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9 Abstract

10 Source populations for an admixed population can possess distinct patterns of genotype and pheno-
1 type at the beginning of the admixture process. Such differences are sometimes taken to serve as markers
12 of ancestry—that is, phenotypes that are initially associated with the ancestral background in one source
13 population are taken to reflect ancestry in that population. Examples exist, however, in which genotypes
14 or phenotypes initially associated with ancestry in one source population have decoupled from overall
15 admixture levels, so that they no longer serve as proxies for genetic ancestry. We develop a mechanistic
16 model for describing the joint dynamics of admixture levels and phenotype distributions in an admixed
17 population. The approach includes a quantitative-genetic model that relates a phenotype to underlying
18 loci that affect its trait value. We consider three forms of mating. First, individuals might assort in a
19 manner that is independent of the overall genetic admixture level. Second, individuals might assort by
20 a quantitative phenotype that is initially correlated with the genetic admixture level. Third, individuals
21 might assort by the genetic admixture level itself. Under the model, we explore the relationship between
2 genetic admixture level and phenotype over time, studying the effect on this relationship of the genetic
23 architecture of the phenotype. We find that the decoupling of genetic ancestry and phenotype can occur
2% surprisingly quickly, especially if the phenotype is driven by a small number of loci. We also find that
25 positive assortative mating attenuates the process of dissociation in relation to a scenario in which mating
2 is random with respect to genetic admixture and with respect to phenotype. The mechanistic framework
27 suggests that in an admixed population, a trait that initially differed between source populations might
28 be a reliable proxy for ancestry for only a short time, especially if the trait is determined by relatively
29 few loci. The results are potentially relevant in admixed human populations, in which phenotypes that
30 have a perceived correlation with ancestry might have social significance as ancestry markers, despite
31 declining correlations with ancestry over time.

32 Author Summary

33 Admixed populations are populations that descend from two or more populations that had been
34 separated for a long time at the beginning of the admixture process. The source populations typically
35 possess distinct patterns of genotype and phenotype. Hence, early in the admixture process, phenotypes
36 of admixed individuals can provide information about the extent to which these individuals possess
37 ancestry in a specific source population. To study correlations between admixture levels and phenotypes
38 that differ between source populations, we construct a genetic and phenotypic model of the dynamical
39 process of admixture. Under the model, we show that correlations between admixture levels and these
40 phenotypes dissipate over time—especially if the genetic architecture of the phenotypes involves only
41 a small number of loci, or if mating in the admixed population is random with respect to both the
a2 admixture levels and the phenotypes. The result has the implication that a trait that once reflected
43 ancestry in a specific source population might lose this ancestry correlation. As a consequence, in human
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4 populations, after a sufficient length of time, salient phenotypes that can have social meaning as ancestry
45 markers might no longer bear any relationship to genome-wide genetic ancestry.

« 1 Introduction

« Admixed populations descend from two or more source groups that have long been separated and that likely
s possessed distinct patterns of genotype and phenotype at the beginning of the admixture process. Among
s individuals in an admixed population in the generations immediately after its founding, admixture levels
s from any specific source population are highly heterogeneous [1,2]. For admixed individuals, measurements
si  of specific genotypes and phenotypes that differ in frequency or distribution between source populations can
s often provide reasonable estimates of individual levels of genetic ancestry in the particular source popula-
53 tions [3,4]—and for some phenotypes, such measurements might even be commonly regarded by researchers,

s« societies, or admixed individuals themselves as proxies for overall genetic ancestry [5-7].

55 Examples exist, however, in which genotypes or phenotypes initially associated with ancestry in one
s source population are decoupled from overall admixture levels, so that they no longer serve as tight prox-
s ies for ancestry [5,6,8-13]. For example, in human genetics, consider skin pigmentation and eye color,
ss  observable traits for which the phenotypic distribution differs substantially between sub-Saharan African
s and European populations. In the Cape Verdean admixed population, descended from European and West
e African sources, measurements of skin pigmentation and eye color are correlated with sub-Saharan African
o genetic ancestry [11]. At the same time, the correlations between phenotype and ancestry are imperfect;
e many individuals with a high proportion of sub-Saharan African genetic ancestry have skin pigmentation and
6 eye color traits in a range more typical of individuals with higher European genetic ancestry, and vice versa.
6 Similar patterns of incomplete correlation with overall genetic ancestry hold for genotypes that underlie

s these phenotypes [11].

66 How does ancestry level become decoupled from genotype and phenotype in an admixed population?
e Parra et al. [8] proposed one scenario for this decoupling, using an example of assortative mating by a phe-
6 notype correlated with ancestry in Brazil. Parra et al. suggested that in Brazil, assortative mating is largely
e dependent on “color,” a phenotypic measure based to a large extent on skin pigmentation. According to
7o this hypothesis, in a population descended from source groups with substantially different skin pigmentation
n  distributions (say, sub-Saharan Africans and Europeans), similarity according to a phenotype correlated
= with genetic ancestry (say, color) increases the probability that a pair is a mating pair. Mating probabilities
7z for pairs of individuals are more closely related to the phenotype than to overall sub-Saharan African or
7 European genetic admixture levels per se. Whereas in the early generations of such a process, the pheno-
7 type would strongly reflect genetic ancestry, after a sufficient length of time with assortative mating by the
7% phenotype, phenotypic variation would be maintained, but with similar genetic ancestry distributions for
7 individuals with substantially different phenotype (Figure 1). Only at genes associated with the phenotype

7 and their nearby linked genomic regions would genetic ancestry and the phenotype be associated.

79 Could genetic ancestry in an admixed population become almost entirely decoupled from the phenotypes
s that differ between its source populations? This scenario is intriguing, as it would eliminate any connection
a1 between visible phenotypic markers of genetic ancestry and the genetic ancestry itself; the phenotype of an

&2 individual on a trait such as skin pigmentation would reveal little information about the genetic ancestry


https://doi.org/10.1101/773663
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/773663; this version posted September 20, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Jaehee Kim 2019/09/12

s of molecular characters in an individual—other than for skin pigmentation genes and their closest genomic

& neighbors—nor about the total genomic ancestry of the individual.

8 We develop a mechanistic model describing the joint dynamics of admixture levels and phenotype dis-
s tributions in an admixed population. The approach includes a quantitative-genetic model that relates a
& phenotype to underlying loci that affect its trait value. We consider three forms of mating. First, individuals
s might mate randomly, or assort independently of the overall genetic admixture level. Second, individuals
s might assort by a phenotype initially correlated with the genetic admixture level, but that is not identical
o to it. Third, following studies that have detected evidence of assortative mating by genetic admixture levels
o or phenotypes that are tightly connected to them [14,15], individuals might assort by the genetic admixture
o2 level itself. Under the model, we explore the relationship between genetic admixture level and phenotype
o3 over time, studying the effect of the genetic architecture of the phenotype. We find that the decoupling of
o genetic ancestry and phenotype is not only possible, but it can occur surprisingly quickly, especially if the
s quantitative phenotype is driven by a small number of loci. Moreover, assortative mating is not required for
o6 genotype and phenotype to become decoupled. Indeed, assortative mating attenuates the process compared

o7 with a scenario in which mating is random with respect to admixture and with respect to phenotype.

o 2 Model

» 2.1 Population Model

100 Our mechanistic admixture model closely follows the model of Verdu, Goldberg, and Rosenberg [1, 16,
1 17], building on earlier related models [18-20]. We start with individuals in each of two isolated source
w2 populations, S; and Sa. At the founding of an admixed population (g = 0), a founding parental pool H{*
13 is formed, containing fraction s; o from population S; and so o from population Sy. That is, a random
w4 individual in HY™ originates from population S; with probability s1¢ and from Sy with probability sg .
s This choice requires 519+ 820 = 1 and 0 < 510,520 < 1. The individuals in the founding parental pool

s mate according to a mating model (Section 2.3) and produce generation g = 1 of admixed offspring (H3).

107 In subsequent generations (g > 1), in forming an admixed population H,1 at generation g + 1, three
s populations contribute to its parental pool H}*: the source populations (S1 and S3) and the admixed
s population (Hy) of the previous generation, with fractional contributions s 4, $24, and hg, respectively.
uo  Here, s 4, S2,4, and hy represent probabilities for a random individual in HP*" to originate from populations
w51, S, and Hy, with constraints s; 4 + s34 +hy = 1 and 0 < 514,524, hg < 1. Offspring resulting from
2 mating among individuals in the parental pool HP*" define the admixed population Hyy1. A schematic of

ns  the admixture model appears in Figure 2.

114 The total admixture fraction represents the proportion of the genome of an individual originating from a
us  specific ancestral population, S; or Ss. We denote an individual’s admixture fraction from source population
us Sp at generation g by H4 4, with the A indicating consideration of autosomal genetic loci. Given a pair of

17 individuals with admixture fractions Hl(ql))g and Hﬁi)g, the ancestry of their offspring is deterministically set

us  to the mean of the admixture fractions of the parents: Ha 411 = 3 (Hj(;)g + Hf)

7 g>. The possible values for
uo  the admixture fraction at generation g are 0,1/29,2/29,...,(29 —1)/29,1.
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w 2.2 Quantitative Trait Model

To model a phenotype, we adopt the quantitative trait model of Edge and Rosenberg [21,22]. We assume
each individual is diploid and that k& biallelic autosomal loci, each with the same effect size, additively
determine the value of a quantitative trait. At each trait locus, we denote the allelic type more prevalent
in population S7 than in population Sy as allelic type “17, and the other allelic type as “0”. The choice is
arbitrary in case the allele frequency is the same in the two populations. A diploid individual’s genotype at

locus i, ¢ € {1,2,...,k}, and allele j, j € {1, 2}, is represented by a random indicator variable L;;:

1 if the allele has type “1”
0 if the allele has type “0”.

Let M be a random variable representing an individual’s population membership, considering individuals
only from the source populations S; and Sy, and define allele frequencies for allelic type “1” at each locus

given the population membership:

P(Lij:1|M251):pi

11 Here, j can be either 1 or 2. Because we define allelic type “1” to be more common in population S; than

122 in population Sy, 0 < ¢; < p; < 1.

An individual’s trait value is determined by a sum of contributions across loci. At each locus, we denote
an allele that increases the trait value by “+” and the other allele by “—”. The total quantitative trait value
T of an individual given a multilocus genotype is an individual’s total number of “+” alleles. Whether the
“1” allelic type or “0” type is the “+” allele at locus ¢ is determined by a random variable X;, following
Edge and Rosenberg [21,22]:

1 if allelic type “1” is “+” allele at locus i
0 if allelic type “0” is “+” allele at locus 1.

s For a given set of values {X1, X5, , X} for k quantitative trait loci, the total trait value for a diploid

124 individual is equal to the total number of “4” alleles carried by the individuals, or:

2 2
Tlx, Xomxy= O, DL+ Y, > (1—Ly) (1)

{i:X;=1} j=1 {i:X;=0} j=1

s This quantity takes values in {0,1,...,2k}. An example of the quantitative trait model appears in Figure 3.

126 We adopt two scenarios for the X;. We first consider an idealized case in which the number of “1” alleles
7 is perfectly correlated with the trait value: P(X; = 1) = 1 and P(X; =0) =0 for all ¢ = 1,2,...,k, so
18 that allelic type “1” is the “+7 allele and allelic type “0” is the “—” allele for all loci. Because we define

120 “1” to be the more frequent allelic type in source population S, individuals from S; are more likely to have
10 a larger trait value than are individuals from S5. This scenario considers a case in which the phenotype is

1 systematically different between populations 1 and 2, and is depicted in the diagram in Figure 1.
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132 The second case is detailed in Edge and Rosenberg [21,22], where the trait is selectively neutral during
133 the population divergence and neither allele is preferentially correlated with the trait allele: P(X; = 1) =
m P(X;=0)= % for all i = 1,2,...,k, so that at each locus, allelic type “1” and allelic type “0” have equal
135 probability of being the “+” allele.

s 2.3 Mating Model

wr We next describe three different mating models: (1) random mating, in which any two individuals have the
138 same chance of reproducing, independent of phenotype or ancestry; (2) assortative mating by ancestry, in
1o which the probability that two individuals reproduce depends on their ancestries; and (3) assortative mating

u by phenotype, in which the probability that two individuals reproduce depends on their trait values.

141 In each generation g, the parental pool H}*" contains 2N individuals, N female and N male. The
)7f

; . . g
us  and Tg(z)’f , respectively. Analogous quantities for a male j are Hl(qj))sjm and Téj )™ We construct an N x N

12 admixture fraction from source population S; and trait value of a female individual ¢ are denoted by HS

1 mating probability matrix M, whose entry m;; represents the probability that a female 7 and a male j mate:

1),m 1),m 2),m 2),m N—-1)m N—-1)m N),m N),m
(HO Ty TP D Ny i
(Hgl’)j, T;l)’f) mi mio RIS ml(Nfl) min
(HE,! 1) may mas - ma(v-1) N
(H,g;;)’f’ Tg(Zil)’f) M(N-1)1 M(N-1)2 e M(N-1)(N-1) TUN-DN
(H) 1§ ) ma mae NNy AN

(2)

145 In the absence of selection, every individual in the population must have the same expected number
s of offspring irrespective of ancestry or phenotype. We assume that the expected number of offspring of an
w7 individual is proportional to the expected number of matings of the individual. This quantity is the sum of
us mating probabilities across all mates available for an individual. Therefore, the equal-offspring requirement
1o translates into an assumption of equal row sums for females and equal column sums for males in the mating
150 matrix in Eq. 2. Note that this assumption of equal numbers of offspring independent of ancestry and
11 phenotype accords with a standard property of assortative mating models that assortative mating on its own

152 does not alter allele frequencies over time [23-28].

153 The mating probability m;; in Eq. 2 between female ¢ and male j can be expressed as:
mij = aigp(Hy ! TS 1 T, 3)

1+ where 9 is a function that quantifies the dependence of the mating probability m;; on the ancestry and
155 trait values of the individuals in a pair, and «;; is a normalization constant specific to the mating pair (3, j).
15 The constant a;; is included in order to permit the matrix entries to satisfy the constant row and column
157 sum constraints. Without loss of generality, we choose the constant row and column sums to be 1 so that
1z the mating probability matrix M is doubly stochastic. Procedures to evaluate the o;; appear later in the

159 section. The properties of ¢ are determined by a mating model.
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160 In random mating, the mating probability is independent of individual ancestry and trait values, so that
161 w(HX)g’f, Tg(l)’f, Hg)g’m, Tg(j)’m) is constant across all ¢ and j, and m;; has the same value for all mating pairs.

iz Therefore, for all pairs (4, j), each taken from {1,2,..., N}, m;; = o;; =  for some constant « € [0, 1].

163 In assortative mating by ancestry, the mating probability depends only on the ancestries of poten-
1« tial mates and not on the phenotypes: w(HX?éf,Tgi)’f,HX)g’m,T;j)’m) = w(HX?éf7Hg,§m) and m;; =
165 aijw(HX?éf , HE{’L’M). For positive assortment, the mating function v has higher values if two individuals
16 have similar ancestries and lower values as the ancestries become more different. For example, in complete
167 assortment, 1 is 1 if the two input parameters have the same value and 0 if the values differ. For negative
168 assortment, the behavior of v is reversed compared with the positive assortment case: v increases as the

1o difference between the ancestries of the two individuals in a mating pair increases.

170 In assortative mating by phenotype, the mating probability depends only on the trait values of po-
i tential mates and not on the ancestries: w(HS,)éf,Tél)’f,HX)q’m,Tg(J)’m) = (T 7™ and my; =
172 aijzb(Téz)’f , TESJ )’m). The qualitative requirements for the function ¢ are the same as with assortative mating

w3 by ancestry, but with the trait values of the mating pair as arguments instead of the ancestries.
174 We adopt the following form for the mating function:

7c\X§i>’f7X§j)”m\

YT Xy = (4)

s The finite constant ¢ quantifies the strength of the assortative mating. For a given pair of values (X g(i)"f , X g(j )7m),
ws  where X, = Hy 4 or Xy = T}, a larger c value results in a lower mating probability, which gives stronger
177 positive assortative mating compared with a smaller ¢ value. For a positive value of ¢, the function takes a
ws  value of 1 if two potential mates have the same ancestry level (or phenotype), and ¢ decreases exponentially
7o as the difference between the two individuals increases. A negative value of ¢ indicates negative assortative
1o mating, where two individuals with different ancestry (or phenotype) have a higher probability of mating

11 than do two individuals with similar ancestry. We focus on positive assortative mating.

182 At each generation g, the admixture fraction Hy4 g takes values in {0,1/29,2/29 ..., (29 —1)/29,1}
13 (Section 2.1), and the phenotype T, takes values in {0,1,...,2k} (Section 2.2). To compare statistics from
s different mating schemes, we consider variables that are standardized by dividing X, (Ha,4 or Ty) by its
15 standard deviation ox, based on its distribution in HJ*" at each generation g. For the unstandardized
1 variables, because T, takes a higher value than H,4 g4, the effect of assortative mating by phenotype at the
17 same assortative mating strength c is artificially inflated compared to the effect of assortative mating by

s admixture fraction.

189 Having specified the mating function 1, we now formally state the normalization condition for the mating
1w matrix M: the sum across potential mates of the mating probabilities of a random individual in the parental
11 pool must be 1. Recalling that each entry m;; in M represents the probability that individuals 7 and j mate,
12 the condition requires the row and column sums in the mating matrix to be 1 for each row and column. We

s start with an unnormalized mating matrix M = [m;;] whose entries are:

1 random mating
mij = w(HS?éf, HX)g’m) assortative mating by ancestry (5)

w(Tg(i)’f, T;j)’m) assortative mating by phenotype.
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e We must obtain N? normalizing constants «;; such that the mating matrix M = [m;;] = [a;;m;;] satisfies
15 the double stochasticity requirement. This requirement gives 2N constraints, one for each row and one for
16 each column. Because each entry in the mating matrix represents the probability for two individuals to

1w mate, we also require m;; to be in [0,1] for all (¢,7) € {1,2,...,N}2.

108 Infinitely many matrices satisfy the constraints, as the set of 2N equations with N? variables is underde-
10 termined. We choose the matrix M by identifying the matrix that satisfies the set of constraints and that is
20 closest to our model matrix M according to the principle of minimum discrimination information (pp. 36-43
a0 in [29]). Here, the “closeness” of a pair of matrices is measured by the Kullback-Leibler divergence Dgr,

22 (pp. 1-11 in [29]), which is nonnegative and is equal to zero if and only if the two matrices are identical.

203 The problem of identifying M can be formally written as a convex optimization problem. The objective

204 function that we seek to minimize is

N N
— Mis
min Dy (M||M) = min m;; log —2, 6
g, Do (M) = i 523 s o 22 (6)
and we have constraints
N
Zmij =1 for each ¢ from 1 to NV,
j=1
N
Zmij =1 for each j from 1 to N,
i=1
0 <my; <1forall (i,5) € {1,2,--- , N} (7)

We use the interior-point method [30,31], which iteratively traverses within the feasible region to obtain the
optimal solution numerically, as implemented in mosek function of R package Rmosek [32]. For fixed M,

the Hessian of the KL divergence has

O?Dycr,(M||M) 1

05105
8m¢j8mu Mg kCits

s where ¢ is the Kronecker delta. Because V2Dgy > 0 for all mi; € (0,1), the KL divergence function is

s strictly convex (Section 3.1.4 in [33]) in each of the N? variables in M for fixed M , and thus, the optimal

207 solution found by numerical minimization is the unique global minimum (Section 4.2.1 in [33]).

w 2.4 Expectation and Variance of the Admixture Fraction

200 To interpret our simulations of admixture dynamics, we will need a series of results concerning the mean and
20 variance of the admixture fraction in the admixed population. In particular, we derive a relationship between

an the variance of the admixture fraction and the correlation in admixture levels for members of mating pairs.

212 Let H4 4 be a random variable representing the admixture fraction of an individual chosen at random
2z in the admixed population H, at generation g > 1. We denote by (H 1’;’3;, H{"7) the admixture fractions of
24 the members of a mating pair chosen at random from a parental pool H)®" in generation g > 0. Here, the

25 superscript p denotes that the individual is from the parental pool. The parental pool H}*, from which
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26 the admixed population H,;; at generation g + 1 is formed, consists of populations Si, S2, and Hy, with
a7 fractional contributions s1 4, s2 4, and h, respectively (Section 2.1 and Figure 2). Because we assume each
zs  population (Si, Sz, and Hy) has equally many males and females, the numbers of males and females each
29 remain constant at N, every individual has the same expected number of offspring, and no sex bias by

20 population of origin exists in parental pairings (Section 2.3), H I{;’f; and HX’; are identically distributed.

21 Let the random variable Y indicate the population membership of a random individual in H}*". Then

Ha, with P(Y = H,) = h,
HAP HP =1 with P(Y = 1) = 51, (8)
0 with P(Y = SQ) = S52,g9-

For the expectation of admixture in the parental pool, we have

EIHY] = B = By [EIHE | Y]] = >0 PO =yEHS, 1Y =y
ye{Slst7Hy}
=519+ hgE[Ha4| = 51,4 + hglig. (9)

As a consequence of Eq. 9, we also have

E[(H,J;’,Z)Q} = E[(ng))z] =819+ th[fo,g] =814+ hg“g + hgVar[H 4 4] (10)
Var[H4?] = Var[H"P] = 51,4 + hop + hgVar[Ha o] — (51,4 + hgpg)?. (11)
22 Here, ny, = E[Hy ,] indicates the expectation of the admixture fraction of a random individual in the

23 admixed population H, at generation g > 1.

224 The ancestry of an offspring individual is deterministically set to the mean of the admixture fractions of

25 the parents. This choice gives:
1
E[HA,g—&-l] = E[i(HIJ;’z + Hzljgp) = S1,49 + th[HA,g] = S1,4 + hg‘LLg. (12)
We obtain the recursion for the variance of the admixture fraction over a single generation as follows:

Var[Ha 1] = B[H3 g 1] — (E[Ha g4+1])°

E[(HAY + HYD)(HAYS + HY'D)] — (B[Hag))?

E[(HEh)?) + EIHEHD) — (BlHag])?

/N N

E[(H{%)?) + CorlHEh, HA 2 Varl HE%) + (BIHE)?) = (E[Hag51])?

(1 711,,9) [ g VarTHo g + 21y (1= hg) = 2ptghgs1g + 51,41 = 51,)], (13)

NN ORI ORI SN

»s  where g, o = Cor[H ﬁ”’;, Hzg)] denotes the correlation of the admixture fractions in a mating pair. The
27 last step is obtained from Eqgs. 9-12. As we will see, the time-varying rg, 4 value in general depends on the

»s  parameters of the population model, the quantitative trait model, and the mating model.

220 For a special case of a single admixture event in which source populations S; and Ss do not contribute
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20 to the admixed population after its founding (s1,4 = s2,y = 0 and hy = 1 for all g > 1), the expectation of

2 the admixture fraction stays constant in time (Eq. 12), and the variance reduces to a simple formula:
1
Var[Hag] = 5(1+71,,9) Var[Ha,). (14)

22 Under random mating in an infinite population with no ongoing contributions from the source populations,
2 with rg, o = 0 for all g > 0, Eq. 14 reduces to the formula Var[Ha 4] = s1,0(1 — $1,0)/29 of Verdu and
2¢ Rosenberg [1]. Eq. 14 has also been derived by Zaitlen et al. [27] but under assumptions of constant mating

x5 correlation (rg, o = ) across all generations, no migration, and infinite population size.

» 3 Simulation

» 3.1  Simulation Procedure

28 Having specified the populations of interest, the properties of trait values in the populations, and the mating
20 probabilities for pairs of individuals, we now describe how we simulate populations under the model. At the
20 first time step (g = 0), s1,0N and s2, 0N males are randomly generated from the source populations S; and
21 So, respectively, with s; g + s2 9 = 1. The corresponding numbers of females s; o/N and s oV are randomly
22 drawn from source populations, S; and Ss, respectively, constituting the founding parental pool HJ™ of
23 2N individuals, with IV males and N females. All individuals in source population S; have an admixture
aa fraction value of 1, and all individuals in source population Sy have an admixture fraction value of 0, by
25 definition. For each individual in populations S; and S3, genotypes at each of k quantitative trait loci are

s then randomly generated on the basis of pre-specified allele frequencies p; and ¢;.

247 We consider two different distributions for the p; and ¢;. First, we assume that the two source populations
xus display fixed differences at all trait loci, so p; = 1 and ¢; = 0 for all k£ loci. In this case, every individual in
29 population S has the “1” allele at all trait loci, and every individual in population Sy has the “0” allele at
»0 all trait loci. In subsequent generations, allele “1” can be traced back to population S, and allele “0” to So
s (Figure 1). This choice for the p; and ¢; models a case in which trait-influencing alleles are initially entirely

s predictive of ancestry and vice versa.

253 Second, departing from the idealized model, we simulate sets of k allele frequency pairs (p;,q;),7 €
s {1,...,k} following Edge and Rosenberg [22]. Allele frequencies 7; for derived alleles in the “ancestral”
5 population of S; and Sy are drawn based on the neutral site frequency spectrum: P[m; = j/(2N,)] < 1/4,
6 where N, indicates the size of the ancestral population (Eq. B6.6.1 in [34]). We use 2N, = 20,000. We
»7  assume each locus ¢ in S and Sy undergoes independent genetic drift following a split. We add random
s numbers €1 and €; 2 drawn from a Normal(0,ym;(1 — 7;)) distribution to m; to simulate derived allele
»0  frequencies at locus i in populations S; and Ss, respectively. The parameter v represents the amount of
%0 variance introduced by drift into the allele frequencies of the divergent populations. Following Edge and
21 Rosenberg [22], we choose v = 0.3 so that the overall degree of genetic differentiation between S; and S
%2 at a group of simulated loci approximates worldwide human Fgsr estimates. If €;; > €; 2, then we assign
w p;=mi+€1and ¢ =m €9 If €1 <€ o, then we assign p; =1—(m;+¢;,1) and ¢; =1 — (m; +¢€;,2). Note
s4  that if this procedure produces p; > 1 or ¢; < 0, then we assign p; = 1 and ¢; = 0 so that 0 < ¢; < p; < 1.
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265 Using the mating function in Eq. 4, we compute an unnormalized mating matrix for every pair containing

% a male and a female from the parental pool:

1 e—CA12 cen emCALN-1 e~ CALN
e—cAz2.1 1 L. e~ CA2,N-1 e—CA2N
M = : : . : : , (15)
e—CAN—1,1 e_CAN—lﬁ L. 1 e—CAN—1,N
e~ CAN1 e~ CAN,2 .. e CANN-1 1
h N H(i),f —H(j)’m |/ f tati tine b " dA;,; =] T(i):f _T(j)7m |/
w1 where A;; = | Hy'g Ao |/oH,, for assortative mating by ancestry and A, ; = | Tj o oT,

x%s for assortative mating by trait. For random mating, ¢ = 0 and all entries equal 1. The matrix M is

%0 normalized using the procedure of Section 2.3, producing the mating probability matrix M.

270 Considering all N? potential mating pairs, we randomly draw N mating pairs with replacement from
on the parental pool, weighting mate choices by the mating probabilities in M. Once mates are chosen, each
a2 mating pair produces two children, one male and one female, in order to keep the population size of the
oz offspring generation constant at N males and N females. An admixture fraction for an offspring individual
o 1s then assigned as the mean of its parental admixture fractions. Assuming no linkage disequilibrium and no
s mutation, the genotype of the offspring at the quantitative trait loci is then determined by independently
as - selecting at each locus one random allele from one parent and one from the other. The resulting 2N offspring

or form the admixed population H; at generation 1.

o78 In subsequent generations g > 1, we randomly select s; ¢N, s 4N, and hyN males and s1 4N, s3 4N,
o and hyN females from Sy, Sz, and Hy, respectively, forming a gth generation parental pool HP* of 2N
20 individuals, consisting of NV males and N females. The procedure to generate the offspring population Hy;

a1 from HP™ is the same as the procedure for generating H from Hy™.

282 Throughout the simulation, we keep the population size parameter N constant at 1,000 for computational
283 efficiency in the matrix normalization step. Here, the admixed population size (N) is not necessarily identical
284 to the source population sizes (N, ). For each set of parameters, (k, p1,D2, -+, Pks @1,G2, - - - » Qs X1, X2, - -« » Xk,
w5 C,81,0,81,9,52,4), We propagated the population to G = 40 generations. We generated 100 independent tra-
26 jectories for each parameter set. For each trajectory, we computed statistics of interest, averaging them over

27 all 100 trajectories in the simulation given the fixed set of parameters.

# 3.2 DBase Case

20 We start with an idealized base case. First, we specify the parameters involving the population model
w0 (Section 2.1). We assume an equal influx from each source population at founding g = 0: s1 = 0.5,
2w S0 = 1 — 510 = 0.5. We also assume no additional contributions from the source populations in the

22 subsequent generations, sy, = s34 =0, and hg =1 —51 4 — 524 =1for all g > 1.

203 Next, we choose parameter values for the quantitative trait model (Section 2.2). We consider k = 10
20s  trait loci. Across the k loci, all “1” alleles come from source population Sy and all “0” alleles come from So:
s p;=1and g, =0foralli=1,2,..., k. For each locus i contributing to the quantitative trait, we define “1”
206 to be the “+” allele and “0” to be the “—” allele: X; =1 foralli=1,2,..., k.

10
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207 Finally, for the mating model (Section 2.3), we set the assortative mating strength ¢ in Eq. 4 to 0.5.

0 3.3 Statistics Measured

200 In each simulated admixed population, in each generation g, we computed the following statistics: correlation
w0 between admixture fraction and trait (Cor[H,T]), variance of the admixture fraction in the population
sn (Var[Ha4]), and variance of the trait value in the population (Var[T]). In the following section, we discuss

w2 how these statistics of interest change as we modify the simulation parameters.

w 4 Results

0 4.1 DBase Case

ws 4.1.1 Correlation between genetic ancestry and phenotype (Cor[H 4,T])

36 In the base case, each individual from S; has admixture fraction H4 = 1 and trait value T' = k, and each
sr  individual from S5 has admixture fraction H4 = 0 and trait value T' = 0. Therefore, in the founding parental
ws  pool, HJ™, admixture fraction and trait value are perfectly correlated: Cor[H4,T] = 1. In subsequent
30 generations, however, the correlation between the admixture fraction and the trait values starts to decouple,
a0 as illustrated in Figure 1. With all parameters involving the population model and the quantitative trait
su  model fixed, the rate of decay in Cor[H 4, T] depends on the mating model.

312 A comparison of Cor[H,,T] under the three mating models using base-case parameters appears in
a3 Figure 4E. Irrespective of the mating model, the founding parental pool has a perfect correlation between
s ancestry and phenotype. Even if the population starts with perfect correlation between admixture fractions
a5 and trait values, however, then random mating rapidly decouples them (red curve). It takes 6 generations
a6 of random mating for the correlation to decrease below 0.5 (Cor[Ha,T| = 0.490). After g = 20 generations,

s the correlation becomes 0.137, and it is near zero at g = 40 (—0.003).

318 Compared to random mating, positive assortative mating slows the decoupling of admixture fractions
a0 and trait values. Assortative mating by phenotype (green curve in Figure 4E) maintains the correlation
»20 longer than assortative mating by admixture fraction (blue curve in Figure 4E). It takes 11 generations
a1 under assortative mating by phenotype for the correlation to drop below % (Cor[Ha,T] = 0.490), and 10
s generations under assortative mating by admixture (Cor[Ha,T] = 0.443). Across the 40 generations we
w2 simulated, Cor[H 4,T] is consistently higher under assortative mating by phenotype than under assortative
24 mating by admixture fraction. The correlation decreases to 0.227 at g = 20 and 0.043 at g = 40 under
s assortative mating by phenotype. The corresponding values under assortative mating by admixture are

2 0.065 at g = 20 and 0.009 at g = 40, both considerably lower than under assortative mating by phenotype.

327 The speed of the decoupling between admixture fraction and trait value increases with two factors:
s Mendelian noise in generating admixed individuals from the admixed population and decreasing contributions
29 from the source populations. Compared to random mating, both assortative mating models have higher
s probabilities for matings within source populations, and thus, the proportion of individuals produced in the

sn admixed population at g = 1 that are genetically admixed is smaller (blue and green lines in the marginal

11
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sz plots for Hs in Figure S1A). Over time, as displayed in Figure S1, random mating pulls individuals away
a3 from the source populations, pushing the H, and T distributions towards the mean values rapidly. On the
s other hand, both assortative mating models maintain individuals with H4 and T values near the source

35 population values for longer, and thus, they retain higher Cor[H4,T] than random mating.

The difference in Cor[H,T] between the two assortative mating models arises from the difference

between Var[H 4] and Var[T']. Cov[H4,T] is similar under the two models. Given the similar covariance,

Cor[Ha, T)phen N Var[H algen y Var[Tgen
Cor [HA7 T} gen - Var[HA}phen Var [T]phen 7

where the subscripts “gen” and “phen” indicate the property on which mating pairs assort. As we show in the
next section, both assortative mating models increase Var[H 4] and Var[T| compared to random mating, and
the increase in variance is the largest for the property on which mating assorts: Var[Halgen > Var[H ]phen
and Var[T|pnen > Var[T|gen. However, we will see that the increase in Var[H 4] due to assortative mating by

admixture fraction exceeds the increase in Var[T] due to assortative mating by trait:

Var[H algen o Var[T]phen
Var[H A]phen Var[T] gen ’

16 This result leads to higher Cor[H 4, T] under assortative mating by trait compared to that under assortative

37 mating by admixture fraction.

18 4.1.2 Variance of Ancestry and Phenotype (Var[H 4] and Var[T])

19 Bach individual in S7 has admixture fraction 1, and each individual in S has admixture fraction 0. In
s the founding parental pool, Var[H 4] = 0.250 for all three mating models. As discussed in Section 2.4, the
s variance of the admixture fraction can be understood in relation to the correlation coefficient Cor[H ﬁ, g HA g]
s of the admixture fractions of members of mating pairs. Figure S2 shows this correlation coefficient for the

w3 simulations of Figure 4, and Figure S3 shows the analogous correlation Cor[Tgf , Tg"] of trait values.

4 Figure 5E then shows the variance of the admixture fraction over time under the three mating models,
us  for the same simulations from Figure 4E with the base case parameters. The Var[H 4] curves in Figure 5E

ss under the three mating models follow Eq. 13, using the time-varying g, 4 in Figure S2.

a7 Among the three mating models, Var[H 4] decreases fastest for random mating. After one generation,
us  Var[H 4] falls in half (0.125), and it continues to decrease monotonically by half. After 40 generations, the
u  value decreases to 2.118 x 10713, The distribution of the admixture fraction concentrates around H4 = %
w0 at each generation. Because the offspring admixture fraction is the mean of those of its parents, without
1 additional influx from the source populations after the founding event, random mating rapidly drives the

2 admixture fraction away from extreme values (0 or 1) toward the mean value of the parental pool (%)

353 Under assortative mating by admixture, pairs with similar admixture fraction have higher mating proba-
34 bilities than under random mating. The fraction of offspring that are admixed is smaller than under random
555 mating, and the admixture fraction distribution remains close to the extreme values (0 or 1) for longer
36 (Figure S1). Hence, Var[H 4] is larger under assortative mating by admixture fraction (Figure 5E). Without

ss7 influx from the source populations, Var[H 4] eventually decreases to zero, but the decrease is slower than

12
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38 for random mating. Var[H 4] = 0.184 after one generation of assortative mating by admixture fraction, and
s Var[H,| = 1.118 x 1078 after 40 generations. This result can also be seen in Eq. 13. From generation g
0 to g+ 1, Var[Hy], decreases by a factor of (1 + 7w, 4)/2. With positive assortative mating by admixture

se0 (TH,,g > 0), Var[H,4| in the next generation is increased compared to the case of random mating (75,4 = 0).

362 Under assortative mating by phenotype, Var[H 4] = 0.183 after one generation of assortative mating by
s phenotype, and Var[H ] = 4.910 x 10712 after 40 generations. For the first few generations (g < 5), because
e Cor[Ha,T] is high, the correlation between the admixture fraction of mating pairs, and thus Var[H 4], is
s similar under the two assortative mating models, as shown in the comparison of the green and blue curves
w6 in Figures S2 and 5. However, because the admixture fraction and phenotype decouple by introduction of
s7 the Mendelian noise, mating assortatively by phenotype results in lower 7z, , than mating assortatively
we by admixture fraction. In accord with Eq. 13, assortative mating by phenotype produces faster decay in

w0 Var[H 4| with its lower rg, 4 at each generation than assortative mating by admixture fraction.

370 For the variance of the phenotype, using Eq. 1, all individuals in S; and S have trait values of 20
s and 0, respectively. Therefore, in the founding parental pool, Hy™", noting that S; and S2 each have 1,000
sz individuals, this variance has the same constant value of ig% -10% = 100.050 irrespective of the mating model.
sz Figure 6E displays the variance of the phenotype, which decreases most rapidly under random mating. After
s one generation of random mating, Var[T| decreases by half (50.025), and it approaches its steady-state value
s of &~ 4.957 after 13 generations. Opposite to what was seen for Var[H 4], however, assortative mating by
s  trait retains Var[T] higher for longer than assortative mating by admixture fraction. Similar to the case with
sn Var[H 4| under assortative mating by admixture fraction, assortative mating by phenotype keeps the trait

s values close to extreme values for longer than the other two mating models.

319 Having examined the behavior of Cor[H 4, T, Var[H 4], and Var[T] in the base case, we now explore the
s effect of the assortative mating strength ¢ and the parameters involving the quantitative trait—the number

s of loci k, allele frequencies p; and ¢;, and trait contribution at each locus X;—on these quantities.

w 4.2 Assortative Mating Strength (c)

w3 4.2.1 Cor[Ha,T]

s« Bach row of Figure 4 illustrates the influence of the assortative mating strength ¢ on Cor[H 4, T] with a fixed
;s number of trait loci &, and each column depicts the effect of the number of loci k on Cor[H 4,T] with fixed

s assortative mating strength c. All parameters other than ¢ and k are held constant at the base case values.

387 With different assortative mating strengths and numbers of trait loci, ¢ = 0.1,0.5,1.0 and k£ = 1, 10, 100,
ss  the qualitative behavior of Cor[H 4, T] over time remains the same as in the base case. As before, we observe
0 decay in Cor[H 4, T] under all three mating models, with random mating decoupling ancestry and trait values
30 the most rapidly. Cor[H 4,7 remains higher for longer under assortative mating by phenotype than under
s assortative mating by admixture fraction. The rate of decay and the degree to which the patterns differ

s across the three mating models depend on the assortative mating strength and the number of loci.

303 If assortative mating is weak (¢ = 0.1 in Figure 4A, D, G), then the effect of assortative mating is small,
s« and thus, Cor[H4,T] under assortative mating by admixture and by phenotype closely follows that under

s random mating. This pattern is seen irrespective of the number of loci. Note that in the limit of ¢ = 0, the
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s assortative mating and random mating models are identical because the mating function in Eq. 4 becomes

s7  a constant, the same value for all three mating models.

308 Comparing panels within rows of Figure 4, the results from random mating are identical, as the assortative
w0 mating strength does not affect the random mating model. Under both assortative mating models, however,
wo  Cor[Ha,T] increases with the assortative mating strength. In an extreme case of complete assortment
w (¢ — 00), the correlation would stay constant at 1 across all generations: we start with complete correlation
w2 between admixture and phenotype, and ¢ — oo implies that only identical individuals can mate, so that the

w3 correlation persists unchanged.

404 The difference among the three models increases with the assortative mating strength given a fixed
ws number of trait loci. The difference is the greatest if ¥ = 1 and ¢ = 1.0 (Figure 4C). Even after 40
ws  generations, assortative mating by trait retains a high correlation at 0.788, whereas the corresponding values

w7 under random mating and assortative mating by admixture are 0.006 and 0.010, respectively.

ws 4.2.2 Var[H 4] and Var[T]

w0 The plots of Var[H 4] in Figure 5 and Var[T] in Figure 6 consider the same simulations that appear for
a0 Cor[Ha,T] in Figure 4. As is seen in classical work [26, 35, 36], compared to random mating, assortative
a1 mating increases the variance of the property on which assortment takes place. Thus, the variance of the
a2 admixture fraction is increased to a greater extent under mating by admixture fraction than under mating
a3 by phenotype. Similarly, the variance of the phenotype is increased to a greater extent under mating by
s phenotype than under mating by admixture fraction. Both types of assortative mating increase both Var[H 4]

as and Var[T| compared with random mating.

a16 The variance-increasing effect of the assortative mating is visible when comparing panels within each
ar row. For low assortative mating strength (¢ = 0.1), panels A, D, and G in Figures 5 and 6 show that
ss minimal differences in Var[H 4] and Var[T] exist between mating models. As c¢ increases, for a given number
a9 of loci, Figures 5 and 6 display increased differences between random and assortative mating, with maximal
w20 separation at the largest assortative mating strength simulated, ¢ = 1 (panels C, F, I). The random mating

= model is unaffected by the assortative mating strength ¢, as was seen with Cor[H 4, T] in Section 4.2.1.

» 4.3 Number of Trait Loci (k)

o 4.3.1 COI‘[HA,T]

w2 A comparison of panels within columns of Figure 4 shows that under random mating, with more loci as-
w5 sociated with the phenotype, the ancestry-phenotype correlation is higher and stays high for longer. In
w6 other words, it takes longer for H4 and T to become decoupled. In particular, under random mating, the
a7 correlation between trait and ancestry falls below 0.5 at ¢g =3 if k=1, g = 6 if £k = 10, and g = 10 if

w2k =100, independent of the assortative mating strength.

220 As the number of loci increases, results from the models with assortative mating by phenotype and by
a0 admixture become similar. If (¢, k) = (1,100) (Figure 4I), then it takes 24 generations for Cor[H 4, T values
a under the two models to differ by more than 0.1. Corresponding times for (¢, k) = (1,1) (Figure 4C) and
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(¢, k) = (1,10) (Figure 4F) are g = 6 and g = 15, respectively. Recall that the admixture fraction represents
a3 the probability that a random allele at a random autosomal genetic locus originates from source population
aa S1, assuming infinitely many loci. In the k — oo limit, with the whole genome contributing to the trait, the

a5 assortative mating models by admixture and by phenotype would behave in exactly the same way.

s 4.3.2 Var[H 4] and Var[T]

s Comparing panels within columns in Figure 5, for a given assortative mating strength, Var[H 4] under
a3 assortative mating by admixture follows the same curve irrespective of the number of loci. Because the

a9 mating probability is independent of trait values if mating assortatively by admixture, k has no effect.

440 As in the base case (Section 4.1.2), both assortative mating models have higher Var[H 4] and Var[T] than
w1 random mating. Of the two assortative mating models, assortative mating by admixture fraction has greater
w2 Var[H,| than assortative mating by trait at each generation. For Var[T], assortative mating by trait has
w3 greater values than assortative mating by admixture fraction. As was seen with Cor[H 4,T] (Section 4.3.1),
aa  for Var[H 4] and Var[T], the difference between random mating and both assortative mating models increases

ws  with &k, and the difference between the two assortative mating models diminishes as k increases.

« 4.4 Allele Frequencies (p; and g;)

w7 Departing further from the base case, we next evaluate the effect of the allele frequencies, p; and ¢;, on
us  the quantities of interest. Instead of treating the two source populations as fixed for different alleles, the
wo  frequencies p; and ¢; are now sampled according to the simulation procedure described in Section 3.1.
0 Because our results show a monotonic trend across the number of loci we examined (Section 4.3), we focus

s this analysis on a single value of £ = 10, the number of loci corresponding to the base case.

w2 4.4.1 COI‘[HA, T]

»s3 Figure 7TA displays Cor[H 4, T| under the model with simulated rather than fixed allele frequencies. Cor[H 4, T
¢ starts from a lower correlation value at time g = 0, 0.456, compared to the base case (Figure 4E) value of
w5 1. If all loci have X; = 1, as shown in Eq. 1, then an individual’s trait value is determined by the number
s of “1” alleles across the trait loci. Because the allele “1” is randomly drawn at each locus i = 1,2,... )k
7 with probabilities P(L;; = 1 | M = S;) = p; and P(L;; =1 | M = S5) = ¢; with j = 1,2 (Section 2.2)
s and the mean absolute difference between simulated p; and ¢; across k loci is small, some individuals in the
w0 source population S; have lower trait values than some individuals in S5, and vice versa. However, due to
w0 the constraint p; > ¢; across all trait loci, individuals from S have higher probability of having a larger trait
w1 value than those from Ss. This property accounts for the nonzero correlation between ancestry and trait

w2 present in the source populations outside the base case setting.

463 The qualitative differences between the three mating models remain similar to the base case, as shown
ws in Figure 7A. All three mating models, however, show an increased rate of decoupling between the admix-
w5 ture fraction and the trait, in that the correlation decreases more rapidly. For random mating, it takes
ws only 4 generations for Cor[H4,T] to drop to below half of its starting value, reaching 0.170. The corre-

w7 sponding values under assortative mating by admixture fraction and assortative mating by trait are g = 5
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ws (Cor[Ha,T] = 0.240) and g = 10 (Cor[H 4,T] = 0.220), respectively. Compared to the base case, the cor-
wo relation between ancestry and trait in the source population is weaker if the allele frequencies are drawn
a0 from the simulation, and thus, the “1” allele does not necessarily trace back to the source population Sj.
an Under this setting, the effect of the Mendelian noise in decoupling of admixture fraction and phenotype in

a2 producing admixed individuals becomes more significant than the base case.

a3 4.4.2 Var[H 4] and Var[T]

s The admixture fraction values at the source populations are not affected by the allele frequencies: H4 = 1
ws and Ha = 0 for all individuals in S7 and Ss, respectively. If s 9 = s2,0 = 0.5, then Var[H 4] starts at 0.25 in
w6 the founding parental pool, irrespective of the allele frequencies. Comparing Figure 7B and 5E, the Var[H 4]
a7 curves under random mating (red) and assortative mating by admixture (blue) are not affected by the change
as  in allele frequencies p; and g;, holding other parameters fixed. Under random mating and assortative mating
a9 by admixture, mate choice is independent of the parameters that affect the quantitative trait, and thus, the

w0 change in p; and ¢; does not alter the admixture fraction distribution at each generation.

281 By contrast, under assortative mating by phenotype, Var[H 4] (green) is affected by the change in the
«2 mnature of the allele frequencies. Var[H 4] under assortative mating by phenotype closely follows that under
@ random mating. The simulated allele frequencies have relatively small differences (§ ~ 0.0509) between
s source populations S; and Sy. With X; =1 for all loci, the between-group difference in trait values is small
w5 as well, whereas all individuals in S; and Sy still have Hy = 1 and H4 = 0, respectively. Therefore, with
s the simulated allele frequencies, the effect on the admixture fraction of assortative mating by phenotype
a7 is similar to that in the random mating case. This scenario contrasts with the base case, where allele “1”
w8 can be associated with the source population S; with certainty, and Var[H 4] under assortative mating by

w9 phenotype behaves similarly to the case of assortative mating by admixture fraction.

490 With the simulated allele frequencies, Var[T] = 0.877 in the founding parental pool. At g = 1, Var[T]
a1 values under random mating and under assortative mating by admixture are 0.784 and 0.825, respectively.
w0 Assortative mating by admixture maintains higher Var[T] than random mating until g = 8 and then follows
w3 the Var[T] curve for random mating. By contrast, Var[T] under assortative mating by trait gradually

sa  increases until g = 13, at which it achieves its maximum of 0.977, and then decreases to 0.935 at g = 40.

o 4.5 Trait Contributions of Individual Loci (X;)

ws  Returning to the case with fixed allele frequencies of 1 and 0 in the source populations, we next examine the
w7 case in which the trait has the property that both alleles have equal probability of being the “4” allele, as
s described in Section 2.2: P(X; = 1) = P(X; = 0) = % for all i = 1,2,...,k. Figure 8 displays the results
w0 using the number of trait loci from the base case, K = 10. The qualitative behavior of the result does not

s0  depend on the number of loci with the other parameters fixed.

s 4.5.1 COI‘[HA,T]

s If we let the number of loci with X; = 1 be z, then the number of loci with X; = 0 is k — z. Because

s p; = 1 and ¢; = 0 across all loci in the base case, the trait value is 2z for every individual in S; and
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s 2(k — z) for every individual in Sy (Eq. 1). For a randomly generated set of X;, {i = 1,2,...,k}, under
o P(X; =1) = P(X; =0) =3, if 2 # k — z, then Cor[Hs,T] = 1 in the founding parental pool H}™, as
s6  shown in Figure 8A. However, compared with the base case (Figure 3.2), the correlation decays much more
sor  rapidly. With the P(X; = 1) # 1 setting, the ancestry and trait are not as tightly coupled in the source
ss populations. However, as in Section 4.1-4.4, assortative mating by phenotype preserves the correlation for

s0  the longest, and random mating decouples the correlation the fastest of the three mating models.

510 If the numbers of loci with X; = 1 and X; = 0 are equal (z = k — z), then all individuals in the source
su  populations have trait value k irrespective of their origin, and thus, no correlation exists between trait and
sz ancestry in the source population. Hence, Cor[H4,T] is 0 in the founding parental pool HJ™, and the

si3 correlation remains at 0 throughout the time simulated, irrespective of the mating type (Figure 8D).

su 4.5.2 Var[H 4] and Var[T]

sis The panels of Figure 8 display results under P(X; = 1) = P(X; = 0) = 1, fixing other parameters as in
sis  base case. By the same reasoning as in Section 4.4.2, the change in parameters involving the quantitative
sz trait does not affect Var[H 4] under random mating and under assortative mating by admixture fraction. A
sis  comparison of Figure 8B and 8E with Figure 5E shows that Var[H 4] values under assortative mating by

si9 admixture fraction are not affected by the change in the X;.

520 For z # k — z, results with z = 6 and k — z = 4 appear in Figure 8B. Some correlation between the
s» admixture fraction and allele “1” exists in the source populations, and thus, Var[H 4] for assortative mating
s2 by trait (green) somewhat follows that for assortative mating by admixture (blue). However, compared to
s the base case (Figure 5E), where the “1” allele can be traced back to S; with certainty, a more noticeable
s« deviation from the blue curve is observed. As z increases from 6 to 10, the pattern is similar; the quantitative

s behavior of Var[H 4] would approach the base case, equivalent to z = 10 (green curve in Figure 5E).

526 In the founding parental pool, Var[T] = 4.002 in our example with z # k — z. After one generation of
s mating, Var[T] drops to 1.997, 2.934, and 2.923, under random mating, assortative mating by admixture
ss fraction, and assortative mating by trait, respectively. From g = 2, Var[T] gradually increases and achieves
s steady state values for the three models near 4.942 at g = 5, 4.934 ¢ = 8, and 6.929 at g = 14, respectively.

s0 In accord with Section 4.1-4.4, assortative mating by trait has the highest Var[T] values across generations.

531 If 2 = k — 2z (Figure 8E), then allele “1” has equal probability of traced back to either source population.
s In this scenario, the Var[H 4] curve from assortative mating follows the Var[H 4] curve from random mating.
53 Because all individuals have the same trait value in the founding parental pool irrespective of their origin,
s Var[T] = 0 at ¢ = 0. For all three mating models, Var[T] gradually increases from g = 1 to achieve steady

s35 state values that are the same as those from the z # k — z case.

= D Discussion

ss7 In this paper, we have devised a mechanistic admixture model in which an admixed population is formed
s from contributions of a pair of mutually isolated source populations under assortative mating, either by
s admixture level or by a quantitative phenotype. The approach includes a quantitative-genetic model that

s relates a quantitative phenotype to underlying loci affecting its trait value and, ultimately, to mate choices.
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sa The admixture level and the quantitative phenotype are studied using a discrete-time recursion that describes
522 the evolution of the admixed population. Under this model, we have examined the correlation between genetic
se3 ancestry and phenotype in the admixed population as a function of time under three mating models: random

s mating, assortative mating by admixture fraction, and assortative mating by phenotype.

545 Initially, ancestry and phenotype are coupled, as the source populations differ in phenotype. Random
ss  mating then decouples the correlation between ancestry and trait faster than is seen in both assortative
s mating models (Figure 4), and assortative mating by phenotype maintains the correlation to a greater extent
s than does assortative mating by admixture (Figure 4). Compared with random mating, in a similar manner
s to classic assortative mating models [26, 35, 36], the assortative mating increases the population variance of
s0  the property on which the assortment is based (Figures 5 and 6). In fact, our Eq. 13 multiplies the variance

s of admixture in a model without assortment [1] by a factor that increases with positive assortative mating.

552 Increasing the strength of assortative mating magnifies the difference observed among the models in the
53 speed at which the correlation declines (Figure 4). Generally similar qualitative patterns are observed if
s+ the source populations are regarded as having fixed differences (Figure 4) or merely frequency differences in

5 alleles affecting the quantitative trait (Figures 7 and 8).

556 A key observation is that, as the number of loci underlying the quantitative trait increases, the difference
sz in trajectories between the two assortative mating models decreases. Because assortative mating by admix-
s ture fraction affects all loci, whereas assortative mating by trait affects only trait loci and their genomic
ss0  neighbors, as the trait is determined by an increasing number of loci, the behavior of assortative mating by
s0  trait increasingly follows that of assortative mating by ancestry (Figure 4). As the number of loci affecting
s the phenotype increases, assortative mating by trait increasingly reflects assortative mating by admixture,

sz and the correlation between ancestry and trait value persists for longer (Figure 4).

563 Our study was motivated partly by a hypothesis of Parra et al. [8] claiming that assortative mating by
ssa  the color phenotype in Brazil could eventually decouple color from genetic ancestry, so that largely separate
ss  subpopulations with distinct color could eventually possess similar levels of African genetic ancestry. We
s have seen not only that assortative mating by a quantitative trait that differs between source populations can
sz decouple the phenotype from the genetic ancestry, but that random mating can decouple the phenotype from
ss  genetic ancestry as well. Moreover, the decoupling is slower with assortative mating than it is with random
so  mating. In an admixed population with assortative mating that is heavily influenced by a salient phenotype
s (such as color in the scenario of Parra et al. [8]), mating by other genetically influenced phenotypes is
sn random, or perhaps less strongly assortative. Thus, in an admixed population, we might expect that among
sz all the traits to which genotypes contribute, traits that have little influence on mating behavior will decouple
s;3  from ancestry most rapidly. Those traits on which assortment does occur, such as color in Brazil, will be the
s slowest to decouple from ancestry—but under our model, they eventually will do so. Thus, in an admixed
s5 population, phenotypes that once reflected ancestry in the source populations might no longer be predictive

s of genetic ancestry after a sufficient length of time has passed.

577 The focus of our simulations has been on understanding demographic phenomena, but the model is
ss relevant to efforts to investigate determinants of disease traits in admixed populations. For example, in
s admixture-mapping studies and in studies of health disparities involving admixed populations, correlations
s0 of phenotypes and admixture levels are often computed [37-40]. The mechanistic model can potentially

ss1  provide insights into the way in which these correlations change over time in scenarios in which specific trait
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sz architectures are of interest.

583 We note that we have examined a model with a single admixture event at the founding of the admixed
sss population. Under this idealized model, even if the founding admixed population starts with a perfect
sss  correlation between admixture fraction and trait value, the correlation decreases over time and eventually
sss  approaches zero in the absence of further influx from source populations. In principle, the framework can
ss7 account for continuous influx from the source populations. If ancestry—trait correlation exists in source
sss populations, then such influx would be expected to slow the decoupling between admixture and phenotype
se0  in the admixed populations under all three mating models, while qualitatively maintaining their relative

s order in the rate of decoupling.

501 Although the theoretical framework we have developed can incorporate various genetic architectures and
s2 population admixture processes (including disassortative mating), our model has a number of limitations.
so3  First, it does not include sex bias during the admixture event, a phenomenon that often occurs in admixture
s processes [17,41,42]. A recent genetic model in a scenario with continuing contributions from the sources
ss does allow for sex bias with assortative mating, but with no phenotype and with the assortative mating
s6  occurring by population membership—in the admixed population or in one of the sources—rather than by
sor  the admixture level itself [28]. Next, we have chosen to model admixture in an individual as the mean of
ss  parental admixture levels; this approach does not account for stochasticity during genetic transmission. Our
s0 quantitative trait model does not incorporate dominance, spatial positioning of trait loci along a genome,
s0 epistasis, environmental effects on the phenotype, or genotype-by-environment interaction. The latter pair
er of limitations might be particularly important in using the results in human data, as numerous studies
o2 have shown that assortative mating often operates on sociocultural traits [43-46]. It will be important to
603 extend our theoretical framework to include additional features of the quantitative-genetic model, such as by
6s incorporating dominance, linkage, variable effect sizes across the loci contributing to the quantitative trait,

ss and varying heritability of the phenotype.
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Figure 1: A schematic of an admixture process with positive assortative mating by a phenotype initially
correlated with admixture levels. In generation 0, an admixture process begins with females from one
population (source 1, left) and males from another (source 2, right). For a quantitative phenotype, source
population 1 begins with a high trait value of 6 and source population 2 has a low trait value of 0. Three loci
contribute additively to the genetic architecture of the phenotype; each allele derived from source population
1 contributes a value of 1 to the phenotype. The phenotype is represented by the shading of a box. Individuals
are depicted as pairs of chromosomes with the ancestral sources of those chromosomes; short vertical lines
along the chromosome indicate the three loci that contribute to the phenotype. After generation 1, positive
assortative mating by phenotype proceeds in the admixed population. Lines connecting generations are
displayed in four colors, representing four mating pairs. Initially, in generation 2, a strong correlation exists
between admixture and phenotype (r = 0.96). By generation 4, however, owing to recombination events that
stochastically dissociate the trait loci from the overall genetic admixture, the genetic admixture has been
decoupled from the phenotype, so that some of the individuals with the highest trait values have among the
lowest admixture coefficients for source population 1, and the correlation between phenotype and overall
genetic admixture has dissipated (r = —0.09).
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Figure 2: A schematic diagram of the admixture process. At the founding of the population (¢ = 0), two
isolated source populations produce the first generation of a admixed population (H7). In the subsequent
generations (g > 1), populations from S;, Sz, and H, constitute a parental pool HP™ at generation g from
which the admixed population Hy; at generation g 4 1 is produced. Fractional contributions from three
populations in forming the parental pool are sq 4, S2 4, and hg, respectively. Individuals in the parental pool
mate based on mating models described in Section 2.3.

23


https://doi.org/10.1101/773663
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/773663; this version posted September 20, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Jaehee Kim 2019/09/12

Figure 3: An example of our quantitative trait model. Here, a diploid individual with k = 8 trait loci is
shown. At each locus 4, an allele L;; contributes to the overall trait value if and only if L;; = X; where X;
is a variable indicating which of two alleles, “0” or “1” increases the trait value. The total trait value of
an individual equals the number of alleles satisfying L;; = X; across the k trait loci. In this example, the
individual has T' = 6.
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Figure 4: Correlation between admixture fraction and quantitative trait value (Cor[H4,T]) as a function
of time. All parameter values in panel (E) follow the base case described in Section 3.2; the number of
quantitative trait loci & and the assortative mating strength ¢ vary across panels. In each panel, for a given
(k,c) pair, for each mating scheme, the mean of 100 simulated trajectories is plotted. The red, blue, and
green curves represent results from random mating, assortative mating by admixture fraction, and assortative
mating by phenotype, respectively. (A) k=1,¢=0.1. (B) k=1,¢=0.5. (C) k=1, c=1.0. (D) k = 10,
¢c=0.1. (E) k=10, ¢c=0.5. (F) k=10, ¢c=1.0. (G) k=100, c=0.1. (H) k =100, ¢ = 0.5. (I) k£ = 100,
c=1.0.
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Figure 5: Variance of admixture fraction (Var[H4]) as a function of time. The simulations shown are the
same ones from Figure 4. (A) k=1,¢=0.1. (B)k=1,¢=05. (C) k=1,¢=10. (D) k=10, c=0.1.
(E) k=10, c = 0.5. (F) k=10, ¢ = 1.0. (G) k = 100, ¢ = 0.1. (H) k = 100, ¢ = 0.5. (I) k = 100, ¢ = 1.0.
Colors and symbols follow Figure 4. The y-axis is plotted on a logarithmic scale.
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Figure 6: Variance of the phenotype (Var[T]) as a function of time. The simulations shown are the same
ones from Fig. 4. (A)k=1,c¢=01. B)k=1,¢=05 (C)k=1¢=10. (D) k=10, c=0.1. (E)
k=10, c=05 (F) k=10, c=1.0. (G) k=100, c = 0.1. (H) k = 100, ¢ = 0.5. (I) k = 100, ¢ = 1.0.
Colors and symbols follow Figure 4. The y-axis is plotted on a logarithmic scale.
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Figure 7: Cor[Ha,T], Var[Hl], and Var[T] in a model in which the allele frequencies p; and ¢; in the
source populations S; and Se are drawn from a simulation rather than being treated as fixed at 1 and 0,
respectively. All other parameters are kept at the values of the base case (Section 3.2). (A) Correlation
between admixture fraction and trait (Cor[H4,T]). (B) Variance of the admixture fraction (Var[H 4]). (C)
Variance of the phenotype (Var[T]). Colors and symbols follow Figure 4. The figure relies on a single
replicate of simulated allele frequencies p; and ¢; following a genetic drift model in which S; and Sy descend
from a common ancestral population, as described in Section 3.1. The simulated allele frequencies across
k = 10 loci have mean values of p ~ 0.502 and § =~ 0.449 and variance si ~ 0.214 and sg ~ 0.235. If we let
8; = pi —qi, with §; > 0, then the mean of the allele frequency difference across the 10 loci is 6 ~ 5.310 x 1072,
with 62 ~ 7.865 x 1072, Across k = 10 loci, Fsr ~ 0.075, as computed using Eq. 14 of [22]. The y-axis of
Var[H 4] is plotted on a logarithmic scale. Results using other replicates of simulated allele frequencies with
k = 10 are shown in Figure S4.
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Figure 8: Cor[Ha,T], Var[H,|, and Var[T] under a trait model in which trait loci do not systematically
have greater values in one source population: P(X; = 1) = P(X; = 0) = 0.5. All other parameters are kept
at the values of the base case (Section 3.2). Of k = 10 trait loci, we denote the number of randomly selected
loci to have X; =1 by z. (A) Cor[Ha,T], z = 6. (B) Var[H4|, 2 = 6. (C) Var[T], z = 6. (D) Cor[Ha,T],
z=75. (E) Var[Ha], z = 5. (F) Var[T], z = 5. Colors and symbols follow Figure 4. Panels A-C and D-F each
relies on a single replicate of a set of X; obtained by sampling the X; from a Binomial(10, %) distribution
and retaining those with the specified value of z = 6 (top panels) and z = 5 (bottom panels). The y-axis of
Var[H 4] is plotted on a logarithmic scale. Results using other replicates of simulated allele frequencies with
k = 10 are shown in Figures S5 (for z = 6) and S6 (for z = 5).
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« Supplementary Material

Figure S1: Joint distribution of H4 and T as a function of time. The simulation shown is the same one
from Figures 4E, 5E, and 6E, using the parameters from base case (Section 3.2). As described in Section 2.1
and 2.2, the possible values for the admixture fraction at generation g are 0,1/29,2/29 ... (29 —1)/29,1,
whereas the possible values for the trait are 0,1, ..., 2k across all generations. In each panel, the top, right,
and center plots display a marginal distribution of H 4, a marginal distribution of T, and a joint distribution
of Hy and T, respectively. Colors follow Figure 4.
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Figure S2: The correlation coefficient Cor[H };, g HA',] between the admixture fractions of the members of
mating pairs as a function of time. The simulations shown are the same ones from Fig. 4. (A) k=1, ¢ =0.1.
B)k=1,¢=05. (C)k=1,¢=10. (D) k=10,c=0.1. (E) k=10,c=0.5. (F) k=10, c=1.0. (G)
k=100, c=0.1. (H) k=100, c=0.5. (I) £ =100, ¢ = 1.0. Colors and symbols follow Figure 4.
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Figure S3: The correlation coefficient Cor[T_ (f T ;”’] between the phenotypes of the members of mating pairs
as a function of time. The simulations shown are the same ones from Fig. 4. (A) k=1, c¢=0.1. (B) k=1,
c=05 (C)k=1,¢=10. (D) k=10, c=0.1. (E) k=10, c=05. (F) k =10, c = 1.0. (G) k = 100,
c¢=0.1. (H) k=100, ¢ =0.5. (I) £ =100, ¢ = 1.0. Colors and symbols follow Figure 4.
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Figure S4: Cor[H 4, T] (top row), Var[H 4| (middle row), and Var[T] (bottom row) using different replicate
sets of simulated allele frequencies p; and ¢; with k& = 10 loci, as described in Section 3.1 and Figure 7.
Different columns represent results from different replicates of simulated p; and ¢;. Colors and symbols
follow Figure 4. The y-axis of Var[H 4] is plotted on a logarithmic scale with base 10.
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Figure S5: Cor[H4,T] (top row), Var[H 4] (middle row), and Var[T] (bottom row) using different replicates
of a set of X; for k = 10 loci sampled from a Binomial(10, 1) distribution with a constraint z = 6 (Section 2.2
and Figure 8A-C). Colors and symbols follow Figure 4. The y-axis of Var[H 4] is plotted on a logarithmic
scale.
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Figure S6: Cor[Ha,T] (top row), Var[H 4] (middle row), and Var[T] (bottom row) using different replicates
of a set of X; for k = 10 loci sampled from a Binomial(10, 1) distribution with a constraint z = 5 (Section 2.2
and Figure 8D-F). Colors and symbols follow Figure 4. The y-axis of Var[H 4] is plotted on a logarithmic
scale.
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