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Abstract 

Summary: Cancer of unknown primary site (CUP) accounts for 5% of all cancer 

diagnoses. These patients may benefit from more precise treatment when primary cancer 

site was identified. Advances in high-throughput sequencing have enabled cost-effective 

sequencing the transcriptome for clinical application. Here, we present a free, scalable 

and extendable software for CUP predication called TRANSCUP, which enables (1) raw 

data processing, (2) read mapping, (3) quality re-port, (4) gene expression quantification, 

(5) random forest machine learning model building for cancer type classification. 

TRANSCUP achieved high accuracy, sensitivity and specificity for tumor type 

classification based on external RNA-seq datasets. It has potential for broad clinical 

application for solving the CUP problem. 

 

Availability: TRANSCUP is open-source and freely available at 

https://github.com/plsysu/TRANSCUP 

Contact: peng-li@outlook.com 
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Introduction  

The Cancer of unknown primary site (CUP) is a heterogeneous group of cancers in the 

absence of an identifiable primary tumor despite a standard diagnostic approach and 

accounts for approximately 5% of all cancer diagnoses. The biologic mechanisms 

underlying this phenomenon is unknown. CUP patients can be given site specific therapy 

with significant improvement in clinical out-come compared with empirical chemotherapy 

when cancer primary site was identified (Pavlidis and Pentheroudakis, 2012; 

Varadhachary and Raber, 2014) . 

 

Currently, many molecular diagnostic methods have been widely applied in clinic, 

including RT-PCR (Overman, et al., 2016), microRNA RT-PCR (Rosenfeld, et al., 2008), 

gene expression micro-array (Pillai, et al., 2011) and DNA methylation microarray (Moran, 

et al., 2016). Advances in high-throughput sequencing have enabled cost-effective 

sequencing the transcriptome for clinical application. RNA-Seq based predication 

algorithm have been proposed using TCGA’s RNA-Seq RSEM expression value and 

validated on both RNA-Seq and microarray dataset (Flynn, et al., 2018). How-ever, data 

analysis pipelines from raw FASTQ data to final tumor type predication are currently not 

fully implemented and validated computationally. 

 

Here, we present a free, scalable and extendable software for CUP predication called 

TRANSCUP, which comprises modules for raw data processing, read mapping, quality 

report, gene expression quantification and building a random forest model for cancer type 

classification. It achieved high accuracy, sensitivity and specificity for tumor type 

classification based on external RNA-seq datasets. It has potential for broad clinical 

application for solving the CUP problem. 

 

 

Methods 

The TRANSCUP workflow is illustrated in Figure 1. To build CUP classifier, we use TCGA 

RNA-Seq data as training dataset, followed by sample and feature selection, data 

transformation, data normalization and random forest model building. To predict new 

tumor samples, we build a bioinformatics pipeline to process data from raw FASTQ reads 

to tumor type predication result. The de-tails for implementation are the followings: 

 

Training data source: TCGA harmonized gene expression quantification data and clinical 

data were retrieved from GDC portal (https://portal.gdc.cancer.gov/) via TCGAbiolinks 

(Colaprico, et al., 2016). Totally, 32 cancer types (COAD and READ were combined to 

CRC) and 10,363 tumor samples were used for model building. 

 

Preprocess and feature selection: All FPKM expression data was log2-transformed, and 
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only genes with (a) maximum log2 expression greater than 2.5 and (b) variance in log2 

expression greater than 0.1 were retained. After filtering, the genes in each dataset was 

scaled to zero mean expression and unit variance. The mean and standard variance 

learned from training dataset for each gene were used to normalize the new data. Feature 

genes were selected by two criterion: 1) those genes were different expressed by one 

tumor type to other tumor types; 2) those genes were expressed more higher in one tumor 

type than other tumor types, which evaluated by t-test and log2-fold change, respectively. 

The top 100, 150, 200 genes’  log2 fold change value or log2 fold change value larger 

than 2.5 or 3 were compared to find the best feature selection method. 

 

Random forest model: The random forest algorithm was used for machine learning model 

building. To avoid overfitting, model was validated by 10-fold cross-validation. The final 

model was trained on all training data with the best hyper-parameters. 

 

Bioinformatics pipeline: The raw reads were cleaned prior to following analysis by 

Trimmomatic (Bolger, et al., 2014). Clean reads were mapped to the human genome 

GRCh38 by STAR (Dobin, et al., 2013) using the 2-pass model. Gene read counts were 

calculated using HTSeq-count (Anders, et al., 2015). GENCODE v22 GTF file was used to 

alignment and HTSeq-count. To quantify gene expression, the fragments per kilobase of 

transcript per million mapped reads (FPKM) values of each gene were calculated. To 

evaluate the RNA-seq data quality, multiple metrics include yield, alignment, GC bias, 

rRNA content, regions of alignment (exon, intron and intragenic), continuity of coverage, 

3′/5′ bias and count of detectable genes, among others were calculated by RNA-SeQC 

(DeLuca, et al., 2012) . 

 

Snakemake workflow: To make this software extendable and scalable, we adopted 

snakemake (Koster and Rahmann, 2012; Singer, et al., 2018) workflow engine to chain 

the tools, databases, and config files together. This enables users to easily make use of 

any cluster environment for processing and conveniently manage tools, databases and 

pipelines. 

 

Results 

We found that TOP200 was the best feature selection method after compared with other 4 

methods mentioned above (Supplemental Table S1). 3817 genes were retained as 

feature genes (Supplemental Table S2). In the training phase, we performed 10-fold 

cross-validation on all training data to avoid overfitting and find best hyper-parameters. 

The accuracy, kappa, standard deviation of accuracy and standard deviation of kappa 

were 0.961, 0.959, 0.003292 and 0.003457, respectively. The median of sensitivity and 

specificity across 32 cancer types were 0.969 and 0.999, respectively (Supplemental 

Table S3). We used five external public RNA-seq datasets (Supplemental Table S4) to 

evaluate the performance of TRANSCUP. These datasets totally contain 557 samples and 

across 4 different cancer types including OSCC (HNSC), CRC, lung cancer (LUAD/LUSC) 
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and BRCA. Notably, the overall accuracy of TRANSCUP was 98.7%, totally 7 samples 

were misclassified (Supplemental Table S5). 

 

Conclusions 

In this article, we described the TRANSCUP package for tumor type predication. 

TRANSCUP has been validated using 557 external samples and was more accurate than 

other methods for cancer type classification. Furthermore, TRANSCUP can analyze data 

from raw FASTQ to final cancer type predication results, and is more scalable and 

extendable than other methods. Users can train other kinds of models like deep learning 

models to extend its capability. However, this package needs to be validated on more 

external RNA-Seq datasets which including more diverse cancer types when data are 

available. Its actual clinical effect has to be verified by further experiments and clinical 

trials in the future. 
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Fig. 1 Workflow of TRANSCUP 
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