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Abstract

Long-term evolution of quantitative traits is classically and usefully described as the directional

change in phenotype due to the recurrent fixation of new mutations. A formal justification for such

continual evolution ultimately relies on the ”invasion implies substitution” principle. This states

that whenever a mutant allele causing a small phenotypic change can successfully invade a pop-

ulation, the ancestral (or wild-type) allele will be replaced, whereby fostering gradual phenotypic

change if the process is repeated. It has been argued that this principle holds in a broad range of

situations, including spatially and demographically structured populations experiencing frequency

and density dependent selection under demographic and environmental fluctuations. However, prior

studies have not been able to account for all aspects of population structure, leaving it unsettled

in precisely which models does the ”invasion implies substitution”-principle really hold. In this

paper, we start by laying out a program to explore and clarify the generality of the ”invasion im-

plies substitution”-principleṖarticular focus is given on finding an explicit and functionally constant

representation of the selection gradient on a quantitative trait. We then show that the ”invasion

implies substitution”-principle generalizes to well-mixed and scalar-valued polymorphic multispecies

ecological communities that are structured into finitely many demographic (or physiological) classes.

We do this by setting up a continuous-time mutant-resident dynamical system for several interacting

populations and species, and derive a closed expression for the selection gradient by separating the

population dynamical and evolutionary timescales using geometric singular perturbation methods.

We show that the selection gradient is constant in the relevant timescale and that it depends only on

the resident phenotype, individual growth-rates, equilibrium population densities and reproductive

values, all of which are calculated from the resident dynamics. Furthermore, we relate our results

to previous work and discuss the theoretical tools required to address such problems. Our work

contributes to the theoretical foundations of evolutionary ecology.
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1 Introduction

A central theme in evolutionary biology is to understand long-term evolution; how organisms have evolved

to become adapted to their environment. Of particular relevance is to understand adaptation to biotic

environments which contain, and are altered by, the interactions of the organism with members of its

own and other species [15, 48]. Examples of such interactions permeate the biological world, they include

competition for resources, mate choice, helping behavior and cultural learning to name a few, and will

here be collectively referred to as social interactions. Social interactions, however, may lead to complex

frequency and/or density-dependent evolutionary dynamics. It may thus be felt that not much can be

said about the evolutionary adaptive trajectory of social traits in general.

Notwithstanding this complexity, it has been extensively argued that when mutations cause only small

changes to the phenotype under selection, the evolutionary trajectory of a phenotype can be continual

under directional selection, proceeding by a gradual, small-step by small-step transformation of the phe-

notype under focus [30, 14, 45, 24, 53, 38, 51, 54, 23, 52, 8, 12, 37]. Such a paradigmatic Darwinian

process (e.g., [5]) relies on the ”invasion implies substitution”-principle, which is the ultimate fixation

in the population of any mutant being favored by selection when initially rare in the population. The

”invasion implies substitution”-principle has been suggested to hold not only for arbitrary social interac-

tions, but also in cases where populations are spatially and demographically (physiologically) structured

and subject to demographic and environmental fluctuations [51, 23, 12, 37] and has been called a “gift

from God” [29].

The intuitive argument for justifying ”invasion implies substitution”-principle can be made by consid-

ering a well-mixed haploid population in discrete time (no overlapping generation or further division

in class structure) with only two alleles, a wild-type (resident) allele coding for some phenotype and

a mutant allele coding for some closely similar phenotype. The argument is that the dynamics of the

frequency of the mutant allele p in the population is much slower than the dynamics of all other vari-

ables governing the demographic and genetic make-up of the population, such us population densities

and genetic associations like relatedness or linkage disequilibria (see Figure 1 panels A and B). Conse-

quently, the genetic and ecological variables (collectively referred to as population dynamical variables)

that operate in fast population dynamical time can be assumed constant at the slow evolutionary time

at which the mutant frequency p changes, rendering selection essentially frequency-independent. More

precisely, the expected change ∆p in mutant frequency p is supposed to follow a dynamical equation like

∆p = δV(p)S +O(δ2), (1)

where δ is the phenotypic deviation between mutant and resident phenotype, and V(p) is a frequency-

dependent but always positive measure of genetic variation at the loci under selection, e.g., for a well-

mixed population this is simply p(1 − p). Moreover, S is a frequency-independent selection gradient,

which is a function of the fast population dynamical variables and is calculated for a resident population.

Whenever the selection gradient S is non-zero, (1) says that if mutant frequency p increases when rare
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Figure 1: The three timescales that are relevant for the ”invasion implies substitution”-principle. A)
The population dynamical timescale at which all fast genetic and demographic (ecological) dynamical
variables converge to their steady state B) The evolutionary timescale at which the (average) mutant
frequency p changes, and where mutant phenotype may or may not substitute its ancestral resident
phenotype. At this timescale the fast population dynamical variables are at their steady state and thus
constant C) The long-term evolutionary timescale at which the phenotype under selection changes (also
called meso-evolutionary timescale [46]). This panel gives the timescale of the trait substitution sequence
where each individual trait substitution is defined as an invasion implies substitution event.

it substitutes the resident; that is, it substitutes its ancestral phenotype. This is the ”invasion implies

substitution”-principle.

Decoupling the slow evolutionary variable p from the fast population dynamical variables, however, may

brake down in more complex communities that exhibit population structure. When individuals are

structured into different demographic classes such as age or size classes, or when individuals inhabit

different spatial locations, it is not obvious how to define the mutant frequency and on which timescale

does it operate [38, 54, 52]. Indeed, class-specific mutant frequencies and thus also the mean mutant

frequency in the population are usually not purely slow evolutionary variables [38, 54]. Moreover, when

individuals are structured into continuous or countably infinite age-classes and habitats [44, 11, 10, 52],

population dynamical variables such as population densities or genetic associations are not necessarily fast

either [26, 52, 27]. In both situations a standard timescale separation method is not readily applicable,

or, may not even be possible.

Despite of these complications, it has been conjectured that the ”invasion implies substitution”-principle

nevertheless holds in structured populations with vector-valued traits and with finite number of demo-

graphic and spatial classes [51, 12, 43]. The central step here follows from the realization that when the

mutant frequency in the population p is re-defined as the average frequency weighted by class-specific

reproductive values [58, 51, 37, 25, 39, 41], it is a purely slow evolutionary variable operating in purely

slow evolutionary time. Consequently, this suggests that the dynamics of the weighted average frequency

p can be generically cast in the form (1) and moreover with a selection gradient that can be partitioned
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Figure 2: The partitioning of the selection gradient S. Suppose the fraction of mutant individuals in
the total population is p, and as a thought experiment, suppose that before a ”switch” is turned on the
deviation between the mutant and resident phenotype δ is zero. Selection gradient can then be seen as a
measure of how much the relative mutant production (relative to the resident) changes when the switch is
turned on and δ becomes nonzero. Now, suppose that the switch is off (δ = 0) and suppose that a single
mutant individual in demographic class b ∈ D that resides in some discrete spatial location (denoted as
”local habitat”) is producing (mutant) individuals into a ∈ D with a rate hab . Turning the switch on can
affect the relative production of (mutant) individuals in two ways. It can affect the production ”directly”
because the individual in b ∈ D has the mutation ∂

∂zself
hab , and, it can also be affected ”indirectly”

due to social (frequency or density dependent) interactions with other mutant individuals, ∂hab
∂zothers in ω,c

,

multiplied by the probability that individuals in ω, c also have the mutation (which is conditional on the
individual in b ∈ D), i.e. the probability Rb,others in ω,c where Rothers in ωc = (Rb,ωc)a∈D. Because there
are nb individuals in class b and the reproductive value of the produced individuals in a ∈ D is va , the
selection gradient in (2) is obtained from va [ ∂∂zhab + ∂

∂zω,c
habRb,ωc ]nb by summing over all possible spatial

and demographic classes.

according to the following generic form

S = v

[
∂H

∂zself
+
∑
ω∈G

∑
c∈D

∂H

∂zothers in ω,c
Rothers in ω,c

]
n. (2)

Here, the matrix H is a resident growth-rate matrix whose elements hab give the rates at which individuals

are produced into a demographic class a ∈ D by a single resident individual in a demographic class b ∈ D

and D denotes the demographic class-space. This matrix has v and n as leading left and right eigenvectors

giving, respectively, the resident individual reproductive values and steady states (see Figure 2 for the

partition of S). The partial derivatives ∂H
∂zself

and ∂H
∂zothers in ω,c

are defined according to the trait space Z

under consideration, and are taken with respect to the phenotype of the individual whose growth-rate

we are considering, and with respect to the phenotype of individuals in all the spatial and demographic

classes over which we are summing ω ∈ G, c ∈ D, respectively, where G denotes the spatial class space

(i.e., the number of distinct spatial locations an individual can inhabit). These derivatives are usually

interpreted as fitness effects caused by mutations (see also Figure 2), and the matrix Rothers in ω,c weights

these effects by the average genealogical relationship between individuals that occupy the same spatial

and demographic class as the individual whose growth-rate is being considered, and individuals in spatial

class ω ∈ G and demographic class c ∈ D. That is, the elements of Rothers in ω,c are neutral relatedness

coefficients [51]. To our knowledge, no generalizations of (2) to more generally structured populations

are known.
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Equation (2) is consistent with all previous work on the ”invasion implies substitution”-principle. In

particular, two categories of demographically unstructured population models have rigorously treated

the ”invasion implies substitution”-principle. The first category are well-mixed (panmictic) population

models with fluctuating demography caused by density and frequency-dependent selection [23, 42, 8, 7],

where the single population dynamical variable is the total population density. These models include

scalar-valued [8, 7] and vector-valued traits [23, 42], arbitrary [8] or tightly clustered polymorphisms

[42], as well as populations that are part of a larger ecological community [8]. The ”invasion implies

substitution”-principle was here proven by singularly perturbing [21, 31] the slow evolutionary dynam-

ics in order to obtain an approximation for the mutant frequency dynamics resulting from small but

nonzero deviations between mutant and resident phenotypes [8, 7]. Such perturbation analysis is essen-

tial in situations where population dynamical variables (here population density) may not persist under

perturbations caused by the invasion of a mutant phenotype [22] and may lead e.g. to a catastrophic

extinction of the population [28, 47]. The selection gradient was then shown to take the form S = ∂h
∂zself

[42, 8, 7], where population density comes into play as an argument of the growth-rate function.

The second category of demographically unstructured models [63, 59, 55, 60, 51, 52] assumes that the

population exhibits spatial or group structure with limited dispersal, but as the population experiences

no demographic fluctuations all spatial locations are identical and so all individual belong to the same de-

mographic class. Thus, the single population dynamical variable is the genealogical relationship between

individuals within a group (that is of constant and finite size), i.e., the relatedness between group mem-

bers. Invasion implies substitution was shown to hold using a diffusion approximation method for two

timescales [16, 17] where one scales up a finite population model by letting the number of groups to go to

infinity while the phenotypic deviation between mutant and resident phenotypes goes to zero. Because

the only population dynamical variable is relatedness which in this model is density-independent, the

obtained results hold also for small but nonzero phenotypic deviations and hence the above-mentioned

perturbation analysis is not required. This method was applied in the island model of dispersal for the

discrete-time Wright-Fisher model [59] and for the Moran model [60], whereas [55, 51, 52] showed that

the ”invasion implies substitution”-principle holds for a much larger class of discrete-time population

models including diploid populations (in the absence of over and under-dominance), and showed that the

selection gradient can be expressed as S = ∂h
∂zself

+ ∂h
∂zothers

Rothers [55, 51, 52]. A related model considers

isolation by distance [52]. Here the timescale separation is obtained by utilizing the observation that the

genealogical relationships between individuals in different spatial locations can be captured by studying

the proportions of distributions of coalescence times [56]. The selection gradient was then shown to take

the form S = ∂h
∂zself

+
∑
ω∈G

∂h
∂zothers in ω

Rothers in ω and since the population is structured into countably

infinite number of spatial locations, the population dynamical variable (genealogical association) is of a

countably infinite dimension.

Some studies have also discussed invasion implies substitution in demographically structured populations

in both well-mixed and group-structured populations with limited dispersal. First and most recently,

[40, 39] discuss the ”invasion implies substitution”-principle for a haploid well-mixed population that
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is assumed demographically class-structured and part of a larger ecological community. Here, the focus

is given to the dynamics of the trait mean for a polymorphic trait that is tightly clustered around its

mean, and where its dynamics is formulated in terms of the Price equation. Consequently, the timescale

separation arguments were made in terms of aggregate variables such as trait means and variances

instead of the full distribution of mutant frequencies, which should actually be considered in a full

proof of the ”invasion implies substitution”-principle, but nevertheless it was shown that the selection

gradient in this model takes form S = v ∂H
∂zself

n. Second, the ”invasion implies substitution”-principle

has been considered in an island model of dispersal with finite but demographically fluctuating local

population sizes [51, 54, 36] and with a further division into demographic classes such as age or size

classes [51]. Here, it is argued that the timescale separation between the mutant frequency and the

local genetic and demographic structure holds when the mutant frequency is defined as the average

frequency weighted by (demographically) class-specific reproductive values [58, 38, 51] and using the

timescale separation arguments of [16, 17], in which case the selection gradient can be expressed under

the form S = v
[
∂H
∂zself

+ ∂H
∂zothers

Rother

]
n [51, 36]. Similarly to the spatially structured model without

demographic fluctuations, the model contains only one spatial location and so relatedness only needs to

be calculated within groups that belong to the same demographic and spatial class (notice no summation

in the selection gradient). However, because each group consists of individuals that fluctuate between

different demographic classes the growth-rate functions as well as the relatedness are density-dependent,

requiring further analysis on the robustness of the evolutionary mutant frequency dynamics under small

but non-zero perturbations caused by the invasion of the mutant.

In summary, while the ”invasion implies substitution”-principle seems to be well established for several

biological scenarios, there is no completely specified and detailed proof for the case for demographically

and spatially class-structured populations. More generally, it remains to explore and clarify the following

sets of questions pertaining to the adaptive dynamics of closely similar phenotypes, and which could be

called the ”invasion implies substitution”-principle program.

(I) What is the validity and generality of the ”invasion implies substitution”-principle in structured

populations with respect to Z,D,G?

(II) If the principle holds in a given model, (a) what conditions must the resident growth-rate matrix

(operator) H satisfy, and (b) whether the evolutionary dynamics of the mutant phenotype can be

expressed as in (1)?

(III) If mutant dynamics satisfy (1), can we find an explicit expression for the selection gradient S as

in (2), that is, can we generically express S in terms of (a) individual reproductive values v, (b)

steady states n, and (c) relatedness R, all of which can be determined from the resident growth-rate

matrix (operator) H evaluated at the attractor of the ecological community?

Our aim in this paper is to contribute to this program (or quest). Because answering the above question is

complex and has ramification with many evolutionary models, not everything can be answered in a single

paper. We thus consider here a quantitative trait under selection in a well-mixed population structured
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into finitely many demographic classes residing in a larger ecological community (allowing for arbitrary

eco-evolutionary feedback), and prove positive answers to all three questions (I)-(III) posed above. In so

doing, we lay out in detail the concept of singular perturbation theory and multiple timescale analysis

that we apply to limited dispersal in a subsequent paper. We also formulate our model in continuous-time

and from the outset assume that the population size is large. In this sense our treatment complements

previous well-mixed demographically class-structured models (in particular those in [51]) where one

usually starts with a discrete-time and finite total population size formulation and then by using some

form of timescale separation argument scales time and system size, while letting phenotypic deviation

between the mutant and resident phenotypes go to zero [16, 17, 51]. However, because models with

density-dependent dynamical variables may depend non-trivially on the phenotype under selection, a

further analysis must be performed that takes into account small but non-zero phenotypic deviations.

Conveniently, singular perturbation analysis not only takes nonzero phenotypic deviations into account,

as a side-product it also facilitates finding sufficient conditions under which long-term evolutionary

dynamics can be outlined as successive invasion implies substitution events (Figure 1).

The rest of this paper is organized as follows. We start Section 2 by constructing a continuous-time

population model that completely describes the population as well as the evolutionary dynamics of the

ecological community. We then move on to study the mutant-resident dynamics in situations where the

mutant and its ancestral resident phenotype are closely similar (Section 3). In Section 4 we proceed to

prove the ”invasion implies substitution”-principle by decoupling the slow evolutionary dynamics given

by the average mutant frequency weighted by class reproductive values from the fast dynamics given by

the population dynamical variables. We conclude by discussing related work and the overall relevance

of our results to evolutionary ecology (Section 5).

2 Model

Consider an infinitely large clonally reproducing population where each individual is characterized by

a single one-dimensional (scalar-valued) continuous trait. The phenotypic value of the trait of each

individual is assumed fixed during its life and individuals are structured into finitely many demographic

classes [58, 4], e.g. age or size classes, which in contrast to the phenotype may change throughout their

life. The population of interest may also be part of a greater ecological community - individuals of the

population interact with individuals from other species (e.g. predator-prey community), which may also

be structured into different phenotypes and demographic classes.

Preliminaries Let Z ⊂ R denote the space of phenotypes, D := {1, 2, . . . , c} the set of (demographic)

classes where c is finite, and take time to be continuous. As the present model has no spatial structure,

and thus no spatial classes, we omit the term ”demography” in front of the word class. Note that Z and

D jointly give the full description of the life-history of individuals in the population (birth, maturation

and death) and hence jointly define a so-called individual-level state space [44, 9].
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Moreover, suppose that the population, at least initially, is polymorphic with respect to the trait under

focus with all in all k arbitrarily distinct phenotypes, all of which define the resident population. However,

as we will assume that one of the k phenotypes undergoes a mutation giving rise to a new phenotype

zM ∈ Z (M stands for mutant), thus having in total k + 1 phenotypes in the population, we will single

out its ancestral phenotype and call it the ancestral resident phenotype zR ∈ Z, or simply, the resident.

The population thus consists of a mutant and a resident phenotype zM, zR ∈ Z, respectively, as well as

k − 1 other phenotypes.

It will be useful to distinguish individuals not only by their phenotype but also the class they are in. For

example, a mutant that is in class a ∈ D will be identified with zM,a . We emphasise that zR,a and zM,a

take phenotypic value zR, zM ∈ Z, respectively, for all a ∈ D, and that this notation is introduced (only)

for a bookkeeping purpose, that is, to keep track of individuals moving in time through the individual-

level state space. Finally, to make a distinction between (resident individuals in) resident dynamics and

(resident individuals in) mutant-resident dynamics, we will drop out the subscript denoting residents (R)

whenever we are discussing ecological communities where the mutant phenotypes are absent.

We now first present a model for a polymorphic resident ecological community where the mutant phe-

notype is assumed absent (Section 2.1). Then, we extend the model to a situation where one of the

phenotypes has undergone a mutation resulting in an arbitrary mutant phenotype and express the dy-

namical system in terms of class-specific mutant frequencies (Section 2.2). Finally, in Section 2.3, we give

several consistency relations and properties that relate mutant-resident dynamics to resident dynamics,

which will play a central role in deriving the main results of this paper.

2.1 Resident dynamics

Let n = (na)a∈D ∈ Rc+ denote the vector of densities (number of individuals per unit space) of resident

individuals in all the possible classes the individuals in the population can be in, where each element

na ∈ R+ is the density of individuals in class a ∈ D. Similarly, z = (za)a∈D ∈ Zc is a resident phenotype

vector where each element za identifies individuals in class a ∈ D with a phenotype z ∈ Z. The densities

of the rest of the ecological community is represented with a density vector nP ∈ Rm+ , for some m ∈ N+

that depends on the size of the community. Note that the mutant phenotype is not present in the resident

population, and for convenience we have included the other k − 1 phenotypes of the population in the

density vector nP.

The resident dynamics is given by the set of ordinary differential equations

ṅ = H(z, z,n,nP)n

ṅP = P(z,n,nP),
(3)

where the dot ” · ” above the density vectors n and nP denotes the time derivative ” d
dt”. The matrix

H =
(
hab
)

a,b∈D ∈ Rc×c is the resident growth-rate matrix where entry hab(z, z,n,nP) is a sufficiently

smooth growth-rate function giving the rate at which a single individual of class b produces individuals
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of class a. We emphasise that the first argument z ∈ Z in the growth-rate matrix H(z, z,n,nP) identifies

the phenotype of the individual whose growth-rate we are considering, while all the remaining arguments

describe the environment that the individual finds itself in. The matrix P ∈ Rm×m is the growth-rate

matrix of the rest of the ecological community and is also a function of the environment that the

individuals find themselves in. For notational convenience, especially when it is clear from the context,

we will drop from the growth-rate matrices and functions all arguments that describe the environment,

for example, we may write H(z) instead of H(z, z,n,nP) and P instead of P(z,n,nP).

We note that all the growth-rate functions presented in this paper are constructed by assuming an

infinitely large well-mixed ecological community, where individuals are assumed to undergo demographic

individual-level processes on a Poissonian basis; the demographic processes can be either asocial where

individuals react by themselves e.g., dying or moving from one age class to another, or social, resulting

from random encounters of pairs of individuals. The probability of any higher order encounter vanishes in

continuous-time models. However, all growth-rate functions can be non-linear and of any complexity as

we allow for arbitrary frequency and/or density dependent (pairwise) interactions. Different underlying

assumptions on the encounters between individuals is possible, facilitating e.g. multiplayer games [61],

but are not dealt with in this paper.

Steady state of the resident dynamics Throughout the paper we assume that there exists an

equilibrium point (n̂, n̂P) ∈ Rc+m+ to which the community given by (3) converges to and then stays

at. Importantly, this equilibrium is assumed to be hyperbolically stable, i.e. the real part of the dom-

inant eigenvalue of the linearized system (3) evaluated at the equilibrium is bounded away from zero

[62]. However, we allow the system (3) to contain multiple non-negative equilibria or other attractors at

which the community could potentially reside. Assuming multiple equilibria (or other attractors) is not

problematic when considering evolutionary dynamics because the so-called tube theorem [22] excludes

”attractor switching” for mutant-resident dynamics with closely similar phenotypes. That is, the dy-

namics of the mutant with a similar phenotype to a resident will never evolve to an alternative attractor

(in Section 5 we discuss how our results can be extended to more complicated attractors).

2.2 Mutant-resident dynamics

We now introduce the mutant phenotype zM ∈ Z into the resident population. Let nR = (nR,a)a∈D ∈ Rc+
and nM = (nM,a)a∈D ∈ Rc+ denote the vectors of densities and zR = (zR,a)a∈D ∈ Zc and zM = (zM,a)a∈D ∈

Zc the vectors of phenotypes of residents and mutants, respectively, in all the possible classes the

individuals can be in. The mutant-resident dynamics is then given by

ṅM = G(zM, zR, zM,nR,nM,nP)nM

ṅR = G(zR, zR, zM,nR,nM,nP)nR

ṅP = R(zR, zM,nR,nM,nP),

(4)
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where G =
(
gab
)

a,b∈D ∈ Rc×c is the growth-rate matrix of individuals in the mutant-resident population,

such that G(x) := G(x, zR, zM,nR,nM,nP) is the growth-rate matrix of a phenotype x ∈ {zM, zR}

and that each entry gab(x) is a sufficiently smooth growth-rate function giving the rate at which a

single individual with phenotype x ∈ {zM, zR} in class b ∈ D produces individuals in class a ∈ D. It

is clear from this formulation that, as we have assumed the growth-rate matrix G and its arguments

be identical for mutants and residents (except the first), we have assumed that mutants and residents

experience the exact same environment and thus the only difference in their growth-rate is due to their

own phenotype. In particular, every individual is surrounded by equal number (density) of mutants and

residents. Similarly to the resident dynamics (3), R ∈ Rm×m is the growth-rate matrix of the rest of the

ecological community.

Relative mutant-resident dynamics Because we are interested in the relative dynamics of mutants

zM ∈ Z and residents zR ∈ Z, it will be convenient to change the dynamical variables by considering

the frequency of mutants pM,a =
nM,a

nM,a+nR,a
in class a ∈ D, where na = nM,a + nR,a is the total density

of mutants and residents in class a ∈ D. The vectors p = (pM,a)a∈D ∈ [0, 1]c and n = (na)a∈D ∈ Rc+
are thus the vectors for class-specific mutant frequencies and class-specific total densities of (mutant and

resident) individuals, respectively. We emphasise that since we are interested in the relative dynamics

of mutants and their ancestral residents, the mutant frequency pM,a is defined with respect to mutants

and their ancestral residents in class a ∈ D, not all k resident phenotypes present in the population.

We can now rewrite the mutant-resident dynamics (4) in terms of the class-specific mutant frequencies

p and the class-specific total population densities n as

ṗ = F(zM, zR, zM,p,n,nP)p

ṅ = Ḡ(zR, zM,p,n,nP)n

ṅP = R(zR, zM,nR,nM,nP),

(5)

where Ḡ = (ḡab)a,b∈D, with ḡab = gab(zM)pM,b + gab(zR)pR,b , is the average mutant-resident growth-rate

matrix, and where F = (fab)a,b∈D ∈ Rc×c is the relative growth-rate matrix (see Appendix 6.1 for a

relative growth rate matrix for an arbitrary phenotype). The entries of the relative growth-rate matrix

for mutants F(zM) := F(zM, zR, zM,p,n,nP) are obtained by differentiation

ṗM,a =
d

dt

(
nM,a
na

)
=
ṅM,ana − nM,a ṅa

n2a

=
1

na
[ṅM,a − pM,a ṅa ]

=
∑

b

nb

na
gab(zM)pM,b − pM,a

∑
b

nb

na
ḡab , ∀a ∈ D,

(6)

where we have used equations (4) and (5) and the definition of class mutant frequencies pM,a . Following

[39], it will be useful to rewrite the above equation (6) by subtracting and adding a term
∑

b
nb
na
ḡabpM,b
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to obtain

ṗM,a =
∑

b

nb

na
[gab(zM)− ḡab ] pM,b +

∑
b

nb

na
ḡabpM,b − pM,a

∑
b

nb

na
ḡab ∀a ∈ D. (7)

This allows to partition the mutant relative growth-rate matrix as

F(zM) = Fsel(zM) + Fpc, (8a)

where Fsel = (f selab )a,b∈D ∈ Rc×c and Fpc = (fpcab )a,b∈D ∈ Rc×c with entries, respectively, given by

f selab (zM) =
nb

na
[gab(zM)− ḡab ] (8b)

and

fpcab =


nb
na
ḡab ∀b 6= a

−
∑

c 6=a
nc
na
ḡac , for b = a.

(8c)

Notice that f selab (zM) is proportional to the difference between mutant and average growth-rates and thus

captures the effect of selection (hence the superscript “sel”). The second term fpcab is proportional only

to the average growth-rate and because it does not involve any differences in growth-rates it captures

non-selective transitions between classes. Since the relative growth-rate due to the term fpcab is non-

selective and thus independent of ones phenotype (Appendix 6.1), the argument present e.g. in f selab (zM)

is not included in fpcab , but it should nevertheless be kept in mind that Fpc depends both on mutant and

resident traits. Such non-selective transitions rates between classes nevertheless affect the dynamics of

the mutant frequency, for instance if one class of individuals, say newborns (or individuals living in a

good habitat) have higher reproductive success than older individuals (individuals living in bad habitat).

Such deterministic change of allele frequency due to non-selective forces have generally been referred

to as changes due to “transmission” (following [1, 34]), since they result from alleles changing contexts

(e.g., from good habitat to bad habitat, from young to old individual). We discuss these allele frequency

changes resulting from allele transmission between contexts in more detail in the next Section 2.3 and

they have also been called “passive changes” (e.g. [25, 39, 41]) when the different contexts an allele can

reside in are demographic classes, which is the case of the present paper (more generally changes due to

transmission include recombination, mutation; see [34] for more details on the concept of the context of

an allele and a discussion of transmission as an evolutionary force).

2.3 Properties of growth-rates

In this section we present three properties that relate mutant-resident dynamics (4) to resident dynamics

(3) and then we apply them to the mutant relative growth-rate matrix (8). These properties and their

applications play a central role in Section 3 when discussing mutant-resident dynamics for closely similar

phenotypes and in Section 4 when proving our main result. The consistency relation given below is fully

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 19, 2019. ; https://doi.org/10.1101/773580doi: bioRxiv preprint 

https://doi.org/10.1101/773580
http://creativecommons.org/licenses/by-nc-nd/4.0/


analogous to the relation given in [22, 6, 7] and the proposition given below is an analogue to a property

derived for unstructured populations in [42, 6].

Consistency relations:

G(x, zR, zM,nR,nM,nP)
∣∣∣zR=z
zM=z

= H(x, z,n,nP)

R(zR, zM,nR,nM,nP)
∣∣∣zR=z
zM=z

= P(z,n,nP),
(9)

for any x ∈ Z. This relation says that the growth-rate of any individual from any population and species

in the ecological community, when all (other) individuals in the population are of the same phenotype

z ∈ Z, is its growth-rate in a resident ecological community (3) where n = nR + nM.

Corollary:

∂

∂zM
G(zM, zR, zM,nR,nM,nP)

∣∣∣zR=z
zM=z

=
∂

∂z
H(z, z,n,nP)

∂

∂zM
G(zR, zR, zM,nR,nM,nP)

∣∣∣zR=z
zM=z

= 0,

(10)

This property follows immediately from the Consistency relation describing the effect that a mutant

phenotype of an individual has on its own growth-rate. Trivially, residents don’t have a mutant phenotype

and so there is no such effect for the resident growth matrix. The same is true also for the matrix R,

but as we don’t need the Corollary for R we haven’t included it here.

Proposition:

∂

∂zM,a
G(x, zR, zM,nR,nM,nP)

∣∣∣zR=z
zM=z

=
∂

∂za
H(x, z,n,nP)pM,a , (11)

for any x ∈ Z and for all a ∈ D. This property says that the effect that all mutants in class a ∈ D in

the mutant-resident community (4) have on the individual growth-rate (left-hand side of (11)), is equal

to the effect that all individuals in class a ∈ D in the resident community (3) have on the individual

growth-rate, weighted with the probability that given a random pairwise encounter with an individual of

class a ∈ D, it is a mutant (right-hand side of (11)). This property is a consequence of the growth-rate

function being constructed in terms of pairwise interactions between individuals (generalized mass action

law), and is a direct generalization of the property 4 given for unstructured populations in [6] (see also

[42]).

Properties of relative growth-rates Here we apply the above properties (9)-(11) to the mutant

relative growth rate matrix (8). The Consistency relation (9) immediately implies that the selection

component of the relative growth-rate matrix Fsel = 0 is a null matrix and hence

F(zM)
∣∣∣zR=z
zM=z

= Fpc
∣∣∣zR=z
zM=z

, (12a)
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where

fab(zM)
∣∣∣zR=z
zM=z

= fpcab

∣∣∣zR=z
zM=z

=


nb
na
hab(z) ∀b 6= a

−
∑

c 6=a
nc
na
hac(z), for b = a.

, (12b)

for all a, b ∈ D. We thus confirm that under phenotypic equality selection (i.e. component Fsel(zM))

plays no role (as it should not) and that the change in class-specific mutant frequencies is non-trivial

and purely determined by the matrix Fpc. That is, under phenotypic equality it is the “passive changes”

that determines the dynamics of class-specific mutant frequencies [58, 57, 4, 25, 39, 41].

The Corollary (10) and the Proposition (11) immediately imply, respectively, that

∂

∂zM
f selab (zM)

∣∣∣zR=z
zM=z

=
nb

na

∂

∂z
hab(z)(1− pM,b) (13a)

∂

∂zM,c
f selab (zM)

∣∣∣zR=z
zM=z

= 0, (13b)

for all a, b, c ∈ D. Analogously to above, both properties describe the effect that a mutant phenotype

has on the mutant relative growth-rate. The property (13a) follows from the fact that the effect of a

mutant phenotype on ones own growth-rate is ∂
∂zhab(z) if one is a mutant and ∂

∂zhab(z)pM,b if one is an

average (random) individual in class b ∈ D. The property (13b) in turn follows from the fact that in a

well-mixed population all individuals experience the exact same social environment and hence the effect

that mutants in class c ∈ D have on a mutant growth-rate and an average growth-rate are equal.

3 Mutant-resident dynamics for nearby phenotypes

In this section we will study the relative mutant-resident dynamics (5) for closely similar phenotypes. To

prove the ”invasion implies substitution”-principle by using a timescale separation argument, we wish

that for closely similar phenotypes the mutant frequency in the population is a much slower dynamical

variable than all other dynamical variables presented in this paper. If so, the fast dynamical variables

would then have enough time to reach their steady state and thus could be considered as constant

arguments of the (much slower) evolutionary dynamics of the mutant frequency. To check the timescale

of all dynamical variables present in the relative mutant-resident dynamics (5), let zM = zR + δ and let

us Taylor expand (5) up to the second order about δ = 0,

ṗ = F(zM)
∣∣∣
δ=0

p + δ
d

dδ
F
∣∣∣
δ=0

p +O(δ2)

ṅ = Ḡ
∣∣∣
δ=0

n + δ
d

dδ
Ḡ
∣∣∣
δ=0

n +O(δ2)

ṅP = R
∣∣∣
δ=0

+ δ
d

dδ
R
∣∣∣
δ=0

+O(δ2),

(14)
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which can be rewritten using (9) and (12) as

ṗ = Fpc
0 p + δ

d

dδ
F
∣∣∣
δ=0

p +O(δ2)

ṅ = H(z)n + δ
d

dδ
Ḡ
∣∣∣
δ=0

n +O(δ2) (15)

ṅP = P + δ
d

dδ
R
∣∣∣
δ=0

+O(δ2)

where Fpc
0 := Fpc|δ=0 is as given in (12). We immediately notice that as all variables p,n and nP fluctuate

at a rate dominated by the terms of order O(1) they are all fast population dynamical variables, or in

other words, none of the dynamical variables p,n nor nP are (at least not purely) slow evolutionary

variables dominated by the terms of order O(δ). This is true in particular for the class-specific mutant

frequencies pM,a and thus also the mean mutant frequency pM =
∑

a
na
n pM,a in the population (Appendix

6.3). Since there are no purely slow evolutionary variables, a timescale separation can’t be readily

performed.

In the next Section 3.1, we show that an average mutant frequency weighted by class reproductive values

is the (purely) slow evolutionary variable enabling a timescale separation argument to be made. In the

following Section 3.2, we then find the steady state to which the fast population dynamical variables

approach to, and then in Section 4 we use these results to prove the ”invasion implies substitution”-

principle.

3.1 Class reproductive value weighted average mutant frequency

To find a purely slow evolutionary variable that tracks changes in class mutant frequencies pM,a ,∀a ∈ D,

thus tracking also the mean mutant frequency in the population pM, we take an average of pM,a over

all a ∈ D with weights chosen such that the change of this weighted average mutant frequency vanishes

under phenotypic equality. In the next paragraph we show that the appropriate weights are given by the

vector α = (αa)a∈D ∈ Rc where αa is the class reproductive value [58, 50, 38, 54, 51, 39]. This exposition

follows closely that of [39].

For the moment, let α be an arbitrary vector normalized as
∑

a αa = 1, and lets denote the average

mutant frequency weighted by α with

pα := αp =
∑
a∈D

αapM,a . (16)

Because we are interested in the dynamics of pα, we differentiate with respect to time t and obtain

ṗα = α̇p + αṗ

= [α̇ + αFpc]p + αFsel(zM)p,
(17)

where we have used (5) and (8). Now, the class reproductive values are defined such that for any frequency

distributions p they in some sense “cancel” the class transitions due to passive changes [25, 39], rendering
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the dynamics of the weighted frequency (17) solely in terms of class transitions due to selection. This

requirement is satisfied precisely when the term in the brackets in (17) is zero for all p, which is true

whenever

α̇ = −αFpc, α(t = 0) := α0, (18)

where Fpc is as in (8) (see Appendix 6.2). Note that as
∑

b fab = 0 the matrix Fpc is the infinitesimal

generator matrix for a continuous-time mutant-resident markov chain α on the state space D. Using the

ODE (18) as the definition for class reproductive values, the dynamics of the weighted mutant frequency

(17) reduces to

ṗα = αFsel(zM)p. (19)

We have thus obtained that since α, by definition, satisfies the ODE in (18), the dynamics of the weighted

mutant frequency pα is determined purely by the selection component of the relative growth rate matrix

as given in (19). Remarkably, as we have made no assumptions on the magnitude of δ, the above equation

is valid for arbitrary phenotypic values zM, zR ∈ Z and thus for arbitrary strength of selection. Moreover,

because Fsel|δ=0 = 0 is a null matrix (12), the dynamics of pα under phenotypic similarity (δ small) is

ṗα = δα
d

dδ
Fsel(zM)

∣∣∣
δ=0

p +O(δ2). (20)

Because the dynamics of pα for closely similar phenotypes is dominated by the terms O(δ), we will be

able to track mutant frequencies p and pM purely in slow evolutionary time by studying the δ-term of

pα. The average mutant frequency weighted by class reproductive values pα is thus a well suited proxy

for the slow evolutionary dynamics of pM.

Class reproductive values as fast and slow variables Whenever the class reproductive values α

are defined as in (18), the phenotypic values zM and zR as well as the fluctuations in the dynamical

variables p,n,nP, may be arbitrary. The class reproductive values are therefore defined both in fast and

slow time (depending whether the dynamical variables are at their steady state or not) as well as for

any strength of selection (which is determined by the magnitude of δ). The general interpretation of the

class-specific reproductive value αa is hence the probability that given a random individual is taken from

a random class at any point in time t, its lineage (e.g. its parent due to a birth event) came from class

a ∈ D one unit of time ago [51, 40]. This interpretation holds both in fast and slow time.

If the variables n,nP under phenotypic equality δ = 0 are at their steady state n̂, n̂P and thus constant

in time, the steady state class reproductive values α̂ are solvable from

0 = α̂F̂pc
0 , (21)

where F̂pc
0 = Fpc

0 (z, n̂, n̂P). The class reproductive values α̂ can thus be defined as the left eigenvector
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of F̂pc associated with the eigenvalue 0. Therefore, α̂a can be interpreted as the asymptotic probability

that the ancestral lineage of a random individual was in class a ∈ D. That is, α̂ can be defined as the

long-term contribution of individuals, in a given class, to the future [51, 41] (see further discussion in

Appendix 6.2). We note that because the mutant frequency fluctuates (also) in slow evolutionary time

(20), the long-term interpretation of α̂ holds only under phenotypic equality as only then the matrix F̂pc
0

is frequency independent.

3.2 Steady states and the critical and perturbed manifolds

In Section 3.1, we found that the slow evolutionary dynamics of the weighted average mutant frequency

pα (19) is a function of the fast population dynamical variables α,p,n and nP, and that under phenotypic

similarity (δ small) (20) the dynamics of pα is dominated by the terms of order O(δ) and the dynamics

of α,p,n and nP by the terms of order O(1). It will thus become sufficient to study the dynamics of

α,p,n and nP under phenotypic equality (δ = 0), which is given by

α̇ = −αFpc
0 (z,n,nP)

ṗ = Fpc
0 (z,n,nP)p

ṅ = H(z, z,n,nP)n

ṅP = P(z,n,nP),

(22)

where we used (15), (19) and where we have for clarity included all the arguments. Therefore, in fast

population dynamical time the variables (α,p,n,nP) fluctuate and are expected to reach their steady

state while the weighted mutant frequency pα stays constant. The steady state (α̂, p̂, n̂, n̂P) of (22)

must, by definition, satisfy

0 = α̂Fpc
0 (z, n̂, n̂P)

0 = Fpc
0 (z, n̂, n̂P)p̂

0 = H(z, n̂, n̂P)n̂

0 = P(n̂, n̂P).

(23)

We recall from Section 2.1 that the equilibrium solution (n̂, n̂P) for the bottom two equations exists and

is hyperbolically stable (by assumption), and from Section 3.1 we know that the steady state α̂ exists

and can be calculate from (21). The remaining task is to find the steady state p̂, which can be solved

from

Fpc
0 (z, n̂, n̂P)p̂ = 0

⇐⇒ (24)∑
b

fpcab (z, n̂, n̂P)
∣∣∣
δ=0

p̂M,b =
∑

b

nb

na
hab(z, z, n̂, n̂P)(p̂M,b − p̂M,a) = 0 ∀a ∈ D,
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and is given by

p̂ = (p̂M,1, . . . , p̂M,c) = (p, . . . , p), (25)

where the class-specific mutant frequencies pM,a in all classes a ∈ D are equal. The exact value of

p ∈ [0, 1] to which the class mutant frequencies pM,a approach to, ∀a ∈ D, depends on the initial

condition p(t = 0). Interestingly, since by definition pα(t) = α(t)p(t) for all t, and under phenotypic

equality the weighted average frequency is constant ṗα = 0 as shown in Section 3.1, we must have that

α(0)p(0) = pα(0) = limt→∞ pα(t) =
∑

a α̂a p̂M,a , and so p̂M,a = pα for all a ∈ D, since the equilibrium

frequencies are the same in each class.

We have thus obtained that whenever the mutant and resident phenotypes are equal δ = 0, the dynamics

given by (22) approaches in fast population dynamical time the steady state (α̂, p̂, n̂, n̂P), which we will

represent as the critical manifold:

M0 = {(α̂, p̂, n̂, n̂P) ∈ Rc+c+c+m | p̂M,a = pα ∀a ∈ D}, (26)

where the subscript 0 indicates that we are studying the case where δ = 0 (see Figure 3). Because (n̂, n̂P)

is hyperbolic and the critical equilibrium manifold M0 is compact (the set of points are bounded and

closed) consisting of a neutral line of equilibria (due to the term p̂), it follows thatM0 is compact and a

normally hyperbolic invariant manifold [62]. Roughly speaking, invariant manifold is normally hyperbolic

if the dynamics near the manifold is governed by the hyperbolicity condition while the dynamics on the

manifold is neutral (and thus trivially invariant).

Perturbed manifold As elucidated above, the critical manifold M0 is compact and normally hy-

perbolic, and therefore the results in [18, 19, 20, 21, 32] (see e.g. Theorem 9.1. in [21] or in a more

recent account Theorem 2 page 354 in [31]) guarantee that a perturbed (invariant) manifold Mδ for

the mutant-resident dynamics under phenotypic similarity (δ small) exists, is close to, and has identical

stability properties as M0 (see also Figure 3). A perturbed manifold is thus a set of points that are

invariant under the flow of the (perturbed) mutant-resident dynamics for small but nonzero δ (unlike

M0 it doesn’t consist of an infinite number of equilibria) while in the neighborhood of Mδ and M0

the dynamics is equivalent. Moreover, the dynamics of a slow dynamical variable pα when restricted

to M0 (in slow time) and Mδ are also equivalent. This result plays a fundamental role in Section 4

where we prove the ”invasion implies substitution”-principle by studying the singularly perturbed slow

evolutionary dynamics of pα.

4 Invasion implies substitution

We now the prove the ”invasion implies substitution”-principle for a model presented in this paper

whose resident dynamics is given in (3). We prove the principle by separating the timescales at which
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M0

Mδ
p = 1

p = 0

nM 

nR 

nP 

Figure 3: Critical and perturbed manifoldsM0 andMδ, respectively. The critical manifoldM0 consists
of a line (infinite number) of equilibria and is obtained by solving the equation (23). Because M0 is a
normally hyperbolic invariant manifold, there exists a perturbed manifoldMδ which is close toM0 and
has the same dynamical properties as M0 [21, 31, 35]. Importantly, the dynamics of pα for small δ on
Mδ and the dynamics of pα for δ = 0 on M0 are equivalent.

the various dynamical variables of the mutant-resident model (4) operate by using the weighted average

mutant frequency pα. Because the dynamics of pα is a function of class reproductive values α, mutant

frequencies p, resident densities n and the densities of the rest of the ecological community nP, the

complete mutant-resident dynamics for arbitrary phenotypic values zR, zM ∈ Z (δ arbitrary) can be

written by extending (5) as:

ṗα = αFsel(zM)p

α̇ = −αFpc

ṗ = F(zM)p

ṅ = Ḡn

ṅP = R.

(27)

Next, we write the dynamics of (27) under phenotypic similarity in both fast and slow time, and then

obtain two distinct limiting singular equations (by letting δ go to 0) that can be easily analyzed. Finally,

we glue them back together by perturbing the obtained singular equations [21, 33, 31, 35]. By doing this

the singular system (δ = 0) serves as an approximation to a mutant-resident dynamics under phenotypic

similarity (δ small) such that all its dynamical properties are preserved.

Let t denote the fast population dynamical time (the original time used throughout this paper) and let

τ denote the slow evolutionary time (see also Figure 1). Setting τ = δt we obtain the relation dτ = δdt

and then write the mutant-resident dynamics for closely similar phenotypes (δ small) either using the
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original time variable t

dpα(t)

dt
= δα

d

dδ
Fsel(zM)

∣∣∣
δ=0

p +O(δ2)

dα(t)

dt
= −α(t)Fpc

0 +O(δ)

dp(t)

dt
= Fpc

0 p(t) +O(δ)

dn(t)

dt
= H(z)n(t) +O(δ)

dnP(t)

dt
= P +O(δ)

(28)

or using the new time variable τ

δ
dpα(τ)

dτ
= δα

d

dδ
Fsel(zM)

∣∣∣
δ=0

p +O(δ2)

δ
dα(τ)

dτ
= −α(τ)Fpc

0 +O(δ)

δ
dp(τ)

dτ
= Fpc

0 p(τ) +O(δ)

δ
dn(τ)

dτ
= H(z)n(τ) +O(δ)

δ
dnP(τ)

dτ
= P +O(δ).

(29)

Since we haven’t yet taken any limits the two systems (28) and (29) are identical, the only difference is

the notation. Let’s now take the limit δ → 0 and obtain two limiting singular equations, one for fast

population dynamical time

dpα(t)

dt
= 0

dα(t)

dt
= −α(t)Fpc

0

dp(t)

dt
= Fpc

0 p(t)

dn(t)

dt
= H(z)n(t)

dnP(t)

dt
= P

(30)

and the second for slow evolutionary time

dpα(τ)

dτ
= α

d

dδ
Fsel(zM)

∣∣∣
δ=0

p

0 = −α(τ)Fpc
0

0 = F0p(τ)

0 = H(z)n(τ)

0 = P.

(31)

This confirms that in the fast population dynamical time (30) the average mutant frequency pα stays

constant and that the mutant-resident dynamics reaches the critical manifold M0 as found in (26), and
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that the algebraic expression for M0 can be obtained directly from (31).

Because the variables α,p,n,nP in (31) have reached their critical manifold M0, we evaluate the right

hand side of the first line in (31) at the M0 to obtain

[
α̂
d

dδ
Fsel

∣∣∣
δ=0

p̂

]
M0

=
∑

a

α̂a

∑
b

(
∂

∂zM
f selab (zM) +

∑
c

∂

∂zM,c
f selab (zM)

)
δ=0
M0

p̂M,b

=
∑

a

α̂a

∑
b

n̂b

n̂a

∂

∂z
hab(z, z, n̂, n̂P)p(1− p)

(32)

where we used (13). Therefore, by defining v = (va)a∈D as a vector of reproductive values va = αa
na

of an

individual in class a ∈ D (see Appendix 6.2 for more details), then at M0 we have

v̂a =
α̂a

n̂a
, (33)

and using (32) we can write the slow (singular) mutant-resident evolutionary dynamics (31) constrained

on M0 with a single equation as

dpα(τ)

dτ

∣∣∣
M0

= pα(1− pα)
∑
a,b

v̂a
∂hab(z)

∂z
n̂b (34)

or in a matrix notation as

dpα(τ)

dτ

∣∣∣
M0

= pα(1− pα)v̂
∂H(z)

∂z
n̂. (35)

Now, geometric singular perturbation theory guarantees that the mutant-resident dynamics (28)-(29),

and in particular the dynamics of the weighted mutant frequency pα constrained onMδ, is equivalent to

the singular evolutionary dynamics of pα constrained onM0 as in (35). We have thus proved the below

”invasion implies substitution” Theorem and its Corollary, given the following assumption holds.

Assumption (A). Assume that the resident ecological community as defined in (3) contains a hyper-

bolically stable equilibrium (n̂, n̂P) ∈ RN+m to which the resident population converges to and then stays

at.

Theorem (invasion implies substitution). Consider an ecological community with a polymorphic

demographically (physiologically) structured population as defined in (3), and assume that (A) holds.

Suppose that one of the phenotypes in the population undergoes a mutation, and that the mutant phenotype

zM ∈ Z and its ancestral (resident) phenotype zR ∈ Z are closely similar, i.e. δ = zM − zR for some

small δ 6= 0. Then, for sufficiently small δ, the mutant-resident ecological community (4) converges in

fast population dynamical time to a manifold Mδ which is a small perturbation away from the critical

equilibrium manifold

M0 = {(α̂, p̂, n̂, n̂P) ∈ Rc+c+c+m | p̂M,a = pα ∀a ∈ D}, (36)
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after which the dynamics of the weighted mutant frequency pα on Mδ can be approximated by the dy-

namics of pα on M0 which is given by

dpα(τ)

dτ

∣∣∣
M0

= pα(1− pα)v̂
∂H(z)

∂z
n̂. (37)

Because pM|M0
is proportional to pα, the mean mutant frequency pM either monotonically decreases or

increases for all pM ∈ (0, 1) depending on the sign of the frequency-independent selection gradient

S(z) = v̂
∂H(z, z, n̂, n̂P)

∂z
n̂. (38)

Successful invasion of a mutant thus implies the substitution of the resident.

Corollary (C). The subset of Z where the assumption (A) holds and where the selection gradient (38)

is nonzero determines the set of phenotypic values where successive invasion implies substitution events

may occur, i.e. it defines a set of trait-substitutions.

5 Discussion

We provided a proof of an ”invasion implies substitution”-principle and gave a positive answer to all three

questions (I)-(III) posed in Section 1 for scalar-valued, polymorphic and well-mixed clonally reproducing

populations that are part of a larger ecological community and that are structured into finitely many

demographic (or physiological) classes.

The separation of ecology and evolution We proved the ”invasion implies substitution”-principle

by separating the population dynamical and evolutionary timescales using the weighted average mutant

frequency, and then singularly perturbed [21, 31, 7] the mutant-resident dynamics using the phenotypic

deviation δ as the perturbation parameter. In this method one proceeds in three steps. First, one must

be able to write the mutant-resident dynamics for small values of δ in a fast-slow form ẋ = u(x, p, δ), ṗ =

δv(x, p, δ) where p represents a weighted mutant frequency in the population and x should capture all

the fast (population dynamical) variables. In Section 3, however, it became apparent that for small δ all

dynamical variables are fast variables, including class-specific and mean mutant frequencies, and so the

model couldn’t readily be written in the above fast-slow form. The solution here was to introduce a new

variable which operates purely in slow evolutionary time and is a proxy for the mutant frequency. In

Section 3.1 we showed that such a variable is the average mutant frequency weighted by class reproductive

values [58, 38, 51, 37, 13, 36, 40, 39].

Once the mutant-resident dynamics is in the fast-slow form, in the second step one starts analyzing

the dynamics of the weighted mutant frequency p. Because studying its dynamics for nonzero δ is a

formidable task, one hopes that the dynamics of the much easier model where δ = 0 could serve as an

approximation for small but nonzero δ. To achieve this, one must first scale time by using δ as the scaling

parameter and then write the mutant-resident dynamics in both fast t and slow time τ = δt while letting
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δ go to zero. In this step one thus analyzes two singular systems, one in fast time where p is constant

and x fluctuates according to ẋ = u(x, p, 0), and the other in slow time where x is constant (i.e. is at

the steady state) and p fluctuates according to d
dτ = v(x, p, 0). For us to be able to draw conclusions

from this singular system the variable x must converge to its steady state in fast time. In our model this

follows directly from the assumption that the resident steady state (n̂, n̂P) is hyperbolically stable, i.e.

the real part of all eigenvalues of the Jacobian of the linearized resident dynamics are all negative.

In the third and the final step one perturbs the above singular equations by applying geometric singular

perturbation results developed in [21]. Provided certain conditions are satisfied, one can then equate

the dynamics of the singular equations with the original system we started from where δ was small

but nonzero (i.e. the perturbed system). Conveniently, the sufficient condition for such a singular

perturbation to be possible is that the steady state is hyperbolic which is true by assumption. Therefore,

if invasion implies substitution holds for the singular system, it holds also for the original mutant-resident

dynamics whenever the steady state is hyperbolic.

Interestingly, the above-mentioned procedure can be applied to more general (demographically) struc-

tured models than the one presented in this paper. First of all, the singular perturbation results in

[21] allow a direct generalization of our result to models with attractors other than equilibria as consid-

ered here, e.g. to limit cycles where population experiences deterministic periodic fluctuations. Because

including more complicated attractors would require some amount of additional notions (e.g. time-

dependent reproductive values as e.g. discussed in [39]) we choose to leave this generalization for future

work. Second, more recent but equivalent results on invariant manifolds for semiflows [3, 2, 35] accommo-

date a more general demographic (physiological) structure, in particular, allowing continuous structuring

variables e.g. continuous age or size distributions. However, calculating the hyperbolicity of steady states

is considerably more involved in such cases [26, 27, 35].

Selection gradient as a map between ecology and evolution The expression for the selection

gradient (38) was obtained directly from the timescale separation argument given in Section 4. We found

that the selection gradient can indeed be written as conjectured in (2), with the exception that in our

model the relatedness matrix R plays no role. This is because we assume infinitely large population sizes

with no spatial structure and hence genealogical relationships between any two individuals do not affect

the direction of selection. Nevertheless, the selection gradient can be written solely in terms of resident

population dynamical variables and resident growth-rates. This is practical since one can then calculate

directly from the resident dynamics which mutations can and cannot fix into the population, that is,

one can calculate the fate of the mutation before the mutation actually takes place. In this sense, the

selection gradient is a ”map” from the ecological to the evolutionary model (see Figure 1).

An analogous selection gradient for large class-structured populations with arbitrary social interactions

(density dependence) has been previously considered in [40, 39]. However, the model and the method

obtaining the selection gradient depart from ours in that in [40, 39] the polymorphism is assumed tightly

clustered around its mean and that the dynamical equations were formulated in terms of a Price equation.
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Such a formulation provides links between the dynamics of the mean trait value and the ”invasion implies

substitution”-principle and is thus complementary to our approach. The treatment in [40, 39] is also the

first (but see [37]) in utilizing class-reproductive values defined for arbitrary phenotypic deviations and as

functions of fast population dynamical variables – both properties that need to be taken into account in

the full proof of the ”invasion implies substitution”-principle. The drawback in this approach, however, is

that the timescale of dynamical variables such as class-specific mutant frequencies is not easily accessible.

Consequently, in particular our results on the critical manifoldM0 (Section 3.2), allows us to confirm that

the class-specific trait variance is indeed a fast variable approaching the population mean trait variance, a

result that was left open in [41]. We conjecture that the ideas on tightly clustered phenotypes developed

in [42] together with the results derived in this paper fully justify the selection gradient presented in

[40, 39].

Long-term evolutionary dynamics The main implication of the ”invasion implies substitution”-

principle is that it indicates the set of phenotypes that can invade and substitute their ancestral pheno-

types, thus providing a tool to study the long-term evolutionary dynamics of the trait under selection

(panel C in Figure 1 and Corollary in Section 4). The sequential invasion and substitution can occur

whenever the steady state is hyperbolic, thus excluding the possibility of bifurcations that may lead to

catastrophic extinctions, and whenever the selection gradient S(z) is nonzero, i.e. as long as we are away

from the extrema of the adaptive landscape. Such extrema identify the phenotypic values where invasion

no longer implies substitution and where more complicated evolutionary behaviour can occur [24, 49, 7].

Nevertheless, because we have formulated our model for arbitrarily polymorphic resident populations,

the ”invasion implies substitution”-principle holds whenever the selection gradient is non-zero (and the

steady state is hyperbolic). This is particularly true after evolutionary dynamics converges and escapes

a phenotypic value that is a branching point: ”invasion implies substitution”-principle governs the

direction of evolution even after the appearance of new morphs.

5.1 Conclusions

This study is part of a quest aiming at generalizing and formalizing the hypothesis that social traits un-

der frequency and/or density dependent selection are generically subject to directional gradual change,

whenever mutations cause only small deviations to the phenotype under selection (and in the absence of

genetic constraints). Further, directional selection should be quantifiable by a selection gradient that con-

sist of reproductive value and relatedness weighted fitness differentials. In this study this hypothesis was

confirmed for well-mixed ecological communities with demographically (physiologically) class-structured

populations. Our results are directly applicable to several well-known models, such as SIR-models in

epidemiology and stage-structured models in life-history studies, and will be generalized to spatially

structured population with limited disperal in a forthcoming study.
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[15] S. Estrela, E. Libby, J. Van Cleve, F. Débarre, M. Deforet, W. R. Harcombe, J. Peña, S. P. Brown,

and M. E. Hochberg. Environmentally mediated social dilemmas. Trends in ecology & evolution,

2018.

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 19, 2019. ; https://doi.org/10.1101/773580doi: bioRxiv preprint 

https://doi.org/10.1101/773580
http://creativecommons.org/licenses/by-nc-nd/4.0/


[16] S. N. Ethier and T. Nagylaki. Diffusion approximations of markov chains with two time scales and

applications to population genetics. Advances in Applied Probability, 12(1):14–49, 1980.

[17] S. N. Ethier and T. Nagylaki. Diffusion approximations of markov chains with two time scales and

applications to population genetics, ii. Advances in Applied Probability, 20(3):525–545, 1988.

[18] N. Fenichel. Persistence and smoothness of invariant manifolds for flows. Indiana University Math-

ematics Journal, 21(3):193–226, 1971.

[19] N. Fenichel. Asymptotic stability with rate conditions. Indiana University Mathematics Journal,

23(12):1109–1137, 1974.

[20] N. Fenichel. Asymptotic stability with rate conditions, ii. Indiana University Mathematics Journal,

26(1):81–93, 1977.

[21] N. Fenichel. Geometric singular perturbation theory for ordinary differential equations. Journal of

Differential Equations, 31(1):53–98, 1979.

[22] S. Geritz, M. Gyllenberg, F. Jacobs, and K. Parvinen. Invasion dynamics and attractor inheritance.

Journal of mathematical biology, 44(6):548–560, 2002.

[23] S. A. Geritz. Resident-invader dynamics and the coexistence of similar strategies. Journal of

mathematical biology, 50(1):67–82, 2005.
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6 Appendix

6.1 Relative growth-rate for arbitrary phenotypes

In the main text we derived the dynamics for class-specific mutant frequencies (5)-(8). Here we proceed

the same way with the exception that we don’t specify the phenotype of the individual whose relative

growth-rate we are calculating

ṗX,a =
d

dt

(
nX,a
na

)
=
ṅX,ana − nX,a ṅa

n2a

=
1

na
[ṅX,a − pX,a ṅa ]

=
∑

b

nb

na
gab(zX)pX,b − pX,a

∑
b

nb

na

(
gab(zM)pM,a + gab(zR)pR,a

)
=
∑

b

nb

na
gab(zX)pX,b − pX,a

∑
b

nb

na
ḡab

=
∑

b

nb

na
gab(zX)pX,b − pX,b

∑
b

nb

na
ḡab + pX,b

∑
b

nb

na
ḡab − pX,a

∑
b

nb

na
ḡab

=
∑

b

nb

na
[gab(zX)− ḡab ] pX,b + pX,b

∑
b 6=a

nb

na
ḡab − pX,a

∑
b 6=a

nb

na
ḡab

(39)

for all a ∈ D, where ḡab = gab(zM)pM,b + gab(zR)pR,b and where zX ∈ {zM, zR}. Defining p := pM and

1− p := pR as the vector of class-specific mutant and resident frequencies, respectively, we can write

ṗX = F(zX)pX

= [Fpc(zX) + Fpc]pX

(40)

where zX ∈ {zM, zR} and pX ∈ {pM,pR} and where the entries of Fpc(zX) and Fpc(zX), respectively,

are

f selab (zX) =
nb

na
[gab(zX)− ḡab ]

fpcab =


nb
na
ḡab ∀b 6= a

−
∑

c 6=a
nc
na
ḡac , for b = a.

(41)

Notice that the component that gives the rates at which passive changes occur Fpc is the same for both

mutant and resident phenotypes. In fact, an analogous expression can be derived for any polymorphism

as long as 1 =
∑

X pX,a for all a ∈ D.

6.2 Individual reproductive values

This exposition follows closely that of [39] with the exception on how we define the individual-specific

reproductive values. The main insight is that in contrast to standard practice the reproductive values

are not calculated at the steady state and are thus defined in both fast population dynamical as well as

slow evolutionary time (see a more detailed discussion in [39]).
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In the main text we discussed the general definition for class reproductive values, and here we complement

this analysis by giving a general definition for individual reproductive values. In contrast to [58, 40, 39]

where the individual reproductive value is defined as αa
πa

, we define an individual reproductive value as

va =
αa

na
, ∀a ∈ D. (42)

Because va is a function of time and we are interested in its dynamics, lets differentiate and obtain

v̇a =
1

na
α̇a −

1

na
va ṅa

= − 1

na

[∑
b

αb
na

nb
ḡba − αa

∑
b

nb

na
ḡab

]
− 1

na
va

∑
b

ḡabnb

= −
∑

b

vb ḡba + va

∑
b

nb

na
ḡab − va

∑
b

nb

na
ḡab

= −
∑

b

vb ḡba , , ∀a ∈ D,

(43)

which can be expressed with a matrix notation as

v̇ = −vḠ, (44)

where v = (va)a∈D is a vector of individual reproductive values. Similarly to class reproductive values,

individual reproductive values as defined in (44) are both fast and slow variables. Using (44) and Section

2.3 the slow evolutionary time definition under phenotypic equality δ = 0 is

0 = v̂H(z, z, n̂, n̂P), (45)

that is, v̂ is the left eigenvector of the resident matrix H(z, z, n̂, n̂P) associated with the eigenvalue 0.

6.3 Mean mutant frequency pM as a fast population dynamical and slow

evolutionary variable

In the main text we showed that class-specific mutant frequencies p are both fast and slow variables, i.e.

under phenotypic similarity the dynamics is dominated by the terms of order O(1) and it approaches

a line of equilibria at which the dynamics is dominated by the terms of order O(δ). Here we confirm

that the same applies for the mean mutant frequency in the total population pM = πp =
∑

a πapM,a .

We do this by showing that class frequencies π under phenotypic similarity are dominated by the terms

of order O(1) and approach an (isolated) equilibrium value (i.e. π doesn’t change in slow time). For

completeness, we study both the resident and mutant-resident dynamics of class frequencies.

Resident Dynamics Define πa = na
n , where n =

∑
a na , as the proportion of resident individuals

inhabiting class a ∈ D in the resident ecological community (Section 2.1), that is, the probability that a

randomly sampled resident individual is in class a ∈ D. We obtain a dynamical equation for π = (πa)a∈D
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by differentiation

π̇a =
ṅa

n
− na

n2
ṅ

=
1

n

∑
b

ha,b(z)nb − πa
1

n

∑
c

∑
b

hc,b(z)nb

=
∑

b

ha,b(z)πb − πa

∑
c

∑
b

hc,b(z)πb

=
∑

b

[
ha,b(z)− πa

∑
c

hc,b(z)

]
πb , ∀a ∈ D,

(46)

or in short,

π̇ = Q(z, z,π, n,nP)π, (47)

where Q(z, z,π, n,nP) := Q(z), Q(z) = (qa,b(z))a,b∈D and

qa,b(z) = ha,b(z)− πa

∑
c

hc,b(z). (48)

We can immediately confirm that
∑

a qa,b(z) = 0 and hence Q is the infinitesimal generator matrix for a

continuous-time markov chain on the state space D, where π is the vector giving the probabilities for a

resident individual being in a particular class.

Mutant-Resident Dynamics Similarly to the resident dynamics above, define πM,a =
nM,a

nM
, where

nM =
∑

a nM,a , as the frequency of mutant individuals in class a ∈ D amongst all mutants in the mutant-

resident ecological community (Section 2.2), that is, the probability that given a mutant individual is

sampled from the population it is in class a ∈ D. We obtain a dynamical equation for πM = (πM,a)a∈D

by differentiation

π̇M,a =
ṅM,a
nM

− nM,a
n2M

ṅM

=
1

nM

∑
b

gMa,b(zM)nM,b − πM,a
1

nM

∑
c

∑
b

gMc,b(zM)nM,b

=
∑

b

gMa,b(zM)πM,b − πM,a
∑

c

∑
b

gMc,b(zM)πM,b

=
∑

b

[
gMa,b(zM)− πM,a

∑
c

gMc,b(zM)

]
πM,b , ∀a ∈ D,

(49)

or in short,

π̇M = T(zM, zR, zM,πM, nM,nP)π, (50)
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where T(zM, zR, zM,πM, nM,nP) := T(z), T(zM) = (ta,b(z))a,b∈D and

ta,b(z) = gMa,b(zM)− πM,a
∑

c

gMc,b(zM). (51)

We can immediately confirm that
∑

a ta,b(zM) = 0 and hence T is the infinitesimal generator matrix for

a continuous-time mutant-resident markov chain on the state space D, where πM is the vector giving

the probabilities for a mutant individual being in a particular class.

Mutant-Resident Dynamics under neutrality Using the consistency relation (9) from Section 2.3

we immediately obtain that under neutrality the system (50) reduces to

π̇M = Q(z, z,πM, n,nP)πM, (52)

where

qa,b(z, z,πM, n,nP) = ha,b(z)− πM,a
∑

c

hc,b(z). (53)

Note, in particular, that under phenotypic equality the dynamics of elements πM,a , a ∈ D, is non-zero

and thus πM,a are fast population dynamical variables.

The dynamics and stationary solutions π̂ and π̂M under neutrality From Section 3.2 we know

that when mutant and resident phenotypes are equal (selective neutrality) the class-specific mutant

frequencies and the densities of the ecological community approach a steady state (p̂, n̂, n̂P) where

p̂ = (p̂M,a) and p̂M,a = p for all a ∈ D. Consequently,

π̂a =
n̂a

n̂

p̂M =
∑

a

p̂M,a π̂a = p

π̂M,a =
n̂M,a
n̂M

=
p̂M,a
p̂M

n̂a

n̂
=
n̂a

n̂
,

(54)

that is

π̂M = π̂ = (
n̂a

n̂
)a∈D. (55)

Thus, at the stationary state under phenotypic equality the probability that a randomly sampled mutant

in the mutant-resident community is in class a ∈ D is identical to the probability that a randomly sampled

individual in the resident community is in class a ∈ D. Moreover, πM and π approach the stationary

state π̂ in fast population dynamical time.

Finally, because the steady state n̂ is hyperbolic it persist under small perturbations of δ and hence

we can conclude that under phenotypic similarity the class frequencies π approach in fast population

dynamical time an (isolated) equilibrium (i.e. π doesn’t change in slow time). Therefore, the mean
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mutant frequency pM = πp =
∑

a πapM,a is both fast population dynamical and slow evolutionary

variable. Moreover, in slow evolutionary time the class-specific mutant frequencies are all p and hence

in slow evolutionary time pM = p.
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