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Abstract9

Source populations for an admixed population can possess distinct patterns of genotype and pheno-10

type at the beginning of the admixture process. Such differences are sometimes taken to serve as markers11

of ancestry—that is, phenotypes that are initially associated with the ancestral background in one source12

population are taken to reflect ancestry in that population. Examples exist, however, in which genotypes13

or phenotypes initially associated with ancestry in one source population have decoupled from overall14

admixture levels, so that they no longer serve as proxies for genetic ancestry. We develop a mechanistic15

model for describing the joint dynamics of admixture levels and phenotype distributions in an admixed16

population. The approach includes a quantitative-genetic model that relates a phenotype to underlying17

loci that affect its trait value. We consider three forms of mating. First, individuals might assort in a18

manner that is independent of the overall genetic admixture level. Second, individuals might assort by19

a quantitative phenotype that is initially correlated with the genetic admixture level. Third, individuals20

might assort by the genetic admixture level itself. Under the model, we explore the relationship between21

genetic admixture level and phenotype over time, studying the effect on this relationship of the genetic22

architecture of the phenotype. We find that the decoupling of genetic ancestry and phenotype can occur23

surprisingly quickly, especially if the phenotype is driven by a small number of loci. We also find that24

positive assortative mating attenuates the process of dissociation in relation to a scenario in which mating25

is random with respect to genetic admixture and with respect to phenotype. The mechanistic framework26

suggests that in an admixed population, a trait that initially differed between source populations might27

be a reliable proxy for ancestry for only a short time, especially if the trait is determined by relatively28

few loci. The results are potentially relevant in admixed human populations, in which phenotypes that29

have a perceived correlation with ancestry might have social significance as ancestry markers, despite30

declining correlations with ancestry over time.31

Author Summary32

Admixed populations are populations that descend from two or more populations that had been33

separated for a long time at the beginning of the admixture process. The source populations typically34

possess distinct patterns of genotype and phenotype. Hence, early in the admixture process, phenotypes35

of admixed individuals can provide information about the extent to which these individuals possess36

ancestry in a specific source population. To study correlations between admixture levels and phenotypes37

that differ between source populations, we construct a genetic and phenotypic model of the dynamical38

process of admixture. Under the model, we show that correlations between admixture levels and these39

phenotypes dissipate over time—especially if the genetic architecture of the phenotypes involves only40

a small number of loci, or if mating in the admixed population is random with respect to both the41

admixture levels and the phenotypes. The result has the implication that a trait that once reflected42

ancestry in a specific source population might lose this ancestry correlation. As a consequence, in human43
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populations, after a sufficient length of time, salient phenotypes that can have social meaning as ancestry44

markers might no longer bear any relationship to genome-wide genetic ancestry.45

1 Introduction46

Admixed populations descend from two or more source groups that have long been separated and that likely47

possessed distinct patterns of genotype and phenotype at the beginning of the admixture process. Among48

individuals in an admixed population in the generations immediately after its founding, admixture levels49

from any specific source population are highly heterogeneous [1,2]. For admixed individuals, measurements50

of specific genotypes and phenotypes that differ in frequency or distribution between source populations can51

often provide reasonable estimates of individual levels of genetic ancestry in the particular source popula-52

tions [3,4]—and for some phenotypes, such measurements might even be commonly regarded by researchers,53

societies, or admixed individuals themselves as proxies for overall genetic ancestry [5–7].54

Examples exist, however, in which genotypes or phenotypes initially associated with ancestry in one55

source population are decoupled from overall admixture levels, so that they no longer serve as tight prox-56

ies for ancestry [5, 6, 8–13]. For example, in human genetics, consider skin pigmentation and eye color,57

observable traits for which the phenotypic distribution differs substantially between sub-Saharan African58

and European populations. In the Cape Verdean admixed population, descended from European and West59

African sources, measurements of skin pigmentation and eye color are correlated with sub-Saharan African60

genetic ancestry [11]. At the same time, the correlations between phenotype and ancestry are imperfect;61

many individuals with a high proportion of sub-Saharan African genetic ancestry have skin pigmentation and62

eye color traits in a range more typical of individuals with higher European genetic ancestry, and vice versa.63

Similar patterns of incomplete correlation with overall genetic ancestry hold for genotypes that underlie64

these phenotypes [11].65

How does ancestry level become decoupled from genotype and phenotype in an admixed population?66

Parra et al. [8] proposed one scenario for this decoupling, using an example of assortative mating by a phe-67

notype correlated with ancestry in Brazil. Parra et al. suggested that in Brazil, assortative mating is largely68

dependent on “color,” a phenotypic measure based to a large extent on skin pigmentation. According to69

this hypothesis, in a population descended from source groups with substantially different skin pigmentation70

distributions (say, sub-Saharan Africans and Europeans), similarity according to a phenotype correlated71

with genetic ancestry (say, color) increases the probability that a pair is a mating pair. Mating probabilities72

for pairs of individuals are more closely related to the phenotype than to overall sub-Saharan African or73

European genetic admixture levels per se. Whereas in the early generations of such a process, the pheno-74

type would strongly reflect genetic ancestry, after a sufficient length of time with assortative mating by the75

phenotype, phenotypic variation would be maintained, but with similar genetic ancestry distributions for76

individuals with substantially different phenotype (Figure 1). Only at genes associated with the phenotype77

and their nearby linked genomic regions would genetic ancestry and the phenotype be associated.78

Could genetic ancestry in an admixed population become almost entirely decoupled from the phenotypes79

that differ between its source populations? This scenario is intriguing, as it would eliminate any connection80

between visible phenotypic markers of genetic ancestry and the genetic ancestry itself; the phenotype of an81

individual on a trait such as skin pigmentation would reveal little information about the genetic ancestry82
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of molecular characters in an individual—other than for skin pigmentation genes and their closest genomic83

neighbors—nor about the total genomic ancestry of the individual.84

We develop a mechanistic model describing the joint dynamics of admixture levels and phenotype dis-85

tributions in an admixed population. The approach includes a quantitative-genetic model that relates a86

phenotype to underlying loci that affect its trait value. We consider three forms of mating. First, individuals87

might mate randomly, or assort independently of the overall genetic admixture level. Second, individuals88

might assort by a phenotype initially correlated with the genetic admixture level, but that is not identical89

to it. Third, following studies that have detected evidence of assortative mating by genetic admixture levels90

or phenotypes that are tightly connected to them [14,15], individuals might assort by the genetic admixture91

level itself. Under the model, we explore the relationship between genetic admixture level and phenotype92

over time, studying the effect of the genetic architecture of the phenotype. We find that the decoupling of93

genetic ancestry and phenotype is not only possible, but it can occur surprisingly quickly, especially if the94

quantitative phenotype is driven by a small number of loci. Moreover, assortative mating is not required for95

genotype and phenotype to become decoupled. Indeed, assortative mating attenuates the process compared96

with a scenario in which mating is random with respect to admixture and with respect to phenotype.97

2 Model98

2.1 Population Model99

Our mechanistic admixture model closely follows the model of Verdu, Goldberg, and Rosenberg [1, 16,100

17], building on earlier related models [18–20]. We start with individuals in each of two isolated source101

populations, S1 and S2. At the founding of an admixed population (g = 0), a founding parental pool Hpar
0102

is formed, containing fraction s1,0 from population S1 and s2,0 from population S2. That is, a random103

individual in Hpar
0 originates from population S1 with probability s1,0 and from S2 with probability s2,0.104

This choice requires s1,0 + s2,0 = 1 and 0 ≤ s1,0, s2,0 ≤ 1. The individuals in the founding parental pool105

mate according to a mating model (Section 2.3) and produce generation g = 1 of admixed offspring (H1).106

In subsequent generations (g ≥ 1), in forming an admixed population Hg+1 at generation g + 1, three107

populations contribute to its parental pool Hpar
g : the source populations (S1 and S2) and the admixed108

population (Hg) of the previous generation, with fractional contributions s1,g, s2,g, and hg, respectively.109

Here, s1,g, s2,g, and hg represent probabilities for a random individual in Hpar
g to originate from populations110

S1, S2, and Hg, with constraints s1,g + s2,g + hg = 1 and 0 ≤ s1,g, s2,g, hg ≤ 1. Offspring resulting from111

mating among individuals in the parental pool Hpar
g define the admixed population Hg+1. A schematic of112

the admixture model appears in Figure 2.113

The total admixture fraction represents the proportion of the genome of an individual originating from a114

specific ancestral population, S1 or S2. We denote an individual’s admixture fraction from source population115

S1 at generation g by HA,g, with the A indicating consideration of autosomal genetic loci. Given a pair of116

individuals with admixture fractions H
(1)
A,g and H

(2)
A,g, the ancestry of their offspring is deterministically set117

to the mean of the admixture fractions of the parents: HA,g+1 = 1
2

(
H

(1)
A,g +H

(2)
A,g

)
. The possible values for118

the admixture fraction at generation g are 0, 1/2g, 2/2g, . . . , (2g − 1)/2g, 1.119
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2.2 Quantitative Trait Model120

To model a phenotype, we adopt the quantitative trait model of Edge and Rosenberg [21, 22]. We assume

each individual is diploid and that k biallelic autosomal loci, each with the same effect size, additively

determine the value of a quantitative trait. At each trait locus, we denote the allelic type more prevalent

in population S1 than in population S2 as allelic type “1”, and the other allelic type as “0”. The choice is

arbitrary in case the allele frequency is the same in the two populations. A diploid individual’s genotype at

locus i, i ∈ {1, 2, . . . , k}, and allele j, j ∈ {1, 2}, is represented by a random indicator variable Lij :

Lij =

1 if the allele has type “1”

0 if the allele has type “0”.

Let M be a random variable representing an individual’s population membership, considering individuals

only from the source populations S1 and S2, and define allele frequencies for allelic type “1” at each locus

given the population membership:

P (Lij = 1 |M = S1) = pi

P (Lij = 1 |M = S2) = qi.

Here, j can be either 1 or 2. Because we define allelic type “1” to be more common in population S1 than121

in population S2, 0 ≤ qi ≤ pi ≤ 1.122

An individual’s trait value is determined by a sum of contributions across loci. At each locus, we denote

an allele that increases the trait value by “+” and the other allele by “−”. The total quantitative trait value

T of an individual given a multilocus genotype is an individual’s total number of “+” alleles. Whether the

“1” allelic type or “0” type is the “+” allele at locus i is determined by a random variable Xi, following

Edge and Rosenberg [21,22]:

Xi =

1 if allelic type “1” is “+” allele at locus i

0 if allelic type “0” is “+” allele at locus i.

For a given set of values {X1, X2, · · · , Xk} for k quantitative trait loci, the total trait value for a diploid123

individual is equal to the total number of “+” alleles carried by the individuals, or:124

T |{X1,X2,··· ,Xk}=
∑

{i:Xi=1}

2∑
j=1

Lij +
∑

{i:Xi=0}

2∑
j=1

(1− Lij). (1)

This quantity takes values in {0, 1, . . . , 2k}. An example of the quantitative trait model appears in Figure 3.125

We adopt two scenarios for the Xi. We first consider an idealized case in which the number of “1” alleles126

is perfectly correlated with the trait value: P (Xi = 1) = 1 and P (Xi = 0) = 0 for all i = 1, 2, . . . , k, so127

that allelic type “1” is the “+” allele and allelic type “0” is the “−” allele for all loci. Because we define128

“1” to be the more frequent allelic type in source population S1, individuals from S1 are more likely to have129

a larger trait value than are individuals from S2. This scenario considers a case in which the phenotype is130

systematically different between populations 1 and 2, and is depicted in the diagram in Figure 1.131
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The second case is detailed in Edge and Rosenberg [21, 22], where the trait is selectively neutral during132

the population divergence and neither allele is preferentially correlated with the trait allele: P (Xi = 1) =133

P (Xi = 0) = 1
2 for all i = 1, 2, . . . , k, so that at each locus, allelic type “1” and allelic type “0” have equal134

probability of being the “+” allele.135

2.3 Mating Model136

We next describe three different mating models: (1) random mating, in which any two individuals have the137

same chance of reproducing, independent of phenotype or ancestry; (2) assortative mating by ancestry, in138

which the probability that two individuals reproduce depends on their ancestries; and (3) assortative mating139

by phenotype, in which the probability that two individuals reproduce depends on their trait values.140

In each generation g, the parental pool Hpar
g contains 2N individuals, N female and N male. The141

admixture fraction from source population S1 and trait value of a female individual i are denoted by H
(i),f
A,g142

and T
(i),f
g , respectively. Analogous quantities for a male j are H

(j),m
A,g and T

(j),m
g . We construct an N ×N143

mating probability matrix M , whose entry mij represents the probability that a female i and a male j mate:144

(H
(1),m
A,g , T

(1),m
g ) (H

(2),m
A,g , T

(2),m
g ) · · · (H

(N−1),m
A,g , T

(N−1),m
g ) (H

(N),m
A,g , T

(N),m
g )



(H
(1),f
A,g , T

(1),f
g ) m11 m12 · · · m1(N−1) m1N

(H
(2),f
A,g , T

(2),f
g ) m21 m22 · · · m2(N−1) m2N

...
...

...
. . .

...
...

(H
(N−1),f
A,g , T

(N−1),f
g ) m(N−1)1 m(N−1)2 · · · m(N−1)(N−1) m(N−1)N

(H
(N),f
A,g , T

(N),f
g ) mN1 mN2 · · · mN(N−1) mNN

.

(2)

In the absence of selection, every individual in the population must have the same expected number145

of offspring irrespective of ancestry or phenotype. We assume that the expected number of offspring of an146

individual is proportional to the expected number of matings of the individual. This quantity is the sum of147

mating probabilities across all mates available for an individual. Therefore, the equal-offspring requirement148

translates into an assumption of equal row sums for females and equal column sums for males in the mating149

matrix in Eq. 2. Note that this assumption of equal numbers of offspring independent of ancestry and150

phenotype accords with a standard property of assortative mating models that assortative mating on its own151

does not alter allele frequencies over time [23–28].152

The mating probability mij in Eq. 2 between female i and male j can be expressed as:153

mij = αijψ(H
(i),f
A,g , T (i),f

g , H
(j),m
A,g , T (j),m

g ), (3)

where ψ is a function that quantifies the dependence of the mating probability mij on the ancestry and154

trait values of the individuals in a pair, and αij is a normalization constant specific to the mating pair (i, j).155

The constant αij is included in order to permit the matrix entries to satisfy the constant row and column156

sum constraints. Without loss of generality, we choose the constant row and column sums to be 1 so that157

the mating probability matrix M is doubly stochastic. Procedures to evaluate the αij appear later in the158

section. The properties of ψ are determined by a mating model.159
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In random mating, the mating probability is independent of individual ancestry and trait values, so that160

ψ(H
(i),f
A,g , T

(i),f
g , H

(j),m
A,g , T

(j),m
g ) is constant across all i and j, and mij has the same value for all mating pairs.161

Therefore, for all pairs (i, j), each taken from {1, 2, . . . , N}, mij = αij = α for some constant α ∈ [0, 1].162

In assortative mating by ancestry, the mating probability depends only on the ancestries of poten-163

tial mates and not on the phenotypes: ψ(H
(i),f
A,g , T

(i),f
g , H

(j),m
A,g , T

(j),m
g ) = ψ(H

(i),f
A,g , H

(j),m
A,g ) and mij =164

αijψ(H
(i),f
A,g , H

(j),m
A,g ). For positive assortment, the mating function ψ has higher values if two individuals165

have similar ancestries and lower values as the ancestries become more different. For example, in complete166

assortment, ψ is 1 if the two input parameters have the same value and 0 if the values differ. For negative167

assortment, the behavior of ψ is reversed compared with the positive assortment case: ψ increases as the168

difference between the ancestries of the two individuals in a mating pair increases.169

In assortative mating by phenotype, the mating probability depends only on the trait values of po-170

tential mates and not on the ancestries: ψ(H
(i),f
A,g , T

(i),f
g , H

(j),m
A,g , T

(j),m
g ) = ψ(T

(i),f
g , T

(j),m
g ) and mij =171

αijψ(T
(i),f
g , T

(j),m
g ). The qualitative requirements for the function ψ are the same as with assortative mating172

by ancestry, but with the trait values of the mating pair as arguments instead of the ancestries.173

We adopt the following form for the mating function:174

ψ(X(i),f
g , X(j),m

g ) = e
−c|X(i),f

g −X(j),m
g |

σXg . (4)

The finite constant c quantifies the strength of the assortative mating. For a given pair of values (X
(i),f
g , X

(j),m
g ),175

where Xg = HA,g or Xg = Tg, a larger c value results in a lower mating probability, which gives stronger176

positive assortative mating compared with a smaller c value. For a positive value of c, the function takes a177

value of 1 if two potential mates have the same ancestry level (or phenotype), and ψ decreases exponentially178

as the difference between the two individuals increases. A negative value of c indicates negative assortative179

mating, where two individuals with different ancestry (or phenotype) have a higher probability of mating180

than do two individuals with similar ancestry. We focus on positive assortative mating.181

At each generation g, the admixture fraction HA,g takes values in {0, 1/2g, 2/2g, . . . , (2g − 1)/2g, 1}182

(Section 2.1), and the phenotype Tg takes values in {0, 1, . . . , 2k} (Section 2.2). To compare statistics from183

different mating schemes, we consider variables that are standardized by dividing Xg (HA,g or Tg) by its184

standard deviation σXg based on its distribution in Hpar
g at each generation g. For the unstandardized185

variables, because Tg takes a higher value than HA,g, the effect of assortative mating by phenotype at the186

same assortative mating strength c is artificially inflated compared to the effect of assortative mating by187

admixture fraction.188

Having specified the mating function ψ, we now formally state the normalization condition for the mating189

matrix M : the sum across potential mates of the mating probabilities of a random individual in the parental190

pool must be 1. Recalling that each entry mij in M represents the probability that individuals i and j mate,191

the condition requires the row and column sums in the mating matrix to be 1 for each row and column. We192

start with an unnormalized mating matrix M̃ = [m̃ij ] whose entries are:193

m̃ij =


1 random mating

ψ(H
(i),f
A,g , H

(j),m
A,g ) assortative mating by ancestry

ψ(T
(i),f
g , T

(j),m
g ) assortative mating by phenotype.

(5)

6
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We must obtain N2 normalizing constants αij such that the mating matrix M = [mij ] = [αijm̃ij ] satisfies194

the double stochasticity requirement. This requirement gives 2N constraints, one for each row and one for195

each column. Because each entry in the mating matrix represents the probability for two individuals to196

mate, we also require mij to be in [0, 1] for all (i, j) ∈ {1, 2, . . . , N}2.197

Infinitely many matrices satisfy the constraints, as the set of 2N equations with N2 variables is underde-198

termined. We choose the matrix M by identifying the matrix that satisfies the set of constraints and that is199

closest to our model matrix M̃ according to the principle of minimum discrimination information (pp. 36-43200

in [29]). Here, the “closeness” of a pair of matrices is measured by the Kullback-Leibler divergence DKL201

(pp. 1-11 in [29]), which is nonnegative and is equal to zero if and only if the two matrices are identical.202

The problem of identifying M can be formally written as a convex optimization problem. The objective203

function that we seek to minimize is204

min
{mij}

DKL(M ||M̃) = min
{mij}

N∑
i=1

N∑
j=1

mij log
mij

m̃ij
, (6)

and we have constraints

N∑
j=1

mij = 1 for each i from 1 to N,

N∑
i=1

mij = 1 for each j from 1 to N,

0 ≤ mij ≤ 1 for all (i, j) ∈ {1, 2, · · · , N}2. (7)

We use the interior-point method [30,31], which iteratively traverses within the feasible region to obtain the

optimal solution numerically, as implemented in mosek function of R package Rmosek [32]. For fixed M̃ ,

the Hessian of the KL divergence has

∂2DKL(M ||M̃)

∂mij∂mk`
=

1

mij
δikδj`,

where δ is the Kronecker delta. Because ∇2DKL > 0 for all mij ∈ (0, 1), the KL divergence function is205

strictly convex (Section 3.1.4 in [33]) in each of the N2 variables in M for fixed M̃ , and thus, the optimal206

solution found by numerical minimization is the unique global minimum (Section 4.2.1 in [33]).207

2.4 Expectation and Variance of the Admixture Fraction208

To interpret our simulations of admixture dynamics, we will need a series of results concerning the mean and209

variance of the admixture fraction in the admixed population. In particular, we derive a relationship between210

the variance of the admixture fraction and the correlation in admixture levels for members of mating pairs.211

Let HA,g be a random variable representing the admixture fraction of an individual chosen at random212

in the admixed population Hg at generation g ≥ 1. We denote by (Hf,p
A,g, H

m,p
A,g ) the admixture fractions of213

the members of a mating pair chosen at random from a parental pool Hpar
g in generation g ≥ 0. Here, the214

superscript p denotes that the individual is from the parental pool. The parental pool Hpar
g , from which215
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the admixed population Hg+1 at generation g + 1 is formed, consists of populations S1, S2, and Hg, with216

fractional contributions s1,g, s2,g, and hg respectively (Section 2.1 and Figure 2). Because we assume each217

population (S1, S2, and Hg) has equally many males and females, the numbers of males and females each218

remain constant at N , every individual has the same expected number of offspring, and no sex bias by219

population of origin exists in parental pairings (Section 2.3), Hf,p
A,g and Hm,p

A,g are identically distributed.220

Let the random variable Y indicate the population membership of a random individual in Hpar
g . Then221

Hf,p
A,g, H

m,p
A,g =


HA,g with P (Y = Hg) = hg

1 with P (Y = S1) = s1,g

0 with P (Y = S2) = s2,g.

(8)

For the expectation of admixture in the parental pool, we have

E[Hf,p
A,g] = E[Hm,p

A,g ] = EY

[
E[Hf,p

A,g | Y ]
]

=
∑

y∈{S1,S2,Hg}

P (Y = y)E[Hf,p
A,g | Y = y]

= s1,g + hgE[HA,g] = s1,g + hgµg. (9)

As a consequence of Eq. 9, we also have

E[(Hf,p
A,g)2] = E[(Hm,p

A,g )2] = s1,g + hgE[H2
A,g] = s1,g + hgµ

2
g + hgVar[HA,g] (10)

Var[Hf,p
A,g] = Var[Hm,p

A,g ] = s1,g + hgµ
2
g + hgVar[HA,g]− (s1,g + hgµg)2. (11)

Here, µg = E[HA,g] indicates the expectation of the admixture fraction of a random individual in the222

admixed population Hg at generation g ≥ 1.223

The ancestry of an offspring individual is deterministically set to the mean of the admixture fractions of224

the parents. This choice gives:225

E[HA,g+1] = E
[1

2
(Hf,p

A,g +Hm,p
A,g )

]
= s1,g + hgE[HA,g] = s1,g + hgµg. (12)

We obtain the recursion for the variance of the admixture fraction over a single generation as follows:

Var[HA,g+1] = E[H2
A,g+1]− (E[HA,g+1])2

=
1

4
E[(Hf,p

A,g +Hm,p
A,g )(Hf,p

A,g +Hm,p
A,g )]− (E[HA,g+1])2

=
1

2

(
E[(Hf,p

A,g)2] + E[Hf,p
A,gH

m,p
A,g ]

)
− (E[HA,g+1])2

=
1

2

(
E[(Hf,p

A,g)2] + Cor[Hf,p
A,g, H

m,p
A,g ]Var[Hf,p

A,g] + (E[Hf,p
A,g])2

)
− (E[HA,g+1])2

=
1

2
(1 + rHA,g)

[
hgVar[HA,g] + µ2

ghg(1− hg)− 2µghgs1,g + s1,g(1− s1,g)
]
, (13)

where rHA,g = Cor[Hf,p
A,g, H

m,p
A,g ] denotes the correlation of the admixture fractions in a mating pair. The226

last step is obtained from Eqs. 9–12. As we will see, the time-varying rHA,g value in general depends on the227

parameters of the population model, the quantitative trait model, and the mating model.228

For a special case of a single admixture event in which source populations S1 and S2 do not contribute229
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to the admixed population after its founding (s1,g = s2,g = 0 and hg = 1 for all g ≥ 1), the expectation of230

the admixture fraction stays constant in time (Eq. 12), and the variance reduces to a simple formula:231

Var[HA,g+1] =
1

2
(1 + rHA,g)Var[HA,g]. (14)

Under random mating in an infinite population with no ongoing contributions from the source populations,232

with rHA,g = 0 for all g ≥ 0, Eq. 14 reduces to the formula Var[HA,g] = s1,0(1 − s1,0)/2g of Verdu and233

Rosenberg [1]. Eq. 14 has also been derived by Zaitlen et al. [27] but under assumptions of constant mating234

correlation (rHA,g = r) across all generations, no migration, and infinite population size.235

3 Simulation236

3.1 Simulation Procedure237

Having specified the populations of interest, the properties of trait values in the populations, and the mating238

probabilities for pairs of individuals, we now describe how we simulate populations under the model. At the239

first time step (g = 0), s1,0N and s2,0N males are randomly generated from the source populations S1 and240

S2, respectively, with s1,0 + s2,0 = 1. The corresponding numbers of females s1,0N and s2,0N are randomly241

drawn from source populations, S1 and S2, respectively, constituting the founding parental pool Hpar
0 of242

2N individuals, with N males and N females. All individuals in source population S1 have an admixture243

fraction value of 1, and all individuals in source population S2 have an admixture fraction value of 0, by244

definition. For each individual in populations S1 and S2, genotypes at each of k quantitative trait loci are245

then randomly generated on the basis of pre-specified allele frequencies pi and qi.246

We consider two different distributions for the pi and qi. First, we assume that the two source populations247

display fixed differences at all trait loci, so pi = 1 and qi = 0 for all k loci. In this case, every individual in248

population S1 has the “1” allele at all trait loci, and every individual in population S2 has the “0” allele at249

all trait loci. In subsequent generations, allele “1” can be traced back to population S1, and allele “0” to S2250

(Figure 1). This choice for the pi and qi models a case in which trait-influencing alleles are initially entirely251

predictive of ancestry and vice versa.252

Second, departing from the idealized model, we simulate sets of k allele frequency pairs (pi, qi), i ∈253

{1, . . . , k} following Edge and Rosenberg [22]. Allele frequencies πi for derived alleles in the “ancestral”254

population of S1 and S2 are drawn based on the neutral site frequency spectrum: P [πi = j/(2Na)] ∝ 1/j,255

where Na indicates the size of the ancestral population (Eq. B6.6.1 in [34]). We use 2Na = 20, 000. We256

assume each locus i in S1 and S2 undergoes independent genetic drift following a split. We add random257

numbers εi,1 and εi,2 drawn from a Normal(0, γπi(1 − πi)) distribution to πi to simulate derived allele258

frequencies at locus i in populations S1 and S2, respectively. The parameter γ represents the amount of259

variance introduced by drift into the allele frequencies of the divergent populations. Following Edge and260

Rosenberg [22], we choose γ = 0.3 so that the overall degree of genetic differentiation between S1 and S2261

at a group of simulated loci approximates worldwide human FST estimates. If εi,1 ≥ εi,2, then we assign262

pi = πi + εi,1 and qi = πi + εi,2. If εi,1 < εi,2, then we assign pi = 1− (πi + εi,1) and qi = 1− (πi + εi,2). Note263

that if this procedure produces pi > 1 or qi < 0, then we assign pi = 1 and qi = 0 so that 0 ≤ qi ≤ pi ≤ 1.264
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Using the mating function in Eq. 4, we compute an unnormalized mating matrix for every pair containing265

a male and a female from the parental pool:266

M̃ =





1 e−c∆1,2 · · · e−c∆1,N−1 e−c∆1,N

e−c∆2,1 1 · · · e−c∆2,N−1 e−c∆2,N

...
...

. . .
...

...

e−c∆N−1,1 e−c∆N−1,2 · · · 1 e−c∆N−1,N

e−c∆N,1 e−c∆N,2 · · · e−c∆N,N−1 1

, (15)

where ∆i,j = | H(i),f
A,0 −H

(j),m
A,0 |/σHA,0 for assortative mating by ancestry and ∆i,j = | T (i),f

0 − T (j),m
0 |/σT0

267

for assortative mating by trait. For random mating, c = 0 and all entries equal 1. The matrix M̃ is268

normalized using the procedure of Section 2.3, producing the mating probability matrix M .269

Considering all N2 potential mating pairs, we randomly draw N mating pairs with replacement from270

the parental pool, weighting mate choices by the mating probabilities in M . Once mates are chosen, each271

mating pair produces two children, one male and one female, in order to keep the population size of the272

offspring generation constant at N males and N females. An admixture fraction for an offspring individual273

is then assigned as the mean of its parental admixture fractions. Assuming no linkage disequilibrium and no274

mutation, the genotype of the offspring at the quantitative trait loci is then determined by independently275

selecting at each locus one random allele from one parent and one from the other. The resulting 2N offspring276

form the admixed population H1 at generation 1.277

In subsequent generations g ≥ 1, we randomly select s1,gN , s2,gN , and hgN males and s1,gN , s2,gN ,278

and hgN females from S1, S2, and Hg, respectively, forming a gth generation parental pool Hpar
g of 2N279

individuals, consisting of N males and N females. The procedure to generate the offspring population Hg+1280

from Hpar
g is the same as the procedure for generating H1 from Hpar

0 .281

Throughout the simulation, we keep the population size parameter N constant at 1,000 for computational282

efficiency in the matrix normalization step. Here, the admixed population size (N) is not necessarily identical283

to the source population sizes (Na). For each set of parameters, (k, p1, p2, . . . , pk, q1, q2, . . . , qk, X1, X2, . . . , Xk,284

c, s1,0, s1,g, s2,g), we propagated the population to G = 40 generations. We generated 100 independent tra-285

jectories for each parameter set. For each trajectory, we computed statistics of interest, averaging them over286

all 100 trajectories in the simulation given the fixed set of parameters.287

3.2 Base Case288

We start with an idealized base case. First, we specify the parameters involving the population model289

(Section 2.1). We assume an equal influx from each source population at founding g = 0: s1,0 = 0.5,290

s2,0 = 1 − s1,0 = 0.5. We also assume no additional contributions from the source populations in the291

subsequent generations, s1,g = s2,g = 0, and hg = 1− s1,g − s2,g = 1 for all g ≥ 1.292

Next, we choose parameter values for the quantitative trait model (Section 2.2). We consider k = 10293

trait loci. Across the k loci, all “1” alleles come from source population S1 and all “0” alleles come from S2:294

pi = 1 and qi = 0 for all i = 1, 2, . . . , k. For each locus i contributing to the quantitative trait, we define “1”295

to be the “+” allele and “0” to be the “−” allele: Xi = 1 for all i = 1, 2, . . . , k.296
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Finally, for the mating model (Section 2.3), we set the assortative mating strength c in Eq. 4 to 0.5.297

3.3 Statistics Measured298

In each simulated admixed population, in each generation g, we computed the following statistics: correlation299

between admixture fraction and trait (Cor[HA, T ]), variance of the admixture fraction in the population300

(Var[HA]), and variance of the trait value in the population (Var[T ]). In the following section, we discuss301

how these statistics of interest change as we modify the simulation parameters.302

4 Results303

4.1 Base Case304

4.1.1 Correlation between genetic ancestry and phenotype (Cor[HA, T ])305

In the base case, each individual from S1 has admixture fraction HA = 1 and trait value T = k, and each306

individual from S2 has admixture fraction HA = 0 and trait value T = 0. Therefore, in the founding parental307

pool, Hpar
0 , admixture fraction and trait value are perfectly correlated: Cor[HA, T ] = 1. In subsequent308

generations, however, the correlation between the admixture fraction and the trait values starts to decouple,309

as illustrated in Figure 1. With all parameters involving the population model and the quantitative trait310

model fixed, the rate of decay in Cor[HA, T ] depends on the mating model.311

A comparison of Cor[HA, T ] under the three mating models using base-case parameters appears in312

Figure 4E. Irrespective of the mating model, the founding parental pool has a perfect correlation between313

ancestry and phenotype. Even if the population starts with perfect correlation between admixture fractions314

and trait values, however, then random mating rapidly decouples them (red curve). It takes 6 generations315

of random mating for the correlation to decrease below 0.5 (Cor[HA, T ] = 0.490). After g = 20 generations,316

the correlation becomes 0.137, and it is near zero at g = 40 (−0.003).317

Compared to random mating, positive assortative mating slows the decoupling of admixture fractions318

and trait values. Assortative mating by phenotype (green curve in Figure 4E) maintains the correlation319

longer than assortative mating by admixture fraction (blue curve in Figure 4E). It takes 11 generations320

under assortative mating by phenotype for the correlation to drop below 1
2 (Cor[HA, T ] = 0.490), and 10321

generations under assortative mating by admixture (Cor[HA, T ] = 0.443). Across the 40 generations we322

simulated, Cor[HA, T ] is consistently higher under assortative mating by phenotype than under assortative323

mating by admixture fraction. The correlation decreases to 0.227 at g = 20 and 0.043 at g = 40 under324

assortative mating by phenotype. The corresponding values under assortative mating by admixture are325

0.065 at g = 20 and 0.009 at g = 40, both considerably lower than under assortative mating by phenotype.326

The speed of the decoupling between admixture fraction and trait value increases with two factors:327

Mendelian noise in generating admixed individuals from the admixed population and decreasing contributions328

from the source populations. Compared to random mating, both assortative mating models have higher329

probabilities for matings within source populations, and thus, the proportion of individuals produced in the330

admixed population at g = 1 that are genetically admixed is smaller (blue and green lines in the marginal331
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plots for HA in Figure S1A). Over time, as displayed in Figure S1, random mating pulls individuals away332

from the source populations, pushing the HA and T distributions towards the mean values rapidly. On the333

other hand, both assortative mating models maintain individuals with HA and T values near the source334

population values for longer, and thus, they retain higher Cor[HA, T ] than random mating.335

The difference in Cor[HA, T ] between the two assortative mating models arises from the difference

between Var[HA] and Var[T ]. Cov[HA, T ] is similar under the two models. Given the similar covariance,

Cor[HA, T ]phen

Cor[HA, T ]gen
≈

√
Var[HA]gen

Var[HA]phen
× Var[T ]gen

Var[T ]phen
,

where the subscripts “gen” and “phen” indicate the property on which mating pairs assort. As we show in the

next section, both assortative mating models increase Var[HA] and Var[T ] compared to random mating, and

the increase in variance is the largest for the property on which mating assorts: Var[HA]gen > Var[HA]phen

and Var[T ]phen > Var[T ]gen. However, we will see that the increase in Var[HA] due to assortative mating by

admixture fraction exceeds the increase in Var[T ] due to assortative mating by trait:

Var[HA]gen

Var[HA]phen
>

Var[T ]phen

Var[T ]gen
.

This result leads to higher Cor[HA, T ] under assortative mating by trait compared to that under assortative336

mating by admixture fraction.337

4.1.2 Variance of Ancestry and Phenotype (Var[HA] and Var[T ])338

Each individual in S1 has admixture fraction 1, and each individual in S2 has admixture fraction 0. In339

the founding parental pool, Var[HA] = 0.250 for all three mating models. As discussed in Section 2.4, the340

variance of the admixture fraction can be understood in relation to the correlation coefficient Cor[Hf
A,g, H

m
A,g]341

of the admixture fractions of members of mating pairs. Figure S2 shows this correlation coefficient for the342

simulations of Figure 4, and Figure S3 shows the analogous correlation Cor[T f
g , T

m
g ] of trait values.343

Figure 5E then shows the variance of the admixture fraction over time under the three mating models,344

for the same simulations from Figure 4E with the base case parameters. The Var[HA] curves in Figure 5E345

under the three mating models follow Eq. 13, using the time-varying rHA,g in Figure S2.346

Among the three mating models, Var[HA] decreases fastest for random mating. After one generation,347

Var[HA] falls in half (0.125), and it continues to decrease monotonically by half. After 40 generations, the348

value decreases to 2.118 × 10−13. The distribution of the admixture fraction concentrates around HA = 1
2349

at each generation. Because the offspring admixture fraction is the mean of those of its parents, without350

additional influx from the source populations after the founding event, random mating rapidly drives the351

admixture fraction away from extreme values (0 or 1) toward the mean value of the parental pool (1
2 ).352

Under assortative mating by admixture, pairs with similar admixture fraction have higher mating proba-353

bilities than under random mating. The fraction of offspring that are admixed is smaller than under random354

mating, and the admixture fraction distribution remains close to the extreme values (0 or 1) for longer355

(Figure S1). Hence, Var[HA] is larger under assortative mating by admixture fraction (Figure 5E). Without356

influx from the source populations, Var[HA] eventually decreases to zero, but the decrease is slower than357
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for random mating. Var[HA] = 0.184 after one generation of assortative mating by admixture fraction, and358

Var[HA] = 1.118 × 10−8 after 40 generations. This result can also be seen in Eq. 13. From generation g359

to g + 1, Var[HA]g decreases by a factor of (1 + rHA,g)/2. With positive assortative mating by admixture360

(rHA,g > 0), Var[HA] in the next generation is increased compared to the case of random mating (rHA,g = 0).361

Under assortative mating by phenotype, Var[HA] = 0.183 after one generation of assortative mating by362

phenotype, and Var[HA] = 4.910× 10−12 after 40 generations. For the first few generations (g < 5), because363

Cor[HA, T ] is high, the correlation between the admixture fraction of mating pairs, and thus Var[HA], is364

similar under the two assortative mating models, as shown in the comparison of the green and blue curves365

in Figures S2 and 5. However, because the admixture fraction and phenotype decouple by introduction of366

the Mendelian noise, mating assortatively by phenotype results in lower rHA,g than mating assortatively367

by admixture fraction. In accord with Eq. 13, assortative mating by phenotype produces faster decay in368

Var[HA] with its lower rHA,g at each generation than assortative mating by admixture fraction.369

For the variance of the phenotype, using Eq. 1, all individuals in S1 and S2 have trait values of 20370

and 0, respectively. Therefore, in the founding parental pool, Hpar
0 , noting that S1 and S2 each have 1,000371

individuals, this variance has the same constant value of 2,000
1,999 ·102 = 100.050 irrespective of the mating model.372

Figure 6E displays the variance of the phenotype, which decreases most rapidly under random mating. After373

one generation of random mating, Var[T ] decreases by half (50.025), and it approaches its steady-state value374

of ≈ 4.957 after 13 generations. Opposite to what was seen for Var[HA], however, assortative mating by375

trait retains Var[T ] higher for longer than assortative mating by admixture fraction. Similar to the case with376

Var[HA] under assortative mating by admixture fraction, assortative mating by phenotype keeps the trait377

values close to extreme values for longer than the other two mating models.378

Having examined the behavior of Cor[HA, T ], Var[HA], and Var[T ] in the base case, we now explore the379

effect of the assortative mating strength c and the parameters involving the quantitative trait—the number380

of loci k, allele frequencies pi and qi, and trait contribution at each locus Xi—on these quantities.381

4.2 Assortative Mating Strength (c)382

4.2.1 Cor[HA, T ]383

Each row of Figure 4 illustrates the influence of the assortative mating strength c on Cor[HA, T ] with a fixed384

number of trait loci k, and each column depicts the effect of the number of loci k on Cor[HA, T ] with fixed385

assortative mating strength c. All parameters other than c and k are held constant at the base case values.386

With different assortative mating strengths and numbers of trait loci, c = 0.1, 0.5, 1.0 and k = 1, 10, 100,387

the qualitative behavior of Cor[HA, T ] over time remains the same as in the base case. As before, we observe388

decay in Cor[HA, T ] under all three mating models, with random mating decoupling ancestry and trait values389

the most rapidly. Cor[HA, T ] remains higher for longer under assortative mating by phenotype than under390

assortative mating by admixture fraction. The rate of decay and the degree to which the patterns differ391

across the three mating models depend on the assortative mating strength and the number of loci.392

If assortative mating is weak (c = 0.1 in Figure 4A, D, G), then the effect of assortative mating is small,393

and thus, Cor[HA, T ] under assortative mating by admixture and by phenotype closely follows that under394

random mating. This pattern is seen irrespective of the number of loci. Note that in the limit of c = 0, the395
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assortative mating and random mating models are identical because the mating function in Eq. 4 becomes396

a constant, the same value for all three mating models.397

Comparing panels within rows of Figure 4, the results from random mating are identical, as the assortative398

mating strength does not affect the random mating model. Under both assortative mating models, however,399

Cor[HA, T ] increases with the assortative mating strength. In an extreme case of complete assortment400

(c→∞), the correlation would stay constant at 1 across all generations: we start with complete correlation401

between admixture and phenotype, and c→∞ implies that only identical individuals can mate, so that the402

correlation persists unchanged.403

The difference among the three models increases with the assortative mating strength given a fixed404

number of trait loci. The difference is the greatest if k = 1 and c = 1.0 (Figure 4C). Even after 40405

generations, assortative mating by trait retains a high correlation at 0.788, whereas the corresponding values406

under random mating and assortative mating by admixture are 0.006 and 0.010, respectively.407

4.2.2 Var[HA] and Var[T ]408

The plots of Var[HA] in Figure 5 and Var[T ] in Figure 6 consider the same simulations that appear for409

Cor[HA, T ] in Figure 4. As is seen in classical work [26, 35, 36], compared to random mating, assortative410

mating increases the variance of the property on which assortment takes place. Thus, the variance of the411

admixture fraction is increased to a greater extent under mating by admixture fraction than under mating412

by phenotype. Similarly, the variance of the phenotype is increased to a greater extent under mating by413

phenotype than under mating by admixture fraction. Both types of assortative mating increase both Var[HA]414

and Var[T ] compared with random mating.415

The variance-increasing effect of the assortative mating is visible when comparing panels within each416

row. For low assortative mating strength (c = 0.1), panels A, D, and G in Figures 5 and 6 show that417

minimal differences in Var[HA] and Var[T ] exist between mating models. As c increases, for a given number418

of loci, Figures 5 and 6 display increased differences between random and assortative mating, with maximal419

separation at the largest assortative mating strength simulated, c = 1 (panels C, F, I). The random mating420

model is unaffected by the assortative mating strength c, as was seen with Cor[HA, T ] in Section 4.2.1.421

4.3 Number of Trait Loci (k)422

4.3.1 Cor[HA, T ]423

A comparison of panels within columns of Figure 4 shows that under random mating, with more loci as-424

sociated with the phenotype, the ancestry-phenotype correlation is higher and stays high for longer. In425

other words, it takes longer for HA and T to become decoupled. In particular, under random mating, the426

correlation between trait and ancestry falls below 0.5 at g = 3 if k = 1, g = 6 if k = 10, and g = 10 if427

k = 100, independent of the assortative mating strength.428

As the number of loci increases, results from the models with assortative mating by phenotype and by429

admixture become similar. If (c, k) = (1, 100) (Figure 4I), then it takes 24 generations for Cor[HA, T ] values430

under the two models to differ by more than 0.1. Corresponding times for (c, k) = (1, 1) (Figure 4C) and431
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(c, k) = (1, 10) (Figure 4F) are g = 6 and g = 15, respectively. Recall that the admixture fraction represents432

the probability that a random allele at a random autosomal genetic locus originates from source population433

S1, assuming infinitely many loci. In the k →∞ limit, with the whole genome contributing to the trait, the434

assortative mating models by admixture and by phenotype would behave in exactly the same way.435

4.3.2 Var[HA] and Var[T ]436

Comparing panels within columns in Figure 5, for a given assortative mating strength, Var[HA] under437

assortative mating by admixture follows the same curve irrespective of the number of loci. Because the438

mating probability is independent of trait values if mating assortatively by admixture, k has no effect.439

As in the base case (Section 4.1.2), both assortative mating models have higher Var[HA] and Var[T ] than440

random mating. Of the two assortative mating models, assortative mating by admixture fraction has greater441

Var[HA] than assortative mating by trait at each generation. For Var[T ], assortative mating by trait has442

greater values than assortative mating by admixture fraction. As was seen with Cor[HA, T ] (Section 4.3.1),443

for Var[HA] and Var[T ], the difference between random mating and both assortative mating models increases444

with k, and the difference between the two assortative mating models diminishes as k increases.445

4.4 Allele Frequencies (pi and qi)446

Departing further from the base case, we next evaluate the effect of the allele frequencies, pi and qi, on447

the quantities of interest. Instead of treating the two source populations as fixed for different alleles, the448

frequencies pi and qi are now sampled according to the simulation procedure described in Section 3.1.449

Because our results show a monotonic trend across the number of loci we examined (Section 4.3), we focus450

this analysis on a single value of k = 10, the number of loci corresponding to the base case.451

4.4.1 Cor[HA, T ]452

Figure 7A displays Cor[HA, T ] under the model with simulated rather than fixed allele frequencies. Cor[HA, T ]453

starts from a lower correlation value at time g = 0, 0.456, compared to the base case (Figure 4E) value of454

1. If all loci have Xi = 1, as shown in Eq. 1, then an individual’s trait value is determined by the number455

of “1” alleles across the trait loci. Because the allele “1” is randomly drawn at each locus i = 1, 2, . . . , k456

with probabilities P (Lij = 1 | M = S1) = pi and P (Lij = 1 | M = S2) = qi with j = 1, 2 (Section 2.2)457

and the mean absolute difference between simulated pi and qi across k loci is small, some individuals in the458

source population S1 have lower trait values than some individuals in S2, and vice versa. However, due to459

the constraint pi ≥ qi across all trait loci, individuals from S1 have higher probability of having a larger trait460

value than those from S2. This property accounts for the nonzero correlation between ancestry and trait461

present in the source populations outside the base case setting.462

The qualitative differences between the three mating models remain similar to the base case, as shown463

in Figure 7A. All three mating models, however, show an increased rate of decoupling between the admix-464

ture fraction and the trait, in that the correlation decreases more rapidly. For random mating, it takes465

only 4 generations for Cor[HA, T ] to drop to below half of its starting value, reaching 0.170. The corre-466

sponding values under assortative mating by admixture fraction and assortative mating by trait are g = 5467
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(Cor[HA, T ] = 0.240) and g = 10 (Cor[HA, T ] = 0.220), respectively. Compared to the base case, the cor-468

relation between ancestry and trait in the source population is weaker if the allele frequencies are drawn469

from the simulation, and thus, the “1” allele does not necessarily trace back to the source population S1.470

Under this setting, the effect of the Mendelian noise in decoupling of admixture fraction and phenotype in471

producing admixed individuals becomes more significant than the base case.472

4.4.2 Var[HA] and Var[T ]473

The admixture fraction values at the source populations are not affected by the allele frequencies: HA = 1474

and HA = 0 for all individuals in S1 and S2, respectively. If s1,0 = s2,0 = 0.5, then Var[HA] starts at 0.25 in475

the founding parental pool, irrespective of the allele frequencies. Comparing Figure 7B and 5E, the Var[HA]476

curves under random mating (red) and assortative mating by admixture (blue) are not affected by the change477

in allele frequencies pi and qi, holding other parameters fixed. Under random mating and assortative mating478

by admixture, mate choice is independent of the parameters that affect the quantitative trait, and thus, the479

change in pi and qi does not alter the admixture fraction distribution at each generation.480

By contrast, under assortative mating by phenotype, Var[HA] (green) is affected by the change in the481

nature of the allele frequencies. Var[HA] under assortative mating by phenotype closely follows that under482

random mating. The simulated allele frequencies have relatively small differences (δ̄ ≈ 0.0509) between483

source populations S1 and S2. With Xi = 1 for all loci, the between-group difference in trait values is small484

as well, whereas all individuals in S1 and S2 still have HA = 1 and HA = 0, respectively. Therefore, with485

the simulated allele frequencies, the effect on the admixture fraction of assortative mating by phenotype486

is similar to that in the random mating case. This scenario contrasts with the base case, where allele “1”487

can be associated with the source population S1 with certainty, and Var[HA] under assortative mating by488

phenotype behaves similarly to the case of assortative mating by admixture fraction.489

With the simulated allele frequencies, Var[T ] = 0.877 in the founding parental pool. At g = 1, Var[T ]490

values under random mating and under assortative mating by admixture are 0.784 and 0.825, respectively.491

Assortative mating by admixture maintains higher Var[T ] than random mating until g = 8 and then follows492

the Var[T ] curve for random mating. By contrast, Var[T ] under assortative mating by trait gradually493

increases until g = 13, at which it achieves its maximum of 0.977, and then decreases to 0.935 at g = 40.494

4.5 Trait Contributions of Individual Loci (Xi)495

Returning to the case with fixed allele frequencies of 1 and 0 in the source populations, we next examine the496

case in which the trait has the property that both alleles have equal probability of being the “+” allele, as497

described in Section 2.2: P (Xi = 1) = P (Xi = 0) = 1
2 for all i = 1, 2, . . . , k. Figure 8 displays the results498

using the number of trait loci from the base case, k = 10. The qualitative behavior of the result does not499

depend on the number of loci with the other parameters fixed.500

4.5.1 Cor[HA, T ]501

If we let the number of loci with Xi = 1 be z, then the number of loci with Xi = 0 is k − z. Because502

pi = 1 and qi = 0 across all loci in the base case, the trait value is 2z for every individual in S1 and503
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2(k − z) for every individual in S2 (Eq. 1). For a randomly generated set of Xi, {i = 1, 2, . . . , k}, under504

P (Xi = 1) = P (Xi = 0) = 1
2 , if z 6= k − z, then Cor[HA, T ] = 1 in the founding parental pool Hpar

0 , as505

shown in Figure 8A. However, compared with the base case (Figure 3.2), the correlation decays much more506

rapidly. With the P (Xi = 1) 6= 1 setting, the ancestry and trait are not as tightly coupled in the source507

populations. However, as in Section 4.1-4.4, assortative mating by phenotype preserves the correlation for508

the longest, and random mating decouples the correlation the fastest of the three mating models.509

If the numbers of loci with Xi = 1 and Xi = 0 are equal (z = k − z), then all individuals in the source510

populations have trait value k irrespective of their origin, and thus, no correlation exists between trait and511

ancestry in the source population. Hence, Cor[HA, T ] is 0 in the founding parental pool Hpar
0 , and the512

correlation remains at 0 throughout the time simulated, irrespective of the mating type (Figure 8D).513

4.5.2 Var[HA] and Var[T ]514

The panels of Figure 8 display results under P (Xi = 1) = P (Xi = 0) = 1
2 , fixing other parameters as in515

base case. By the same reasoning as in Section 4.4.2, the change in parameters involving the quantitative516

trait does not affect Var[HA] under random mating and under assortative mating by admixture fraction. A517

comparison of Figure 8B and 8E with Figure 5E shows that Var[HA] values under assortative mating by518

admixture fraction are not affected by the change in the Xi.519

For z 6= k − z, results with z = 6 and k − z = 4 appear in Figure 8B. Some correlation between the520

admixture fraction and allele “1” exists in the source populations, and thus, Var[HA] for assortative mating521

by trait (green) somewhat follows that for assortative mating by admixture (blue). However, compared to522

the base case (Figure 5E), where the “1” allele can be traced back to S1 with certainty, a more noticeable523

deviation from the blue curve is observed. As z increases from 6 to 10, the pattern is similar; the quantitative524

behavior of Var[HA] would approach the base case, equivalent to z = 10 (green curve in Figure 5E).525

In the founding parental pool, Var[T ] = 4.002 in our example with z 6= k − z. After one generation of526

mating, Var[T ] drops to 1.997, 2.934, and 2.923, under random mating, assortative mating by admixture527

fraction, and assortative mating by trait, respectively. From g = 2, Var[T ] gradually increases and achieves528

steady state values for the three models near 4.942 at g = 5, 4.934 g = 8, and 6.929 at g = 14, respectively.529

In accord with Section 4.1-4.4, assortative mating by trait has the highest Var[T ] values across generations.530

If z = k− z (Figure 8E), then allele “1” has equal probability of traced back to either source population.531

In this scenario, the Var[HA] curve from assortative mating follows the Var[HA] curve from random mating.532

Because all individuals have the same trait value in the founding parental pool irrespective of their origin,533

Var[T ] = 0 at g = 0. For all three mating models, Var[T ] gradually increases from g = 1 to achieve steady534

state values that are the same as those from the z 6= k − z case.535

5 Discussion536

In this paper, we have devised a mechanistic admixture model in which an admixed population is formed537

from contributions of a pair of mutually isolated source populations under assortative mating, either by538

admixture level or by a quantitative phenotype. The approach includes a quantitative-genetic model that539

relates a quantitative phenotype to underlying loci affecting its trait value and, ultimately, to mate choices.540
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The admixture level and the quantitative phenotype are studied using a discrete-time recursion that describes541

the evolution of the admixed population. Under this model, we have examined the correlation between genetic542

ancestry and phenotype in the admixed population as a function of time under three mating models: random543

mating, assortative mating by admixture fraction, and assortative mating by phenotype.544

Initially, ancestry and phenotype are coupled, as the source populations differ in phenotype. Random545

mating then decouples the correlation between ancestry and trait faster than is seen in both assortative546

mating models (Figure 4), and assortative mating by phenotype maintains the correlation to a greater extent547

than does assortative mating by admixture (Figure 4). Compared with random mating, in a similar manner548

to classic assortative mating models [26, 35, 36], the assortative mating increases the population variance of549

the property on which the assortment is based (Figures 5 and 6). In fact, our Eq. 13 multiplies the variance550

of admixture in a model without assortment [1] by a factor that increases with positive assortative mating.551

Increasing the strength of assortative mating magnifies the difference observed among the models in the552

speed at which the correlation declines (Figure 4). Generally similar qualitative patterns are observed if553

the source populations are regarded as having fixed differences (Figure 4) or merely frequency differences in554

alleles affecting the quantitative trait (Figures 7 and 8).555

A key observation is that, as the number of loci underlying the quantitative trait increases, the difference556

in trajectories between the two assortative mating models decreases. Because assortative mating by admix-557

ture fraction affects all loci, whereas assortative mating by trait affects only trait loci and their genomic558

neighbors, as the trait is determined by an increasing number of loci, the behavior of assortative mating by559

trait increasingly follows that of assortative mating by ancestry (Figure 4). As the number of loci affecting560

the phenotype increases, assortative mating by trait increasingly reflects assortative mating by admixture,561

and the correlation between ancestry and trait value persists for longer (Figure 4).562

Our study was motivated partly by a hypothesis of Parra et al. [8] claiming that assortative mating by563

the color phenotype in Brazil could eventually decouple color from genetic ancestry, so that largely separate564

subpopulations with distinct color could eventually possess similar levels of African genetic ancestry. We565

have seen not only that assortative mating by a quantitative trait that differs between source populations can566

decouple the phenotype from the genetic ancestry, but that random mating can decouple the phenotype from567

genetic ancestry as well. Moreover, the decoupling is slower with assortative mating than it is with random568

mating. In an admixed population with assortative mating that is heavily influenced by a salient phenotype569

(such as color in the scenario of Parra et al. [8]), mating by other genetically influenced phenotypes is570

random, or perhaps less strongly assortative. Thus, in an admixed population, we might expect that among571

all the traits to which genotypes contribute, traits that have little influence on mating behavior will decouple572

from ancestry most rapidly. Those traits on which assortment does occur, such as color in Brazil, will be the573

slowest to decouple from ancestry—but under our model, they eventually will do so. Thus, in an admixed574

population, phenotypes that once reflected ancestry in the source populations might no longer be predictive575

of genetic ancestry after a sufficient length of time has passed.576

The focus of our simulations has been on understanding demographic phenomena, but the model is577

relevant to efforts to investigate determinants of disease traits in admixed populations. For example, in578

admixture-mapping studies and in studies of health disparities involving admixed populations, correlations579

of phenotypes and admixture levels are often computed [37–40]. The mechanistic model can potentially580

provide insights into the way in which these correlations change over time in scenarios in which specific trait581
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architectures are of interest.582

We note that we have examined a model with a single admixture event at the founding of the admixed583

population. Under this idealized model, even if the founding admixed population starts with a perfect584

correlation between admixture fraction and trait value, the correlation decreases over time and eventually585

approaches zero in the absence of further influx from source populations. In principle, the framework can586

account for continuous influx from the source populations. If ancestry–trait correlation exists in source587

populations, then such influx would be expected to slow the decoupling between admixture and phenotype588

in the admixed populations under all three mating models, while qualitatively maintaining their relative589

order in the rate of decoupling.590

Although the theoretical framework we have developed can incorporate various genetic architectures and591

population admixture processes (including disassortative mating), our model has a number of limitations.592

First, it does not include sex bias during the admixture event, a phenomenon that often occurs in admixture593

processes [17, 41, 42]. A recent genetic model in a scenario with continuing contributions from the sources594

does allow for sex bias with assortative mating, but with no phenotype and with the assortative mating595

occurring by population membership—in the admixed population or in one of the sources—rather than by596

the admixture level itself [28]. Next, we have chosen to model admixture in an individual as the mean of597

parental admixture levels; this approach does not account for stochasticity during genetic transmission. Our598

quantitative trait model does not incorporate dominance, spatial positioning of trait loci along a genome,599

epistasis, environmental effects on the phenotype, or genotype-by-environment interaction. The latter pair600

of limitations might be particularly important in using the results in human data, as numerous studies601

have shown that assortative mating often operates on sociocultural traits [43–46]. It will be important to602

extend our theoretical framework to include additional features of the quantitative-genetic model, such as by603

incorporating dominance, linkage, variable effect sizes across the loci contributing to the quantitative trait,604

and varying heritability of the phenotype.605
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Figure 1: A schematic of an admixture process with positive assortative mating by a phenotype initially
correlated with admixture levels. In generation 0, an admixture process begins with females from one
population (source 1, left) and males from another (source 2, right). For a quantitative phenotype, source
population 1 begins with a high trait value of 6 and source population 2 has a low trait value of 0. Three loci
contribute additively to the genetic architecture of the phenotype; each allele derived from source population
1 contributes a value of 1 to the phenotype. The phenotype is represented by the shading of a box. Individuals
are depicted as pairs of chromosomes with the ancestral sources of those chromosomes; short vertical lines
along the chromosome indicate the three loci that contribute to the phenotype. After generation 1, positive
assortative mating by phenotype proceeds in the admixed population. Lines connecting generations are
displayed in four colors, representing four mating pairs. Initially, in generation 2, a strong correlation exists
between admixture and phenotype (r = 0.96). By generation 4, however, owing to recombination events that
stochastically dissociate the trait loci from the overall genetic admixture, the genetic admixture has been
decoupled from the phenotype, so that some of the individuals with the highest trait values have among the
lowest admixture coefficients for source population 1, and the correlation between phenotype and overall
genetic admixture has dissipated (r = −0.09).
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Figure 2: A schematic diagram of the admixture process. At the founding of the population (g = 0), two
isolated source populations produce the first generation of a admixed population (H1). In the subsequent
generations (g ≥ 1), populations from S1, S2, and Hg constitute a parental pool Hpar

g at generation g from
which the admixed population Hg+1 at generation g + 1 is produced. Fractional contributions from three
populations in forming the parental pool are s1,g, s2,g, and hg, respectively. Individuals in the parental pool
mate based on mating models described in Section 2.3.
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Figure 3: An example of our quantitative trait model. Here, a diploid individual with k = 8 trait loci is
shown. At each locus i, an allele Lij contributes to the overall trait value if and only if Lij = Xi where Xi

is a variable indicating which of two alleles, “0” or “1” increases the trait value. The total trait value of
an individual equals the number of alleles satisfying Lij = Xi across the k trait loci. In this example, the
individual has T = 6.
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Figure 4: Correlation between admixture fraction and quantitative trait value (Cor[HA, T ]) as a function
of time. All parameter values in panel (E) follow the base case described in Section 3.2; the number of
quantitative trait loci k and the assortative mating strength c vary across panels. In each panel, for a given
(k, c) pair, for each mating scheme, the mean of 100 simulated trajectories is plotted. The red, blue, and
green curves represent results from random mating, assortative mating by admixture fraction, and assortative
mating by phenotype, respectively. (A) k = 1, c = 0.1. (B) k = 1, c = 0.5. (C) k = 1, c = 1.0. (D) k = 10,
c = 0.1. (E) k = 10, c = 0.5. (F) k = 10, c = 1.0. (G) k = 100, c = 0.1. (H) k = 100, c = 0.5. (I) k = 100,
c = 1.0.
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Figure 5: Variance of admixture fraction (Var[HA]) as a function of time. The simulations shown are the
same ones from Figure 4. (A) k = 1, c = 0.1. (B) k = 1, c = 0.5. (C) k = 1, c = 1.0. (D) k = 10, c = 0.1.
(E) k = 10, c = 0.5. (F) k = 10, c = 1.0. (G) k = 100, c = 0.1. (H) k = 100, c = 0.5. (I) k = 100, c = 1.0.
Colors and symbols follow Figure 4. The y-axis is plotted on a logarithmic scale.
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Figure 6: Variance of the phenotype (Var[T ]) as a function of time. The simulations shown are the same
ones from Fig. 4. (A) k = 1, c = 0.1. (B) k = 1, c = 0.5. (C) k = 1, c = 1.0. (D) k = 10, c = 0.1. (E)
k = 10, c = 0.5. (F) k = 10, c = 1.0. (G) k = 100, c = 0.1. (H) k = 100, c = 0.5. (I) k = 100, c = 1.0.
Colors and symbols follow Figure 4. The y-axis is plotted on a logarithmic scale.
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Figure 7: Cor[HA, T ], Var[HA], and Var[T ] in a model in which the allele frequencies pi and qi in the
source populations S1 and S2 are drawn from a simulation rather than being treated as fixed at 1 and 0,
respectively. All other parameters are kept at the values of the base case (Section 3.2). (A) Correlation
between admixture fraction and trait (Cor[HA, T ]). (B) Variance of the admixture fraction (Var[HA]). (C)
Variance of the phenotype (Var[T ]). Colors and symbols follow Figure 4. The figure relies on a single
replicate of simulated allele frequencies pi and qi following a genetic drift model in which S1 and S2 descend
from a common ancestral population, as described in Section 3.1. The simulated allele frequencies across
k = 10 loci have mean values of p̄ ≈ 0.502 and q̄ ≈ 0.449 and variance s2

p ≈ 0.214 and s2
q ≈ 0.235. If we let

δi = pi−qi, with δi > 0, then the mean of the allele frequency difference across the 10 loci is δ̄ ≈ 5.310×10−2,
with δ2 ≈ 7.865 × 10−3. Across k = 10 loci, FST ≈ 0.075, as computed using Eq. 14 of [22]. The y-axis of
Var[HA] is plotted on a logarithmic scale. Results using other replicates of simulated allele frequencies with
k = 10 are shown in Figure S4.
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Figure 8: Cor[HA, T ], Var[HA], and Var[T ] under a trait model in which trait loci do not systematically
have greater values in one source population: P (Xi = 1) = P (Xi = 0) = 0.5. All other parameters are kept
at the values of the base case (Section 3.2). Of k = 10 trait loci, we denote the number of randomly selected
loci to have Xi = 1 by z. (A) Cor[HA, T ], z = 6. (B) Var[HA], z = 6. (C) Var[T ], z = 6. (D) Cor[HA, T ],
z = 5. (E) Var[HA], z = 5. (F) Var[T ], z = 5. Colors and symbols follow Figure 4. Panels A-C and D-F each
relies on a single replicate of a set of Xi obtained by sampling the Xi from a Binomial(10, 1

2 ) distribution
and retaining those with the specified value of z = 6 (top panels) and z = 5 (bottom panels). The y-axis of
Var[HA] is plotted on a logarithmic scale. Results using other replicates of simulated allele frequencies with
k = 10 are shown in Figures S5 (for z = 6) and S6 (for z = 5).
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Supplementary Material703

Figure S1: Joint distribution of HA and T as a function of time. The simulation shown is the same one
from Figures 4E, 5E, and 6E, using the parameters from base case (Section 3.2). As described in Section 2.1
and 2.2, the possible values for the admixture fraction at generation g are 0, 1/2g, 2/2g, . . . , (2g − 1)/2g, 1,
whereas the possible values for the trait are 0, 1, . . . , 2k across all generations. In each panel, the top, right,
and center plots display a marginal distribution of HA, a marginal distribution of T , and a joint distribution
of HA and T , respectively. Colors follow Figure 4.
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Figure S2: The correlation coefficient Cor[Hf
A,g, H

m
A,g] between the admixture fractions of the members of

mating pairs as a function of time. The simulations shown are the same ones from Fig. 4. (A) k = 1, c = 0.1.
(B) k = 1, c = 0.5. (C) k = 1, c = 1.0. (D) k = 10, c = 0.1. (E) k = 10, c = 0.5. (F) k = 10, c = 1.0. (G)
k = 100, c = 0.1. (H) k = 100, c = 0.5. (I) k = 100, c = 1.0. Colors and symbols follow Figure 4.
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Figure S3: The correlation coefficient Cor[T f
g , T

m
g ] between the phenotypes of the members of mating pairs

as a function of time. The simulations shown are the same ones from Fig. 4. (A) k = 1, c = 0.1. (B) k = 1,
c = 0.5. (C) k = 1, c = 1.0. (D) k = 10, c = 0.1. (E) k = 10, c = 0.5. (F) k = 10, c = 1.0. (G) k = 100,
c = 0.1. (H) k = 100, c = 0.5. (I) k = 100, c = 1.0. Colors and symbols follow Figure 4.
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Figure S4: Cor[HA, T ] (top row), Var[HA] (middle row), and Var[T ] (bottom row) using different replicate
sets of simulated allele frequencies pi and qi with k = 10 loci, as described in Section 3.1 and Figure 7.
Different columns represent results from different replicates of simulated pi and qi. Colors and symbols
follow Figure 4. The y-axis of Var[HA] is plotted on a logarithmic scale with base 10.
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Figure S5: Cor[HA, T ] (top row), Var[HA] (middle row), and Var[T ] (bottom row) using different replicates
of a set of Xi for k = 10 loci sampled from a Binomial(10, 1

2 ) distribution with a constraint z = 6 (Section 2.2
and Figure 8A-C). Colors and symbols follow Figure 4. The y-axis of Var[HA] is plotted on a logarithmic
scale.
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Figure S6: Cor[HA, T ] (top row), Var[HA] (middle row), and Var[T ] (bottom row) using different replicates
of a set of Xi for k = 10 loci sampled from a Binomial(10, 1

2 ) distribution with a constraint z = 5 (Section 2.2
and Figure 8D-F). Colors and symbols follow Figure 4. The y-axis of Var[HA] is plotted on a logarithmic
scale.

35

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/773663doi: bioRxiv preprint 

https://doi.org/10.1101/773663
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/773663doi: bioRxiv preprint 

https://doi.org/10.1101/773663
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/773663doi: bioRxiv preprint 

https://doi.org/10.1101/773663
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/773663doi: bioRxiv preprint 

https://doi.org/10.1101/773663
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/773663doi: bioRxiv preprint 

https://doi.org/10.1101/773663
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/773663doi: bioRxiv preprint 

https://doi.org/10.1101/773663
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/773663doi: bioRxiv preprint 

https://doi.org/10.1101/773663
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/773663doi: bioRxiv preprint 

https://doi.org/10.1101/773663
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/773663doi: bioRxiv preprint 

https://doi.org/10.1101/773663
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/773663doi: bioRxiv preprint 

https://doi.org/10.1101/773663
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/773663doi: bioRxiv preprint 

https://doi.org/10.1101/773663
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/773663doi: bioRxiv preprint 

https://doi.org/10.1101/773663
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/773663doi: bioRxiv preprint 

https://doi.org/10.1101/773663
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/773663doi: bioRxiv preprint 

https://doi.org/10.1101/773663
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/773663doi: bioRxiv preprint 

https://doi.org/10.1101/773663
http://creativecommons.org/licenses/by/4.0/

