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Introductory Paragraph: 25	

Mutations do not accumulate uniformly across the genome. Human germline and tumor 26	
mutation density correlate poorly, and each is associated with different genomic 27	

features. Here, we analyze the genome-wide distribution of mutation densities in 28	
human and non-human Great Ape (NHGA) germlines as well as human tumors. 29	
Strikingly, non-human Great Ape germlines present higher correlation with tumors than 30	

the human germline does. This situation is mediated by a different distribution in the 31	
human germline of mutations at non-CpG sites, but not of CpG>T transitions. We 32	

propose that the impact of ancestral and historical human demographic events on 33	
human mutation density leads to this specific disruption in its expected genome-wide 34	
distribution. Tumors partially recover this distribution by the accumulation of pre-35	

neoplastic-like somatic mutations. Our results highlight the potential utility of using 36	
Great Ape population data, rather than human controls, to establish the expected 37	

mutational background of healthy somatic cells.  38	
  39	
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Introduction 40	

Mutation density, at different scales, has been shown to correlate with different 41	
genomic features, such as regional GC-content or recombination rate1–5. In cancer, 42	

mutation density has been linked to chromatin states6, with higher mutation 43	
accumulation in closed chromatin. It has been suggested that the tumor’s higher 44	
mutation accumulation in closed chromatin is due to poorer accessibility or recruitment 45	

of the mismatch repair machinery to late-replicating, closed-chromatin regions7,8. 46	
Recent studies have shown that the correlation between tumor mutation density and 47	

chromatin state is highly tissue-dependent, allowing the identification of the tissue of 48	
origin of metastatic tumor samples9,10.  49	
 50	

At a smaller scale, sequence context is a good predictor of the mutation rate11, beyond 51	
hypermutable CpG sites12–15. Sequence context has been widely used in cancer 52	

analyses to detect signatures of mutation associated with mutagens such as UV-light, 53	
tobacco smoke, or APOBEC activity16,17. These effects have also been detected in 54	

healthy somatic tissues18,19.  55	
 56	
De novo mutations are also affected by sequence context20–22. The rates of some 57	

particular mutation types have changed recently across ancestries23–26. Mutation rates 58	
seem to have been under selection in the human lineage. Sequence context studies 59	

have shown differences in the relative proportion of certain mutation types between 60	
Great Ape species25. Furthermore, studies of de novo mutations in Great Ape samples 61	
revealed a slowdown of the overall mutation rate in humans relative to chimpanzees 62	

and gorillas27. 63	
 64	

Here we study mutation rate evolution, through the differences in mutation distribution 65	
(at the 1Mbp scale) between human tumoral tissues and healthy populations in the 66	
Great Ape lineage.  67	
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Results 68	

 69	
We compared the mutation density distribution in human (1kGP28, sgdp_5029), non-70	

human Great Apes (NHGA: chimpanzee30,31, gorilla30,32), and human cancer33 datasets. 71	
We focused on high-quality orthologous regions shared between human, chimpanzee 72	
and gorilla genomes, measuring the number of variants per 1Mbp independently of the 73	

frequency of each variant (see Methods).  74	
 75	

In agreement with previous reports1,3,4,6, we observe a variable distribution of the 76	
mutation density across the genome in all datasets (Figure 1a). Mutation densities 77	
correlate weakly between the human germline and tumors1,6 (Table 1). Strikingly, the 78	

NHGA-tumor correlations are much stronger than the human-tumor correlation and are 79	
similar to the human-NHGA germline correlations (Table 1 & Supplementary Table 1).  80	

 81	
We compared the distribution of mutation density between pairs of datasets 82	

(Supplementary Figure 1). Interestingly, we observed that mutation density in tumors 83	
is higher in windows where NHGAs have higher mutation density than humans 84	
(Figures 1b,c). To control for differences in the shapes of distributions, we ranked 85	

each set of windows according to their mutation density (Figures 1d,e). These ranked 86	
distributions show a clear pattern: tumor mutation densities are higher in windows with 87	

higher ranks in NHGAs than in human (two-sided Mann-Whitney U test p-value human-88	
chimpanzee= 3.7e-216; human-gorilla = 2.8e-161). This behavior is exclusive to 89	
human-NHGA comparisons, as it cannot be observed when comparing chimpanzee to 90	

gorilla (Supplementary Figure 1), and can be replicated under different conditions and 91	
datasets (Supplementary Notes, Supplementary Tables 2-6 & Supplementary 92	

Figure 1). 93	
 94	
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High-diversity NHGA subspecies have stronger correlations with both human and 95	

tumor than the low-diversity subspecies (Supplementary Table 3). Furthermore, the 96	
diagonal pattern is only characteristic of comparisons between the germlines of  97	

humans and high-diversity NHGA subspecies. A comparison of high and low-diversity 98	
chimpanzee and gorilla subspecies showed a clear horizontal split (Supplementary 99	
Figure 2). Mutation density in tumors co-localizes with the most diverse NHGA 100	

subspecies, regardless of the mutation density in the least diverse. In other words; 101	
while a lack of diversity distorts the distribution of the genome-wide mutation densities, 102	

the diagonal pattern is caused by effects intrinsic to the human lineage. We observed a 103	
weak intermediate pattern when comparing NHGA to three archaic hominid genomes 104	
(Supplementary Figure 1; Supplementary Note). This suggests that at least part of 105	

the differentiation process in the distribution of mutation densities was already 106	
established before the human-Neanderthal split.  107	

 108	
Interestingly, correlations between a variety of genomic features and tumor mutation 109	

density are consistently more similar to the correlations with NHGAs than with humans 110	
(Figure 2a). Mutation densities in NHGAs have, like in humans, strong correlations 111	
with sequence conservation and recombination rate (Supplementary Figure 3). 112	

However, and strikingly, NHGAs show strong positive correlations with epigenomic 113	
features associated with closed chromatin, just as tumors do (Figure 2a, 114	

Supplementary Table 7). We also observe consistent associations with human 115	
chromatin states34 (Figures 2b,c). GC-content, H3K36me1, and CpG-content show a 116	
clear positive correlation with human but negative with NHGAs and tumors, suggesting 117	

that they might be contributing to the diagonal pattern (Figure 2d,e and 3a,b). 118	
Interestingly, H3K36me1 has been shown to be specifically recruited in the gene 119	

bodies of genes regulated by CpG islands although its role remains unclear35. 120	
 121	
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Intrigued by the connection of several CpG-related features with the diagonal pattern 122	

that implies stronger correlation between mutation densities in tumors and NHGA than 123	
with the human germline (Figure 3a,b), we analyzed separately CpG>T transitions and 124	

mutations at non-CpG sites. (Figure 3c-f). CpG>T transitions present very strong 125	
correlations between all germline datasets and very poor correlations with tumor 126	
(Figure 3c,d). The relationship between CpG-content and mutation density at non-127	

CpG sites is different in humans compared to NHGAs and tumors. Moreover, their 128	
correlations are similar to those using all sites (Figure 3e,f). Correcting the mutation 129	

density of CpG>T transitions by the regional CpG content homogenizes the directions 130	
of the correlations with genomic features in all datasets (Supplementary Notes, 131	
Supplementary Figure 2). Interestingly, this correlation is weaker in human than in 132	

NHGA and in tumors (Supplementary Notes, Supplementary Table 8, 133	
Supplementary Figure 3). This suggests that the differences in correlations with 134	

genomic features are caused by differences in the relative contribution of non-135	
CpG/CpG>T mutation density in each dataset. The distribution of human de novo 136	

mutations36 at both non-CpG and CpG sites replicates the behavior of human germline 137	
mutations showing very low correlations with tumor (Supplementary Notes, 138	
Supplementary Tables 3&9). When comparing the distribution of non-CpG mutations, 139	

we detect a horizontal pattern (Supplementary Figure 3) similar to those observed in 140	
comparisons of high- and low-diversity subspecies. Therefore, the combination of the 141	

behaviors of both non-CpG and CpG>T mutations causes the diagonal pattern 142	
observed when comparing all SNVs. 143	
 144	

To explore the contribution of different mechanisms to the observed mutation densities, 145	
we analyzed their trinucleotide context. The triplet mutation spectra of human, 146	

chimpanzee, and gorilla are very similar (Supplementary Figure 4, Supplementary 147	
Table 10). It has been shown that the human mutation spectrum can be recapitulated 148	
by a combination the cancer signatures SBS1 and SBS520,37. We were able to replicate 149	
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this association in NHGA and another primate species (Vervet monkey) 150	

(Supplementary Notes, Supplementary Table 10), suggesting its conservation in the 151	
primate lineage. 152	

 153	
A subset of trinucleotides is significantly enriched in one of the species (Chi-Squared 154	
test p-value <10e-5). We detected no association between these trinucleotides and 155	

known mutation mechanisms (Figure 4a, see Methods, Supplementary Note, 156	
Supplementary Figure 4, Supplementary Table 11). However, linear regression 157	

models show a positive and significant (p-value <10e-4) effect of the triplet’s GC-158	
content and its fold-enrichment in the human-chimpanzee comparison 159	
(Supplementary Figure 4). Only trinucleotides with similar enrichment between 160	

species (non-CpG, mainly C>G and T>C) show differences in their distribution across 161	
the genome between human, NHGA, and tumor (trinucleotide-difference test p-value 162	

<10e-5, see Methods, Supplementary Note, Figure 4a). 163	
 164	

 165	
We compared the association of the number of mutations caused by each cancer 166	
signature17,38 in each individual tumor type to the human-NHGA-tumor pattern 167	

(Supplementary Table 12). Signatures SBS5 and SBS40 showed a significant 168	
association (signature-difference test p-value <10e-4, see Methods) of the pattern with 169	

the tumor’s signature mutation load (Figure 4b). Both SBS5 and SBS40 are flat 170	
signatures whose mutation load is associated with the age of the sample and with pre-171	
neoplastic mutations in tumors17,38 This suggests that the strong correlation between 172	

NHGA and tumor mutation densities is driven by conserved mechanisms in healthy 173	
cells in the Great Ape lineage, while the genome-wide distribution of mutations has 174	

been altered in the human germline. 175	
 176	
 177	
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Discussion 178	

We analyzed the mutation density distribution at the 1Mbp scale in the human and 179	
NHGA germlines, as well as in human tumors. We observed a moderate similitude 180	

between human and NHGA germlines and, surprisingly, a higher resemblance 181	
between human tumors with the germlines of NHGAs than with humans  182	
 183	

These discrepancies in mutation density in the human and NHGA germlines are 184	
differently associated with genomic and epigenomic features. Regions more densely 185	

mutated in humans than in NHGAs tend to be GC-rich, exon-rich, promoter and 186	
enhancer-rich, open chromatin and early replicating. Particularly, CpG-related features 187	
show a positive correlation with human and a negative correlation with NHGA and 188	

tumor mutation densities. The possible functional implications in human evolution 189	
require further study. 190	

 191	
These observations are driven by the different behavior of mutation density at CpG>T 192	

transitions (very similar in all germlines and very different in tumors) and at non-CpG 193	
sites (more similar in NHGAs and human tumors than in human germline). This is 194	
exclusive of the human germline and, thus, must have been caused by human-specific 195	

conditions. 196	
 197	

We observed that human and other primates showed a very similar global triplet 198	
mutation spectrum. We detected an enrichment of certain trinucleotide mutations in 199	
humans and NHGAs consistent with previous results (non-CpG, GC-rich mutations are 200	

enriched in humans)25. The enriched trinucleotides are not associated with mutation 201	
signatures with known causes, nor do they contribute significantly to the higher 202	

similitude of human tumors to NHGA germlines. This suggests the absence of strong 203	
mechanistic changes biasing the accumulation of mutations in any of the studied 204	
germlines. 205	
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 206	

As previously described for human20,37, we observed that mutation rates of three non-207	
human Primates are explained by mutation signatures SBS1 (mostly CpG>T 208	

mutations) and SBS5 (associated with “normal” accumulation of mutation in healthy 209	
somatic and germline cells16,39). Moreover, the lower human-tumor than NHGA-tumor 210	
correlation is driven by the accumulation of mutations associated with signatures SBS5 211	

and SBS40 (similar to SBS5 and recently discovered17). These results suggest that the 212	
poor human-tumor correlation is caused by the fact that human (but not NHGAs) 213	

germline (and de novo mutations) do not currently reflect the expected mutation 214	
densities of healthy (and pre-neoplastic-like) human somatic cells. One possible 215	
explanation of this effect, would be if the recent slowdown in mutation rates in 216	

humans27 affected differently the different types of mutations. 217	
 218	

We observed that the moderate human-NHGA and the low human-tumor correlations 219	
of mutation densities at non-CpG sites could be caused by losses in population 220	

diversity (as observed in low-diversity NHGA subspecies). We propose that successive 221	
bottlenecks during human evolution removed a substantial part of nucleotide variation 222	
that still remains to be recovered as a whole. In contrast, the hypermutability of CpG 223	

sites and its concentration in specific regions caused CpG>T transitions to have 224	
already recovered diversity levels similar to those of high-diversity NHGAs. Moreover, 225	

the recent human-exclusive population expansions30,40 are expected to cause an 226	
increase of clock-like CpG>T mutations in the population41,42, leaving signatures akin to 227	
positive selection, as it has been described in Native Americans24. These effects 228	

caused a decoupling of the CpG>T/non-CpG mutation rates within the same region, 229	
stronger in humans than in NHGA and tumors. We cannot disregard an additional 230	

contribution of human-specific shifts in CpG>T transitions mutation rates, although they 231	
have been suggested to be similar across all Great Apes42. We propose that the 232	
combination of population bottlenecks and expansions, together with the specific 233	
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nature of the different mutation types, drives the differences observed in the 234	

distributions of human mutation densities.  235	
 236	

Our results imply that accumulated mutations in human populations are a poor proxy of 237	
the expected mutational background in healthy somatic cells. In fact, accumulated 238	
mutations in NHGAs (at least at non-CpG sites) or even in tumors happen to be more 239	

informative about the normal occurrence of mutations in healthy somatic cells.  240	
  241	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 19, 2019. ; https://doi.org/10.1101/773317doi: bioRxiv preprint 

https://doi.org/10.1101/773317
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 11	

Methods: 242	

 243	
Datasets used: 244	

For the human datasets we used the release variant calling of 2,504 humans from the 245	
1000 Genomes Project28 (1kGP), our own calling of 50 additional human samples from 246	
the Simons Genome Diversity Panel29 (sgdp_50), and de novo mutations from 1,548 247	

trios36 that were mapped to the human reference hg19 using the liftOver tool43. We 248	
used our own mapping and calling of 69 chimpanzees and bonobos (59 chimpanzees 249	

and 10 bonobos, referred as chimpanzees in short)30,31 and 43 gorillas30,32. We used 250	
the release variant calling of 3 archaic samples: Altai and Vindija 33.19 251	
Neanderthals44,45, and Denisova46. Finally, for the tumor dataset, we used the release 252	

variant calling of 2,583 human tumors from the Pan-Cancer Analysis of Whole 253	
Genomes Consortium33. 254	

 255	
Definition of high-quality orthologous regions shared between human, 256	

chimpanzee and gorilla genomes   257	
We mapped and called chimpanzee and bonobo, gorilla, and human (sgdp_50) 258	
samples to the human reference hg19 using BWA MEM47 and GATK48 following the 259	

best practices protocols49,50 and additional quality filters (Supplementary Notes).  260	
 261	

To avoid missmappings to the human reference and erroneous estimates of mutation 262	
density in the NHGA samples (too low density caused by lack of mapping reads or 263	
deletions or too high density caused by collapsed duplications51) we filtered out any 264	

region of the human reference genome hg19 failing one of the following criteria: poor 265	
mappability of the human reference split into 35bp k-mers, poor callability in ≥25% of 266	

the chimpanzee or gorilla samples, or, matching a known Copy Number Variable 267	
region in NHGA samples52 (Supplementary Notes). 2,052Mbp of autosomal sequence 268	
passed this filtering (76.54% of the non-N human reference autosomes). We divided 269	
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the autosomes into 1Mbp overlapping (500kb) windows and kept all windows where 270	

≥50% of its bases passed our filtering. This left 5,040 1Mbp windows to analyze 271	
(Supplementary Figure 1, Supplementary Table 2). 272	

 273	
These filters were applied to all datasets used, including both our callings and external 274	
datasets used as released. All SNV counts, trinucleotide counts, and genomic features 275	

measurements through this study used only regions passing this filtering. For the 276	
analysis of archaic samples, we combined this filtering with the intersection of the 277	

callability mask of all 3 archaic samples. This specific filtering was applied to all 278	
datasets when compared with the archaic samples.  279	
 280	

 281	
Mutation density: 282	

We measured mutation density of each window in each dataset by counting either the 283	
number of non-fixed segregating sites (in the human, chimpanzee and gorilla datasets) 284	

or the number of somatic mutations (in the tumor and human de novo datasets, 285	
accounting repeated mutations as independent mutational events). We divided this 286	
count of Single Nucleotide Variants (SNV) by the fraction of the window passing our 287	

filtering. This results in a measure of mutations per Megabasepair (Mbp) of sequence 288	
for each window. We standardized the resulting distribution within each dataset 289	

deeming it as the mutation density. We ranked all windows within a dataset by their 290	
distribution of mutation density to control for the different shapes of the datasets 291	
distributions. 292	

 293	
Correlations between distributions: 294	

All correlations used in this analysis are Pearson’s correlation (using the R function 295	
cor.test) between the standardized mutation densities (unranked) of the two datasets 296	
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unless otherwise specified. Partial correlations, when used, were calculated using the 297	

pcor function from the ppcor R package. 298	
 299	

Significance of the diagonal split: 300	
To measure the significance of the diagonal split pattern observed when comparing the 301	
human and NHGA datasets, we divided all windows into two groups depending on if 302	

the ranked mutation density is higher in human than NHGAs or vice-versa. We 303	
calculated the two-sided Mann-Whitney U test on the variable of interest (usually, the 304	

tumor mutation density) on both groups using the R function wilcox.test. 305	
 306	
Genomic Features: 307	

The genomic features used were filtered using the same mappability, callability and 308	
copy-number filters used for the mutation density data. The features used were either 309	

the overlap of the feature’s genomic coordinates with the fraction of the 1Mbp window 310	
passing our filtering (e.g. GC-content, CpG-content), or the average value or intensity 311	

of the feature in the passing fraction of the window (e.g. histone marks), depending on 312	
the original data (Supplementary Table 7). 313	
 314	

Trinucleotides: 315	
We classified each SNV into the 96 possible combinations of trinucleotides (12 316	

different mutation types, by 16 combinations of the adjacent nucleotides, divided by 317	
two when folding them). We determined the adjacent reference sequence of each SNV 318	
using the getfasta option of bedtools53. We filtered out any variant where the liftOver 319	

tool43 could not map them to the chimpanzee panTro5 or the gorilla gorGor5 reference 320	
genomes, or the trinucleotide sequence differed in one of the three reference 321	

genomes. This filter was applied to all windows and we used for our analysis only 322	
windows where ≥50% of it passed both the original high-quality orthologous regions 323	
and this 3-reference filter, leaving 4,920 windows to use. We applied additional filters 324	
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requiring the trinucleotide to be species-exclusive and to not overlap variants in other 325	

species (Supplementary Note). This resulted in a high-confidence set of species-326	
exclusive trinucleotides where the ancestral and derived alleles could be reliably 327	

inferred. This filtering affected more CpG>T than non-CpG sites, due to the recurrent 328	
nature of CpG>T transitions (Supplementary Table 10). 329	
 330	

Mutation spectra: 331	
We calculated each species’ mutation spectra as the fraction of all trinucleotides in a 332	

dataset belonging to one of the 96 trinucleotides. We calculated correlations between 333	
datasets using Pearson’s correlation (cor.test function in R). We measured the 334	
correlation of the mutation spectrum of each species and the combined effect of cancer 335	

mutation signatures SBS1 and SBS517,38 by the formula: 0.1*SBS1+0.9*SBS5, as 336	
CpG>T transitions are the main components of signature SBS1 and they represent 337	

~10% of the trinucleotides in both the human and NHGA datasets. 338	
 339	

Whole-genome enrichment of trinucleotides: 340	
We calculated the enrichment and its significance in each germline dataset pair 341	
(human-chimpanzee, human-gorilla, chimpanzee-gorilla) using the method described 342	

in Harris, 201725. We calculated the enrichment of trinucleotide T between species A 343	
and B by dividing fraction of T in species A / fraction of T in species B. We calculated a 344	

chi-squared test using a contingency table with: the trinucleotide count in species A, in 345	
species B, the count of the rest of trinucleotides in species A, and in species B. As the 346	
counts of trinucleotides are not independent from each other, we sorted all 347	

trinucleotides from most to least significant, and rerun the test by decreasing 348	
significance order, while removing the previously used trinucleotides from the count of 349	

total trinucleotides.  350	
 351	
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CpG>T transitions are highly affected by the sample size of the datasets. We ran all 352	

the tests using both 1kGP and sgdp_50 as the human dataset. We detected 353	
incoherences on the significance and direction of the results in two CpG>T 354	

trinucleotides. We report the results using 1kGP where tests using both 1kGP and 355	
sgdp_50 are coherent in both significance and direction of the enrichment. 356	
The top 10% most enriched trinucleotides in each species pairwise comparison were 357	

compared with cancer mutation signatures38, and reported when the trinucleotide 358	
represented ≥5% of the mutations within a signature. 359	

 360	
Trinucleotide distribution difference test (trinucleotide-difference test): 361	
We developed a method to determine which trinucleotides contribute significantly to the 362	

difference between NHGAs-tumors and human-tumors mutation density correlations: 363	
For each trinucleotide T and each pair of species (human-chimpanzee, human-gorilla, 364	

and, chimpanzee-gorilla) we, subtract the ranked mutation density of T in species A 365	
minus the ranking in tumor, and in species B minus tumor. We calculate the two-sided 366	

Kolmogorov-Smirnov test (using the R function ks.test) of the two resulting 367	
distributions. We use the p-value of the ks-test as the significance of the test and the 368	
difference between the standard deviation of both distributions (as both have a mean of 369	

0) as the test’s effect size. The results when using 1kGP or sgdp_50 as the human 370	
datasets are concordant in the direction of the association, but we discarded the 371	

sgdp_50 results because the smaller number of SNV (and of each trinucleotide type) 372	
results in lower power when using sgdp_50. 373	
 374	

Association of GC-content in the trinucleotide sequence: 375	
We counted the number of Cytosine and Guanine bases in each trinucleotide and built 376	

a linear regression (using the R function glm). The GC-content of the triplet acted as a 377	
predictor of the result of the test (the log10 fold-enrichment in the whole-genome 378	
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enrichment analysis or the difference between the standard deviation of both 379	

distributions in the trinucleotide-difference test). 380	
 381	

Mutation load-difference test per mutation signature (signature-difference test): 382	
In order to determine the contribution of each mutation signature to the difference 383	
between NHGAs-tumors and human-tumors mutation density correlations, we rerun 384	

the trinucleotide-difference test using the 1kGP and chimpanzee datasets, while using 385	
the different individual tumor types (Supplementary Table 12). For each trinucleotide, 386	

tumor type and mutation signature, we built a linear regression (using R’s glm function) 387	
where the mutation load of that signature in that tumor type17 predicted the effect size 388	
in the trinucleotide-difference test for that tumor type (Supplementary Note). For each 389	

signature, we built a contingency table where all 96 trinucleotides where classified by 390	
whether being significant or not (p-value <0.05) in the trinucleotide-difference test, and 391	

the significance of the mutation load in the linear regression model. We ran a chi-392	
squared test on that contingency table and obtained its significance.  393	
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Figure legends:	544	

Figure 1: Distribution of mutation density across datasets. a) Distribution of the 545	

standardized mutation density in 1Mbp windows in human, NHGA, and tumor datasets. 546	
The numbers next to the legend represent the fold-enrichment between the 95th and 5th 547	

quantiles. b) Distribution of the standardized mutation density in humans, chimpanzee 548	
and tumor. Each point represents a 1Mbp window. The x-axis represents the human 549	
mutation density, the y-axis the chimpanzee mutation density, and the point color, the 550	

tumor mutation density. The black line represents the diagonal where the mutation 551	
density is equal in human and chimpanzee. c) Same as b but comparing human and 552	

gorilla. d) Distribution of the ranked mutation density in humans, chimpanzee and 553	
tumor. Each point represents a 1Mbp window. The x and y axis represent the ranking 554	
in mutation density in human and chimpanzee, respectively. Color of points represents 555	

the ranked mutation density in the tumor dataset. The solid black line represents the 556	
diagonal where the ranked mutation density is equal in human and chimpanzee. The 557	

dashed lines represent 25% difference in ranking in both species. e) Same as d, 558	
comparing human and gorilla. 559	

  560	
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Figure 2: Genomic Features. a) Pearson’s correlation R of different datasets with 561	

human genomic features (Supplementary Table 7). b) Overlap of heterochromatin in 562	
human lymphoblastoid cell lines (LCLs) measured by chromHMM states34 compared 563	

with the human and chimpanzee ranked mutation density distribution. c) Same as b but 564	
using the aggregate chromHMM states associated with the presence of promoters. d) 565	
same as b and c but color denotes the window’s GC-content, e) density of H3K36me1 566	

histone mark ChIP-seq reads54. 567	

  568	
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Figure 3: CpG-content. a) Distribution of the CpG-content in the human reference 569	

hg19 compared with the ranked mutation density in human and chimpanzee, b) loess 570	
smoothers of mutation density rank and CpG-content for the different datasets. c) 571	

CpG>T transitions corrected by the whole window size; loess smoothers same as in b; 572	
d) correlation of the standardized mutation density of CpG>T transitions in different 573	
species; e) same as in b,c, but using only mutations at non-CpG sites; f) correlation of 574	

the standardized mutation density of mutations at non-CpG sites in different species. 575	

  576	
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Figure 4: Trinucleotide analysis. a) Contribution to the higher chimpanzee-tumors 577	

mutation distribution similarity Vs. genome-wide enrichment in human compared to 578	
chimpanzee. X-axis: log10 of the enrichment of trinucleotides comparing human and 579	

chimpanzee. Left: enriched in chimpanzee; right: enriched in human. Y-axis: effect size 580	
(difference between the standard deviations of human-tumor and chimpanzee-tumor) 581	
of the trinucleotide-difference test (see Methods). Positive values: tumor distribution 582	

more similar to chimpanzee; negative values: tumor distribution more similar to human. 583	
Color represents the central nucleotide mutation type. Filled dots represent mutation 584	

types significant (p-value <1e-5) in the trinucleotide-difference test. b) -Log10 p-values 585	
of the association of each cancer signature mutation load to the trinucleotide-difference 586	
test (signature-difference test; see Methods). Color represents the number of mutations 587	

associated with each signature in the whole dataset. Dot size represents the number of 588	
tumor types with two or more samples showing the signature. Only non-artifact 589	

signatures present in 2 or more tumor types are shown.  590	
  591	
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Table legends: 592	

 593	
Table 1: Correlations. Pairwise Pearson’s correlation R of the standardized mutation 594	

density of 5,040 1Mbp windows between datasets. 595	
 596	

Correlation	between	distributions	of	mutation	density	
  1kGP Chimpanzee Gorilla 

Chimpanzee 0.65 - - 
Gorilla 0.53 0.84 - 
Tumor 0.16 0.55 0.58 
 597	
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