69]. While silencing by excitation of inhibitory interneu-294

rons can exploit the robust effects of GABA-mediated inhibition in cortical circuits, it comes295

with a limitation in specificity. In addition to the direct L6 → thalamus circuit, indirect,296

polysynaptic effects might be exerted via alternative routes. One example is L5 corticofugal297

pyramidal cells projecting to the superior colliculus (SC), where tectogeniculate neurons in298

the superficial layers provide retinotopically organized, driving inputs to the dorsolateral299

shell region of the dLGN [70]. While global V1 suppression can indeed modulate the gain300

of SC responses [71, 72], direct optogenetic suppression of mouse SC evokes gain changes301

restricted to the most dorsal 150 µm of the dLGN [73]. The spatial spread of modulations we302

observed during V1 suppression clearly extended below the most dorsal electrode contacts,303

which is inconsistent with a major role of indirect SC contributions. To unequivocally rule304

out alternative routes, future studies are required that selectively suppress activity in V1 L6305

CT neurons.306

So far, studies using naturalistic stimuli to probe dLGN responses have been mostly307

performed in anesthetized animals and have not considered CT feedback [74–78]. Con-308

versely, most studies investigating the impact of CT feedback have used artificial stimuli309

[25, 34, 41, 44]. Early experimental evidence already suggested that more complex visual310

patterns, and in particular moving stimuli, might better engage CT feedback circuits [17, 49].311

From a conceptual perspective, if the role of feedback was to provide context based on an in-312

ternal model built from the statistics of the world [79–82], natural stimuli would be expected313

to best comply with this model, and hence better drive these feedback mechanisms. Consis-314

tent with these ideas, we found that CT feedback-mediated modulations of firing rate were315

more consistent and therefore overall stronger for naturalistic movie clips than for gratings.316

A simple biophysical mechanism, however, might be sufficient to explain the differences of317

CT feedback effects for stimulus types: effects of V1 suppression on firing rate might have318

been masked for gratings, because their regular transitions from non-preferred to preferred319

phases strongly recruited high-frequency burst spiking. While movies have been little used320

in experimental studies of CT feedback, naturalistic input has recently been explored with a321

firing-rate based network model of the thalamo-cortico-thalamic circuit [83], which predicts322

that CT feedback during movie stimulation changes the autocorrelation of dLGN responses.323

Our results of increased sparseness during V1 suppression are grossly compatible with one324

model circuit architecture, which includes both short-delay inhibitory and long-delay exci-325

tatory feedback. Further analyses and an adaption of the model to properties of the mouse326

visual system would be required to draw firm conclusions.327

In line with previous studies in non-human primates and cats [42–45], suppression of328

V1 activity revealed not only effects consistent with a robust role of CT feedback in en-329

hancing the gain of geniculate responses, but also identified functional interactions with the330

neural mechanisms governing thalamic firing mode. Decreased responsiveness and a higher331

burst spike ratio during V1 suppression are consistent with a net hyperpolarization of dLGN332

neurons [56], which allows for the transient low-threshold calcium current (IT ) underlying333

thalamic bursting [84]. Indeed, intracellular recordings in cat dLGN revealed that cortical334
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ablation hyperpolarized the resting membrane potential by ∼9 mV, enough to push dLGN335

neurons into burst-firing mode [85]. Conversely, direct optogenetic activation of L6 CT neu-336

rons in primary somatosensory cortex has been shown to decrease burst mode firing [86].337

Since firing rates are high during hyperpolarization-induced geniculate bursts [56], general338

decreases in response gain during V1 suppression could well be offset by burst firing. Indeed,339

during naturalistic movie stimulation, the threshold linear model systematically underes-340

timated firing rates during bursting (Fig. 2c,f–h). Similarly, during grating stimulation,341

for which V1 suppression recruits burst firing more than for naturalistic movie stimulation342

(Fig. 4b), CT feedback did not have consistent effects on firing rate (Fig. 3c). Hyperpolar-343

ization of dLGN neurons and the resultant high frequency burst spiking, can, in principle, be344

achieved not only by a reduction of the direct excitatory influence of CT feedback, but also345

by an enhancement of its indirect, inhibitory impact [29]. Hence, diverse effects of CT feed-346

back manipulation on firing rate are not surprising, in particular if firing mode is not taken347

into account. In the future, it will be important to characterize in detail the dependence of348

CT feedback effects on strength of suppression to get insights into the range of effects that349

CT feedback can exert.350

Can the influence of feedback on dLGN firing mode allow us to assign a clear function to351

CT feedback? In burst firing mode, spontaneous activity is low, strongly rectified responses352

result in high signal-to-noise ratio [56], stimulus-evoked responses show phase-advance, and353

retinogeniculate [87] and cortical action potentials [88] are elicited with high efficiency. Dur-354

ing processing of naturalistic stimuli, bursting can be triggered upon transition from non-355

preferred to preferred receptive field contents [75–77]. Such a response regime would be well356

suited for stimulus detection [56, 76, 89]. If stimulus detection were to then activate the CT357

feedback system, potentially in a spatially specific way, this could shift dLGN to tonic mode358

better suited for more linear, detailed image representation [56] (but see [90] for evidence359

from the somatosensory system that thalamic bursts might also carry information about360

stimulus detail). To understand if CT feedback is indeed recruited for detailed perceptual361

analyses, an essential next step would be to measure the activity of L6 CT neurons under362

behaviorally relevant conditions. Interestingly, in the auditory system, activation of L6 CT363

feedback has been shown to influence sound perception, with enhancements of sound detec-364

tion or discrimination behavior, depending on the relative timing between CT spiking and365

stimulus onset [91].366

By measuring the effects of V1 suppression during different behavioral states, we found367

that locomotion and CT feedback had similar effects on dLGN responses, but likely oper-368

ated via separate circuits. The relationship between feedback and brain state has previously369

been investigated in the context of anesthesia, which can reduce the responsiveness of L6370

CT neurons [31], and abolish activity in feedback projections from retrosplenial cortex to V1371

[51]. One might therefore predict that CT feedback circuits might not be engaged during372

stationary periods compared to locomotion. In contrast to this prediction, we demonstrate373

here that cortical feedback modulated thalamic responses even during quiescence. While we374

found that V1 suppression lead to clear effects during stationary periods, we also revealed375

that CT feedback effects during locomotion were slightly stronger. This subtle interaction376

between brain state and feedback effects might relate to a previous finding, where careful377

dissection of brain states by depth of anesthesia had already suggested that the effects of378

transient cortical inactivation on dLGN responses were more evident during lighter anes-379
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thesia, i.e., during desynchronized cortical activity [43]. Thus, locomotion, light anesthesia380

and desynchronized brain states in general might leave more room for CT feedback to reg-381

ulate membrane potential levels in dLGN, which in turn affects firing rates and bursting.382

Likewise, we found that effects of locomotion on dLGN responses [63–65] were clearly not383

inherited from cortex (see also [92]), but tended to be stronger when CT feedback was intact.384

Taken together, despite arising from independent sources, modulations by CT feedback and385

behavioral state had a similar phenotype and could interact in their modulation of dLGN386

activity. We speculate that this similarity points towards final shared cellular or network387

mechanisms, likely related to changes in the depolarization level of dLGN neurons.388
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Methods403

All procedures complied with the European Communities Council Directive 2010/63/EC404

and the German Law for Protection of Animals, and were approved by local authorities,405

following appropriate ethics review.406

Surgical procedures407

Experiments were carried out in 6 adult PV-Cre mice (median age at first recording ses-408

sion: 24.71 weeks; B6;129P2-Pvalbtm1(cre)Arbr/J; Jackson Laboratory) of either sex. Thirty409

minutes prior to the surgical procedure, mice were injected with an analgesic (Metamizole,410

200 mg/kg, sc, MSD Animal Health, Brussels, Belgium). To induce anesthesia, animals411

were placed in an induction chamber and exposed to isoflurane (5% in oxygen, CP-Pharma,412

Burgdorf, Germany). After induction of anesthesia, mice were fixated in a stereotaxic frame413

(Drill & Microinjection Robot, Neurostar, Tuebingen, Germany) and the isoflurane level414

was lowered (0.5%–2% in oxygen), such that a stable level of anesthesia could be achieved415
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as judged by the absence of a pedal reflex. Throughout the procedure, the eyes were cov-416

ered with an eye ointment (Bepanthen, Bayer, Leverkusen, Germany) and a closed loop417

temperature control system (ATC 1000, WPI Germany, Berlin, Germany) ensured that418

the animal’s body temperature was maintained at 37◦ C. At the beginning of the surgi-419

cal procedure, an additional analgesic was administered (Buprenorphine, 0.1 mg/kg, sc,420

Bayer, Leverkusen, Germany) and the animal’s head was shaved and thoroughly disinfected421

using idodine solution (Braun, Melsungen, Germany). Before performing a scalp incision422

along the midline, a local analgesic was delivered (Lidocaine hydrochloride, sc, bela-pharm,423

Vechta, Germany). The skin covering the skull was partially removed and cleaned from424

tissue residues with a drop of H2O2 (3%, AppliChem, Darmstadt, Germany). Using four425

reference points (bregma, lambda, and two points 2 mm to the left and to the right of426

the midline respectively), the animal’s head was positioned into a skull-flat configuration.427

The exposed skull was covered with OptiBond FL primer and adhesive (Kerr dental, Ras-428

tatt, Germany) omitting three locations: V1 (AP: −2.8 mm, ML: −2.5 mm), dLGN (AP:429

−2.3 mm, ML: −2 mm), and a position roughly 1.5 mm anterior and 1 mm to the right430

of bregma, designated for a miniature reference screw (00-96 X 1/16 stainless steel screws,431

Bilaney) soldered to a custom-made connector pin. 2 µL of the adeno-associated viral vec-432

tor rAAV9/1.EF1a.DIO.hChR2(H134R)-eYFP.WPRE.hGH (Addgene, #20298-AAV9) was433

dyed with 0.3 µL fast green (Sigma-Aldrich, St. Louis, USA). After performing a small434

craniotomy over V1, a total of ∼0.5 µL of this mixture was injected across the entire depth435

of cortex (0.05 µL injected every 100 µm, starting at 1000 µm and ending at 100 µm below436

the brain surface), using a glass pipette mounted on a Hamilton syringe (SYR 10 µL 1701437

RN no NDL, Hamilton, Bonaduz, Switzerland). A custom-made lightweight stainless steel438

head bar was positioned over the posterior part of the skull such that the round opening439

contained in the bar was centered on V1/dLGN and attached with dental cement (Ivoclar440

Vivadent, Ellwangen, Germany) to the primer/adhesive. The opening was later filled with441

the silicone elastomer sealant Kwik-Cast (WPI Germany, Berlin, Germany). At the end of442

the procedure, an antibiotic ointment (Imax, Merz Pharmaceuticals, Frankfurt, Germany)443

was applied to the edges of the wound and a long-term analgesic (Meloxicam, 2 mg/kg, sc,444

Böhringer Ingelheim, Ingelheim, Germany) was administered and continued to be adminis-445

tered for 3 consecutive days. For at least 5 days post-surgery, the animal’s health status was446

assessed via a score sheet. After at least 1 week of recovery, animals were gradually habitu-447

ated to the experimental setup by first handling them and then simulating the experimental448

procedure. To allow for virus expression, neural recordings started no sooner than 3 weeks449

after injection. On the day prior to the first day of recording, mice were fully anesthetized us-450

ing the same procedures as described for the initial surgery, and a craniotomy (ca. 1.5 mm2)451

was performed over dLGN and V1 and re-sealed with Kwik-Cast (WPI Germany, Berlin,452

Germany). As long as the animals did not show signs of discomfort, the long-term analgesic453

Metacam was administered only once at the end of surgery, to avoid any confounding effect454

on experimental results. Recordings were performed daily and continued for as long as the455

quality of the electrophysiological signals remained high.456

Electrophysiological recordings, optogenetic suppression of V1, perfusion457

Head-fixed mice were placed on an air-cushioned Styrofoam ball, which allowed the ani-458

mal to freely move. Two optical computer mice interfaced with a microcontroller (Arduino459
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Duemilanove) sampled ball movements at 90 Hz. To record eye position and pupil size, the460

animal’s eye was illuminated with infrared light and monitored using a zoom lens (Nav-461

itar Zoom 6000) coupled with a camera (Guppy AVT camera; frame rate 50 Hz, Allied462

Vision, Exton, USA). Extracellular signals were recorded at 30 kHz (Blackrock microsys-463

tems). For each recording session, the silicon plug sealing the craniotomy was removed. For464

V1 recordings, a 32 or 64 channel silicon probe (Neuronexus, A1x32-5mm-25-177 or A1x64-465

Poly2-6mm-23s-160) was lowered into the brain to a median depth of 1100 µm. For dLGN466

recordings, a 32 channel linear silicon probe (Neuronexus A1x32Edge-5mm-20-177-A32, Ann467

Arbor, USA) was lowered to a depth of ∼2700–3700 µm below the brain surface. We judged468

recording sites to be located in dLGN based on the characteristic progression of RFs from469

upper to lower visual field along the electrode shank [57] (Fig. S1b), the presence of re-470

sponses strongly modulated at the temporal frequency of the drifting gratings (F1 response),471

and the preference of responses to high temporal frequencies [57, 93]. For post hoc histo-472

logical reconstruction of the recording site, the electrode was stained with DiI (Invitrogen,473

Carlsbad, USA) for one of the final recording sessions.474

For photostimulation of V1 PV+ inhibitory interneurons, an optic fiber (910 µm diameter,475

Thorlabs, Newton, USA) was coupled to a light-emitting diode (LED, center wavelength476

470 nm, M470F1, Thorlabs, Newton, USA) and positioned with a micromanipulator less477

than 1 mm above the exposed surface of V1. A black metal foil surrounding the tip of the478

head bar holder prevented the photostimulation light from reaching the animal’s eyes. To479

ensure that the photostimulation was effective, the first recording session for each mouse480

was carried out in V1. Only if the exposure to light reliably induced suppression of V1481

activity was the animal used for subsequent dLGN recordings. For both movie clips and482

drifting gratings, photostimulation started 0.25 s before stimulus onset and ended 0.5 s after483

stimulus offset. LED light intensity was adjusted on a daily basis to evoke reliable effects484

(median intensity: 27.5 mW/cm2) as measured at the tip of the optic fiber. Since the tip of485

the fiber never directly touched the surface of the brain, and since the clarity of the surface of486

the brain varied (generally decreasing every day following the craniotomy), the light intensity487

delivered even to superficial layers of V1 was inevitably lower. Importantly, changes in dLGN488

firing rates induced by V1 suppression (FMI, see below) did not differ, on average, from those489

induced by behavioral state (RMI, see below) (firing rate: FMI 0.20 vs. RMI 0.15, LMM:490

F1,145.7 = 3.02, p = 0.08; burst ratio: FMI −0.27 vs. RMI −0.28, F1,124.0 = 0.002, p = 0.97;491

sparseness: FMI −0.12 vs. RMI −0.14, F1,144.9 = 1.03, p = 0.31; reliability: FMI −0.084 vs.492

−0.037, F1,183.0 = 1.96, p = 0.16; Fig. 6a), indicating that optogenetic stimulation effects493

were not outside the physiological range.494

After the final recording session, mice were first administered an analgesic (Metamizole,495

200 mg/kg, sc, MSD Animal Health, Brussels, Belgium) and following a 30 min latency496

period were transcardially perfused under deep anesthesia using a cocktail of Medetomidin497

(0.5 ml/kg) Midazolam (1 ml/kg) and Fentanyl (1 ml/kg) (ip). Perfusion was first done498

with Ringer’s lactate solution followed by 4% paraformaldehyde (PFA) in 0.2 M sodium499

phosphate buffer (PBS).500

Histology501

To verify recording site and virus expression, we performed histological analyses. Brains502

were removed, postfixed in PFA for 24 h, and then rinsed with and stored in PBS at 4◦
503
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C. Slices (40 µm) were cut using a vibrotome (Leica VT1200 S, Leica, Wetzlar, Germany),504

mounted on glass slides with Vectashield DAPI (Vector Laboratories, Burlingame, USA),505

and coverslipped. A fluorescent microscope (BX61 Systems Microscope, Olympus, Tokyo,506

Japan) was used to inspect slices for the presence of yellow fluorescent protein (eYFP) and507

DiI. Recorded images were processed using FIJI [94, 95].508

Visual stimulation509

Visual stimuli were presented on a liquid crystal display (LCD) monitor (Samsung Sync-510

Master 2233RZ; mean luminance 50 cd/m2, 60 Hz) positioned at 25 cm distance from the511

animal’s right eye using custom written software (EXPO, https://sites.google.com/a/nyu.512

edu/expo/home). The display was gamma-corrected for the presentation of artificial stimuli,513

but not for movies (see below).514

To measure receptive fields (RFs), we mapped the ON and OFF subfields with a sparse515

noise stimulus. The stimulus consisted of nonoverlapping white and black squares on a516

square grid, each flashed for 200 ms. For dLGN recordings, the square grid spanned 60◦ on517

a side, while individual squares spanned 5◦ on a side. For subsequent choices of stimuli, RF518

positions and other tuning preferences were determined online after each experiment based519

on multiunit activity, i.e. high-pass filtered signals crossing a threshold of 4.5 to 6.5 SD.520

We measured single unit orientation preference by presenting full-field, full-contrast drift-521

ing sinusoidal gratings of 12 different, pseudo-randomly interleaved orientations (30◦ steps).522

For dLGN recordings, spatial frequency was either 0.02 cyc/◦ (3 experiments) or 0.04 cyc/◦
523

(8 experiments) and temporal frequency was either 2 Hz (2 experiments) or 4 Hz (9 ex-524

periments). One blank condition (i.e., mean luminance gray screen) was included to allow525

measurements of baseline activity. The stimulus duration was 2 s, with an interstimulus526

interval (ISI) of 2.4 s.527

For laminar localization of neurons recorded in V1, we presented a full-field, contrast-528

reversing checkerboard at 100% contrast, with a spatial frequency of either 0.01 cyc/◦ (2529

experiments) or 0.02 cyc/◦ (5 experiments) and a temporal frequency of 0.5 cyc/s.530

Movies were acquired using a hand-held consumer-grade digital camera (Canon Power-531

Shot SD200) at a resolution of 320×240 pixels and 60 frames/s. Movies were filmed close to532

the ground in a variety of wooded or grassy locations in Vancouver, BC, and contained little533

to no forward/backward optic flow, but did contain simulated gaze shifts (up to 275◦/s),534

generated by manual camera movements (for example movies, see Fig. S5). Focus was kept535

within 2 m and exposure settings were set to automatic. The horizontal angle subtended by536

the camera lens was 51.6◦. No display gamma correction was used while presenting movies,537

since consumer-grade digital cameras are already gamma corrected for consumer displays538

[96]. For presentation, movies were cut into 5 s clips and converted from color to grayscale.539

Movie clips were presented with an ISI of 1.25 s (32 experiments).540

Spike sorting541

To obtain single unit activity from extracellular recordings, we used the open source,542

Matlab-based, automated spike sorting toolbox Kilosort [97]. Resulting clusters were man-543

ually refined using Spyke [98], a Python application that allows the selection of channels544

and time ranges around clustered spikes for realignment, as well as representation in 3D545
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space using dimension reduction (multichannel PCA, ICA, and/or spike time). In 3D, clus-546

ters were then further split via a gradient-ascent based clustering algorithm (GAC) [99].547

Exhaustive pairwise comparisons of similar clusters allowed the merger of potentially over-548

clustered units. For subsequent analyses, we inspected autocorrelograms and mean voltage549

traces, and only considered units that displayed a clear refractory period and a distinct spike550

waveshape. All further analyses were carried out using the DataJoint framework [100] with551

custom-written code in Python.552

Response characterization553

We used current source density (CSD) analysis for recordings in area V1 to determine554

the laminar position of electrode contacts. To obtain the LFP data we first down-sampled555

the signal to 1 kHz before applying a bandpass filter (4–90 Hz, 2nd-order Butterworth filter).556

We computed the CSD from the second spatial derivative of the local field potentials [101],557

and assigned the base of layer 4 to the contact that was closest to the earliest CSD polarity558

inversion. The remaining contacts were assigned to supragranular, granular and infragranular559

layers, assuming a thickness of ∼1 mm for mouse visual cortex [102].560

In recordings targeting dLGN, we used the envelope of multi-unit spiking activity (MUAe)561

[103] to determine RF progression (Fig. S1b). Briefly, we full-wave rectified the high-pass562

filtered signals (cutoff frequency: 300 Hz, 4th-order non-causal Butterworth filter) before563

performing common average referencing by subtracting the median voltage across all channels564

in order to eliminate potential artifacts (e.g. movement artifacts). We then applied a low-565

pass filter (cutoff frequency: 500 Hz, Butterworth filter) and down-sampled the signal to566

2 kHz. Recording sessions for which RFs did not show the retinotopic progression typical of567

dLGN (Fig. S1b) [57] were excluded from further analysis.568

Each unit’s peristimulus time histogram (PSTH, i.e., the response averaged over trials)569

was calculated by convolving a Gaussian of width 2σ = 20 ms with the spike train collapsed570

across all trials, separately for each condition.571

We defined bursts according to [44], which required a silent period of at least 100 ms before572

the first spike in a burst, followed by a second spike with an interspike interval < 4 ms. Any573

subsequent spikes with preceding interspike intervals < 4 ms were also considered to be part574

of the burst. All other spikes were regarded as tonic. We computed a burst ratio (the number575

of burst spikes divided by the total number of spikes) and compared this ratio in conditions576

with CT feedback intact vs. V1 suppression or during locomotion vs. stationary conditions.577

PSTHs for burst spikes were calculated by only considering spikes that were part of bursts578

before collapsing across trials and convolving with the Gaussian kernel (see above). PSTHs579

for non-burst spikes were calculated in an analogous way.580

To quantify the effect of V1 suppression on various response properties, we defined the581

feedback modulation index (FMI) as582

FMI =
feedback− suppression

feedback + suppression
(1)
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Characterization of responses to naturalistic movie clips583

Signal to noise ratio (SNR) was calculated according to [104] by584

SNR =
V ar[〈Cr〉]t
〈V ar[C]t〉r

(2)

where C is the T by R response matrix (time samples by stimulus repetitions) and 〈〉x and585

Var[]x denote the mean and variance across the indicated dimension, respectively. If all trials586

were identical such that the mean response was a perfect representative of the response, SNR587

would equal 1.588

The sparseness S of a PSTH was calculated according to [54] by589

S =

1−

(
n∑

i=1

ri/n

)2

n∑
i=1

r2i /n


(

1

1− 1/n

)
(3)

where ri ≥ 0 is the signal value in the ith time bin, and n is the number of time bins.590

Sparseness ranges from 0 to 1, with 0 corresponding to a uniform signal, and 1 corresponding591

to a signal with all of its energy in a single time bin.592

Response reliability was quantified according to [55] as the mean pairwise correlation593

of all trial pairs of a unit’s single trial responses. Single trial responses were computed by594

counting spikes in 20 ms, overlapping time bins at 1 ms resolution. Pearson’s correlation was595

calculated between all possible pairs of trials, and then averaged across trials per condition.596

To detect response peaks in trial raster plots and measure their widths, clustering of spike597

times collapsed across trials was performed using the gradient ascent clustering (GAC) algo-598

rithm [99], with a characteristic neighborhood size of 20 ms. Spike time clusters containing599

less than 5 spikes were discarded. The center of each detected cluster of spike times was600

matched to the nearest peak in the PSTH. A threshold of θ = b + 3 Hz was applied to the601

matching PSTH peak, where b = 2 median(x) is the baseline of each PSTH x. Peaks in the602

PSTH that fell below θ were discarded, and all others were kept as valid peaks. Peak widths603

were measured as the temporal separation of the middle 68% (16th to 84th percentile) of604

spike times within each cluster.605

To determine whether V1 suppression changes dLGN responses in a divisive or subtractive606

manner, we fit a threshold-linear model using repeated random subsampling cross-validation.607

To this end, we first selected a random set of 50% of the trials for each condition for fitting608

to the timepoint-by-timepoint responses a threshold linear model given by rsupp = s rfb + b,609

where rsupp > 0, with s representing the slope and b the offset. Fitting was done using610

non-linear least squares (scipy.optimize.curve fit). Throughout Fig. 2, we report the611

resulting x-intercept as the threshold. We evaluated goodness of fit (R2) for the other 50% of612

trials not used for fitting. We repeated this procedure 1000 times and considered threshold613

and slope as significant if the central 95% of their distribution did not include 0 and 1,614

respectively.615
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Characterization of responses to drifting gratings616

For display of spike rasters (Fig. 3), trials were sorted by condition. We computed617

orientation tuning curves by fitting a sum of two Gaussians of the same width with peaks618

180◦ apart:619

R(θ) = R0 +Rpe
− (θ−θp)2

2σ2 +Rne
− (θ−θp+180)2

2σ2 (4)

In this expression, θ is stimulus orientation (0–360◦). The function has five parameters:620

preferred orientation θp, tuning width σ, baseline response R0, response at the preferred621

orientation Rp, and response at the null orientation Rn.622

Orientation selectivity was quantified according to [41, 105] as623

OSI =

√
(
∑
rk sin(2θk))2 + (

∑
rk cos(2θk))2∑

rk
(5)

where rk is the response to the kth direction given by θk. We determined OSI for each unit624

during both feedback and suppression conditions.625

We computed the first harmonic of the response r from the spike trains according to [62]626

to obtain the amplitude and phase of the best-fitting sinusoid, which has the same temporal627

frequency as the stimulus. For each trial, we calculated628

r = (1/D)
∑
k

cos(2πftk) + i sin(2πftk) (6)

where D is the stimulus duration, f is the temporal frequency of the stimulus, and the tk629

are the times of the individual spikes. We excluded the first cycle to avoid contamination630

by the onset response. For (Fig. 3g), we calculated average amplitude F1 by obtaining631

the absolute value of the complex number r on each trial, before averaging across trials, to632

avoid potential confounds due to differences in response phase across conditions. For the633

comparison of response phase, we focused on the orientation which elicited the maximal634

cycle average response across both feedback and suppression conditions.635

Exclusion criteria636

Neurons with mean evoked firing rates < 0.01 spikes/s were excluded from further anal-637

ysis. For movie clips, only neurons with SNR ≥ 0.015 in at least one of the conditions in an638

experiment were considered. Of this population, 2 neurons were excluded from the analysis639

of the parameters returned by the threshold linear model, because their R2 was < 0. For640

gratings, we converted firing rates in response to each orientation to z-scores relative to re-641

sponses to the mean luminance gray screen. We only considered visually responsive neurons,642

which had a z-scored response ≥ 2.5 to at least 1 orientation. For the analysis of response643

phase, we only considered neurons with a peak of the cycle average response of at least 10 Hz644

in both feedback and suppression conditions, and an F1/F0 ratio of at least 0.25.645

Locomotion646

We used the Euclidean norm of three perpendicular components of ball velocity (roll,647

pitch and yaw) to compute animal running speed. For the analysis of neural responses as a648

function of behavioral state, locomotion trials were defined as those for which speed exceeded649
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1 cm/s for at least 50% of the stimulus presentation, and stationary trials as those for which650

speed fell below 0.25 cm/s for at least 50% of the stimulus presentation. To quantify the651

effect of running vs. sitting on various response properties, the run modulation index (RMI)652

was defined as653

RMI =
running − sitting

running + sitting
(7)

Eye Tracking654

The stimulus viewing eye was filmed using an infrared camera under infrared LED il-655

lumination. Pupil position was extracted from the videos using a custom, semi-automated656

algorithm. Briefly, each video frame was equalized using an adaptive bi-histogram equal-657

ization procedure, and then smoothed using a median and bilateral filters. The center of658

the pupil was detected by taking the darkest point in a convolution of the filtered image659

with a black square. Next, the peaks of the image gradient along lines extending radially660

from the center point were used to define the pupil contour. Lastly, an ellipse was fit to661

the contour, and the center of this ellipse was taken as the position of the pupil. A similar662

procedure was used to extract the position of the corneal reflection (CR) of the LED illumi-663

nation. Eye blinks were automatically detected and the immediately adjacent data points664

were excluded. Adjustable algorithm parameters were set manually for each experiment.665

Output pupil position time-courses were lightly smoothed, and unreliable segments were au-666

tomatically removed according to a priori criteria. Finally, the CR position was subtracted667

from the pupil position to eliminate translational eye movements, and pupil displacement in668

degrees relative to the baseline (median) position was determined by669

θ = 2
arcsin(d/2)

r
(8)

where d is the distance between the pupil and the baseline position, and r = 1.25 mm is the670

radius of the eye [106]. Angular displacement was computed separately for x and y directions671

and then combined geometrically to give the final measure of distance from baseline.672

Statistical methods673

To assess statistical significance, we fitted and examined multilevel linear models [107].674

Such models take into account the hierarchical structure present in our data (i.e., neurons675

nested in experiments, experiments nested in recording sessions, recordings sessions nested676

in animals), and eliminate the detrimental effect of structural dependencies on the likelihood677

of Type I errors (false positive reports) [108]. By considering the nested structure of the678

data, multilevel models also eliminate the need for “pre-selecting” data sets, such as one679

out of several experiments repeatedly performed on the same neurons. Whenever we have680

several experiments per neuron, we include all of them, and also show them in the scatter681

plots (“observations”). We provide the sample size for each analysis in Table 1. In fitting682

the models, we accounted for repeated measures by including random effects for animals,683

recording sessions, experiments, and neurons. We fit these models in R [109], using the684

lme4 package [110]. We estimated F-values, their degrees of freedom, and the corresponding685

p-values using the Satterthwaite approximation [111] implemented by the lmertest package686
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[112]. Throughout, uncertainty in estimated regression slopes is represented as slope ± x,687

where x is 2 × the estimated standard error of the slope.688

Observations Neurons Mice
Figure 1f 118 64 6
Figure 1g 117 63 6
Figure 1h–j 118 64 6
Figure 2e,h 114 62 6
Figure 2f 113 61 6
Figure 2g 113 62 6
Figure 3c–e 57 44 4
Figure 3f 27 26 4
Figure 3g 57 44 4
Figure 3h,i 40 33 3
Figure 4a 36 36 3
Figure 4b 34 34 3
Figure 5c,e 129 65 6
Figure 5d 124 63 6
Figure 5f 128 65 6
Figure 6a1,a3,a4 109 59 6
Figure 6a2 101 56 6
Figure 6b1,b3 126 64 6
Figure 6b2 109 58 6
Figure 6b4 111 63 6
Figure 6c1,c3 123 63 6
Figure 6c2 110 58 6
Figure 6c4 109 62 6
Figure S2a,c,e 118 64 6
Figure S2b,f 108 57 6
Figure S2d 117 63 6
Figure S3a,b 118 64 6
Figure S3c,d 39 39 4
Figure S4a,d 129 65 6
Figure S4b 102 56 6
Figure S4c 107 57 6
Figure S4e,g 125 65 6

Table 1 Breakdown of sample sizes (N) for the analyses of neural data. See text for details.
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Figure S1 Confirmation of optogenetic suppression of V1 responses and targeting dLGN for recordings.
(a) MUAe responses [103] to 2 s drifting gratings recorded in one experiment for three example channels.
All three channels were located, as determined by current source density analysis [101], in the infragranular
layers of V1. Black : Mean MUAe responses across control trials; blue: MUAe responses in trials with
optogenetic activation of PV+ inhibitory interneurons. Normalized MUAe was computed by subtracting
the mean activity across both conditions in a 200 ms time window prior to light onset before normalizing to
the maximum response across the two conditions. Percentages indicate mean reduction in MUAe over the
stimulus presentation period. Black bar : stimulus period; blue bar : photoactivation period. (b) MUAe-based
RFs for channels located in dLGN during two example RF mapping experiments. Each panel represents one
channel, with the top channel being located most dorsally and the bottom channel most ventrally in the
dLGN. RFs were computed as the mean response to a change in contrast at a given monitor position in a time
window ranging from 50 ms after stimulus onset to 100 ms after stimulus offset. Brighter pixels indicate higher
activity. The emerging characteristic pattern with more ventrally located channels representing locations
lower in the visual field was used to confirm successful targeting of dLGN.
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Figure S2 Effects of CT feedback on additional parameters of responses to naturalistic movies and relation-
ship with firing rate.
(a, b) Comparison of CT feedback vs. V1 suppression conditions for PSTH signal-to-noise ratio (SNR) (a)
and mean peak width (b). SNR was computed as in [104], and compares the variance of the trial-averaged
PSTH across time relative to the single-trial variance across time, averaged across stimulus repeats. If all
trials are identical such that the PSTH is a perfect representation of the each trial’s response, SNR equals
1. The width of PSTH peaks that exceeded a threshold amplitude was measured as the temporal separa-
tion of the middle 68% of spikes clustered as part of each peak (see Methods). Narrow peaks are a proxy
for high temporal precision of responses. With CT feedback intact, mean SNR was lower (0.14 vs. 0.16,
LMM: F1,154.7 = 14.72, p = 0.00018) and mean peak width was higher (0.086 vs. 0.080, LMM: F1,153 = 7.0,
p = 0.0088). (c–f) Relationship between CT feedback effects (FMI) on firing rate and sparseness (c), burst
ratio (d), SNR (e), and peak width (f). CT feedback-related changes in firing rate can to a large degree
account for the changes in sparseness (LMM: slope of −0.60 ± 0.11; (c)). For all other measures, slopes
were either non-significant or closer to 0 (Burst ratio, LMM: slope of −0.17 ± 0.29; SNR, LMM: slope of
−0.18± 0.18; peak width, LMM: slope of 0.19± 0.11).
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Figure S3 Comparison of effects of V1 suppression for different parts of the naturalistic movie clips and for
the first 120 trials only.
(a, b) In conditions with CT feedback intact, dLGN firing rates were consistently higher than during V1
suppression, both for the first 2 s (a) and the last 2 s (b) of the movie clips (main effect of feedback, LMM:
F1,394.9 = 14.6, p = 0.00015), and the effect of V1 suppression was indistinguishable during the first two
and the last two seconds of the movie clips (interaction feedback × analysis window, LMM: F1,394.9 = 0.61,
p = 0.43). Higher consistency of effects of V1 feedback suppression on firing rates to naturalistic movies thus
cannot be explained by the longer duration of the movies (5 s) compared to gratings (2 s). (c, d) Comparison
of feedback modulation index (FMI) of firing rates for gratings vs. movies, separately for the first 2 s (c) and
the last 2 s (d) of the movie clips. Firing rate FMIs were significantly more positive for movies vs. gratings,
even when considering only the first 2 s (mean FMI of 0.16 (movies) vs. 0.022 (gratings); LMM: F1,38 = 12.7,
p = 0.00099) (c). Considering only the last 2 s of the movies (d) gave very similar results (mean FMI of 0.14
(movies) vs. 0.03 (gratings); LMM: F1,38 = 5.7, p = 0.022). Hence, even when we limited our analysis to
the first 2 s of the movie clips, CT feedback effects remained stronger for movies than gratings. Together,
these analyses show that considering the full 5 s of the movie clips does not inflate the difference in firing
rate FMI between movies and gratings, but is rather a conservative estimate of the effect.
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Figure S4 Effects of locomotion on additional parameters of responses to naturalistic movie clips and rela-
tionship with firing rate.
(a,b) Comparison between trials with locomotion and stationary periods for (a) SNR [104] and (b) width of
response peaks. During locomotion, SNR is lower (0.14 vs. 0.16, LMM: F1,190.4 = 4.9, p = 0.029) and peak
width broader (0.075 vs. 0.068, LMM: F1,146.2 = 13.1, p = 0.00040). (c–e) Relationship between locomotion
effects (RMI) on firing rate vs. burst ratio (c), sparseness (d), and reliability (e). Locomotion-related changes
in firing rate can to some degree account for the changes in reliability (LMM: slope of 0.59±0.38; (e)). For all
other measures, slopes were non-significant (Burst ratio, LMM: slope of 0.19± 0.43; sparseness, LMM: slope
of −0.12±0.12). (f) Distribution of trial-averaged eye-position standard deviation for trials with locomotion
(green) and stationary periods (orange). Eye-position standard deviation was first calculated for each time
point across trials, and then averaged across time points. In line with previous reports [63, 67], standard
deviation of eye position was, on average, larger during locomotion than during stationary periods (4.27◦

vs. 2.76◦, LMM: F1,49 = 53.6.5, p = 2.1× 10−9, N = 30 experiments from 6 mice). (g) Locomotion-related
trial-to-trial reliability co-varied with locomotion-related changes in eye position standard deviation (LMM:
slope of −0.44 ± 0.36); however, the expected difference in reliability RMI corresponding to a 1 standard
deviation difference in eye position σ RMI is −0.081, which is much smaller than the residual standard de-
viation of 0.28 unexplained by the regression. Therefore, changes in eye position during locomotion cannot
reliably account for the reduced reliability of responses during locomotion (Fig. 5f).

Figure S5 Two example movies used for the recordings.
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