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ABSTRACT  
In Complex Regional Pain Syndrome (CRPS), tactile sensory deficits have motivated the 
therapeutic use of sensory discrimination training. However, the hierarchical organisation of 
the brain is such that low-level sensory processing can be dynamically influenced by higher-
level knowledge, e.g. knowledge learnt from statistical regularities in the environment. It is 
unknown whether the learning of such statistical regularities is impaired in CRPS. Here, we 
employed a hierarchical Bayesian model of predictive coding to investigate statistical learning 
of tactile-spatial predictions in CRPS. Using a sensory change-detection task, we manipulated 
bottom-up (spatial displacement of a tactile stimulus) and top-down (probabilistic structure 
of occurrence) factors to estimate hierarchies of prediction and prediction error signals, as 
well as their respective precisions or reliability. Behavioural responses to spatial changes were 
influenced by both the magnitude of spatial displacement (bottom-up) and learnt 
probabilities of change (top-down). The Bayesian model revealed that patients’ predictions 
(of spatial displacements) were found to be less precise, deviating further from the ideal 
(statistical optimality) compared to healthy controls. This imprecision was less context-
dependent, i.e. more enduring across changes in probabilistic context and less finely-tuned 
to statistics of the environment. This caused greater precision on prediction errors, resulting 
in predictions that were driven more by momentary spatial changes and less by the history of 
spatial changes. These results suggest inefficiencies in higher-order statistical learning in CRPS. 
This may have implications for therapies based on sensory re-training whose effects may be 
more short-lived if success depends on higher-order learning. 

INTRODUCTION 
Complex regional pain syndrome (CRPS) is characterised by disproportionate pain that is 
usually initiated by peripheral trauma to a limb (Birklein et al., 2018). The later stages of the 
disorder are characterised mainly by intractable pain that is poorly understood. Numerous 
behavioural studies have revealed links between pain and deficits in spatial discrimination of 
tactile stimuli (Förderreuther et al., 2004; Lewis and Schweinhardt, 2012; Pleger et al., 2006). 
Those studies, coupled with initial findings of altered somatotopic mapping of the affected 
(painful) limb in the primary somatosensory cortex (S1) in CRPS (Di Pietro et al., 2013; Kuttikat 
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et al., 2016a), have motivated therapies focussed on S1 re-mapping, for example tactile 
discrimination training (Moseley et al., 2008). However, more recent high-resolution 
functional Magnetic Resonance Imaging (fMRI) studies have failed to replicate somatotopic 
abnormalities of S1 (Di Pietro et al., 2015; Mancini et al., 2018; van Velzen et al., 2016). This 
has led to further hypotheses of deficits in higher-order mechanisms to explain sensory 
symptoms in CRPS (Kuttikat et al., 2016a; Popkirov et al., 2018). 

Perceptual decision-making is shaped by both afferent feedforward (somatosensory) and 
cortical feedback mechanisms (Allen et al., 2015; Auksztulewicz et al., 2012; Hegner et al., 
2017; Langner et al., 2011). The hierarchical organisation of the brain is such that low-level 
sensory processing can be dynamically influenced, via feedback mechanisms, by higher-level 
knowledge (de Lange et al., 2018). In particular, statistical regularities in the environment, i.e. 
likelihood of event occurrence, can be learnt over time to aid sensory detection or 
discrimination (Hasson, 2017). In the human brain, cortical anatomy is hierarchically 
organised such as to reflect the multiple temporal scales at which environmental states can 
evolve (Kiebel et al., 2008). Hierarchical predictive coding (HPC) is a model of how 
feedforward and feedback loops contribute to perceptual inference by utilising information 
at higher spatial and temporal scales (Bastos et al., 2012; Bogacz, 2017; Friston, 2018; Friston 
and Kiebel, 2009; Rao and Ballard, 1999). HPC explains how the brain might reduce 
redundancy (and increase efficiency) by only propagating unpredicted (e.g. novel or surprising) 
sensory inputs or information from low-level to high-level cortical regions. Unpredicted 
information is propagated forwards as prediction errors (PEs), namely the mismatch or 
difference between predicted and actual input at each level in the cortical hierarchy.  

From the perspective of HPC, in order to process sensory information efficiently, the brain 
aims to minimise prediction error (Friston & Kiebel, 2009). Persistent prediction errors might 
be caused by impaired learning from sensory information (Bogacz, 2017), including from the 
statistics of the environment, i.e. the probability of a change in sensory input and those 
probabilities evolve over time (environmental volatility). Furthermore, computational 
modelling has revealed that behavioural and physiological indices of sensory perception in 
healthy individuals conform to Bayesian models of hierarchical predictive coding, including 
the Hierarchical Gaussian Filter (HGF) (Mathys et al., 2014). Such Bayesian models consider 
predictions and PEs as probability distributions characterised by means (magnitude) and 
precisions (inverse variance, or reliability). The balance of precision between PEs and 
predictions determines the extent to which bottom-up information (represented by PE) is 
used to update predictions; i.e. it is an indicator of need of further learning (Bogacz, 2017).  

Using the HGF, we sought to test the novel hypothesis that patients with CRPS are sub-optimal 
in their learning from tactile-spatial events that normally enable efficient prediction error 
minimisation. By applying this model to response times from a sensory change-detection 
paradigm, here we show reduced efficiency in predictive coding of spatial information in 
patients with CRPS. 

MATERIALS AND METHODS  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 20, 2019. ; https://doi.org/10.1101/775676doi: bioRxiv preprint 

https://doi.org/10.1101/775676
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

Study design and setting 
The study was observational in nature and employed a case-control design. Two groups of 
participants were recruited (CRPS and Healthy Controls, HC). All participants attended an 
experimental session at the Clinical Research Facility at Cambridge University Hospitals NHS 
Trust (CUH) to complete all study tasks reported below. Ethical approval for the research was 
obtained by the London (Bromley) ethics committee (reference number 15-LO-1624). The 
recruitment period was between September 2016 and April 2018. 

Participants 
Details of recruitment, inclusion/exclusion criteria and characteristics of the participants 
(including controls) are in Supplementary Materials. In summary, 22 patients were recruited 
with a mixture of upper and lower limb CRPS (Supplementary Tables 1 and 2). There were 22 
healthy controls (HC) included in the analysis. There was an average age difference between 
groups with medians of 57 (CRPS) and 40.5 (HC). This potential confound was addressed by 
selection of n=15 per group for all group effect analyses, which was the maximum number 
that allowed a close age-matching between groups: For the CRPS group, who were older on 
average, the 7 oldest patients were excluded so that the remaining oldest patient was age-
matched to the oldest HC participant; for HC group, a participant was selected if their age 
matched most closely with a patient in the CRPS group, such that each CRPS patient was 
paired with the closest possible HC participant. This resulted in median ages of 50 (CRPS) and 
49 (HC), with similar numbers of females in each group (80% and 73.3% respectively). In the 
CRPS subgroup, the median symptom duration was 7 years. All participants were right-
handed, did not have any current or previous diagnosis of peripheral neuropathy, stroke, 
transient ischemic attack, multiple sclerosis, malignancy or seizure. The participants were 
required to refrain from consuming alcohol or smoking tobacco for 24 hours and caffeine for 
12 hours prior to the study. All participants signed an informed consent form prior to taking 
part.  

Tactile Spatial Oddball Task (TSOT) 
The TSOT was programmed in Matlab. The outputs of the programme were to a Labjack U3-
HV which sent digital outputs to a Digitimer DS7A Electrical Stimulator. The DS7A was set with 
a pulse width of 200µs. The DS7A sent electrical outputs to a Digitimer D188 Electrode 
Selector, which contains an electronic switch to select outputs to one of eight pairs of 
stimulating digital ring electrodes. Each pair of stimulating electrodes consisted of an anode 
placed on the near-side of the knuckle (closest to the wrist), and the cathode (black wire) on 
the far-side (closest to the finger-tips), spaced apart by 3cm, which was consistent between 
electrode pairs on each digit. The PC was also connected to a foot pedal via USB for participant 
responses. 

The intensity of electrical stimulation for each participant was based on sensory detection 
threshold testing using an adaptive staircase. The initial stimulus was 1mA, with increment of 
0.2 mA for each consecutive trial until the participant reports a sensation, after which the 
current was decreased by 0.1mA for subsequent trials until loss of sensation occurs. The 
current used in the preceding trial at which the participant did feel a sensation was noted. 
The participant was asked to report the first time they felt any sensation on the ring finger of 
the hand of the unaffected side; this procedure was then repeated for the affected side. Each 
stimulus occurred at a random and unexpected time (between 1 and 3s after responding to 
the previous trial) to minimise effects of temporal anticipation. 
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We employed electrical stimuli at 3x sensory detection threshold for the experiment to 
ensure that each stimulus was clearly perceived. The stimuli were entirely painless for healthy 
controls. For those patients who found the stimulus uncomfortable at that level (8 out of 22 
patients), the current was reduced by 0.1mA at a time until the stimulus was just below the 
threshold for pain. There were no group differences in the currents used during the task; we 
also explored the relationship between current delivered and key dependent variables from 
the study (see Supplementary Materials for results). 

Participants were seated in a comfortable chair. Digital ring electrode pairs were placed on 
each digit of all four fingers of each hand (excluding the thumb). Tissue paper was placed 
between the digits to ensure no electrical contact between digits / electrode pairs. 
Behavioural responses required the subject to rest their dominant or the more physically agile 
foot on the foot pedal. For CRPS patients, this was always a foot unaffected by CRPS 
symptoms. To familiarise the participant with the setup and providing responses, they were 
given a 30s test-run of the main TSOT experiment.  

The TSOT consisted of a three-way repeated measures design (Fig. 1), including the factors 
Change Probability (CP, levels: 10%, 30% and 50%), Side Stimulated (SS, levels: left, right hand; 
although for data analysis these were translated to “affected” and “unaffected” by CRPS – 
see below) and Change Distance (CD, levels: 1 digit, 3 digits). The experiment lasted ~16 
minutes and consisted of 890 trials, with an SOA of 1 s. One digit per trial was stimulated. On 
the next trial, either the same digit was stimulated (standard trial) or a different digit was 
stimulated (oddball trial). The probability of an oddball varied in different “Change Probability” 
blocks through the experiment (see Fig. 1 for block structure) such that oddballs could occur 
with either 10%, 30% or 50% probability. In addition, each digit was paired with another digit 
so that when the digit stimulated was changed, they almost always changed to the paired 
digit. This stimulation occurring between pairs of digits was also blocked. The four types of 
“Change Distance” blocks consisted of the following two-digit pairs on each of the two hands: 
middle to ring finger (a one-digit change, “CD1”, or adjacent pair); index to little finger (three-
digit change, “CD3”). The trial sequence was randomly generated, and the same sequence 
used for all participants to allow comparable parameter estimates for computational 
modelling. 

Participant responses were made by foot pedal release, i.e. they maintained light pressure on 
the foot pedal throughout but released as quickly as possible after they detected that the 
electrical stimulation had just shifted from one digit to another, replacing their foot back on 
the pedal as quickly as possible afterwards. Participants used their right foot (consistent with 
all being right-handed) except for the five patients whose CRPS-affected leg was on the right. 
In some blocks (namely, 50% oddball conditions), changes occurred rapidly, and so 
participants were informed beforehand they may find it difficult to keep up, but to try their 
best. The experiment automatically paused halfway through to give an opportunity for the 
participant to take a break if needed.  
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Figure 1: Experimental task and design: Tactile Spatial Oddball Task (TSOT) 

A. The TSOT stimulating digit ring electrode placement. Four electrode pairs per hand 
consisted of two pairs (D2 and D5) for the Change Distance 3 (CD3) condition and a 
further two pairs (D3 and D4) for the Change Distance 1 (CD1) condition.  

B. Stimuli randomly changed between the respective digits within each condition, e.g. 
between digits 3 and 4 (D3/4) for the CD1 condition, but with a fixed probability. Each 
change resulted in an “oddball” trial. 

C. The Change Probability (CP) constituted an orthogonal factor the Change Distance (CD) 
factor to provide 6 distinct block types. 

D. The six block types were randomised over the course of the experiment (same order 
for each participant to enable computational modelling). The hand stimulated was 
also randomly changed with an equal balance of conditions on each hand. Each block 
contained 30 trials. The total number of oddballs per block varied (3, 9, or 15) 
according to the change probability (10%, 30% or 50% respectively), as did the number 
of occurrences of each block type to ensure an approximately equal number of 
oddballs per condition across the experiment. 
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Figure 2: Data modelling 

A. Data modelling overview. Response times (RTs) from the TSOT were used to estimate 
participant-specific parameters of the Hierarchical Gaussian Filter (HGF) as a model of 
predictive coding, resulting in the inference of internal states including prediction 
errors (PEs). After the best HGF model had been selected based on predictive validity 
(see Supplementary Materials), variational Bayes optimised the HGF parameters as 
part of a mixed-effects estimation model in which each participant’s HGF parameters 
were conditioned on empirical priors, namely the sufficient statistics of their group’s 
parameters (CRPS or HC group). Estimates of PEs were used to validate the model by 
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simulating behaviour to see if the model reproduced within and between-subject 
differences in RTs. 

B. HGF model of perception inference. The perceptual model is comprised of three 
hierarchical states (x1, x2, and x3) that evolve over time (t), as well as binary inputs to 
the system (u). Solid arrows indicate conditional probabilistic relationships of a 
generative model of the environment (i.e. the brain’s model of how observed digit 
changes are generated from environmental contingencies). Inversion of the model 
using variational Bayes from individual log-RT data results in the estimation of 
participant-specific free parameters (symbols in dashed ovals) that parametrize 
(dashed arrows) respective inputs, outputs and hidden states: α is the sensory 
imprecision that is modified by λ1 and λ2 depending on the experimental condition; ω 
and θ increase the imprecision of the participants’ estimates of probability (x2) and 
environmental volatility (x3) respectively. The response model (grey/black) predicts 
log-RTs from variables in the perceptual model – in this example, from precision-
weighted PEs (triangles) estimated at each level of the model – parametrized by beta 
weights (β). For details, see Supplementary Materials. 

 

Definition of “Side” conditions for analysis 
During data acquisition, the ‘Side’ factor referred to stimulation of either the left or the right 
hand. For purpose of data analysis, the levels of the Side factor were affected and unaffected 
based on CRPS clinical assessment (Supplementary Table 2). This resulted in a different 
mixture of left and right-stimulations in each of the affected and unaffected conditions, 
because 10 patients were affected on the right side (5 upper limb, 5 lower limb) and 12 
patients on the left side (8 upper limb, 4 lower limb). To provide adequate control for group 
comparisons, data in the HC group was also re-assigned as follows: to match the left/right 
ratio of side affected in the CRPS group, 10 healthy controls’ (randomly allocated by algorithm) 
right arm data and the remainder of the healthy controls’ left arm data were assigned to the 
‘affected’ condition for the HC group. To be explicit, the term ‘affected’ in the HC group 
denotes a control condition for the CRPS ‘affected’ condition and does not imply the presence 
of CRPS symptoms in the HC group. The same strategy was used in a related study (Kuttikat 
et al., 2018).  

Behavioural data analysis  
Behavioural responses were included for analysis for within-block digit-changes (i.e. within 
each CD1 and CD3 block type) but excluded for between-block changes (i.e. transitions 
between CD1 and CD3 blocks, or between hands) as there were too few of these to constitute 
a condition of interest for analysis. In order to assign the trial to which each response 
belonged, we used the following rules: (1) A minimum delay of 200ms between stimulus and 
response; hence responses occurring between 0 – 200ms after the stimulus were assumed to 
be in response to a previous trial. (2) The maximum delay between stimulus and response 
would be 2s. For example, if the stimulus changed on trial t and not on trial t+1, but if the 
response occurred on trial t+1, it was considered as occurring in response to trial t. If there 
was a stimulus change on trial t as well as on trial t+1 (and the response occurred at least 
200ms after the t+1 stimulus) then the response was assigned to trial t+1. For trial quality 
assurance, we investigated whether there were group differences (CRPS vs. HC) in the 
proportion of targets (stimulus change trials) with missed responses (i.e. not occurring in the 
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200ms to 1000ms time window) and in the number of responses that were corrected 
according to the above rules. No statistically significant group differences were found for any 
condition (see Supplementary Materials for full results). 

The resulting response times (RTs) were not normally distributed and so they were 
transformed using the natural logarithm (log-RT). Behavioural data were initially analysed 
using IBM SPSS software version 21 (IBM, 2012). Data that could be transformed to 
approximate normality were analysed using mixed ANOVA; otherwise data were analysed 
using non-parametric tests to investigate group differences (Mann-Whitney U test) and 
within-subject condition effects (Wilcoxon signed rank tests). Effect sizes are reported for 
non-parametric statistics using the formula Z/√N, where Z is the z-value output of the test and 
N is the number of samples in the test. This provides an effect size equivalent to the Pearson’s 
coefficient r, commonly interpreted as a small, medium and large effect with values of 0.1, 
0.3 and 0.5 respectively.  

Data modelling: HGF model of perceptual inference 
An overview of the data modelling steps for the behavioural data is illustrated in Fig. 2a, and 
a graphical model of the hierarchical Gaussian filter (HGF) model (Mathys et al., 2014) is 
shown in Fig. 2b. A detailed rationale for use of the HGF and some details of its mathematical 
implementation are provided in Supplementary Materials. In short, the HGF is a model of the 
brain’s system of hidden states. Namely, states in this case are a combination of (a) internal 
representations of the statistical structure of the environment, and (b) update rules that 
govern how internal representations change in response to sensory inputs/changes. 
Ultimately, the HGF acts as a model of how the brain might perceive sensory changes that 
have occurred. Subject-specific parameters of the model, and trajectories of hidden states in 
the model as they evolve over time, can be inferred from observable data.  

Two types of data were used as inputs to the HGF model: stimulus inputs (determined by the 
experiment) and participant responses, namely log-RTs on oddball (digit change) trials. We 
used RTs rather than task errors because our previous work that identified CRPS patients’ 
performance on a digit identification task is more clearly distinguished from control groups 
based on RTs (Kuttikat et al., 2018, 2016b). Stimulus inputs were coded to be binary such that 
each oddball (digit change trial) was 1 and each standard (no change trial) was 0. Model 
inversion (parameter and state estimation) from experimental data involved calculating 
maximum-a-posteriori (MAP) estimates for the parameters (see (Mathys et al., 2014) for 
details of the MAP equation and optimisation method used in the HGF toolbox).  

The HGF is a modular modelling framework that allows variable model designs to be 
implemented and tested against data. A range of HGF models were fitted to log-RT data from 
the TSOT. All models were designed to differentiate theoretically important sensory and 
cognitive components of perceptual inference as described according to a predictive coding 
framework, namely prediction errors and their precision weights, which serve to update 
posterior estimates (on a trial-by-trial basis) of the probability of a change in the location of 
the stimulus.  

Each model consisted of a perceptual model (the participants’ putative generative model of 
the environment) and response model (linking the perceptual model to participant behaviour) 
– detailed in Supplementary Materials. The perceptual model variations had mostly 
commonalities in the structure (shown in Fig. 2b) that have been described in previously 
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published work (Mathys et al., 2014). In particular, we used a 3-level model in which the first 
level (x1) is the estimated perceptual state (i.e. a model of participants’ perception of change 
/ no change), the second level (x2) represents the participants’ estimated probability of the 
perceived state, and the third level (x3) is the participants’ estimate of environmental volatility 
(likelihood of change in the probability of perceived states). States at each level are 
probability distributions consisting of a mean (µ) and variance (σ). States on each trial are 
conditioning dependent on both prior states at the same level, and the state of the next 
higher level, as shown by arrows in Fig. 2b. Sensory inputs to the 1st level update these states 
according to update rules consisting of equations that have the form of PEs (see (Mathys et 
al., 2014) for details). Importantly, PEs occur at each level in the hierarchy: updates of x1 from 
sensory inputs are via 1st level PEs (ε1), updates of x2 from changes in x1 are via 2nd level PEs 
(ε2) and updates of x3 via changes in x2 are via 3rd level PEs (ε3). The subject-specific 
parameters consist of α0 (variance on sensory inputs to the 1st level), and ω and θ that are 
respectively 2nd and 3rd level variance parameters on states x2 and x3.  

We varied both the perceptual model and in the response model in a factorial fashion (see 
Supplementary Fig. 1a), such that every perceptual model variation was tested with every 
response model variation, resulting in “families” of models with different features from the 
perceptual or response models. There were 3 perceptual models and 6 response models; 
hence all combinations of perceptual and response models resulted in 18 models. The three 
variations of perceptual models differed according to the number of parameters describing 
irreducible uncertainty (sensory noise). The six response models differed according to 
hypothesised components of the model driving longer RTs, which broadly categorise into 
either trial-by-trial estimates of prediction error, or trial-by-trial estimates of posterior 
uncertainty, at multiple levels in the model. We used formal model comparison methods to 
identify which specific variation of the HGF to take forward for comparisons between CRPS 
and HC groups. For purposes of model selection, data from both groups (CRPS and HC) was 
used jointly, such that parameters from the same model could be compared between groups. 
The “winning” model was taken forward for mixed-effect analyses.  

Hierarchical mixed-effect model 
Optimization methods for parameter estimation are prone to errors (for example, variational 
Bayesian schemes can get stuck in local minima), as well as being prone to estimation error 
due to small sample sizes and poor parameter identifiability (Gershman, 2016). The question 
of group differences in model parameters is naturally framed in terms of hierarchical mixed-
effect models, which condition each individual participant’s parameters on the sufficient 
statistics (mean and variance) of the distribution of parameters from their group, thereby 
providing “empirical priors” on the individual participant estimates. This has the effect of 
regularising individual estimates according to group statistics, which produces better 
individual estimates and therefore more reliable group-level tests, as well as providing better 
predictions of out-of-sample data, compared to parameter estimates based on fitting each 
individual separately (Gershman, 2016; Huys et al., 2012, 2011; Wiecki et al., 2013). The 
shrinkage of individual parameter estimates towards group statistics will be in proportion to 
how confident we are in the parameter estimates (Friston et al., 2016), i.e. subjects with 
uninformative data will be informed by subjects with informative data.  

On this basis, the winning model (in terms of predicting RTs – previous section) was re-
estimated employing a hierarchical model with empirical priors, estimated for each group 
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separately (CRPS or HC groups). The estimation procedure is described elsewhere (Daunizeau, 
2017); in sum, it involves estimating all participant’s individual model parameter a number of 
times (iterations), each time updating the empirical priors calculated from their group 
sufficient statistics from the previous iteration. As well as improving individual participants’ 
parameter estimates, the results also maximise the summed log-model evidence over 
participants. This iterative scheme was terminated when the change in free energy for both 
groups differed from the previous iteration by less than 1%, resulting in 7 iterations. 
Parameter estimates were then compared between groups using conventional non-
parametric statistics (Mann-Whitney U-test). We also investigated group differences in state 
trajectories of interest (namely, precision-weighted PEs) using mean values over conditions 
in the design.  

 

Data availability 
The data that support the findings of this study are openly available in the Open Science 
Framework at https://osf.io/3wh7q/.  
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RESULTS 

Change probability influences behaviour more greatly under low signal-to-noise 
The tactile spatial oddball task (Fig. 1c, 1d), in which participants responded whenever 
stimulation was switched or changed from one digit to another, provided RTs on the spatial 
oddball trials that participants correctly responded to. Prior to computational modelling, we 
initially validated the task by demonstrating modulation of RTs by orthogonal experimental 
conditions influencing both top-down (spatial change probability) and bottom-up (spatial 
change distance) factors. 

Log-RTs from the task were subjected to conventional inferential statistical analysis to identify 
condition and group effects. A mixed ANOVA (see Supplementary Table 7 for complete 
statistics) revealed within-subject effects indicating that log-RTs (as shown in Fig. 3a) were 
sensitive to signal-to-noise of spatial changes (Change Distance, CD, p<0.001) and change 
probability (CP, p=0.046). Specifically, RTs were longer for smaller CDs (greater signal-to-noise) 
and lower CPs (more rare changes). There was also an interaction between these factors 
(p=0.001) resulting from CP effects (namely, longer RTs for rarer spatial changes) only 
occurring when the spatial change was small (CD1 condition). In other words, the probability 
of spatial change only affected behaviour when the magnitude (distance) of displacement was 
small. This is consistent with the notion of change detection as Bayesian inference, in which 
the sensory evidence (a change “signal”) is down-weighted (relative to the learnt prior 
expectation of a change) when there is lower signal-to-noise. Successful demonstration of 
these interactions supports the use of the task for generating data for purposes of fitting a 
computational model that integrates top-down and bottom-up influences on perception.  

Different pattern of response time variance in CRPS patients  
Group differences in mean log-RT for each condition were absent for the main effect of group 
and were also absent for all interactions involving the group factor (Supplementary Table 7), 
suggesting no specific or global impairments of RT in patients with CRPS compared to healthy 
controls. We also investigated within-subject variance in RTs (specifically, the standard 
deviation of log(RT) values (“log(RT)-SD”) over all responses within each condition) in order 
to identify group differences in these values. Group effects absent for the main effect of group 
and for two-way and three-way interactions with CD and CP factors. However, there was a 4-
way interaction involving group, CP, CD and side affected (p=0.004, Supplementary Table 7).  

Plots on the group and condition means of log(RT)-SD values (Fig. 3b) show that the significant 
interaction effect was driven by group differences in the CD1 vs. CD3 condition, which only 
occurred in the HC group when stimuli were rare (CP10: 10% change probability) and on the 
“affected” side. This was confirmed by follow-up tests on every CD1 vs. CD3 pair (for each 
Group, Side and CP combination), which found a statistically significant difference (p=0.001 
uncorrected) only in the HC group, “affected” side (which is the right arm for 10/15 
participants) and in the CP10 condition. No other pairs reached significance. Related to this 
finding, a further follow-up test confirmed a group difference (smaller in CRPS vs. HC, p=0.009 
uncorrected) only on the “affected” side for the CP10 / CD1 condition, but not for any other 
condition. This means that for CRPS patients compared to controls, there was less variance in 
RTs on the affected side when there were fewer events to learn from (CP rare) and when 
events were not as easily distinguishable (CD short).  
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Figure 3: Behavioural data: descriptive plots 

A. Behavioural data (response time) from TSOT task. Left: Group differences, 
summarised by side of stimulation (CRPS: affected vs. unaffected side, HC: pseudo-
affected vs. pseudo-unaffected side – see Methods for details) and averaged over 
other factors in the design (Change Distance (CD) and Change Probability (CP) – see 
Fig. 1). P values shown are from the paired comparison of CRPS-A (affected side) vs. 
HC-A (pseudo-affected side) using Mann-Whitney U-tests. Right: Within-subject 
(condition) effects on the TSOT response times; each violin is each condition after 
crossing the two factors of Change Probability and Change Distance; data is averaged 
over the side stimulated and pooled over groups (CRPS and HC). 
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B. Plots on the group and condition means of log(RT) standard deviation. Standard 
deviation was first calculated over trials, for each individual separately, to represent 
the variability in individual performance (RT). In this chart, data points are the mean 
of these SD values over all individuals in each group, for each condition. Data points 
outlined in yellow are the critical conditions driving a 4-way interaction effect between 
Group (CRPS, HC), Side (Side-A: “affected”, Side-U: “unaffected”), Change Probability 
condition (CP 10%, 30%, 50%) and Change Distance condition (DC 1, 3). See Results 
section for details. Error bars not shown for visual clarity. 

C. Pseudo response time data simulated by a chosen HGF model variant (perceptual 
model 3, response model 4 – details in Supplementary Materials) that was selected 
based on predictive validity, i.e. its ability to generate simulated RTs that predict actual 
RT data over trials of the experiment. Violin plots show the same pattern of RTs over 
conditions as shown in (A), while scatter plots demonstrate accurate prediction of 
between-participant variability in condition effects (Change Probability and Change 
Distance) on RT. The simulations for all HGF variants are in Supplementary Fig. 2. 
 
Violin plots show the kernel density estimate of the data (grey outlines) overlaid with 
means of data from each subject/condition. Also overlaid are the boxplots (median: 
white circle, box (IQR): thick line, whiskers (1.5x IQR): thin line). Each grey line 
connecting scatter-points is a subject. 
 

In order to understand the clinical relevance of this condition-specific decrease in log(RT)-SD 
in CRPS patients, we conducted Pearson’s correlations, within the CRPS group (n=22), 
between log(RT)-SD from the affected side / CP10 / CD1 condition as identified above, and 
four clinical variables relevant to CRPS. We found statistically significant negative 
relationships (consistent with the above-identified group-mean decreases in log(RT)-SD in 
CRPS patients compared to controls) for BPI pain severity index (r=-0.45, p=0.035) and BPI 
pain interference index (r=-0.63, p=0.002), but no evidence of a relationship with L/UEFI limb 
functioning (r=0.38, p=0.125) and NLSQ neglect-like symptoms (r=-0.35, p=0.107). Only the 
correlation showing more pain interference with lower log(RT)-SD values survived correction 
for multiple comparisons over the four clinical variables. Using hierarchical linear regression, 
we found the smaller log(RT)-SD from the affected side / CP10 / CD1 condition still predicted 
greater BPI pain interference (p=0.005) even after controlling for log(RT)-SD values from all 
other conditions, indicating that the relationship is specific to this condition. 

Computational modelling: Model selection and validation 
Decreases in RT variance for rare and difficult to distinguish digits changes in patients with 
CRPS may indicate a deficit in tactile learning. To better understand these results, we 
employed a more sophisticated generative model of “hidden” cognitive processes theorised 
to modulate RTs. Computational modelling of RTs employed the hierarchical Gaussian filter 
(HGF, Fig. 2b; described in Methods and Supplementary Materials), a Bayesian model of 
predictive coding suitable for modelling volatile environments, in order to estimate prediction 
and PE trajectories (at 3 hierarchical levels in the model) over the course of the experiment 
(shown as group means in Fig. 4a,b).  

Model validation (see Supplementary Materials) proceeded by first identifying the best model 
from a factorial combination of a range of perceptual and response models that might explain 
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trial-wise RTs. Specifically, it was important to demonstrate that the best model could 
simulate (reproduce) condition-effects on behaviour, as well as individual differences in these 
effects. Critically, the simulations used individual participant model parameters estimated 
from a “training set” of experimental trials, while model simulations were made on a “test 
set” of experimental trials that were not used to train the model (split-half cross-validation). 
The HGF model was chosen that was best able to simulate RTs (simulated data shown in Fig. 
3c). This model consisted of a perceptual model that accounts for modulation of sensory 
uncertainty by two bottom-up factors in the experimental design, namely the Side (hand) 
stimulated and also by the Change Distance, and a response model that predicts RTs using 
the absolute values of precision-weighted PE calculated from the perceptual model. 

Groups differ in the precision of predictions and prediction errors 
The validated HGF model was then fitted using empirical priors estimated for each group 
separately (n=15 per group, age matched), in order to compare parameter estimates and 
hidden variables of interest (predictions and PEs) between groups. Such a hierarchical 
estimation of model parameters has been recommended to provide more stable parameter 
estimates (Gershman, 2016). 

There were group differences in precision-weighted PEs that indicated less efficient predictive 
coding of tactile-spatial change detection (Supplementary Table 9 and Fig. 4c). CRPS had 
larger mean values (over all conditions) of precision-weighted PEs at the 2nd level (ε2, so-called 
“volatility” [i.e. variance] PE, p=0.007) (for further information about the difference between 
“value” and “volatility” PEs, see (Mathys et al., 2014)). This was driven by precision-weights 
at this level (ψ2) which showed a group difference in the same direction (p=0.002); conversely, 
unweighted PE at the 2nd level (δ2) did not differ between groups (p=0.115). There was also a 
group difference in PE precision at level 3 in the HGF model (ψ3) with lower precision in CRPS 
vs. HC participants (p<0.001), although this did not translate to a group difference in 
precision-weighted PE at this level (ε3, p=0.051). 

Group differences in precision weights (ψ2, ψ3) on PE were driven by subject-specific 
uncertainty (inverse precision, or imprecision) parameters, which also differed between 
groups. There were also corresponding differences in the variances of posterior predictions 
(σ1, σ2, σ3). Parameters differing between groups were ω and θ, which parameterize the 
posterior variance at the (respectively) 2nd and 3rd levels in the HGF (Fig. 2b and 
Supplementary Table 9). CRPS patients had a larger ω value (p=0.003) and consequently 
larger 2nd level posterior variance (σ2, p=0.002), but smaller θ values (p<0.001) and hence 
smaller 3rd level posterior variance (σ3, p<0.001). In other words, the results suggest that CRPS 
patients had less precise predictions of tactile spatial changes (HGF level 2 variance); 
furthermore, this imprecision was more stable (less volatile) over time (HGF level 3 variance). 
Exploratory cross-correlation analyses, within the CRPS group (n=15), between these two 
model parameters (ω, θ) and the four clinical variables relevant to CRPS did not reveal any 
statistically significant relationships: BPI pain severity index (ω: r=0.01, p=0.980; θ: r=0.109, 
p=0.699), BPI pain interference index (ω: r=-0.02, p=0.938; θ: r=-0.44, p=102),  L/UEFI limb 
functioning (ω: r=0.03, p=0.934; θ: r=0.15, p=0.637), and NLSQ neglect-like symptoms (ω: 
r=0.34, p=0.219; θ: r=0.19, p=0.506). 

α0, λ1 and λ2 parameter values (which modify the residual error variance of the model, a.k.a. 
irreducible uncertainty) did not significantly vary between groups (Fig. 4c). This is of interest 
because bottom-up sensory noise provides a lower bound on the residual error variance and 
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would be expected to co-vary with it. Therefore, group differences were entirely related to 
top-down predictions, with no evidence of a role for group differences in bottom-up signal-
to-noise (α0) or in its dependence on CD and Side conditions (λ1 and λ2 parameters 
respectively). 

 

 

Figure 4: Estimated HGF model parameters and state evolution trajectories, summarised by 
group 

A. Model state evolution over time, for each group (CRPS, HC) and each level of the HGF 
(x1, x2, and x3), resulting from fitting the HGF model to behavioural data (log-RTs) in 
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each group. The state at each level is depicted by the mean of the distribution of each 
state (µ, line) and the variance (σ, shaded areas). For both mean and variance 
estimates, the group’s mean of these values are plotted.  

B. Prediction errors (PEs) and their variances over time, for each group (CRPS, HC) and 
each level of the HGF. The mean of the group’s PEs at each level (δ1, δ2, and δ3, lines) 
and their variances (ψ1, ψ2, and ψ3, shaded areas).  

C. Group summaries of participant-specific parameter estimates. Raincloud plots show 
the kernel density estimate for each group (“cloud”) and the individual participants’ 
estimates (“rain”), overlaid with the boxplot (circle: mean, whiskers: inter-quartile 
range). Vertical dashed lines show the Bayes-optimal parameter values used as priors 
for model fitting to each subject; comparison to group estimates indicates how far 
each group deviates from statistical optimality. 
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DISCUSSION 

Behavioural studies in CRPS have revealed sensory abnormalities in CRPS but underlying 
mechanisms remain unclear (Förderreuther et al., 2004; Lewis and Schweinhardt, 2012; 
Pleger et al., 2006). Here we took the novel approach of considering tactile-spatial change-
detection as hierarchical Bayesian inference, as a computational model of predictive coding, 
to identify deficits in learning top-down predictions of tactile-spatial information. We found 
that CRPS patients’ predictions (of spatial displacement) were less precise, and deviate 
further from statistical optimality, compared to healthy controls. This imprecision was less 
context-dependent, such that their spatial predictions were less finely-tuned to the statistics 
of the environment (i.e. the temporal dynamics of sensory changes). This resulted in greater 
precision on prediction errors that update predictions, indicating deficits in efficient 
predictive coding of tactile-spatial information in patients with CRPS.  

Our findings provide new insights into the possible brain mechanisms underlying abnormal 
tactile-spatial processing in patients with CRPS. As far we are aware, this is the first study to 
apply a generative mechanistic model to investigate tactile perception in chronic pain 
disorders. We modelled trial-by-trial dynamics in RTs to investigate statistical learning over 
time, providing an advance on prior research that has only considered averaged data over 
trials (which assumes, incorrectly, that events/responses are homogeneous and 
independent). This resulted in observed deficits in patients with CRPS that were not clear from 
condition-averaged data (mean RTs or task errors) and but were initially suggested by analysis 
of the variance in RTs within each condition: We found less variance in RTs on the affected 
side in CRPS patients (compared to controls) but this was specific to when spatial changes 
were rare and of a small distance. Furthermore, this reduced variance correlated with patient 
self-reports of interference in their daily activities from their pain symptoms.  

In order to identify whether this reduced RT variance indicates a deficit in tactile learning, we 
tested for group differences after fitting trial-by-trial RTs to a computational model of the 
brain’s hidden states (e.g. predictions and PEs). By estimating specific quantities of the model 
and identifying how they differ between individuals, we obtain evidence for how CRPS 
patients learn to minimise prediction error when detecting spatial changes in tactile stimuli. 
Imprecision of predictions, found in CRPS patients, is calculated from two quantities in the 
model: firstly, the subject-specific model parameter ω, which remains static over trials, and 
secondly the time-varying quantity x3, which is updated trial-by-trial. Subject-specific 
parameters such as ω reflect enduring traits that are invariant to environmental changes 
occurring during the time-course of the experiment, but which may undergo changes over 
longer time-scales (possibly reflecting neural plasticity over the life-span (Bogacz, 2017)). 
According to the free-energy formulation of predictive coding, parameter updating (long-
term plasticity) only occurs if free-energy cannot be minimised through changes in (short-
term) neural activity, i.e. via the time-varying dynamics of prediction. Within the HGF model, 
these dynamics are modelled as the second contributor to the imprecision of predictions, 
namely the time-varying quantity x3, which is updated trial-by-trial. Updates to x3 are smaller 
when x3 is more precise (determined by the subject-specific parameter θ). These relationships 
in the model provide insights into group differences: CRPS patients had larger values of ω but 
smaller values of θ. This indicates that CRPS patients have more imprecise predictions but 
more precise estimates of environmental volatility (i.e. variability in change probabilities 
across the task). The net result is that the more imprecise predictions in CRPS patients are 
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more enduring, i.e. they are not dynamically updated as greatly during the time-course of the 
experiment in the CRPS group. Given that parameter updating is theorised to only occur if 
free-energy cannot be minimised alternatively through time-varying predictions (e.g. x3), this 
implies that changes in the parameter ω in CRPS patients might be a result of deficits in 
learning the probabilistic structure of the task. 

A corollary of greater imprecision of predictions in the CRPS group was relatively greater 
precision of volatility PEs (i.e. those PEs that update the participants’ putative internal model 
of the probabilistic structure of the environment). Greater precision of PEs results in an 
increased learning rate, namely greater updating of predictions in the direction indicated by 
the error. In other words, CRPS patients update their predictions of spatial changes at least 
as well as healthy controls, but those resulting predictions are less precise and less finely-
tuned to statistics of the environment. This means that tactile-spatial change detection in 
patients with CRPS is less influenced by the history of sensory changes, and more driven by 
current or very recent sensory inputs.  

The results provide a more nuanced view of somatosensory pathology in CRPS as commonly 
hypothesised in the literature, emphasising the role of higher-order learning rather than low-
level sensory representations. We found that, despite more imprecise predictions of tactile-
spatial changes, there were no group differences in model error variances (“irreducible 
uncertainty” (de Berker et al., 2016)), nor the additional model parameters that describe how 
this low-level uncertainty varies across digit change distances and the hand stimulated. This 
provides evidence against the view that sensory signal-to-noise, which would be expected to 
decrease this low-level sensory uncertainty, is deficient in CRPS. Our findings are consistent 
with a nascent body of evidence against the view of primary somatosensory dysfunction in 
CRPS pathology as suggested by recent MRI findings of a lack of S1 differences in the 
somatotopic representation of the affected limb (Di Pietro et al., 2015; Mancini et al., 2018; 
van Velzen et al., 2016). There is preliminary evidence that anterior insula cortex (ACC), which 
codes both tactile and pain-related PEs (Allen et al., 2015; Seymour et al., 2004), exhibits 
abnormal functional and structural (white-matter) connections in the brains of patients with 
CRPS (Geha et al., 2008; Marinus et al., 2011). A closely connected structure, the ACC, can be 
considered a hierarchically high-level hub in sensory perception, sub-serving a broad range of 
functions and integrating emotional and autonomic responses (Craig, 2003) to sensory 
information. Our findings are more consistent with abnormalities in ACC and other regions in 
CRPS that are involved in hierarchically higher levels of sensory learning, possibly involving 
working memory (e.g. see Cashdollar et al., 2017).  

Two key strengths of our analysis were to firstly validate the tactile-spatial change-detection 
task and secondly to validate the computation model, which are important steps prior to 
attempting to infer differences between CRPS and healthy controls. This was achieved by 
statistically predicting behaviour (RTs) from factors in the experimental design (validating the 
task) and from simulations of the computational model (validating the model). Specifically, 
RTs were modulated by both top-down (spatial change probability) and bottom-up (spatial 
change distance) factors, in a manner consistent with their putative role as markers of 
precision-weighted PEs in the brain (Kuttikat et al., 2018, 2016a). Subsequently, the 
computational model was able to simulate (reproduce) these condition-effects on behaviour 
and individual differences in these condition effects. These validation steps provided the 
foundation for investigating group differences in model parameters. 
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Several limitations of our approach merit further research. First, it is unknown whether the 
model parameter estimates are stable over time (test-retest reliability) and over what periods 
of time – for the results to be clinically meaningful, at least short-term stability (e.g. over 
days/weeks) would be a requirement. This also impacts on the likely success of interventions 
designed to improve sensory learning. Second, our results do not specify a somatosensory-
specific deficit in patients with CRPS; further studies can employ control tasks to test if the 
findings point to a more general deficit in modelling environmental statistics and 
contingencies.  

Finally, deficits in statistical learning may have therapeutic implications. Statistical learning is 
important to enable individuals to extract patterns or regularities from the environment over 
time (Hasson, 2017), and by extension, make predictions that facilitate adaptive behaviour. 
Because the world is both uncertain and changing, when a sensory change occurs, what has 
been learned must be revised: learning should therefore be flexible (Heilbron and Meyniel, 
2019). Our results suggest that patients with CRPS utilise a computational strategy of only 
taking into account recent observations (and forgetting about the remote past), which has 
been theorised to be a computationally cheaper way of enabling flexibility in learning 
compared to engaging in hierarchically higher-level learning of probabilistic structure 
(Heilbron and Meyniel, 2019). Such a strategy may be compensatory or adaptive for simple 
tasks but may be disadvantageous when complex information needs to be learnt over longer 
periods. This may have implications for therapies based on sensory re-training whose effects 
may be limited in extent or short-lived if success depends on higher-order learning. For 
example, sensory discrimination training, which has some supportive evidence in its favour 
(Moseley et al., 2008), aims to reduce tactile discrimination thresholds as a marker of 
improved spatial precision in somatosensory processing. We might speculate that patients 
can improve at simple spatial discrimination tasks (possibly providing some initial therapeutic 
benefit) while still experiencing difficulty in higher-order learning. Insofar as such high-order 
learning turns out to be important for CRPS pathology, improvement in simple sensory 
discrimination may either provide limited or short-lived therapeutic benefit. 
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SUPPLEMENTARY MATERIALS 

Participant recruitment and characteristics 
Potential CRPS participants were identified from either local Rheumatology databases of CRPS 
patients at Cambridge University Hospitals (CUH), or from the national UK CRPS Registry. The 
total number of potentially eligible CRPS patients contacted was 65, of which 22 patients were 
recruited. All patients were diagnosed with unilateral upper or lower limb CRPS (ruling out 
CRPS on the unaffected side) according to modified Budapest Research Criteria (Harden et al., 
2007). The inclusion criteria were kept as broad as possible, including upper and lower limb-
affected patients on the left or the right side. Although the study tests involved tactile 
stimulation on the hand only, previous work (Kuttikat et al., 2018, 2016b) found that the 
location of CRPS symptoms (namely, upper vs. lower limb) did not significantly affect 
behavioural performance in discrimination tasks. Healthy controls (HCs) were recruited by 
advertising the study using posters in CUH. 23 HCs were recruited with the aim of matching 
to CRPS patients in age and sex. Data from 1 HC were excluded from the study analysis due 
to extremely noisy EEG data that could not be corrected or removed. This resulted in 22 in 
the HC group. For statistical comparisons, the groups were reduced to n=15 each matched by 
age. Demographic and medical details in Supplementary Tables 1 and 2. 

Participant recruitment criteria 

Inclusion criteria 

 Participant is willing and able to give informed consent for participation in the study. 

 Male or Female, aged 18-80 years. 

 Right handed 

 Able to communicate fluently in English 

 Healthy Volunteers, or 

 Diagnosed with unilateral upper or lower limb Complex Regional Pain Syndrome 
according to modified Budapest Research Criteria  given below, or 

 Unilateral fracture of the upper or lower limb in the absence of any symptoms of 
Complex Regional Pain Syndrome. 

Exclusion criteria: The participant may not enter the study if ANY of the following apply: 

 Previous or current diagnosis of peripheral neuropathy, stroke, Transient Ischemic 
Attack, multiple sclerosis, malignancy or seizure disorder 

 Unable to communicate fluently in English 

 Pregnant 

 Unable to or unwilling to give informed consent 

Modified Budapest Research Criteria for diagnosis of CRPS (Harden et al., 2007): 

1. Continuing pain, which is disproportionate to any inciting event 
2. Must report at least one symptom in all four of the following categories: 

Sensory: Reports of hyperesthesia and/or allodynia 

Vasomotor: Reports of temperature asymmetry and/or skin colour changes and/or 
skin colour asymmetry 
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Sudomotor/ Oedema: Reports of oedema and/or sweating changes and/or sweating 
asymmetry 

Motor/Trophic: Reports of decreased range of motion and/or motor dysfunction 
(weakness, tremor, dystonia) and/or trophic changes (hair, nail, skin) 

3. Must display at least one sign at time of evaluation in two or more of the following 
categories: 

Sensory: Evidence of hyperalgesia (to pinprick) and/or allodynia (to light touch and/or 
temperature sensation and/or deep somatic pressure and/or joint movement) 

Vasomotor: Evidence of temperature asymmetry (>1°C) and/or skin colour changes 
and/or asymmetry 

Sudomotor/Oedema: Evidence of oedema and/or sweating changes and/or sweating 
asymmetry 

Motor/Trophic: Evidence of decreased range of motion and/or motor dysfunction 
(weakness, tremor, dystonia) and/or trophic changes (hair, nail, skin) 

4. There is no other diagnosis that better explains the signs and symptoms.  

Sample size 
A formal sample size calculation was not performed. Sample size was informed by previous 
research into CRPS at this institution (Kuttikat et al., 2018) which identified altered behaviour 
and cortical responses to tactile stimulation while using similar tasks. This was observable at 
statistical significance with 13 CRPS patients and 13 matched healthy controls. We surpassed 
the sample size by recruiting 22 CRPS patients and 23 healthy controls, so that age-matched 
group comparisons can be made on a subset of n=15 per group. 

Clinical evaluation 
Participants with CRPS completed standardised questionnaires to assess their pain and 
neglect-like symptoms: Neglect-like Symptom Questionnaire (Galer and Jensen, 1999), and 
Brief Pain Inventory (Cleeland and Ryan, 1994). Physical functioning was assessed using the 
Upper Extremity Functional Index (Stratford et al., 2001) and Lower Extremity Functional 
Index (Binkley et al., 1999), while emotional functioning was assessed using the Hospital 
Anxiety and Depression Scale (Thorlund, 2010). After completing questionnaires, participants 
underwent a Digit Identification Task (DIT) (Förderreuther et al., 2004; Kuttikat et al., 2016b), 
which was developed to quantify tactile spatial disturbances in CRPS clinically.  

Digit identification task (DIT) 
To find out whether our CRPS sample was qualitatively different in perceptual performance 
compared to our previous studies in this population (Kuttikat et al., 2018, 2016b), we tested 
whether CRPS patients took longer to complete a digit identification task. This task requires 
the more complex cognitive process of discriminating and reporting on which digit was 
stimulated (as opposed to the more cognitively simple TSOT). The DIT procedure involved 10 
touches, in a predefined order (unknown to the participant – perceived as effectively random), 
to the digits of each hand in turn (one touch per digit). Touches were from the index finger of 
the experimenter and involve gentle but clearly perceived mild stroke of the dorsal part of 
the middle segment of each digit. No adjacent digit was touched in consecutive sequence. 
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During the task, participants had their eyes closed and were seated with left and right hands 
placed on their respective thighs. Participants were asked to respond to each touch verbally, 
calling a thumb touch number “1”, index finger “2” and so on to the little finger. The task was 
first completed on the affected hand (if a CRPS patient) or on a randomly allocated hand (if a 
healthy control). For each hand separately, the time was measured from when the first digit 
was touched to when the last answer was given. The number of correct and incorrect answers 
were recorded.  

Comparing patients to controls in the whole sample (n=44), on average, patients took longer 
to complete the task but only on their affected side (p=0.014, Supplementary Table 1). CRPS 
patients were not less accurate on average, on either side. However, in age-matched group 
analysis (n=30), we did not find that CRPS patients took longer to complete the digit 
identification task, nor where they less accurate, on either affected or unaffected sides on 
average (Supplementary Table 1). Although 4 out of the 15 CRPS patients in the age-matched 
group took longer on the task than the healthy control with the longest completion time, this 
was not sufficient to result in a statistically significant difference between groups. The results 
highlight the heterogeneity of patients according to such performance metrics. 

Supplementary Table 1: Participant characteristics  
Whole sample, n=44 Age matched, n=30 

Characteristic CPRS 
(n=22) 

Healthy 
(n=22) 

Statistic 
(Z, Chi) 

p 
value 

CPRS 
(n=15) 

Healthy 
(n=15) 

Statistic 
(Z, Chi) 

p value 

Female (%) 17 (77.3) 15 
(68.2) 

0.46 a 0.5 12 
(80.0) 

11 
(73.3) 

0.19 0.666 

Age in years, median (range) 57 (20-
74) 

40.5 
(19-61) 

2.22 b 0.026 50 (20-
61) 

49 (19-
61) 

0.08 0.934 

DIT, affected side, % 
accuracy, median (range)  

10 (3-
10) 

10 (7-
10) 

0.38 b 0.748 10 (3-
10) 

10 (7-
10) 

0.03 0.98 

DIT, unaffected side, % 
accuracy, median (range) 

10 (9-
10) 

10 (6-
10) 

0.52 b 0.605 10 (9-
10) 

10 (6-
10) 

0.14 0.888 

DIT, affected side, response 
time, median (range) 

20 (13-
70) 

16.5 
(13-27) 

2.45 b 0.014 18 (13-
70) 

17 (13-
27) 

1.11 0.269 

DIT, unaffected side, 
response time, median 
(range) 

18 (12-
33) 

17.5 
(13-26) 

0.64 b 0.523 18 (12-
33) 

18 (14-
26) 

0.08 0.933 

PCS total, median (range) 25 (0-
47) 

8.5 (0-
30) 

3.02 b 0.003 25 (6-
47) 

7 (0-30) 3.64 <0.001 

HADS anxiety, median 
(range) 

9 (2-16) 3.5 (0-
10) 

3.52 b <0.00
1 

9 (4-16) 5 (0-10) 3.48 0.001 

HADS depression, median 
(range) 

8 (1-12) 1 (0-7) 5.23 b <0.00
1 

10 (4-
12) 

0 (0-7) 4.60 <0.001 

         

a Chi-square test  

b Mann-Whitney U test, Z score  
DIT: Digit identification test; PCS: Pain catastrophizing scale; HADS: Hospital anxiety and depression scale 

 

Supplementary Table 2: Patient medical characteristics   
Whole sample, n=22 Age matched, 

n=15 

CRPS location, number of patients (%)  
left arm 8 (36.4) 3 (20)  
right arm 5 (22.7) 5 (33.3) 
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left leg 4 (18.2) 2 (13.3)  
right leg 5 (22.7) 5 (33.3) 

Years since onset 7.5 (1-19) 7 (1-19) 

BPI total pain areas, 
median (range) 

5.5 (0-44) 6 (1-44) 

BPI worst pain, 
median (range) 

7 (1-10) 7 (3-10) 

BPI best pain, median 
(range) 

4.5 (0-9) 5 (2-9) 

BPI average pain, 
median (range) 

6 (0-10) 6 (3-10) 

BPI current pain, 
median (range) 

6 (1-9) 6 (4-9) 

BPI pain severity 
index, median (range) 

5.75 (0.5-9.5) 6 (3-9.5) 

UEFI total, median 
(range) 

33.5 (21-79) 33.5 (21-57) 

LEFI total, median 
(range) 

20 (6-58) 22 (6-58) 

NLSQ total, median 
(range) 

3.8 (1.2-5.6)   

3.8 (2.8-5.6) 

Medications, number 
of patients (%) 

  

 
Paracetamol 8 (36.4) 5 (33.3)  
NSAIDs 5 (22.7) 5 (33.3)  
Opioids 9 (40.9) 6 (40)  
Anti-
depressants 

12 (54.5) 10 (66.6) 

 
Anti-
convulsants 

11 (50) 9 (60) 

 
Topical 
lidocaine 

4 (18.2) 3 (20) 

 
Topical 
capsaicin 

2 (9.1) 2 (13.3) 

 
Cannabinoid 1 (4.5) 1 (6.6)     

BPI: Brief pain inventory; U/LEFI: Upper/lower limb 
functional index; NLSQ: Neglect-Like Symptoms 
Questionnaire 
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Tactile spatial oddball task (TSOT): Electrical current delivered for each group 

On average, there was no significant difference in the electrical current (in mA) delivered 
between CRPS patients and HC participants when considering either all n=44 participants 
(CRPS: M=6.87, SD=1.87; HC: M=6.54, SD=2.00; p=0.578) nor the n=30 matched subgroup 
(CRPS: M=6.66, SD=1.86; HC: M=6.92, SD=1.90; p=0.708). We also tested for relationships 
between current delivered and key dependent variables (mean RT and mean accuracy) in 
each group separately (n=22 per group) using Spearman correlations (two-tailed). There was 
a significant positive correlation (rho=0.577, p=0.005 (uncorrected)) between the current 
delivered and mean RTs (across all trials/conditions) in the HC group only. Since current 
delivered was a multiple of sensory threshold in this group, we can conclude that individuals 
who were less sensitive to detecting tactile stimuli also took longer to respond to changes in 
their location. There were no significant correlations found in the CRPS group, nor did 
stimulus intensity relate to computational model parameter values within either of the n=15 
subgroups. 

Tactile spatial oddball task (TSOT): Quality control analysis on missed and corrected 
responses 
For quality control purposes, we investigated whether there were group differences (n=15 
per matched group) in responses to targets (digit change trials) in order to assess whether the 
above rules for assigning responses to targets disproportionately affected the CRPS or HC 
group. We calculated three metrics: (1) “missed response”: proportion of trials in which there 
was a digit change (target for response) but no response within the 200ms to 1000ms time 
window post-stimulus, (2) “corrected response”: proportion of trials in which there was a 
“missed response” according to the above definition but there was a response occurring later 
that was assigned to the current trial according to the rules described in Methods, (2) 
“fraction corrected”: the fraction of “corrected responses” over the total number of “missed 
responses”. For each of the above three metrics, we provide the mean and SD for each 
condition and each group, as well as the Z-scores and p values for independent non-
parametric tests between the two groups (Supplementary Table 3). Comparing the means, 
there was a tendency for the CRPS group to have more missed responses and a greater 
number of corrected responses, but this was not consistent across all conditions, even for the 
more challenging CP-50 (50% change probability) conditions. No statistically significant group 
differences were found for any of the conditions on any metric. 

Tactile spatial oddball task (TSOT): Accuracy 
Accuracy data from the TSOT (Supplementary Table 4) were not used for further modelling 
due to ceiling effects in the rare change-probability (10%) condition. Due to these ceiling 
effects the data did not approximate normality well enough for parametric statistics. 
Regarding within-subject effects, a 2-tailed Friedman test found a significant effect of change 
probability (medians: 10% condition = 98.3, 30% condition = 89.2, 50% condition = 81.0; p < 
0.001), while 2-tailed Wilcoxon signed-rank tests found a significant effect of digit change 
distance (medians: CD1 = 86.3, CD3 = 90.5, p < 0.001) but not side stimulated (medians: 
affected = 88.8, unaffected = 86.3; p = 0.290). We compared groups using Mann-Whitney U 
tests on each cell in the design (correcting for multiple comparisons) and no statistically 
significant group differences were identified.  
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Supplementary Table 3: Proportion of missed and corrected trials on Tactile Spatial Oddball Task (TSOT)   
Change probability: 10% Change probability: 30% Change probability: 50%  

Side: affected Side: unaffected Side: affected Side: unaffected Side: affected Side: unaffected 

Missed responses 
            

Descriptive statistics CD1 CD3 CD1 CD3 CD1 CD3 CD1 CD3 CD1 CD3 CD1 CD3 

Group mean (CRPS) 0.447 0.220 0.427 0.193 0.575 0.313 0.529 0.375 0.619 0.376 0.605 0.448 

Group SD (CRPS) 0.393 0.276 0.310 0.175 0.264 0.254 0.274 0.230 0.209 0.304 0.198 0.170 

Group mean (HC) 0.407 0.233 0.360 0.187 0.529 0.463 0.500 0.350 0.514 0.467 0.481 0.386 

Group SD (HC) 0.225 0.206 0.275 0.203 0.192 0.216 0.274 0.226 0.216 0.282 0.194 0.246 

Mann-Whitney U test 
            

Effect size: Z statistic 0.188 -0.530 0.605 0.511 0.521 -1.624 0.146 0.376 1.295 -0.855 1.381 0.709 

P value (asymptotic 2-tailed) 0.851 0.596 0.545 0.609 0.603 0.104 0.884 0.707 0.195 0.392 0.167 0.478 

Corrected p value 10.212 7.152 6.540 7.308 7.236 1.248 10.608 8.484 2.340 4.704 2.004 5.736              

Corrected responses 
            

Descriptive statistics CD1 CD3 CD1 CD3 CD1 CD3 CD1 CD3 CD1 CD3 CD1 CD3 

Group mean (CRPS) 0.147 0.133 0.220 0.120 0.108 0.092 0.100 0.125 0.086 0.086 0.110 0.148 

Group SD (CRPS) 0.173 0.188 0.214 0.108 0.080 0.100 0.102 0.118 0.077 0.090 0.108 0.087 

Group mean (HC) 0.180 0.120 0.140 0.093 0.092 0.129 0.063 0.075 0.076 0.090 0.100 0.090 

Group SD (HC) 0.142 0.115 0.155 0.103 0.070 0.093 0.058 0.098 0.079 0.095 0.080 0.099 

Mann-Whitney U test 
            

Effect size: Z statistic -1.034 0.394 0.989 0.698 0.365 -1.105 0.762 1.320 0.434 -0.065 0.022 1.919 

P value (asymptotic 2-tailed) 0.301 0.694 0.323 0.485 0.715 0.269 0.446 0.187 0.664 0.948 0.983 0.055 

Corrected p value 3.612 8.328 3.876 5.820 8.580 3.228 5.352 2.244 7.968 11.376 11.796 0.660              

Fraction of corrected/missed 
            

Descriptive statistics CD1 CD3 CD1 CD3 CD1 CD3 CD1 CD3 CD1 CD3 CD1 CD3 

Group mean (CRPS) 0.485 0.730 0.501 0.671 0.200 0.277 0.211 0.351 0.134 0.226 0.190 0.316 
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Group SD (CRPS) 0.390 0.351 0.321 0.406 0.147 0.237 0.214 0.312 0.126 0.193 0.194 0.170 

Group mean (HC) 0.465 0.573 0.325 0.630 0.191 0.296 0.175 0.202 0.145 0.244 0.191 0.266 

Group SD (HC) 0.294 0.323 0.335 0.335 0.158 0.268 0.253 0.289 0.121 0.282 0.133 0.224 

Mann-Whitney U test 
            

Effect size: Z statistic 0.139 1.137 1.312 0.483 0.021 -0.074 0.951 1.415 -0.296 -0.099 -0.610 0.928 

P value (asymptotic 2-tailed) 0.889 0.256 0.190 0.629 0.983 0.941 0.342 0.157 0.767 0.921 0.542 0.354 

Corrected p value 10.668 3.072 2.280 7.548 11.796 11.292 4.104 1.884 9.204 11.052 6.504 4.248 
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Supplementary Table 4: Tactile Spatial Oddball Task (TSOT) accuracy data   
Change probability: 10% Change probability: 30% Change probability: 50%   

Side: affected Side: unaffected Side: affected Side: unaffected Side: affected Side: unaffected 

Participant Group CD1 CD3 CD1 CD3 CD1 CD3 CD1 CD3 CD1 CD3 CD1 CD3 

P1 CRPS 88.3 94.7 91.5 94.0 70.9 72.6 88.5 91.1 71.4 89.3 78.6 59.3 

P2 CRPS 92.2 97.4 94.2 100.0 75.4 85.7 90.9 96.8 60.7 63.0 75.0 89.3 

P3 CRPS 96.4 99.2 98.6 93.1 81.8 85.5 90.2 89.3 78.6 75.0 75.0 77.8 

P4 CRPS 98.6 100.0 99.3 100.0 91.8 100.0 96.4 95.2 92.9 96.3 82.1 78.6 

P5 CRPS 100.0 100.0 99.3 99.1 90.9 95.2 95.1 89.3 75.0 82.1 89.3 88.9 

P6 CRPS 99.3 99.2 99.3 100.0 90.9 98.4 93.4 98.2 78.6 100.0 96.4 100.0 

P7 CRPS 94.2 90.9 92.9 94.8 80.0 100.0 93.4 92.9 78.6 89.3 78.6 88.9 

P8 CRPS 100.0 100.0 97.2 100.0 81.8 93.5 85.2 89.3 71.4 78.6 71.4 66.7 

P9 CRPS 99.3 100.0 97.1 100.0 93.4 98.2 83.6 95.2 71.4 100.0 82.1 85.7 

P10 CRPS 97.8 97.7 95.7 97.4 74.5 95.2 93.4 94.6 85.7 71.4 92.9 96.3 

P11 CRPS 97.8 98.5 97.9 97.4 85.5 95.2 95.1 96.4 78.6 96.4 78.6 81.5 

P12 CRPS 95.7 96.6 96.4 99.2 85.2 89.3 83.6 90.3 60.7 74.1 71.4 78.6 

P13 CRPS 83.0 87.9 91.2 91.7 80.3 82.1 81.8 77.4 75.0 66.7 71.4 78.6 

P14 CRPS 88.7 95.7 94.9 97.0 86.9 85.7 69.1 79.0 57.1 70.4 53.6 67.9 

P15 CRPS 98.6 99.1 98.5 100.0 85.2 98.2 87.3 95.2 75.0 100.0 75.0 92.9 

P16 CRPS 94.2 97.0 92.9 95.7 76.4 83.9 82.0 83.9 57.1 67.9 67.9 77.8 

P17 CRPS 99.3 98.5 95.7 99.1 94.5 96.8 90.2 87.5 85.7 89.3 78.6 70.4 

P18 CRPS 89.1 96.2 91.5 95.7 74.5 88.7 75.4 80.4 57.1 78.6 60.7 81.5 

P19 CRPS 97.8 100.0 99.3 97.4 90.9 96.8 90.2 98.2 64.3 96.4 64.3 85.2 

P20 CRPS 98.5 100.0 98.6 99.1 87.3 87.1 86.9 91.1 75.0 78.6 71.4 77.8 

P21 CRPS 99.3 98.5 97.9 100.0 85.5 95.2 86.9 92.9 53.6 89.3 67.9 85.2 

P22 CRPS 99.3 96.2 99.3 100.0 78.2 100.0 98.4 100.0 78.6 85.7 82.1 92.6 

Mean 
(group) 

 
95.8 97.4 96.3 97.8 83.7 92.0 88.0 91.1 71.9 83.6 75.6 81.9 

SD (group) 
 

4.7 3.1 2.8 2.6 6.8 7.2 7.0 6.3 10.6 11.9 10.0 10.0 
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P23 HC 100.0 100.0 99.3 100.0 85.5 91.9 91.8 91.1 67.9 75.0 64.3 74.1 

P24 HC 92.7 94.7 94.3 94.8 80.0 82.3 86.9 87.5 64.3 71.4 78.6 70.4 

P25 HC 96.4 95.5 92.9 96.6 83.6 87.1 90.2 94.6 71.4 67.9 64.3 74.1 

P26 HC 100.0 98.3 92.7 95.5 82.0 83.9 90.9 90.3 78.6 96.3 67.9 57.1 

P27 HC 94.9 95.5 91.5 99.1 76.4 87.1 86.9 85.7 78.6 89.3 78.6 63.0 

P28 HC 98.5 97.7 92.9 98.3 80.0 79.0 93.4 87.5 82.1 75.0 75.0 88.9 

P29 HC 99.3 99.1 100.0 100.0 100.0 98.2 100.0 96.8 89.3 92.6 89.3 96.4 

P30 HC 100.0 100.0 99.3 100.0 85.5 93.5 91.8 83.9 82.1 82.1 89.3 88.9 

P31 HC 98.5 100.0 97.9 97.4 81.8 98.4 83.6 87.5 67.9 82.1 67.9 81.5 

P32 HC 100.0 100.0 100.0 99.2 95.1 92.9 94.5 96.8 89.3 100.0 71.4 92.9 

P33 HC 99.3 100.0 98.6 100.0 89.1 90.3 88.5 92.9 85.7 71.4 89.3 81.5 

P34 HC 95.6 93.9 87.9 91.4 72.7 83.9 75.4 91.1 67.9 60.7 75.0 70.4 

P35 HC 98.5 100.0 97.9 100.0 92.7 96.8 85.2 100.0 85.7 100.0 89.3 96.3 

P36 HC 94.9 93.9 92.9 97.4 74.5 85.5 78.7 85.7 57.1 82.1 60.7 88.9 

P37 HC 98.6 99.1 97.8 98.5 96.7 92.9 92.7 87.1 85.7 92.6 85.7 96.4 

P38 HC 91.2 93.9 87.9 90.5 80.0 85.5 77.0 92.9 92.9 78.6 89.3 70.4 

P39 HC 98.5 100.0 100.0 100.0 90.9 100.0 95.1 100.0 85.7 100.0 96.4 100.0 

P40 HC 100.0 100.0 99.3 99.1 92.7 96.8 96.7 100.0 85.7 92.9 89.3 92.6 

P41 HC 98.5 98.5 97.9 100.0 80.0 87.1 80.3 87.5 78.6 85.7 82.1 81.5 

P42 HC 96.5 99.1 100.0 100.0 98.4 100.0 94.5 98.4 92.9 96.3 78.6 96.4 

P43 HC 94.9 98.5 97.2 94.0 81.8 88.7 88.5 85.7 75.0 96.4 71.4 81.5 

P44 HC 94.2 98.5 97.9 99.1 83.6 91.9 100.0 98.2 89.3 100.0 78.6 100.0 

Mean 
(group) 

 
97.3 98.0 96.2 97.8 85.6 90.6 89.2 91.9 79.7 85.8 78.7 83.8 

SD (group) 
 

2.6 2.3 3.9 2.9 7.8 6.1 7.0 5.4 9.9 11.9 10.1 12.5               

Mann-Whitney U test 
            

Effect size: Z statistic -0.82 -0.63 0.72 0.23 -0.72 0.79 -0.72 -0.24 -2.36 -0.77 -1.08 -0.95 
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P value (asymptotic 2-
tailed) 

0.412 0.531 0.472 0.815 0.474 0.432 0.474 0.811 0.019 0.438 0.282 0.345 

Corrected p value 4.939 6.377 5.669 9.781 5.683 5.187 5.686 9.733 0.222 5.260 3.383 4.136 

 

Supplementary Table 5: Tactile Spatial Oddball Task (TSOT) response time data: individual means   
Change probability: 10% Change probability: 30% Change probability: 50%   

Side: affected Side: unaffected Side: affected Side: unaffected Side: affected Side: unaffected 

Participant Group CD1 CD3 CD1 CD3 CD1 CD3 CD1 CD3 CD1 CD3 CD1 CD3 

P1 CRPS 1.13 0.73 1.06 0.75 1.07 0.90 1.01 0.75 0.71 0.58 0.49 0.86 

P2 CRPS 0.92 0.98 1.03 0.74 1.56 1.17 1.02 0.88 1.06 1.20 0.68 0.91 

P3 CRPS 0.64 0.55 0.50 0.48 0.58 0.65 0.58 0.62 0.79 0.71 0.78 0.97 

P4 CRPS 0.61 0.57 0.56 0.58 0.67 0.54 0.54 0.66 0.45 0.48 0.52 0.72 

P5 CRPS 0.52 0.64 0.68 0.60 0.82 0.83 0.69 0.75 1.14 0.67 0.67 0.71 

P6 CRPS 0.98 0.41 0.75 0.49 0.71 0.48 0.81 0.43 0.61 0.46 0.72 0.43 

P7 CRPS 0.60 0.38 0.62 0.62 0.75 0.49 0.64 0.44 0.34 0.37 0.53 0.62 

P8 CRPS 0.59 0.61 0.78 0.73 0.68 0.66 0.94 0.64 0.46 0.64 0.56 1.02 

P9 CRPS 0.66 0.51 0.85 0.59 0.53 0.52 0.67 0.63 0.42 0.51 0.46 0.51 

P10 CRPS 0.88 0.63 1.01 0.57 0.78 0.96 0.66 0.82 0.94 0.78 0.71 0.57 

P11 CRPS 0.62 0.58 0.74 0.74 0.77 0.48 0.75 0.63 0.87 0.53 1.00 0.79 

P12 CRPS 0.88 0.74 0.88 0.77 1.01 0.83 0.90 0.81 0.77 1.01 0.77 0.86 

P13 CRPS 1.52 1.08 1.16 0.83 1.25 0.96 0.99 0.88 0.78 0.73 0.83 0.89 

P14 CRPS 0.82 0.74 0.88 0.87 0.75 0.66 0.91 0.60 1.08 0.83 0.74 0.74 

P15 CRPS 0.71 0.66 0.67 0.77 0.68 0.61 0.67 0.52 0.52 0.48 0.49 0.50 

P16 CRPS 0.63 0.76 0.75 0.46 0.99 0.76 0.49 0.48 1.15 0.70 0.59 0.98 

P17 CRPS 0.60 0.45 0.65 0.59 0.63 0.55 0.56 0.68 0.89 0.60 0.84 0.78 

P18 CRPS 1.39 1.29 1.49 0.94 1.02 0.89 1.23 0.75 0.72 0.50 1.28 0.85 

P19 CRPS 0.63 0.47 0.79 0.51 0.77 0.44 0.53 0.62 0.62 0.72 0.79 0.62 

P20 CRPS 0.76 0.81 0.93 0.57 0.67 1.04 0.72 0.61 0.94 0.63 0.67 0.81 
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P21 CRPS 1.16 0.60 1.23 0.51 0.98 0.91 1.09 0.72 0.43 0.78 0.88 0.73 

P22 CRPS 0.69 0.51 0.65 0.51 0.67 0.80 0.57 0.45 0.75 0.66 0.56 0.55 

Mean (group) 
 

0.82 0.67 0.85 0.65 0.83 0.73 0.77 0.65 0.75 0.66 0.71 0.75 

SD (group) 
 

0.27 0.22 0.24 0.14 0.24 0.21 0.21 0.13 0.25 0.19 0.19 0.17               

P23 HC 0.62 0.59 0.82 0.82 0.65 0.66 0.53 0.62 0.60 0.55 0.44 0.46 

P24 HC 0.86 0.70 1.02 0.66 0.83 0.86 0.63 0.56 0.68 0.96 0.68 0.83 

P25 HC 0.64 0.94 0.77 0.62 0.78 0.84 0.56 0.57 0.67 0.55 0.64 0.49 

P26 HC 0.55 0.85 0.89 0.65 0.76 0.78 0.56 0.94 0.47 0.59 0.51 0.58 

P27 HC 0.50 0.47 0.76 0.69 0.59 0.40 0.91 0.74 0.69 0.72 1.07 0.55 

P28 HC 1.19 0.73 0.87 0.77 1.11 0.57 0.67 0.55 0.65 0.56 0.76 0.79 

P29 HC 0.54 0.79 1.06 0.70 0.83 0.41 0.77 0.88 0.62 0.72 0.62 0.72 

P30 HC 0.45 0.33 0.46 0.36 0.59 0.39 0.58 0.37 0.45 0.37 0.37 0.34 

P31 HC 0.60 0.77 0.67 0.67 0.89 0.58 0.77 0.57 0.64 0.55 0.78 0.65 

P32 HC 0.54 0.51 0.86 0.47 0.65 0.53 0.60 0.45 0.44 0.57 0.62 0.69 

P33 HC 0.65 0.47 0.66 0.50 0.68 0.67 0.74 0.78 0.58 0.57 1.02 0.49 

P34 HC 0.74 0.69 0.71 0.57 0.84 0.55 0.68 0.49 0.56 0.48 0.59 0.57 

P35 HC 0.93 0.80 1.29 0.77 1.15 0.81 0.57 0.68 0.45 0.96 0.76 0.82 

P36 HC 0.74 0.42 0.44 0.58 0.67 0.52 0.79 0.63 0.48 0.42 0.52 0.57 

P37 HC 1.04 0.67 0.57 0.59 0.49 0.87 0.83 0.92 0.82 0.91 0.92 0.89 

P38 HC 0.51 0.56 0.60 0.48 0.52 0.53 0.69 0.72 0.58 0.50 0.63 0.43 

P39 HC 0.64 0.72 0.54 0.56 0.61 0.95 0.70 0.67 0.55 0.89 0.55 0.66 

P40 HC 0.51 0.63 0.56 0.66 0.69 0.54 0.57 0.53 0.49 0.57 0.55 0.51 

P41 HC 0.50 0.51 0.56 0.55 0.71 0.56 0.70 0.53 0.59 0.53 0.68 0.45 

P42 HC 0.93 0.59 0.69 0.62 0.96 0.81 0.67 0.75 1.14 0.75 0.79 0.95 

P43 HC 0.69 0.53 0.71 0.58 0.65 0.65 0.71 0.63 0.54 0.71 0.53 0.46 

P44 HC 1.03 0.64 1.22 0.82 1.10 0.82 0.77 0.69 0.64 0.56 0.67 0.76 

Mean (group) 
 

0.84 0.89 0.84 0.57 0.86 0.66 0.62 0.47 0.60 0.61 0.87 0.50 
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SD (group) 
 

0.21 0.15 0.23 0.12 0.19 0.17 0.10 0.15 0.15 0.17 0.18 0.17 

              

 

Supplementary Table 6: Tactile Spatial Oddball Task (TSOT) response time data: individual standard deviations   
Change probability: 10% Change probability: 30% Change probability: 50%   

Side: affected Side: unaffected Side: affected Side: unaffected Side: affected Side: unaffected 

Participant Group CD1 CD3 CD1 CD3 CD1 CD3 CD1 CD3 CD1 CD3 CD1 CD3 

P1 CRPS 0.51 0.53 0.64 0.39 0.25 0.73 0.50 0.39 0.40 0.39 0.15 0.26 

P2 CRPS 0.44 0.48 0.45 0.29 0.07 0.37 0.45 0.47 0.49 0.40 0.36 0.55 

P3 CRPS 0.31 0.27 0.08 0.08 0.17 0.29 0.27 0.33 0.58 0.58 0.42 0.59 

P4 CRPS 0.17 0.30 0.11 0.42 0.36 0.16 0.15 0.35 0.08 0.19 0.11 0.44 

P5 CRPS 0.09 0.39 0.31 0.12 0.36 0.39 0.38 0.42 0.54 0.33 0.26 0.40 

P6 CRPS 0.49 0.05 0.38 0.17 0.36 0.17 0.39 0.12 0.37 0.17 0.40 0.13 

P7 CRPS 0.38 0.08 0.45 0.60 0.41 0.15 0.26 0.15 0.09 0.07 0.32 0.32 

P8 CRPS 0.16 0.16 0.37 0.40 0.17 0.26 0.36 0.26 0.12 0.43 0.19 0.65 

P9 CRPS 0.32 0.11 0.45 0.07 0.09 0.15 0.16 0.26 0.06 0.15 0.06 0.08 

P10 CRPS 0.43 0.33 0.39 0.32 0.33 0.51 0.34 0.40 0.48 0.54 0.43 0.34 

P11 CRPS 0.32 0.16 0.37 0.38 0.26 0.23 0.46 0.35 0.35 0.17 0.46 0.56 

P12 CRPS 0.35 0.19 0.44 0.14 0.40 0.30 0.33 0.34 0.33 0.27 0.30 0.41 

P13 CRPS 0.12 0.52 0.41 0.43 0.45 0.58 0.45 0.41 0.43 0.36 0.60 0.52 

P14 CRPS 0.02 0.32 0.19 0.45 0.24 0.21 0.00 0.08 0.51 0.34 0.01 0.24 

P15 CRPS 0.25 0.30 0.17 0.26 0.38 0.36 0.28 0.10 0.21 0.11 0.18 0.13 

P16 CRPS 0.24 0.47 0.41 0.15 0.31 0.41 0.12 0.24 0.57 0.37 0.20 0.53 

P17 CRPS 0.29 0.31 0.17 0.07 0.15 0.26 0.31 0.17 0.48 0.42 0.53 0.32 

P18 CRPS 0.01 0.31 0.10 0.39 0.71 0.35 0.54 0.46 0.12 0.25 0.48 0.50 

P19 CRPS 0.29 0.07 0.36 0.15 0.37 0.12 0.25 0.31 0.52 0.43 0.34 0.49 

P20 CRPS 0.37 0.47 0.51 0.20 0.46 0.53 0.26 0.27 0.51 0.39 0.34 0.38 

P21 CRPS 0.04 0.09 0.27 0.20 0.43 0.37 0.32 0.39 0.43 0.35 0.08 0.28 
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P22 CRPS 0.37 0.09 0.31 0.13 0.27 0.11 0.07 0.38 0.25 0.29 0.55 0.40 

Mean (group) 
 

0.27 0.27 0.33 0.27 0.32 0.32 0.30 0.30 0.36 0.32 0.31 0.39 

SD (group) 
 

0.15 0.16 0.15 0.15 0.14 0.16 0.14 0.12 0.18 0.13 0.17 0.16               

P23 HC 0.22 0.32 0.42 0.30 0.22 0.24 0.08 0.14 0.32 0.30 0.35 0.31 

P24 HC 0.46 0.30 0.45 0.65 0.23 0.17 0.48 0.61 0.39 0.13 0.36 0.14 

P25 HC 0.53 0.33 0.09 0.51 0.14 0.56 0.45 0.41 0.17 0.10 0.09 0.11 

P26 HC 0.10 0.06 0.52 0.41 0.20 0.09 0.55 0.46 0.39 0.40 0.34 0.04 

P27 HC 0.55 0.39 0.39 0.43 0.61 0.34 0.39 0.20 0.48 0.22 0.43 0.47 

P28 HC 0.57 0.49 0.10 0.53 0.48 0.50 0.59 0.09 0.28 0.47 0.46 0.38 

P29 HC 0.26 0.05 0.16 0.02 0.36 0.05 0.35 0.09 0.07 0.06 0.11 0.09 

P30 HC 0.13 0.36 0.24 0.20 0.35 0.23 0.34 0.11 0.34 0.32 0.44 0.24 

P31 HC 0.38 0.09 0.13 0.15 0.28 0.12 0.14 0.18 0.39 0.47 0.14 0.34 

P32 HC 0.26 0.13 0.13 0.08 0.27 0.34 0.29 0.43 0.38 0.12 0.21 0.23 

P33 HC 0.35 0.14 0.41 0.33 0.29 0.11 0.37 0.22 0.42 0.43 0.34 0.11 

P34 HC 0.38 0.34 0.41 0.45 0.45 0.57 0.17 0.32 0.08 0.47 0.48 0.47 

P35 HC 0.41 0.06 0.06 0.22 0.21 0.18 0.29 0.35 0.16 0.08 0.25 0.37 

P36 HC 0.43 0.18 0.21 0.27 0.29 0.53 0.21 0.44 0.04 0.45 0.28 0.52 

P37 HC 0.05 0.20 0.35 0.07 0.13 0.12 0.32 0.43 0.34 0.20 0.39 0.08 

P38 HC 0.36 0.42 0.19 0.25 0.18 0.38 0.51 0.30 0.21 0.52 0.23 0.42 

P39 HC 0.16 0.41 0.08 0.29 0.21 0.13 0.30 0.13 0.14 0.14 0.19 0.29 

P40 HC 0.09 0.14 0.16 0.29 0.35 0.21 0.35 0.26 0.22 0.15 0.38 0.10 

P41 HC 0.42 0.10 0.08 0.09 0.29 0.36 0.17 0.42 0.38 0.39 0.49 0.41 

P42 HC 0.38 0.12 0.29 0.13 0.19 0.16 0.31 0.32 0.32 0.10 0.12 0.29 

P43 HC 0.51 0.18 0.39 0.28 0.56 0.31 0.43 0.42 0.28 0.32 0.36 0.48 

P44 HC 0.29 0.21 0.44 0.40 0.19 0.09 0.36 0.21 0.47 0.15 0.20 0.25 

Mean (group) 
 

0.84 0.89 0.84 0.57 0.86 0.66 0.62 0.47 0.60 0.61 0.87 0.50 

SD (group) 
 

0.21 0.15 0.23 0.12 0.19 0.17 0.10 0.15 0.15 0.17 0.18 0.17 
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Supplementary Table 7: Mixed ANOVA on log(RT) data from Tactile Spatial Oddball Task (TSOT) 
 
 

Effect n df1 df2 F p Partial 
Eta 

Squared 

ANOVA on 
means 
(over trials 
per 
condition / 
individual) 

CP † 44 1.54 64.73 3.54 0.046 0.08 

Side 44 1 42 0.00 0.972 0.00 

CD 44 1 42 30.08 0.000 0.42 

CP * Side † 44 2 84 5.06 0.008 0.11 

CP * CD † 44 2 84 8.18 0.001 0.16 

Side * CD 44 1 42 0.02 0.894 0.00 

CP * Side * CD † 44 2 84 1.33 0.271 0.03 

CP * Group † 30 1.54 64.73 0.05 0.919 0.00 

Side * Group 30 1 28 0.01 0.910 0.00 

CD * Group 30 1 28 1.73 0.199 0.06 

CP * Side * Group † 30 2 56 0.58 0.555 0.02 

CP * CD * Group † 30 2 56 0.30 0.719 0.01 

Side * CD * Group 30 1 28 0.60 0.443 0.02 

CP * Side * CD * Group † 30 2 56 1.11 0.333 0.04 

Group 30 1 28 0.51 0.479 0.02 

ANOVA on 
standard 
deviations 

CP 44 1.54 64.73 2.01 0.140 0.05 

Side 44 1 42 0.73 0.399 0.02 

CD 44 1 42 1.60 0.213 0.04 
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(over trials 
per 
condition / 
individual) 

CP * Side 44 2 84 0.00 0.996 0.00 

CP * CD 44 2 84 0.80 0.452 0.02 

Side * CD 44 1 42 1.72 0.197 0.04 

CP * Side * CD 44 2 84 0.83 0.440 0.02 

CP * Group 30 1.54 64.74 1.97 0.150 0.07 

Side * Group 30 1 28 0.21 0.651 0.01 

CD * Group 30 1 28 0.19 0.670 0.01 

CP * Side * Group 30 2 56 1.39 0.258 0.05 

CP * CD * Group 30 2 56 0.07 0.934 0.00 

Side * CD * Group 30 1 28 0.06 0.813 0.00 

CP * Side * CD * Group 30 2 56 6.17 0.004 0.18 

Group 30 1 28 0.05 0.832 0.02 

CP: Change Probability 
CD: Change Distance 
† Greenhouse-Geisser-corrected due to failing Mauchley's test for sphericity 
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Computational modelling rationale 
Computational modelling of TSOT response times employed the Hierarchical Gaussian Filter 
(HGF) toolbox v5.0 with additional customised model functions. The HGF (Mathys et al., 2014) 
is a mathematical model of a particular type of predictive coding that implements hierarchical 
Bayesian inference using a variational Bayes approximation scheme, consistent with the 
“free-energy” formulation of predictive coding (Friston and Kiebel, 2009). The HGF is 
particularly suitable for modelling the effects of volatile (non-stationary) environments on 
behaviour, in that it acts as a generative model of the environment – i.e. a model of how the 
environment is structured to cause experienced sensations. Such generative models can 
operate as a “forward model” to simulate behaviour (in response to pre-defined sensory 
inputs), or as an “inverse model” to both infer the nature of sensations and learn the 
parameters of the model simultaneously (in response to pre-defined sensory inputs and 
observed participant responses). More specifically for our experiment, we employed the HGF 
as a model of (1) how the brain might represent the environmental contingencies that could 
give rise to changes in tactile stimulus locations (the “generative” aspect of the model), (2) 
how the brain might use those representations to make inferences about whether a location 
change has taken place (the “inferential” aspect), and (3) how the brain might update its 
parameters in light of new sensory information (the “learning” aspect). The model combines 
inference and learning via minimisation of prediction error (mismatches between predicted 
and actual sensory inputs). In sum, this provides a model of how the brain might perform 
approximate Bayesian inference to infer spatial changes in tactile sensations.  

While many Bayesian models of perception are “ideal observer” models and assume 
optimality in how sensory information updated hidden representations of the environment 
(Maloney and Zhang, 2010), the HGF instead assumes that the optimality of an update may 
vary between participants due to differences in prior beliefs about the higher-order structure 
of the environment (e.g. change probabilities and how they evolve over time) (Mathys et al., 
2014). These prior beliefs are partly a product of two factors: prior beliefs placed on the 
models as experimenters (i.e. the model “priors” in a Bayesian sense), and the history of 
sensory information that updates those priors during the experiment. Importantly, there is a 
third factor that the model assumes can vary over participants: parameters of the model that 
are fixed over the whole experiment (over all sensory inputs) and that modulate the “gain” of 
representation updates. These parameters account for inter-individual differences in learning 
from sensory inputs, and are estimated by fitting the model to actual participant behaviour 
to infer those parameters, using a variational Bayesian optimisation algorithm. Ultimately, 
such a model is capable of describing behaviour that is subjectively optimal (in relation to the 
participant’s prior beliefs) but might be objectively maladaptive (resulting in inaccurate or 
delayed inferences, relative to an ideal observer) (Mathys et al., 2014).  

Theoretically, the model parameters that determine learning may relate to specific 
physiological processes, such as the neuromodulation of synaptic plasticity (Bogacz, 2017). 
The HGF uses closed-form update equations to calculate the posterior expectations of all 
hidden states (representations) in the model. These are efficient computations that allow for 
real-time learning and have been shown to be biologically plausible (Bogacz, 2017). 
Furthermore, the form of these update equations is similar to those of Rescorla–Wagner (RW) 
learning (Rescorla and Wagner, 1972), a widely successful framework for associative learning, 
in that inference proceeds by updating representations according to prediction errors. The 
HGF departs from RW learning in that prediction error updates are precision-weighted, i.e. 
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weighted according to the relative confidence/certainty in lower-level information (e.g. 
sensory inputs) over higher-level representations (e.g. predictions of sensory inputs) (Mathys 
et al., 2014). In this regard, the HGF accounts for different types of uncertainty, namely 
sensory uncertainty (uncertainty in sensory inputs, a.k.a. irreducible uncertainty), expected 
uncertainty (uncertainty in learnt predictions of sensory inputs), and environmental volatility 
(uncertainty in how predictions should change over time). These three levels of uncertainty 
correspond to the 3 levels of the HGF model (Fig. 2b of main paper). 

In addition to a perceptual model of the environment represented by these three levels of 
the HGF, in order to fit the parameters of the model as experimenters, we also need a 
response model that maps representations within the model onto observed behaviour 
(Mathys et al., 2014). In the absence of a response model, we can still invert the model 
(estimate the parameters) from sensory inputs alone (i.e. the experimental design), but this 
would only provide us with state representations and parameters that represent an ideal 
observer (an observer who computes the least “surprise” about sensory inputs). To estimate 
subject-specific parameters (as indices of each participant’s deviation from optimality) 
requires the introduction of a response model. Just as for the perceptual model, the response 
model also contains subject-specific response parameters (Fig. 2b of main paper). 

HGF implementation details 
Our implementation of the HGF differs from previously published treatments (Mathys et al., 
2014) in the following ways. Firstly, with regard to the perceptual model, we tested 3 
perceptual models that provided variation on the common model structure shown in Fig. 2b 
(main paper). The 3 models varied according to the optional addition of two further 
parameters at the sensory input level (λ1, λ2) that were designed to better capture variability 
in behaviour resulting from condition effects on sensory uncertainty. Each additional 
parameter acted as a multiplier on the α0 parameter, in order to capture differences in 
estimated sensory uncertainty arising from two factors in the design: firstly, λ1 captured 
within-subject variability in sensory uncertainty arising from the digit change distance (CD1 
vs. CD3), and secondly, λ2 acted to capture additional variability arising from the hand 
stimulated (affected vs. unaffected). The 3 perceptual models consisted of no additional 
parameters (p-model 1), an additional λ1 parameter (p-model 2), or the addition of both λ1 
and λ2 (p-model 3). In other words, to take the example of the most complex perceptual 
model (p-model 3), inverting the model allowed estimation, for each subject, the overall 
sensory uncertainty (α0), how α0 varies by digit change distance (λ1) and how α0 varied by 
hand stimulated (λ2).  

Mathematically, these were implemented as follows for perceptual model 3. Here we 
consider the variance that is common to all conditions as , as well as multipliers from two 

orthogonal factors in the design, a "Side" condition ( ) and a "Change Distance (CD)" 

condition ( ). Regarding the likelihood function within the HGF model, now u is conditionally 

dependent not just on state x, but also on conditions (CD) and (Side) (where 

represents two levels of each condition): 

 

where 
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Orthogonally to the perceptual models, we tested a total of 6 response models, all of which 
sought to link states common to all perceptual models to log-RT data. Each response model 
is a simple linear model, each with either 3 or 4 parameters (β1, β2, β3, plus or minus β4) that 
provide weights to a different set of states in the perceptual model, plus a further parameter 
describing a constant component (β0). The (Gaussian) error term in this linear model is 
denoted by ζ, which acts as an inverse decision temperature (greater error = behaviour more 
stochastic / less determined by the model). The variables within each of the first four response 
models were different types of PE, based on the hypothesis that RTs would be slower to 
unexpected spatial changes: 

r-model 1: Signed, unweighted, PEs at each of the 3 p-model levels (δ1, δ2, δ3)  

 

r-model 2: Absolute, unweighted, PEs at each of the 3 p-model levels (|δ1|, |δ2|, |δ3|)  

 

r-model 3: Signed, precision-weighted, PEs at each of the 3 p-model levels (ε1, ε2, ε3)  

 

r-model 4: Absolute, precision-weighted, PEs at each of the 3 p-model levels (|ε1|, 
|ε2|, |ε3|) 

 

The final two response models consisted of variables related to uncertainty at each level of 
the perceptual model, for consistency with previous literature showing that these variables 
are linked to RT on perceptual tasks (Lawson et al., 2017; Marshall et al., 2016). These models 
provided a benchmark against which to test whether the above response models consisting 
of PE terms provide better or worse performance in predicting log-RTs. 

r-model 5: Uncertainty (state variance) at each of the 3 p-model levels model ( , 

and ). We used versions of uncertainty published previously (Lawson et al., 

2017; Marshall et al., 2016): 1st level Bernoulli variance (σ1), 2nd level inferential 
variance (sigmoid transformation of σ2), and 3rd level phasic volatility (sigmoid 
transformation of the exponent of µ3).  

 

r-model 6: Uncertainty (state variance) at each of the 3 p-model levels as outlined for 
r-model 5, but with the addition of a fourth variable and associated parameter known 
as “information surprise” at level 1 (described in (Lawson et al., 2017; Marshall et al., 
2016).  

 

where independent variables are defined as: 
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All 18 models (3 perceptual models x 6 response models) were estimated using the same 
priors, except where differences in model structure did not require certain priors. Firstly, 
priors were required for initial states prior to the first trial, which were decided a priori and 
fixed (see Supplementary Table 8). Secondly, subject-specific parameters were either 
decided a priori (in the case of λ1 and λ2, and response model parameters) or by using the 
parameter estimates from optimising a Bayes-optimal model (for α0, ω and θ). 

Model selection: Random effects analysis on log-model evidence 
Bayesian model selection is a principled method to trade off each model’s ability to predict 
the observed data as a function of their complexity (which grows with the number of 
estimable parameters). Each model’s log-evidence was estimated from the HGF optimisation 
algorithm (specifically, it is the variational Bayesian approximation to the model’s marginal 
likelihood). Bayesian model selection was performed at the group-level using random-effects 
analysis (Rigoux et al., 2014), and in a family-wise manner (considering families of all models 
containing each perceptual and response model), using the VBA toolbox (Daunizeau et al., 
2014). In a random-effect analysis, models are treated as random effects that could differ 
between participants, with an unknown population distribution (described in terms of model 
frequency with which any model prevails in the population). In addition to estimating model 
frequencies in the population, the VBA toolbox calculates two further summary statistics. The 
exceedance probability (EP, (Rigoux et al., 2014)) measures how likely it is that any given 
model is more frequent than all other models in the comparison set. Protected exceedance 
probabilities (PEPs) further correct EPs for the possibility that observed differences in model 
evidences (over participants) are due to chance (Rigoux et al., 2014). We used the PEP to 
make decisions about which model is the “best” by only selecting models with greater than 
95% PEP, which corresponds to 95% confidence in that model.  

In particular, we concentrated on the PEP over families of (perceptual or response) models. 
This involved partitioning the model space into subsets (model families), allowing reduction 
of the model space from 18, to two comparisons of 3 (perceptual) and 6 (response), which 
has advantages in preventing the over-fitting that can occur by specifying too large a model 
space (Rigoux et al., 2014). Each family of models contained all models that shared a common 
feature: either sharing the same perceptual model or same response model.  

HGF model evidence using factorial model comparison 
Factorial model selection was used to select the model with the greatest log-model evidence 
among the four perceptual models (and summing evidence across all six response models). 
The greatest evidence (Supplementary Fig. 1b) was attributed to perceptual model 1, 
describing a single sensory noise parameter for both arms and digit pairs. Using the same 
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factorial model selection strategy but summing over all perceptual models, the response 
model with the greatest evidence was number 5, which predicted trial-wise RTs from 
uncertainty parameters from the three levels of the HGF. The combination of perceptual 
model 1 and response model 5 reached exceedance probability of 90%, however, using the 
protected exceedance probability (PEP) there were no models that were more likely to be 
frequent, as the Bayesian Omnibus Risk statistic (the posterior probability that model 
frequencies are all equal) was a value of 1. In other words, apparent differences in model 
frequencies based on EP may have been due to chance. There is therefore no basis for 
discriminating these models based on the log-model evidence. 
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Supplementary Figure 1: Model evidences from the two approaches used to select the best 
HFG model  

A. Factorial model space of 3 perceptual models x 6 response models. Briefly, perceptual 
models differed according to whether CD (λ1 parameter, p-models 2 and 3) and Side 
(λ2 parameter, p-model 3) effects were considered to modify sensory uncertainty (α0). 
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Response models varied according to the variables in the HGF used to predict 
response time, namely prediction error in its signed or absolute forms (δ and |δ|), 
precision-weighted precision error in its signed and absolute forms (ε and |ε|), various 
measures of uncertainty at each level (unc) and a measure of Bayesian surprise. 

B. Approximate log-model evidences (LME) from variational Bayesian estimation of each 
of the 18 candidate HGF models. To summarise, based on the PEP (rightmost), the 
best model could have arisen by chance. From the left: LME values with means shown 
in the right column and bottom row for each model family; Estimated model 
frequencies, i.e. the proportion of the time the model is expected to be represented 
in the population relative to the other models (values from all models sum to 1); 
Exceedance probability (EP), i.e. how likely it is that any given model is more frequent 
than all other models; Protected exceedance probability (PEP), which correct EPs for 
the possibility that observed differences in model evidences (over participants) are 
due to chance. For model frequencies, EP and PEP, the right-most column and bottom 
row show the estimated values using family-level inference. 

C. Approximate model evidences (-WAIC) from Bayesian linear regression of actual 
log(RT) on simulated log(RT) from the 18 candidate HGF models. See (B) legend for a 
description of the statistics. Using the PEP statistic, this identifies one model 
(perceptual model 3, response model 4) of being above-chance in its accuracy of 
predictions about behaviour. 

Model selection: Simulation of behaviour 
Recently there has been better recognition of the importance of falsifying candidate models 
using simulation, to test whether the simulated outputs make accurate predictions about 
behaviour (Palminteri et al., 2017). Although approximations of the model evidence are useful 
in taking model parsimony into account, it is possible for the procedure to identify overly 
simplistic models that can be falsified by showing that it is unable to account for a specific 
behavioural effect of interest. Such models can then be rejected regardless of their log-model 
evidence. This “generative performance” (Palminteri et al., 2017) of the model can be 
assessed by simulating the model and comparing the simulated data to the observed data. 

All 18 models were therefore simulated, for every subject individually, using the subject-
specific parameters estimated from each model. For robustness of the findings, we use a split-
half cross-validation method to test generative performance. Trial were randomly split into 
training (50%) and testing (50%) sets, each containing balanced numbers of trials between 
conditions. Parameters were estimated from the training trials, while generative performance 
was tested on the remaining test trials. Model predictions were then assessed in a family-
wise manner for whether they were complex enough to adequately predict behaviour using 
the following methods: 

a. The more principled method involved estimating the model evidence from a linear 
regression (see Fig. 2a of main paper) between the simulated log-RTs and the 
observed log-RTs over all trials. For each subject and model, Bayesian linear regression 
(Bayesreg toolbox, (Makalic and Schmidt, 2016)) was conducted with a g prior 
(typically used for model comparison) and a Gaussian error distribution, uses MCMC 
sampling of the posterior (1000 samples). This produces the WAIC approximation to 
the model evidence that can be used for model selection. Model selection then 
proceeded as described in the previous section using random-effects analysis over 
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models, and in a family-wise manner. The model best predicting behaviour was 
identified using the PEP estimates for the perceptual and response model families. 

b. The less principled, but most intuitive, method was based on visual inspection of the 
simulated data using violin plots and scatterplots. Simulated within-subject condition 
effects on log-RTs (namely, the two effects of change probability and digit-change 
distance) were visually compared to those of observed data. Furthermore, simulated 
individual differences in condition effects on RTs were plotted against observed 
differences. Spearman’s rank correlation statistics are also reported. 

Model performance results and selection via simulation 
Based on visualisation of simulated behaviour (Supplementary Fig. 2a), the most striking 
observation was that the perceptual model (p-model 1) and response model (r-model 5) with 
the greater log-model evidence from variational Bayes optimisation were clearly falsified on 
the basis of not reproducing within-subject condition effects (Supplementary Fig. 2a) or 
between-subject differences in CD effects (Supplementary Fig. 2b) on RTs. In order to identify 
a suitable model, then, we employed Bayesian model comparison, but this time applied to 
the predictive accuracy of the models, i.e. how well they predict (using Bayesian linear 
regression) actual response times over trials (Supplementary Fig. 1c). For perceptual model 
3, family-wise model comparison identified PEP of 100%. The response model with the 
highest predictive accuracy was the absolute precision-weighted prediction error model 
(model 4). For response model 4, family-wise model comparison identified PEP of 100%. 
These results concur with visual representations of simulated condition effects on log-RT 
(Supplementary Fig. 2) in which condition effects closely mirror those of actual behaviour (Fig. 
3 of main paper).  
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Supplementary Figure 2: Descriptive plots of simulated log-RT data over candidate models 

A. Simulated within-subject effects from each of 18 candidate models. For each model, 
data are simulated for each participant (individual data points on each plot) from each 
cell (individual violins) of the factors Change Probability (CP) and Change Distance (CD). 
pm: perceptual model. rm: response model  

B. Simulated between-subject correlation between predicted (simulated) and actual 
differences in log(RT) values arising from the Change Distance contrast (CD1 minus 
CD3, which results in increased response times). Darker shades of the data points 
indicated a stronger Spearman’s rho correlation coefficient.  

C. Simulated between-subject correlation between predicted (simulated) and actual 
differences in log(RT) values arising from the Change Probability contrast (10% minus 
50%, which results in increased response times). 
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Supplementary Table 8: HGF model priors 
Parameter type Parameter Prior mean Prior 

variance (0 
= fixed) 

Perceptual model initial states η0 0 0 

η1 1 0 

µ0 (x1) none none 

σ0 (x1) none none 

µ0 (x2) 0 0 

σ0 (x2) 0.5 0 

µ0 (x3) 1 0 

σ0 (x3) 1 0 

ρ (x1) none none 

ρ (x2) 0 0 

ρ (x3) 0 0 

κ (x1) none none 

κ (x2) 1 0     

Perceptual model subject-specific α0 0.0925 1 

λ1 1 1† 

λ2 1 1†† 

ω -5.1826 16 

θ -6.8176 16     

Response model subject-specific β0 0.5 ††† 4 

β1-4 0 4 

ζ log(20) 2     

† Parameter variances were set to zero for perceptual models 1 and 2.  
†† Parameter variances were set to zero for perceptual model 2.  
††† Expected mean response time 

 

Supplementary Table 9: HGF model posterior estimates by group 
 

Estimate type Estimate CRPS group 
(n=15) 

HC group 
(n=15) 

Group effects 

  
median IQR median IQR Z p 

Perceptual model 
subject-specific 
parameter 

α0 0.01 0.08 -0.04 0.11 1.29 0.199 

λ1 -0.09 0.38 -0.04 0.46 -0.25 0.803 

λ2 -0.08 0.23 -0.04 0.32 -0.25 0.803 

ω 0.79 1.37 -0.41 1.31 2.99 0.003 

θ -1.04 1.23 1.52 1.33 -3.98 <0.001 

β0 0.00 0.27 0.01 0.16 0.71 0.481 
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Response model 
subject-specific 
parameter 

β1 -0.18 0.41 0.18 0.63 -1.95 0.051 

β2 0.30 0.68 -0.59 1.64 2.28 0.023 

β3 -0.76 2.10 0.56 0.45 -1.87 0.062 

ζ 0.00 0.05 0.01 0.07 -0.62 0.534 

Perceptual model 
trajectory condition 
mean 

δ1 -0.01 0.05 -0.01 0.05 0.08 0.934 

δ2 -0.02 0.08 0.04 0.09 -1.58 0.115 

δ3 -0.01 0.07 -0.01 0.04 0.50 0.619 

ε1 -0.03 0.17 -0.09 0.12 1.74 0.081 

ε2 0.00 0.09 -0.04 0.04 2.70 0.007 

ε3 -0.07 0.06 -0.01 0.34 -1.95 0.051 

ψ1 -0.10 0.56 -0.25 0.46 1.49 0.135 

ψ2 0.20 0.47 -0.18 0.23 3.11 0.002 

ψ3 -3.91 1.23 0.89 6.93 -3.82 <0.001 

σ1 0.02 0.06 -0.03 0.03 2.78 0.005 

σ2 0.20 0.47 -0.18 0.23 3.11 0.002 

σ3 -0.73 0.23 0.35 1.36 -4.02 <0.001 

µ1 -0.02 0.12 0.05 0.13 -1.20 0.229 

µ2 0.01 0.42 0.14 0.38 -0.25 0.803 

µ3 0.00 0.15 0.09 0.18 -1.58 0.115 
        

IQR: Inter-quartile range 
CRPS: Complex Regional Pain Syndrome 
HC: Healthy control 
Z: Mann-Whitney U test effect size 
p: 2-tailed probabilty of Type I error 
In bold: significant p values considering an FDR threshold for all tests in table of p<0.005 
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