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Abstract

Mosaic analysis provides a means to probe developmental processes in situ by

generating loss-of-function mutants within otherwise wildtype tissues. Combining these

techniques with quantitative microscopy enables researchers to rigorously compare RNA

or protein expression across the resultant clones. However, visual inspection of mosaic

tissues remains common in the literature because quantification demands considerable

labor and computational expertise. Practitioners must segment cell membranes or cell

nuclei from a tissue and annotate the clones before their data are suitable for analysis.

Here, we introduce Fly-QMA, a computational framework that automates each of these

tasks for confocal microscopy images of Drosophila imaginal discs. The framework

includes an unsupervised annotation algorithm that incorporates spatial context to

inform the genetic identity of each cell. We use a combination of real and synthetic

validation data to survey the performance of the annotation algorithm across a broad

range of conditions. By contributing our framework to the open-source software

ecosystem, we aim to contribute to the current move toward automated quantitative

analysis among developmental biologists.

Author summary

Biologists use mosaic tissues to compare the behavior of genetically distinct cells within

an otherwise equivalent context. The ensuing analysis is often limited to qualitative

insight. However, it is becoming clear that quantitative models are needed to unravel

the complexities of many biological systems. In this manuscript we introduce Fly-QMA,

an open-source software framework that automates the quantification of mosaic analysis

for Drosophila imaginal discs, a common setting for studies of developmental processes.

The software automatically extracts quantitative measurements from confocal images of

mosaic tissues, rectifies any cross-talk between fluorescent reporters, and identifies

clonally-related subpopulations of cells. Together, these functions allow users to

rigorously ascribe changes in gene expression to the presence or absence of particular

genes. We validate the performance of our framework using both real and synthetic

data. Through its publication, we aim to contribute to the current move toward
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automated quantitative analysis among biologists.

Introduction 1

Quantification will be essential as biologists study increasingly complex facets of 2

organismal development [1]. Unfortunately, qualitative analysis remains common 3

because it is often difficult to measure cellular processes in their native context. Modern 4

fluorescent probes and microscopy techniques make such measurements possible [2–4], 5

but the ensuing image analysis demands specialized skills that fall beyond the expertise 6

of most experimentalists. Automated analysis strategies have addressed similar 7

challenges in cytometry [5–7], genomics and transcriptomics [8–11], and other 8

subdisciplines of biology [12,13]. Image analysis has proven particularly amenable to 9

automation, with several computer vision tools having gained traction among 10

biologists [14–17]. These platforms are popular because they increase productivity, 11

improve the consistency and sensitivity of measurements, and obviate the need for 12

specialized computational proficiency [18–20]. Designing similar tools to help biologists 13

probe and measure developmental processes in vivo will further transform studies of 14

embryogenesis and development into quantitative endeavors. 15

Developmental biologists study how the expression and function of individual genes 16

coordinate the emergence of adult phenotypes. They often ask how cells respond when a 17

specific gene, RNA, or protein is perturbed during a particular stage of development. 18

Cell response may be characterized by changes in morphology, or by changes in the 19

expression of other genes (Fig 1A). Experimental efforts to answer this question were 20

historically stifled by the difficulty of isolating perturbations to a single developmental 21

context, as the most interesting perturbation targets often confer pleiotropic function 22

across several stages of development and can trigger early embryonic lethality [21–23]. 23

Mosaic analysis addressed this challenge in Drosophila by limiting perturbations to a 24

subset of cells within the imaginal discs of the larva [24,25]. The technique yields a 25

heterogeneous tissue comprised of genetically distinct patches of cells that are clonally 26

related. Aside from rare de novo mutations, cells within each clone are genetically 27

identical. Clone formation may be restricted to specific developing organs by using 28

disc-specific gene promoters to drive trans-chromosomal recombination events in the 29
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corresponding imaginal discs [26, 27]. The timing of these events determines the number 30

and size of the resultant clones [28]. Perturbations are applied by engineering the dosage 31

of a target gene to differ across clones (Fig 1B), resulting in clones whose cells are either 32

homozygous mutant (−/−), heterozygous wildtype (+/−), or homozygous wildtype 33

(+/+) for the particular gene. Labeling these clones with the presence or absence of 34

fluorescent markers enables direct comparison of cells subject to control or perturbation 35

conditions, while maintaining otherwise equivalent developmental and physiological 36

histories between the two cell populations (Fig 2A). Additional reporters may be used 37

to monitor differences in RNA or protein expression, morphology, or cell fate choice 38

across clones (Fig 2B). Variants of this strategy led to seminal discoveries in both neural 39

patterning [29–31] and morphogenesis [32,33], and remain popular today [34–36]. 40

Fig 1. Perturbing gene expression via mitotic recombination. Experimental
framework using mitotic clones to test whether or not regulatory interactions occur
between a perturbation target and reporter of interest. Blue and green markers
represent the respective genes encoding the perturbation target and the reporter. (A) A
perturbation-induced decrease in reporter levels would confirm that regulation occurs.
(B) Mitotic recombination generates clonal subpopulations carrying zero, one, or two
copies of the gene encoding a perturbation target. Black lines depict a genetic locus.
Only genes downstream of the recombination site are subject to recombination. Red
markers represent a gene encoding a clonal marker used to identify the resultant clones.
Red shading of large oval reflects relative clonal marker fluorescence level.

Quantitative microscopy techniques are well suited to measuring differences in cell 41

behavior across clones. One reporter (a clonal marker) labels the clones, while others 42

quantitatively report properties of their constituent cells, such as the expression level of 43

a gene product of interest (Fig 2C). The former then defines the stratification under 44

which the latter are compared. We call this strategy Quantitative Mosaic Analysis 45

(QMA) because it replaces subjective visual comparison with a rigorous statistical 46

alternative. Although a few recent studies have deployed this approach [37–40], 47

qualitative visual comparison remains pervasive in the literature. 48
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We suspect the adoption of QMA has been hindered by demand for specialized 49

computational skills or, in their stead, extensive manual labor. Researchers must first 50

draw or detect boundaries around individual nuclei in a procedure known as 51

segmentation (Fig 2D). Averaging the pixel intensities within each boundary then yields 52

a fluorescence intensity measurement for each reporter in each identified nucleus (Fig 53

2E). The measurements should then be corrected to account for any fluorescence 54

bleedthrough between reporter channels (Fig 2F). Correction often requires 55

single-reporter calibration experiments to quantify any potential crosstalk between 56

different fluorophores, followed by complex calculations to remedy the data [41,42]. 57

Researchers must then label, or annotate, each identified nucleus as mutant, 58

heterozygous, or homozygous for the clonal marker. Annotation is typically achieved 59

through visual inspection (Fig 2G). Cells carrying zero, one, or two copies of the clonal 60

marker should exhibit low, medium, or high average levels of fluorescence, respectively. 61

However, both measurement and biological noise introduce the possibility that some 62

cells’ measured fluorescence levels may not reliably reflect their genetic identity. 63

Annotation must therefore also consider the spatial context surrounding each nucleus. 64

For instance, a nucleus whose neighbors express high levels of the clonal marker is likely 65

to be homozygous for the clonal marker, even if its individual fluorescence level is 66

comparable to that of heterozygous cells (Fig 2G, white arrows). Spatial context is 67

particularly informative in developing tissues where cell migration is minimal, such as 68

the fly imaginal discs. With many biological replicates containing thousands of cells 69

each, annotation can quickly become insurmountably tedious. The corrected and 70

labeled measurements are then curated for statistical comparison by excluding those on 71

the border of each clone, and limiting their scope to particular regions of the image field 72

(Fig 2H). Combined, all of these tasks ultimately burden researchers and raise the 73

barrier for adoption of QMA. 74

Automation promises to alleviate this bottleneck, yet the literature bears 75

surprisingly few computational resources designed to support QMA. The ClonalTools 76

plugin for ImageJ deploys an image-based approach to measure macroscopic features of 77

clone morphology, but is limited to binary classification of mutant versus non-mutant 78

tissue and offers no functionality for comparing reporter expression across clones [43]. 79

Alternatively, the MosaicSuite plugin for ImageJ deploys an array of image processing, 80
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Fig 2. Conventional versus quantitative mosaic analysis. (A,B) Conventional
analysis of a mosaic eye imaginal disc. (A) Clones are identified by visual comparison of
clonal marker fluorescence among nuclei. (B) Regions labeled homozygous mutant
(−/−) or homozygous wildtype (+/+) for the clonal marker are compared with those
labeled heterozygous wildtype (+/−) to assess whether reporter expression differs
across clones. Fluorescence bleed-through is arbitrarily diagnosed. (C-H) Quantitative
mosaic analysis. Panels depict a magnified view of the region enclosed by red rectangles
in panels A and B. (C) Raw confocal image of the nuclear stain, clonal marker, and
reporter of interest. (D) Segmentation identifies distinct nuclei. (E) Reporter expression
is quantified by averaging the pixel intensities within each segment. Numbers reflect
measured values. (F) Measurements may be corrected to mitigate fluorescence
bleedthrough. (G) Individual nuclei are labeled homozygous mutant, heterozygous, or
homozygous wildtype for the clonal marker. White arrows mark nuclei with ambiguous
fluorescence levels. (H) Reporter levels are compared across clones to determine
whether the perturbation affects reporter expression. Yellow region marks excluded
clone borders. Comparison may exclude clone borders (yellow regions) and focus on a
particular region of the image field (black arrows). In the eye imaginal disc, comparison
is often limited to a narrow window near the MF (orange arrow).

segmentation, and analysis capabilities to automatically detect spatial interactions 81

between objects found in separate fluorescence channels [44,45]. While useful in many 82

other settings, neither of these tools support automated labeling of individual cells or 83

explicit comparison of clones with single-cell resolution. Most modern studies employing 84
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a quantitative mosaic analysis instead report using some form of ad hoc semi-automated 85

pipeline built upon ImageJ [37,39, 40]. We are therefore unaware of any platforms that 86

offer comprehensive support for an automated QMA workflow. 87

Here, we introduce Fly-QMA, an open-source framework for automated QMA of 88

Drosophila imaginal discs. Fly-QMA supports segmentation, bleedthrough correction, 89

and annotation of confocal microscopy data (Fig 2D-H). We demonstrate each of these 90

functions by applying them to real confocal images of clones in the eye imaginal disc, 91

and find that our automated approach yields results consistent with manual analysis by 92

a human expert. We then generate and use synthetic data to survey the performance of 93

our framework across a broad range of biologically plausible conditions. 94

Results 95

Quantification of nuclear fluorescence levels 96

We implemented a segmentation strategy based upon a standard watershed 97

approach [52]. Briefly, we construct a foreground mask by Otsu thresholding the nuclear 98

stain or nuclear label image following a series of smoothing and contrast-limited 99

adaptive histogram equalization operations [52, 53]. We then apply a Euclidean distance 100

transform to the foreground mask, identify the local maxima, and use them as seeds for 101

watershed segmentation. When applied to the microscopy data, few visible spots in the 102

nuclear stain were neglected, and the vast majority of segments outlined individual 103

nuclei (S1 Fig C). 104

This approach is flexible and should perform adequately in many scenarios. However, 105

we acknowledge that no individual strategy can address all microscopy data because 106

segmentation is strongly context dependent. All subsequent stages of analysis were 107

therefore designed to be compatible with any data that conform to our standardized file 108

structure. This modular arrangement grants users the freedom to use one of the many 109

other available segmentation platforms [54], including FlyEye Silhouette [55], before 110

applying the remaining functionalities of our framework. Regardless of how nuclear 111

contours are identified, averaging the pixel intensities within them yields fluorescence 112

intensity measurements for each reporter in each identified nucleus. We next sought to 113
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ensure that these measurements were suitable for comparison across clones. 114

Bleedthrough correction 115

Despite efforts to select non-overlapping reporter bandwidths and excite them 116

sequentially, it is not uncommon for reporters excited at one wavelength to emit some 117

fluorescence in the spectrum collected for another channel (Fig 2B, yellow lines) [41, 56]. 118

The end result is a positive correlation, or crosstalk, between the measured fluorescence 119

intensities of two or more reporters. Exogenous correlations between the measured 120

fluorescence intensities of the clonal marker and the reporter of interest are problematic 121

given that the purpose of the experiment is to detect changes in reporter levels with 122

respect to the clonal marker. 123

In our microscopy data, individual clones were distinguished by their low, medium, 124

or high expression levels of an RFP-tagged clonal marker (Fig 3A). These images should 125

not have shown any detectable difference in GFP levels across clones because all cells 126

carried an equivalent dosage of the control reporter (S1 Fig A). However, the images 127

visibly suffered from bleedthrough between the RFP and GFP channels (Fig 3A,B). 128

Bleedthrough was similarly evident when we compared measured GFP levels across 129

labeled clones. Nuclei labeled mutant, heterozygous, or homozygous for the clonal 130

marker had low, medium, and high expression levels of the control reporter, respectively 131

(Fig 3C, black boxes). The data were therefore ripe for systematic correction. 132

Spectral bleedthrough correction is common practice in other forms of 133

cross-correlation and co-localization microscopy [41,56]. These methods typically entail 134

characterizing the extent of crosstalk between fluorophores globally [57,58], on a 135

pixel-by-pixel basis [42], or by experimental calibration [41], then detrending all images 136

or measurements prior to subsequent analysis. Our framework adopts the global 137

approach, using the background pixels in each image to infer the extent of fluorescence 138

bleedthrough across spectral channels. 139

Specifically, we assume the fluorescence intensity Fij for channel i at pixel j is a 140

superposition of a background intensity Bij and some function of the expression level 141
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Fig 3. Automated correction of fluorescence bleedthrough in the larval eye.
(A) Low, medium, and high expression levels of the RFP-tagged clonal marker. (B)
GFP-tagged control reporter expression. RFP fluorescence bleedthrough is visually
apparent upon comparison with A. (C) Comparison of control reporter expression
between clones. Includes data aggregated across nine images taken from six separate eye
discs. Data were limited to cells within the region of elevated GFP expression that were
of approximately comparable developmental age (see S2 Fig E-G). Measurements are
stratified by their assigned labels. Before correction, expression differs between clones
(black boxes, p < 10−5). No difference is detected after correction (red boxes, p > 0.05).

Eij that we seek to compare across cells [59]: 142

Fij = Bij + f(Eij) (1)

We further assume that the background intensity of a channel includes linear 143

contributions from the fluorescence intensity of each of the other channels: 144

Bij =
∑
k 6=i

αkFkj + β (2)

where k is indexed over K anticipated sources of bleedthrough. Given estimates for each 145

{α1, α2, . . . αK} and β we can then estimate the background intensity of each 146

measurement: 147

〈 Bij 〉 =
∑
k 6=i

αk〈Fkj〉+ β (3)

where the braces denote the average across all pixels within a single nucleus. The 148

corrected signal value is obtained by subtracting the background intensity from the 149

measured fluorescence level: 150

〈 f(Eij) 〉 = 〈 Fij 〉 − 〈 Bij 〉 (4)
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Repeating this procedure for each nucleus facilitates comparison of relative 151

expression levels across nuclei in the absence of bleedthrough effects. Bleedthrough 152

correction performance is therefore strongly dependent upon accurate estimation of the 153

bleedthrough contribution strengths, {α1, α2, . . . αK}. 154

We estimate these parameters by characterizing their impact on background pixels 155

(see Methods). When applied to the microscopy data, bleedthrough correction 156

successfully eliminated any detectable difference in GFP expression across clones (Fig 157

2C, red boxes, p > 0.05 two-sided Mann-Whitney U test). 158

Automated annotation of clones 159

Our annotation strategy seeks to label each identified cell as homozygous mutant, 160

heterozygous wildtype, or homozygous wildtype for the clonal marker. Variation within 161

each clone precludes accurate classification of a cell’s genotype solely on the basis of its 162

individual expression level. However, in tissues where cell migration is minimal, clonal 163

lineages are unlikely to exist in isolation because recombination events are typically 164

timed to generate large clones. Our strategy therefore integrates both clonal marker 165

expression and spatial context to identify clusters of cells with locally homogeneous 166

expression behavior, then maps each cluster to one of the possible labels. This 167

unsupervised approach lends itself to automated annotation because the clusters are 168

inferred directly from the data without any guidance from the user. 169

We first train a statistical model to estimate the probability that a given 170

measurement came from a cell carrying zero, one, or two copies of the clonal marker (S3 171

Fig A). This entails fitting a weighted mixture of three or more bivariate lognormal 172

distributions (components) to a two dimensional set of observations (S3 Fig B,C). The 173

first dimension corresponds to the clonal marker fluorescence level measured within each 174

cell. The second dimension describes the local average expression level within the region 175

surrounding each cell. We evaluate the latter by estimating a neighborhood radius from 176

the decay of the radial correlation of the expression levels, then averaging the expression 177

levels of all cells within that radius (S3 Fig D). The second dimension therefore 178

measures the spatial context in which a cell resides. We balance model fidelity against 179

overfitting by using the Bayesian information criterion to determine the optimal number 180
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of model components (S3 Fig E). We then cluster the components into three groups on 181

the basis of their mean values (S3 Fig F), effectively mapping each component to one of 182

the three possible gene dosages. The model may be trained using observations derived 183

from a single image, or with a collection of observations derived from multiple images. 184

Once trained, the model is able to predict the conditional probability that an individual 185

observation belongs to one of the model’s components, given its measured expression 186

level. 187

We then use the learned conditional probabilities to detect entire clones, thus 188

assigning a label to each cell. Rather than using the trained model to classify each 189

observation, we compile a new set of observations by limiting each estimate of spatial 190

context to spatially collocated communities with similar expression behavior (S4 Fig A). 191

We identify these communities by applying a community detection algorithm to an 192

undirected graph connecting adjacent cells (S4 Fig B). Edges in this graph are weighted 193

by the similarity of clonal marker expression between neighbors, resulting in 194

communities with similar expression levels (S4 Fig E, Steps I and II). The graph-based 195

approach increases spatial resolution by limiting the information shared by dissimilar 196

neighbors. Applying the mixture model yields an initial estimate of the probability that 197

an observation belongs to one of the model’s components (S4 Fig E, Step III). We 198

further refine these estimates by allowing the probabilities estimated for each cell to 199

diffuse throughout the graph (S4 Fig E, Step IV). The rate of diffusion between 200

neighbors is determined by the weight of the edge that connects them, with more 201

similar neighbors exerting stronger influence on each other. We then use the diffused 202

probabilities to identify the most probable source component and label each observation 203

(S4 Fig E, Step V). These probabilities also provide a measure of confidence in the 204

assigned labels. We replace any low-confidence labels with alternate labels assigned 205

using a marginal classifier that neglects spatial context (S4 Fig F,G), resulting in a fully 206

labeled image (S4 Fig H). 207

The algorithm leverages the collective wisdom of neighboring measurements to 208

override spatially isolated fluctuations in clonal marker expression, and thereby enforces 209

consistent annotation within contiguous regions of the image field. The size of these 210

regions depends upon the granularity of estimates for the spatial context surrounding 211

each cell. We used an unsupervised approach to choose an appropriate spatial resolution 212
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Fig 4. Automated unsupervised annotation of clones in the larval eye. (A)
Labels assigned by automated annotation. Yellow, cyan, and magenta denote the label
assigned to each contour. Labels are overlayed on the RFP channel of the image shown
in S1 Fig B. Cells on the periphery of each clone are excluded. (B) Comparison of
automated annotation with manually-assigned labels. Confusion matrix includes data
aggregated across nine images taken from six separate eye discs. Cells on the periphery
of each clone are included. Columns sum to one.

in a principled manner. In short, the resolution is matched to the approximate length 213

scale over which expression levels remain correlated among cells. Both the training and 214

application stages of our annotation algorithm use this automated approach (S3 Fig D 215

and S4 Fig D), thus averting any need for user input. 216

Manual assessment of annotation performance 217

We sought to validate the performance of the annotation algorithm by assessing its 218

ability to accurately reproduce human-assigned labels. We manually labeled nuclei in 219

each eye imaginal disc as homozygous mutant, heterozygous wildtype, or homozygous 220

wildtype for the clonal marker, then automatically labeled the same cells (Fig 4A). The 221

two sets of labels showed strong overall agreement (Fig 4B and S5 Fig A). Excluding 222

cells on the border of each clone revealed greater than 97% agreement in seven of the 223

nine annotated images (see Table 1). Upon secondary inspection of the sole instance of 224

substantial disagreement (S5 Fig B), we are unable to confidently discern which set of 225

labels are more accurate. 226

While it is common practice to use human-labeled data as the gold standard, 227

manually assigned labels do not represent a reliable and reproducible ground truth. 228

Furthermore, we contend that validation with manually-labeled data entrains implicit 229

human biases in the selection of performant algorithms. These biases are particularly 230
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Table 1. Automated vs. manual annotation

Disc Layer Agreement*

1 1 93.1% (97.3%)
1 2 95.3% (97.3%)
2 1 91.3% (99.1%)
2 2 95.2% (96.4%)
3 1 67.2% (75.6%)
4 1 82.5% (89.2%)
5 1 96.2% (100%)
6 1 99.1% (99.3%)
6 2 95.2% (97.5%)

*Values in parentheses denote agreement
when clone borders are excluded.

pronounced in biological image data where intrinsic variation, measurement noise, and 231

transient processes can make cell-type annotation a highly subjective, and thus 232

irreproducible, task. 233

Synthetic benchmarking of annotation performance 234

Synthetic benchmarking provides a powerful alternative to validation against manually 235

labeled data. The idea is simple; measure how accurately an algorithm is able to label 236

synthetic data for which the labels are known. The synthetic data generation procedure 237

may be modeled after the process underlying formation of the real data, providing a 238

means to assess the performance of an algorithm across the range of conditions that it is 239

likely to encounter. The strategy therefore provides a means to survey the breadth of 240

biologically plausible conditions under which the algorithm provides adequate 241

performance. Synthetic benchmarking also facilitates unbiased comparison of competing 242

algorithms, resulting in a reliable standard that may be called upon at any time. 243

We used synthetic microscopy data to benchmark the performance of our annotation 244

strategy. Each synthetic dataset depicts a simulated culture of cells distributed roughly 245

uniformly in space (S6 Fig A). Cells in this culture contain zero, one, or two copies of a 246

gene encoding an RFP-tagged clonal marker (S6 Fig B). Our simulation procedure 247

ensures that cells tend to remain proximal to their clonal siblings (S6 Fig C), thus 248

forming synthetic clones with tunable size and spatial heterogeneity (S6 Fig D,E). We 249

generated synthetic measurements by randomly sampling fluorescence levels in a 250

dosage-depend manner (S7 Fig A-C). We varied the similarity of fluorescence levels 251
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Fig 5. Synthetic benchmarking of automated annotation performance. Each
pixel reflects the mean MAE across 50 replicates. Clone size reflects the mean number
of cells per clone. Performance improves with increasing clone size and worsens with
increasing fluorescence ambiguity.

across clones using an ambiguity parameter, σα, that modulates the spread of the 252

distributions used to generate fluorescence levels (S7 Fig D-F). 253

Using this schema as a template, we generated a large synthetic dataset, annotated 254

each set of measurements, and compared the assigned labels with their true values. We 255

used the mean absolute error as a comparison metric because it provides a stable 256

measure of accuracy for multiclass classification problems in which the labels are 257

intrinsically ordered [60]. In other words, it penalizes egregious misclassifications more 258

severely than mild ones. 259

Annotation performance is very strong for all cases in which σα ≤ 0.3 (Fig 5). 260

Unsurprisingly, performance suffers as the difficulty of the classification problem is 261

increased. The same trends are evident when performance is graded strictly on accuracy 262

(S8 Fig). As cells on the periphery of each clone were not excluded from these analyses, 263

the observed metrics provide a lower bound on the performance that may be anticipated 264

in practice. 265

Performance improved with increasing clone size. We suspected this was caused by 266

larger clones offering additional spatial context to inform the identify of each cell. We 267

verified our assertion by re-evaluating performance relative to a variant of our 268

annotation algorithm that neglects spatial context (S4 Fig G). As expected, the 269

variant’s performance exhibited no dependence on clone size (S9 Fig A). Comparing the 270

two strategies confirmed that spatial context confers the most benefit when clones are 271

large (S9 Fig B). Inclusion of spatial context also becomes increasingly advantageous as 272

the fluorescence ambiguity is increased, even for smaller clones. Thus, spatial context 273
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adds progressively more value as the classification task becomes more difficult. 274

This observation may be rationalized from a statistical perspective. Each cell is 275

classified by maximizing the probability that the assigned label is correct. We compute 276

these probabilities using the estimated expression level of each cell. Neglecting spatial 277

context, this estimate is limited to a single sample and is therefore highly sensitive to 278

both measurement and biological noise. Incorporating spatial context expands the 279

sample size and thereby reduces the standard error of the estimated fluorescence level. 280

The strategy is thus generally well suited to scenarios in which fluorescence intensities 281

correlate across large clones, and closely parallels computer vision methods that exploit 282

spatial contiguity to segment image features with ill-defined borders [61]. Because 283

increased measurement precision comes at the expense of spatial resolution, we expect 284

strong performance when measurements are aggregated across relatively large clones, 285

but failure to detect small, heterogeneous clones. These expectations are consistent with 286

the observed results. They are also conveniently aligned with the anticipated properties 287

of real data, as experiments typically attempt to mitigate edge effects by driving early 288

recombination events to generate large clones. 289

Conclusion 290

We used synthetic data to survey the performance of our annotation strategy across a 291

much broader range of conditions than would have otherwise been possible with 292

manually labeled data. This included conditions well beyond those of practical use. In 293

particular, experiments designed to compare gene expression levels across clones would 294

likely seek to avoid generating small clones with ambiguous clonal marker expression. 295

Beyond complicating the annotation task, small clones are also exposed to 296

diffusion-mediated signals from adjacent clones that can mask the effect of mutations. 297

Cells located near the clone boundaries are often excluded for the same reason, as 298

quantification is typically most reliable in cells surrounded by similar neighbors. 299

Synthetic data provided a means to survey these edge cases and establish a lower bound 300

on annotation performance. The strong performance observed across the remaining 301

conditions bolsters our confidence that our annotation strategy is well suited to the 302

images it is likely to encounter. 303
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In each of our examples, clones were distinguished by ternary segregation of clonal 304

marker fluorescence levels. Modern mosaic analysis techniques continue to deploy 305

ternary labeling [62,63], but also frequently opt for binary labeling of mutant versus 306

non-mutant clones [64–66] and dichromic labeling of twin-spots [67, 68]. Our annotation 307

scheme readily adapts to each of these scenarios provided that the number of 308

anticipated labels is adjusted accordingly. In the case of dichromic labeling, binary 309

classification would be performed separately for each color channel before merging the 310

assigned labels. Extending the same logic to combinatorial pairs of colors suggests that 311

our framework may also be compatible with multicolor labeling schemes used to 312

simultaneously trace many clonal lineages over time [69–71]. Our framework is thus well 313

suited to many different mosaic analysis platforms deployed in imaginal discs. 314

In principle, the framework described here should also be applicable to a wide 315

variety of other tissues [72,73] and model organisms [74–76] in which mosaics are 316

studied. In practice, application to alternate contexts would require modifying some 317

stages of the analysis. Most notably, image segmentation is strongly context dependent 318

and any attempts to develop a universally successful strategy are likely to prove 319

futile [77]. For this reason, we implemented a modular design in which each stage of 320

analysis may be applied separately. For example, a user could perform their own 321

segmentation before using our bleedthrough correction and clone annotation tools. By 322

offering modular functionalities we hope to extend the utility of our software to the 323

wider community of developmental biologists. Furthermore, the open-source nature of 324

our framework supports continued development of more advanced features as various 325

demands arise. Our synthetic benchmarking platform could then be used to objectively 326

confirm the benefit conferred by any future developments. 327

Materials and methods 328

Genetics and microscopy of Drosophila eye imaginal discs 329

We borrowed an experimental dataset from a separate study of neuronal fate 330

commitment during eye disc development [38]. The data consist of six eye imaginal discs 331

dissected and fixed during the third larval instar of Drosophila development. Within 332
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each disc, ey>FLP and FRT40A were used to generate clones. The chromosome arm 333

(2L) targeted for recombination was marked with a Ubi-mRFPnls transgene (S1 Fig A), 334

enabling automated detection of clones marked by distinct levels of mRFP fluorescence 335

(S1 Fig B). The discs also carried a pnt-GFP reporter transgene located on a different 336

chromosome that was not subject to mitotic recombination. Discs were dissected, fixed, 337

and co-stained with a DAPI nuclear dye prior to confocal imaging. Please refer to the 338

original study for additional details regarding genetics and experimental conditions. 339

The PntGFP reporter is predominantly expressed in two narrow stripes of progenitor 340

cells during eye disc development [38]. The first stripe occurs immediately posterior to a 341

wave of developmental signaling that traverses the eye disc. Progenitor cells located in 342

this region are suitable for comparison because they are of approximately equivalent 343

developmental age. We applied the Fly-QMA framework to a total of nine images of 344

these cells. 345

Characterization of fluorescence bleedthrough 346

For each image, we morphologically dilate the foreground until no features remain 347

visible (S2 Fig A). We then extract the background pixels and resample them such that 348

the distribution of pixel intensities is approximately uniform (S2 Fig B). Resampling 349

helps mitigate the skewed distribution of pixel intensities found in the background. We 350

then estimate values for each {α1, α2, . . . αK} and β by fitting a generalized linear 351

model to the fluorescence intensities of the resampled pixels (S2 Fig C). Each model is a 352

variant of Eq 3 in which angled braces instead denote averages across all background 353

pixels. We formulate these models with identity link functions under the assumption 354

that residuals are gamma distributed. Their coefficients provide an estimate of the 355

bleedthrough contribution strengths that may then be used to estimate the background 356

fluorescence intensity of each nucleus in the corresponding image (S2 Fig D). The 357

measurements may then be corrected through application of Eq 4. 358
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Clone annotation algorithm 359

We assume the measured fluorescence level xi for cell i is sampled from an underlying 360

distribution pm(x) for cells carrying m copies of the gene encoding the clonal marker: 361

xi ∼ pm(x) (5)

We further assume that pm(x) is comprised of a mixture of one or more lognormal 362

distributions: 363

pm(ln x) =
N∑
n=1

λnN (ln x|θn) (6)

N∑
n=1

λn = 1 (7)

where 0 ≤ λ ≤ 1 are the mixing proportions, θn = (µn, σ
2
n) are the mean and variance of 364

the nth distribution. This assumption is supported by both empirical observations and 365

theoretical insights [46,47]. By superposition, the global distribution of measured 366

fluorescence levels p(lnx) for all values of m are also sampled from a mixture of K 367

components: 368

p(ln x) =
2∑

m=0

αmpm(ln x) =
2∑

m=0

αm

N∑
n=1

λnN (ln x|θn) =
K∑
k=1

λkN (ln x|θk) (8)

K∑
k=1

λk = 1 (9)

where αm denotes the overall fraction of cells with m copies of the gene encoding the 369

clonal marker. For brevity, we substitute X = lnx yielding: 370

p(X) =
K∑
k=1

λkN (X|θk) (10)

Given a collection of sampled fluorescence levels, {Xi}i=1...N , we use expectation 371

maximization to find values of θk and λk for each of the model’s K components that 372

maximize the log-likelihood of the observed sample. We repeat this procedure for a 373

range of sequential values of K, resulting in multiple models of increasing size. We then 374

balance model resolution against overfitting by selecting the model that yields the 375
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smallest value of the Bayesian Information Criterion (BIC): 376

BIC(K) = ln(N)qK − 2ln(L̂K) (11)

qK = K − 1 + 2K (12)

where N is the sample size, ln(L̂)K is the maximum value of the log-likelihood, the 377

subscript K denotes the number of mixture components in the model, and qK is the 378

total number of parameters (i.e. K − 1 values of λk and 2K values of µk and σ2
k). 379

Applying Bayes’ rule to the selected model infers the posterior probabilities that 380

each sample Xi belongs to the kth component: 381

p(k|Xi) =
p(Xi|k)p(k)

p(Xi)
=
p(Xi|k)λk
p(Xi)

(13)

where p(Xi | k) is evaluated using the model’s likelihood function and p(Xi) is 382

evaluated by marginalizing across each of the model’s K components. The end result is 383

a mixture model that allows us to predict the probability that a given measurement of 384

clonal marker expression belongs to a particular one of its component distributions. 385

We then define a many-to-one mapping, f , from each of the K components of the 386

mixture to each of the three possible values of m: 387

f : {0, 1, ...K} → {0, 1, 2} (14)

We determine the mapping by k-means clustering the K component distributions into 388

three groups on the basis of their mean values, eµk . We may then assign a genotype 389

label m to each measurement Xi by predicting the component k from which it was 390

sampled. 391

The accuracy of these labels depends upon how closely the fitted mixture model 392

reflects the true partitioning of gene copies among clones. While finite mixtures are 393

always identifiable given a sufficiently large sample [48], the algorithm used to fit the 394

mixture tends toward local maxima of the likelihood function when the true 395

components are similar (Wu, 1983). An approach based on a univariate mixture is thus 396

inherently prone to failure when expression levels extensively overlap across clones, as 397
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variation within each clone precludes accurate classification of a cell’s genotype solely on 398

the basis of its individual expression level. However, clonal lineages are unlikely to exist 399

in isolation because recombination events are usually timed to generate large clones. 400

Our strategy therefore integrates both clonal marker expression and spatial context to 401

identify clusters of cells with locally homogeneous expression behavior. 402

We incorporate spatial context by introducing a second jointly-distributed variable 403

Yi: 404

Yi =
1

Mi

Mi∑
j=0

Xj (15)

where the subscript j indexes all Mi neighbors of cell i. The new variable reflects the 405

average expression level among the neighbors surrounding each cell. We define 406

neighbors as pairs of cells located within a critical distance of each other. This distance, 407

or sampling radius, is derived from the approximate length scale over which cells retain 408

approximately similar clonal marker expression levels. Specifically, we determine the 409

exponential decay constant of the spatial correlation function, ψ(δ): 410

ψ(δ) =
< (Xi − µX)(Xj − µX) >i,j∈δ

σ2
X

(16)

where µX and σ2
X are the global mean and standard deviation, and angled brackets 411

denote the mean across all pairs of cells separated by distance δ. We efficiently 412

implement this procedure by fitting an exponential decay function to the down-sampled 413

moving average of ψ(δ) as a function of increasing separation distance. 414

Following the introduction of spatial context, the mixture model becomes: 415

p(X,Y ) =

K∑
k=1

λkN (X,Y |θk) (17)

where θk = (~µk, ~σ
2
k) contains the mean and variance of each component given by vectors 416

of length two. This formulation constrains each component’s covariance matrix to be 417

diagonal. The posterior is now: 418

p(k|Xi, Yi) =
p(Xi, Yi|k)λk
p(Xi, Yi)

(18)
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We can recover the univariate model by marginalizing the posterior over all values of Y : 419

p(k|Xi) =
∑
j

p(k|Xi, Yj) (19)

When neglecting spatial context, we use this expression to classify each sample by 420

applying the mapping f to the value of k that maximizes p(k | Xi): 421

f(argmax
k

p(k|Xi)) (20)

In all other cases, we deploy a graph-based approach to refine the estimate of 422

p(k | Xi, Yi). This first entails constructing an undirected graph connecting adjacent 423

cells within each image. We obtain the graph’s edges through Delaunay triangulation of 424

the measured cell positions, then exclude distant neighbors by thresholding the edge 425

lengths. Each edge is assigned a weight wij reflecting the similarity of clonal marker 426

expression between adjacent cells i and j: 427

wij = exp
(−Eij
〈E〉

)
(21)

Eij = |Xi −Xj | (22)

where Eij is the absolute log fold-change in measured expression level and angled 428

brackets denote the mean across all edges. We chose an exponential formulation because 429

it yields an approximately uniform distribution of edge weights. We then detect 430

communities within the graph using the Infomap algorithm [49]. The algorithm provides 431

a hierarchical partitioning of nodes into non-overlapping clusters. We aggregate all 432

clusters below a critical level that is again chosen by estimating the spatial correlation 433

decay constant. We then enumerate p(k | Xi, Y
c
i ) where Y ci is the spatial context 434

obtained by averaging expression levels among all neighbors in the same community as 435

cell i. 436

We further incorporate spatial context by allowing the posterior probabilities 437

p(k | Xi, Y
c
i ) to diffuse among adjacent cells. We define the modified posterior 438

probability p̂(k | Xi, Y
c
i ) through a recursive relation analogous to the Katz 439
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centrality [50], initialized by p(k | Xi, Y
c
i ): 440

p̂(k | Xi, Y
c
i ) = α

∑
j

wij p̂(k | Xi, Y
c
i ) + β (23)

β = (1− α)p(k|Xi, Y
c
i ) (24)

where α is the attenuation factor and wij are the edge weights. Expressed in matrix 441

form, the solution for p̂(k | X,Y c) is given by: 442

p̂(k | X,Y c) = (I − αW )−1(1− α)p(k | X,Y c) (25)

where I denotes the identity matrix and W is the matrix of edge weights wij . We then 443

assign a label to each measurement Xi by applying f to the value of k that maximizes 444

p̂(k | Xi, Y
c
i ): 445

f(argmax
k

p̂(k|Xi, Y
c
i )) (26)

Finally, we assess the total posterior probability of each assigned label, P̂ (mi): 446

P̂ (mi) =
∑

{k|f(k)=mi}

p̂(k|Xi, Y
c
i ) (27)

This measure reflects the overall confidence that mi is the appropriate label. Labels 447

whose confidence falls below 80% are replaced by their counterparts estimated using the 448

marginal classifier. This substitution helps preserve classification accuracy in situations 449

where spatial context is not informative, and is particularly useful when the annotated 450

clones are relatively small. 451

Statistical comparison of fluorescence levels 452

To mitigate edge effects, cells residing on the periphery of each clone were excluded 453

from all comparisons (S2 Fig E). Border cells were identified by using a Delaunay 454

triangulation to find all cells connected to a neighbor within a different clone. Our 455

framework includes a simple graphical user interface that permits manual curation of 456

which regions of the image field are included in subsequent analyses. We used this tool 457
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to limit our analysis to the region of elevated GFP expression near the morphogenetic 458

furrow (S2 Fig F). Comparisons were further restricted to cells undergoing similar stages 459

of development (S2 Fig G). These restrictions served to buffer against differences in 460

developmental context and ensured that all compared cells were of similar developmental 461

age. The remaining fluorescence measurements were then aggregated across all eye discs 462

and compared between pairs of clones by two-sided Mann-Whitney U test. 463

Simulated cell growth and recombination 464

We simulated the two dimensional growth of a cell culture seeded with a single cell. 465

Growth proceeds through sequential division of cells (S6 Fig A). Not all cells divide at 466

each time-step because cell division is a stochastic process. Instead, each cell divides 467

stochastically with a rate controlled by a global growth rate parameter. 468

Cells in this culture carry a gene encoding a clonal marker (S6 Fig B). During 469

growth, the gene is subject to mitotic recombination (S6 Fig C). Each time a cell 470

divides, its genes are duplicated and equally partitioned between the two daughter cells. 471

However, in some instances a heterozygous parent may instead partition its two 472

duplicate genes unequally, with one daughter receiving both and the other receiving 473

none. These mitotic recombination events occur stochastically with a frequency defined 474

by a global recombination rate parameter. 475

After each round of cell division, all cells are repositioned in order to preserve 476

approximately uniform spatial density (S6 Fig C). Repositioning is achieved by 477

equilibrating a network of springs connecting each cell with its neighbors. This 478

undirected network is constructed through Delaunay triangulation of all cells spatial 479

positions. Edges on the periphery of the culture are systematically excluded by 480

establishing a maximum polar angle between neighbors. This filtration removes 481

spurious edges between distant pairs of cells. Edges connecting pairs of cells with the 482

same clonal marker dosage are assigned a 10% higher spring constant than edges that 483

connect dissimilar cells. This modest bias ensures that cells tend to remain proximal to 484

their clonal lineages. Cell positions are then updated using a force-directed graph 485

drawing algorithm [51]. Alternating cell division and repositioning steps are then 486

repeated until a predefined population size is reached. 487
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The timing and duration of recombination events affects the number and size of the 488

resultant clones. In real experiments, recombination events are restricted to a particular 489

stage of the developmental program through localized exogenous expression of the 490

recombination machinery. We incorporated this feature into our cell growth simulations 491

via two adjustable parameters. The first determines the minimum population size at 492

which recombination may begin, while the second determines the number of generations 493

over which recombination may continue to occur. These two parameters provide a 494

means to tune the average number and size of clonal subpopulations in the synthetic 495

data (S6 Fig D). Early recombination events generally entail larger clones, while shorter 496

recombination periods limit the extent of clone formation (S6 Fig E). 497

Generation of synthetic microscopy data 498

Each simulation yields a list of spatial coordinates and gene dosages for each nucleus 499

(S6 Fig B). Synthetic measurements for each nucleus were generated by randomly 500

sampling fluorescence levels {x1, x2, . . . xi=N} from a lognormal distribution conditioned 501

upon the corresponding gene dosage (S7 Fig A-C): 502

ln x ∼ Nn(θn) (28)

where the subscript n denotes the gene copy number and θn = (µn, σ
2
α) are the mean 503

and variance of the corresponding distribution. We define µn such that the mean 504

fluorescence level doubles for each additional copy of the gene: 505

µn = ln(2n−1) (29)

We refer to σα as the fluorescence ambiguity because it modulates the similarity of 506

fluorescence levels across gene dosages. Increasing σα increases the overlap among N0, 507

N1, and N2 (S7 Fig D,E), and consequently increases the difficulty of the annotation 508

task (S7 Fig F). 509

September 14, 2019 24/33

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775783doi: bioRxiv preprint 

https://doi.org/10.1101/775783
http://creativecommons.org/licenses/by/4.0/


Synthetic benchmarking of annotation performance 510

We generated a large synthetic dataset spanning a broad range of sixteen different clone 511

sizes and fluorescence ambiguities (S6 Fig D and S7 Fig F, only half are shown). We 512

performed 50 replicate simulations for each condition. All simulations were terminated 513

when the total population exceeded 2048 cells. We assigned each cell a 20% probability 514

of division upon each iteration, and each cell division event was accompanied by a 20% 515

chance of mitotic recombination. Parent cells containing zero or two copies of the 516

recombined genes were ineligible for recombination, effectively sealing the genetic fates 517

of their respective lineages. 518

To annotate each set of measurements, the mixture model given by Eq 17 was 519

independently trained and applied to each replicate. Training a single model on all 520

replicates yields modestly stronger performance on average (not shown), but also yields 521

more variable variable results across the parameter space because all labels are 522

dependent upon the outcome of a single expectation maximization routine. 523

Data and software availability 524

We have distributed the automated mosaic analysis framework as an open-source 525

python package available at https://github.com/sebastianbernasek/flyqma. We also 526

intend to incorporate its core features into future versions of FlyEye Silhouette, our 527

open-source platform for quantitative analysis of the larval eye. The code used to 528

generate synthetic microscopy data is also freely available at 529

https://github.com/sebastianbernasek/growth. All segmented and annotated eye discs 530

are accessible via our data repository (https://doi.org/10.21985/N2F207). 531

Supporting information 532

S1 Fig Example clones in the larval fly eye. (A) Genetic schema for a 533

bleedthrough control experiment. Red and green ovals represent genes encoding a 534

RFP-tagged clonal marker and a GFP-tagged control reporter, respectively. Black lines 535

depict a genomic locus. Recombination does not affect gene dosage of the control 536

reporter, so GFP variation across clones is attributed to fluorescence bleedthrough. (B) 537

Confocal image of an eye imaginal disc. Red, green, and blue reflect clonal marker, 538

control reporter, and nuclear stain fluorescence, respectively. (C) Segmentation of the 539

DAPI nuclear stain. White lines show individual segments. 540
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S2 Fig Using background pixels to characterize bleedthrough 541

contributions in the foreground. (A) Extraction of background pixels (striped 542

region). Foreground includes the merged RFP and GFP images, surrounded by a white 543

line. White arrow marks the morphogenetic furrow (MF). (B) Background pixel values 544

are resampled such that RFP intensities are uniformly distributed. (C) A generalized 545

linear model characterizes the contribution of RFP bleedthrough to GFP fluorescence. 546

Boxes reflect windowed distributions of resampled background pixel intensities. Red line 547

shows the model fit. (D) Measured GFP levels before bleedthrough correction. Markers 548

represent individual nuclei. Red line shows the inferred contributions of RFP 549

fluorescence bleedthrough. Dashed portion is extrapolated. (E-G) Data curation prior 550

to statistical comparison of GFP levels. (E) Cells on the periphery of each clone are 551

excluded. (F) The selection is limited to the region of elevated GFP expression near the 552

MF. (G) It is further limited to cells of the same developmental age, defined by their 553

relative positions along the x-axis. 554

S3 Fig Training a clone annotation model. (A) One or more images are 555

segmented, yielding a set of fluorescence measurements X. These are used to sample 556

the spatial context Y of the neighborhood surrounding each cell. Both sets of values are 557

used to train a mixture model. Subsequent panels demonstrate these procedures using 558

the example shown in S3 Fig C. (B) Expression levels are jointly distributed with the 559

local average among neighboring cells. Center panel shows the joint distribution. Top 560

and right bar plots show marginal distributions. (C) Mixture model identifies seven 561

distinct components ki. Center panel shows position and spread of each component. 562

Top and right panels show marginal components scaled by their respective weights. Red 563

shading denotes the label mi assigned to each component. The model predicts the 564

posterior probabilities that a given sample (X,Y ) belongs to each component. (D) 565

Neighborhood size is estimated by computing the decay constant of the spatial 566

correlation function, ψ(δ). Black line shows the moving average of ψ(δ), red line shows 567

an exponential fit. Inset shows the resultant sampling region. (E) The optimal number 568

of mixture components is determined by minimizing BIC score. (F) Mixture 569

components are labeled by k-means clustering their mean values. Markers reflect the 570

component means, colors denote the assigned label. 571

S4 Fig Label assignment using a trained clone annotation model. (A) 572

Measurements are used to sample spatial contexts before the trained model is applied 573

(blue and green path). In parallel, measurements are labeled using a marginal 574

projection of the trained model (magenta path). The labels are then merged (red path). 575

(B-D) Spatial context sampling. (B) Weighted undirected graph connecting adjacent 576

cells. Line width reflects expression similarity between neighbors. (C) Community 577

resolution is defined by aggregating clusters that fall below a hierarchical cut level δ. 578

Panels show increasing levels of aggregation. Colors denote distinct communities. (D) 579

Cut level is chosen by finding the maximum level (red dot) that remains lower than the 580

decay constant of the spatial correlation function, ψ(δ) (black line). Panel E depicts 581

aggregation below the third level for ease of visualization. (E) Application of the 582

mixture model. (I) The graph contains distinct communities of locally similar 583

expression. (II) Mean expression level within each community serves as the local 584

average for each cell. (III) Mixture model estimates the probability that each cell 585

belongs to each of its component. Bar plots within each cell illustrate the cumulative 586

probability of each label. (IV) Posterior probabilities are diffused across the graph. (V) 587

Each cell is assigned the most probable label. (F,G) Application of a marginal mixture 588

model. (F) Marginal mixture components, shaded by their mapped labels. Dashed line 589

is the overall marginal density. (G) Marginal classifier labels cells strictly on the basis of 590

September 14, 2019 26/33

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775783doi: bioRxiv preprint 

https://doi.org/10.1101/775783
http://creativecommons.org/licenses/by/4.0/


their individual fluorescence level. Red shading denotes the most probable label for each 591

level. (H) Annotated measurements. Red shading denotes the assigned label. Labels 592

with low confidence P̂ (mi) < 0.8 are replaced by their marginal counterparts. 593

S5 Fig Comparison of automated annotation with manually assigned 594

labels. (A) Distribution of labels among each possible value. (B) Visual comparison of 595

the sole instance in which automated and manual annotation differ. Image shows clonal 596

marker fluorescence, colors denote the assigned label. 597

S6 Fig Simulated growth of a synthetic cell culture. (A) Partial simulation 598

time course. Each marker depicts a cell. Greyscale intensity reflects clonal marker gene 599

dosage. Simulation time reflects the approximate number of cell divisions since the 600

initial seed. (B) Simulations yield gene dosages and spatial coordinates for each cell. (C) 601

Single iteration of an example simulation. Circles represent individual cells, red shading 602

denotes clonal marker dosage. Cycles of cell division, recombination, and repositioning 603

are repeated until the simulation reaches a specified end time (t > 11 in panel A). (D) 604

Cultures simulated with varying recombination start times. All cultures were subject to 605

four generations of recombination (δt = 4). Recombination start time increases from left 606

to right. Later recombination events generally yield smaller clones. (E) Mean clone size 607

(cells per clone) as a function of the recombination start time. Colors denote 608

recombination period duration. Error bars reflect standard error of the mean across 50 609

replicates. Clone size generally decreases as recombination is limited to later times. 610

S7 Fig Tunable generation of synthetic microscopy data. (A) Fluorescence 611

levels are sampled from lognormal distributions conditioned upon gene dosage. (B) 612

Synthetic data include a measured fluorescence level for each reporter in each cell. Text 613

color reflects the generative distribution in A. (C) Synthetic image of clonal marker 614

fluorescence when σα = 0.25. Each nucleus is shaded in accordance with its sampled 615

fluorescence intensity. (D-F) Left to right, increasing the fluorescence ambiguity 616

parameter broadens the overlap in fluorescence levels across gene dosages. (D) 617

Distributions used to generate clonal marker fluorescence levels. Red shading denotes 618

gene dosage. (E) Evenly weighted sum of the generative distributions. (F) Example 619

images of clonal marker fluorescence. 620

S8 Fig Fraction of nuclei correctly labeled during synthetic benchmarking. 621

Each pixel reflects the average across 50 replicates. Clone size reflects the mean number 622

of cells per clone. Performance improves with increasing clone size and worsens with 623

increasing fluorescence ambiguity. 624

S9 Fig Spatial context is most informative for large clones with 625

ambiguous fluorescence. (A) MAE of labels assigned using a marginal classifier that 626

neglects spatial context. Performance worsens with increasing fluorescence ambiguity 627

but does not depend upon clone size. (B) Annotation performance relative to the 628

marginal classifier. Color scale reflects the log2 fold-change in MAE when spatial 629

context is neglected. Blue indicates that spatial context improves performance. 630
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38. Bernasek SM, Lachance JFB, Peláez N, Bakker R, Navarro HT, Amaral LAN,
et al. Ratio-based sensing of two transcription factors regulates the transit to
differentiation. bioRxiv. 2018; p. 430744. doi:http://dx.doi.org/10.1101/430744.
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Askjaer P. An efficient FLP-based toolkit for spatiotemporal control of gene
expression in Caenorhabditis elegans. Genetics. 2017;206(4):1763–1778.
doi:10.1534/genetics.117.201012.

76. Wang W, Warren M, Bradley A. Induced mitotic recombination of p53 in vivo.
Proc Natl Acad Sci. 2007;104(11):4501–4505. doi:10.1073/pnas.0607953104.

77. Meijering E. Cell Segmentation: 50 Years Down the Road. IEEE Signal Process
Mag. 2012;29(5):140–145. doi:10.1109/msp.2012.2204190.

September 14, 2019 33/33

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775783doi: bioRxiv preprint 

https://doi.org/10.1101/775783
http://creativecommons.org/licenses/by/4.0/

