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Single-cell RNA-sequencing (scRNA-seq) is essential for the
study of cell-specific transcriptome landscapes. The scRNA-seq
techniques capture merely a small fraction of the gene due to
“dropout' events. When analyzing with scRNA-seq data, the
dropout events receive intensive attentions. Imputation tools
are proposed to estimate the values of the dropout events and
de-noise the data. To evaluate the imputation tools, researchers
have developed different clustering criteria by incorporating the
ground-truth cell subgroup labels. There lack measurements
without cell subgroup knowledge. A reliable imputation tool
should follow the “‘self-consistency' principle; that is, the tool
reports the results only if it finds no further errors or dropouts
from the data. Here, we propose ‘“self-consistency' as an ex-
plicit evaluation criterion; also, we propose I-Impute, a “self-
consistent'' method, to impute scRNA-seq data. I-Impute lever-
ages continuous similarities and dropout probabilities and re-
fines the data iteratively to make the final output self-consistent.
On the in silico data sets, I-Impute exhibited the highest Pearson
correlations for different dropout rates consistently compared
with the state-of-art methods SAVER and scImpute. On the
datasets of 90.87 %, 70.98 % and 56.65 % zero rates, I-Impute ex-
hibited the correlations as 0.78, 0.90, and 0.94, respectively, be-
tween ground truth entries and predicted values, while SAVER
exhibited the correlations as 0.58, 0.79 and 0.88, respectively and
scImpute exhibited correlations as 0.65, 0.86, and 0.93, respec-
tively. Furthermore, we collected three wetlab datasets, mouse
bladder cells dataset, embryonic stem cells dataset, and aor-
tic leukocyte cells dataset, to evaluate the tools. I-Impute ex-
hibited feasible cell subpopulation discovery efficacy on all the
three datasets. It achieves the highest clustering accuracy com-
pared with SAVER and scImpute; that is, I-Impute displayed
the adjusted Rand indices of the three datasets as 0.61, 0.7, 0.52,
which improved the indices of SAVER by 0.01 to 0.17, and im-
proved the indices of scImpute by 0.19 to 0.4. Also, I-impute
promoted normalized mutual information of the three datasets
by 0.01 to 0.09 comparing with SAVER, and by 0.15 to 0.34
comparing with scImpute. I-Impute exhibits robust imputa-
tion ability and follows the “self-consistency'' principle. It of-
fers perspicacity to uncover the underlying cell subtypes in real
scRNA-Seq data. Source code of I-Impute can be accessed at
https://github.com/xikanfeng2/I-Impute.

Keywords: scRNA-Seq; Imputation; Self-consistency; Cell Subpopulation
Identification
1: Equal contributor

Correspondence: shuaicli@cityu.edu.hk

Background

Single-cell RNA-sequencing (scRNA-seq) is becoming es-
sential for the study of cell-specific transcriptome land-
scapes (1). It demonstrates robust efficacy in capturing

transcriptome-wide cell-to-cell heterogeneity with high res-
olution (2-5). With meta information such as time series or
patient histology, scRNA-seq has the potential to decipher the
underlying patterns in cell cycles (6-8), complex diseases (9—
11), and cancers (8, 12-16).

A count matrix captures expression profiles with genes as
rows and cells as columns, and the measurements of count
as the matrix entries. scRNA-seq captures a small fraction
of the gene due to “dropout” events; that is, sScRNA-seq pro-
duces zero-inflated count matrices, only about 10% entries
are non-zero values (17). Usually, the dropout events oc-
cur as the truly expressed transcripts may be missed during
sequencing in some cells, and the dropout rate is protocol-
dependent (18). When analyzing with scRNA-seq data, the
excess zero counts brought by dropout issue are worth for at-
tention. Otherwise, the zero count distribution from different
protocols may lead diverging potency, which may weaken the
credibility of the downstream analysis results (18).

The conventional downstream analyses include clustering,
cell type recognition, dimension reduction, differential gene
expression analysis, identification of cell specific genes and
reconstruction of differentiation trajectory on zero-inflated
single-cell gene expression data (18). The credibility of the
aspects mentioned above depends on the exactitude of ex-
pression profiling; therefore, it is vital to amend the false ze-
ros induced by dropout events. In past years, some scCRNA-
seq methods choose to conduct clustering, cell type recogni-
tion, and dimension reduction tasks by implicitly incorpo-
rating dropout events (19-22). While at this moment im-
putation before downstream analysis becomes mainstream,
scRNA-seq imputation tools have rapidly emerged to tackle
the rampant dropouts. SAVER (23) imputes by borrowing
information across genes and using the Bayesian approach to
estimate the expression levels. It aims to reduce meaningless
biological variation and retain valuable biological variation.
While SAVER would unfairly adjust all gene expression lev-
els including the actual non-expression of genes, hence pos-
sibly interject new biases and abolish real biological mean-
ings. scImpute (18) is designed to identify dropout values
with Gamma-Normal mixture model firstly, and then do im-
putation on dropout events by borrowing information from
similar cells, with the expression level of un-dropout events
unchanged. It automatically excludes the outlier cells and
their gene information, which are likely to influence the orig-
inal imputation values. While scImpute is not good at the
extremely sparse datasets.

On in silico data where the ground truth counts are known,
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the root mean square error (RMSE) between imputed and
ground truth entries is the most common metrics for imputa-
tion evaluation (24). For wetlab data sets, the ground truth
counts for missing events are unknown. Researchers ran-
domly remove non-zeros entries and employ the imputation
tools to impute these removed entries. Then they calculated
the RMSE for removed entries as a criterion to evaluate im-
putation tools (24, 25). Also, researchers tend to implicitly
validate imputation efficacy by checking whether imputed
data promotes the downstream analysis result or not. For
instance, clustering measurements such as adjusted Rand in-
dex (ARI), normalized mutual information (NMI), silhouette
width (SW), and within-cluster sum of squares are commonly
adopted for scRNA-seq imputation evaluation (18, 26). Nev-
ertheless, the aforementioned clustering measurements re-
quire the true cluster labels. There lack explicit measure-
ments for wet-lab data imputation.

A reliable imputation tool should assume its output contains
no dropout or errors; that is, if we feed the output to the im-
putation tool again by eliminating a certain amount of en-
tries, the tool should be able to reproduce these entries. We
refer this property as the “self-consistency" principle for im-
putation. Therefore, in this study, we propose the concept
of “self-consistency" as a criterion to evaluate the reliability
of imputation tools by just using the input count matrix it-
self. We measured the self-consistency of the state of the art
imputation tools, and as well as developed a self-consistent
method “I-Impute" for scRNA-seq data imputation. On the
in silico data sets, I-Impute exhibited consistently the high-
est Pearson correlations for different dropout rates compared
with the state-of-art methods SAVER and sclmpute. On
the datasets of 90.87%, 70.98% and 56.65% zero rates, I-
Impute exhibited the correlations as 0.78, 0.90, and 0.94, re-
spectively, between ground truth entries and predicted val-
ues, while SAVER exhibited the correlations as 0.58, 0.79
and 0.88, respectively and scImpute exhibited correlations as
0.65, 0.86, and 0.93, respectively. Furthermore, several dis-
crete cell subpopulations have been reported in scRNA-Seq
data collected from the wet lab; the identification of subpopu-
lations of cells is crucial (27). Here, we collected three wetlab
datasets, mouse bladder cells dataset, embryonic stem (ES)
cells dataset, and aortic leukocyte cells dataset to evaluate
the tools. I-Impute exhibited feasible cell subpopulation dis-
covery efficacy on all the three datasets. It achieves the high-
est clustering accuracy compared with SAVER and scImpute;
that is, I-Impute displayed the adjusted Rand indices of the
three datasets as 0.6054, 0.7047, 0.5220; while SAVER and
scImpute have the indices as 0.5253 and 0.1937, 0.6920 and
0.3574, 0.3605 and 0.3377, respectively. Also, [-impute pro-
moted normalized mutual information of the three datasets
from 0.7085 and 0.45 to 0.7892, from 0.7329 and 0.5258 to
0.7444, from 0.6837 and 0.6237 to 0.7728, respectively.

Results

Evaluating the self-consistency of existing imputation
tools in synthetic data. To evaluate the imputation tools,
we applied the R package Splatter (28) to generate sSCRNA-
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seq reads count data. We simulated 150 cells of three groups,
each with 2,000 genes. Then we generated three sparse
matrices by setting the dropout rates as 88.45%, 63.29%,
and 45.16%; and their corresponding zero rates are 90.87%,
70.98%, and 56.65%, respectively.

Above all, we validated whether existing imputation tools
were self-consistent. We call a method f : z — x is self-
consistent if the root mean square error (RMSE) between
Toutput and f(Toutpyt) is less than prespecified thresholds
0, where Zoytput = f(Tinput). Considering the imputa-
tion process as a complex function fimputation that maps
the zero-inflated matrix into an output matrix of the same
shape. A reliable function f;mputation Should procure the
recovered matrix with no noise nor missing entries, aka
onutput - fimputation (xoutput)HQ < 0. As illustrated in
Table 1, assume the cut-off value 6 is 0.1, SAVER and scIm-
pute is self-inconsistent. scImpute exhibits self-inconsistency
with RMSE value of 7.346 in 88.45% dropout data, of
0.2392 in 63.29% dropout data, of 0.2677 in 45.16% dropout
data. SAVER reveals self-inconsistency with RMSE value of
0.5613, 1.0245, and 1.3561 in above three datasets, respec-
tively. Nevertheless, incorporating ground truth group labels,
traditional evaluation metrics represented that SAVER out-
performed scImpute in respect to adjusted Rand index (ARI),
normalized mutual information (NMI), and silhouette width
(SW) (see Table S1).

Therefore, in this study, we build a two-pronged method “I-
Impute" which satisfies both self-consistency principle and
as well as existing imputation metrics (ARI, NMI, and SW).
As illustrated in Figure 1A, we first developed “C-Impute
by adopting continuous similarities and dropout probabilities
to infer the missing entries. Then, I-Impute invokes SAVER
as a subrourtine to preprocess the data, and then employ C-
Impute iteratively to processed data (see Figure 1B). With
n times of iterations, the final imputed result turns to self-
consistent, with RMSE value of 0.0936, 0.0806, and 0.0381
in three synthetic datasets, respectively (see Table 1).

I-impute recovers gene expression affected by
dropouts in synthetic data. To validate the performance of
I-Impute, we painted the heatmap of the raw matrix, 88.45%
dropout matrix, and recovered matrices, respectively (see
Figure 2A-F ). I-Impute recovered the most similar pattern
than SAVER, scImpute, and C-Impute. As illustrated in Fig-
ure 2G, SAVER pulled down a large part of entries from their
raw, leading to the lowest Pearson correlation 0.58 between
ground truth and prediction. scImpute and C-Impute casted
some high expressed entries into zero, which introduces new
bias after imputation (see Figure 2H-I). With no extreme
pull-down or pull-up prediction, I-Impute exhibited the most
robust recovery potency with the highest Pearson correlation
0.78 (see Figure 2J). In terms of 63.29% and 45.16% dropout
rate, I-Impute also manifested the highest Pearson correlation
of 0.90 and 0.94, respectively ( see Table S4).

The t-SNE embedding plots of the raw matrix, 88.45%
dropout matrix, and recovered matrices demonstrate that
SAVER, C-Impute, and I-Impute recover the missing en-
tries while preserving cell subgroups structures well (see Fig-
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ure 3A-F). Silhouette width (SW) further validated that the
in-group similarity and out-group separation were enhanced
after the imputation by SAVER, C-Impute, and I-Impute.
That is, the average silhouette value increased from 0.0862
(dropout data) to 0.1075 (SAVER), 0.1705 (C-Impute), and
0.2429 (I-Impute), respectively (see Table S1). Figure 3G
demonstrates that I-Impute achieves the most noticeable im-
provement, while scImpute illustrates lower SW values than
dropout data. Next, we applied hierarchical clustering into
all matrices, and adopted the adjusted Rand index (ARI) and
normalized mutual information (NMI) as metrics of cluster-
ing accuracy. ARI and NMI measure the overlap between
the inferred groups and ground-truth clusters; a score of 0
implies random labelling and 1 indicates perfect inference.
In Figure 3G, I-Impute outperforms all four tools and ex-
hibits the best subpopulation identification strength, with the
highest clustering accuracy (ARI: 0.8721, NMI: 0.8521, see
Table S1). Experiments on 63.2% and 45.16% dropout rate
data sets also proved that I-Impute produced the best recov-
ered matrices; with ARI 1.0, NMI 1.0, SW 0.3908 for 63.2%
dropout rate, and ARI 0.9801, NMI 0.9710, and SW 0.4123
for 45.16% dropout rate (see Table S2-S3).

Overall, the synthetic experiment demonstrates that by incor-
porating C-Impute to refine the SAVER processed data iter-
atively, I-Impute outcomes the SAVER’s inconsistency and
enhances the imputation potency.

I-impute promotes cell subpopulation identification in
real data sets. To manifest how I-Impute can help to iden-
tify cell subpopulations, we utilized three real scRNA-Seq
datasets as the benchmark. The first one is a dataset of
mouse Bladder cells which contains 162 cells of three cell
types. Due to dropout events, 73.5% of read counts in the
raw count matrix are zeros. We evaluate the imputation
power by reviewing the tSNE embedding result and silhou-
ette width (SW). ScImpute mixs part of Unknown-type cells
(the purple dots) with the Fibroblasts-1 cells (the blue dots)
and Fibroblasts-2 cells (the yellow dots). While SAVER,
C-Impute and I-Impute distinguish the Unknown-type cells
from Fibroblasts-1 cells and Fibroblasts-2 cells well. Over-
all, compared with raw and other imputed data, the I-Impute
produce the most compact clusters with highest silhouette
width of 0.1758 (Figure 4A). We then compare the hierar-
chical clustering accuracy, ARI and NMI. All the two mea-
surements intimate that with 0.6054 ARI and 0.7892 NMI,
I-Impute heads to the best clustering effect as compared
with raw (ARIL:0.1937, NMI:0.45) and the imputation by
SAVER (ARI:0.5253, NMI:0.7085) , scImpute (ARI:0.1937,
NMI:0.45) , or C-Impute (ARI:0.1664, NMI:0.4317) (Figure
4A, Table S5).

We also adopt I-Impute to a mouse embryonic stem (ES)
cells dataset. This dataset contains 2717 cells of four cell
types (mouse ES cells sample 1, mouse ES cells LIF 2 days,
mouse ES cells LIF 4 days and mouse ES cells LIF 7 days).
Due to the running time limitation of scImpute for large cells
dataset, we randomly selected 200 cells and no subpopula-
tions and genes were excluded during this process. Due to
dropout events, 67.0% of read counts in the raw count ma-

Feng etal. |

trix are zeros. Overall, Figure 4B illustrate that SAVER
and I-Impute achieved the unprecedented imputation power
than other tools. Given by the 2D t-SNE embedding space,
SAVER and I-Impute separate 2 days cells (the yellow dot)
from 4 days cells (the green dots) and 7 days cells (the blue
dots) well. The evaluation of Silhouette width, adjusted Rand
index, and normalized mutual information further demon-
strated that I-Impute (ARI:0.7047, NMI:0.7444, SW:0.2275)
produced a more tight and accurate in-cluster structure than
SAVER (ARI:0.692, NMI:0.7329, SW:0.2235)(Table S6).
This evidence shows the strong ability of I-Impute to iden-
tify cell subpopulations despite 67.0% missing rate.

Finally, we used the mouse Aortic Leukocyte cells dataset
to test I-Impute. This dataset contains 378 cells of six cell
types (B cells, T cells, T memory cells, Macrophages, Nuo-
cytes, and Neutrophils). Due to dropout events, 91.2% of
read counts in the raw count matrix are zeros. SAVER and
[-Impute grouped the T memory cells (the yellow dots) into
big cluster, while in raw data and other imputed matrices, T
memory cells are separated into different clusters (see Figure
4C). Even though I-Impute with silhouette width of 0.0711
dose not recover a more compact structure than SAVER, it
outperforms all other tools in hierarchical clustering tasks
with highest ARI (0.522) and NMI (0.7728) (Table S7).
Overall, I-Impute predicts missing values in scRNA-seq data
and improves the discovery of cell subpopulations.

Methods

C-Impute. We propose “C-Impute" by adopting a flexible
continuous similarity and Lasso penalty in objective function
(see Figure 1A).

Data prepossessing. The input of the method is a count ma-
trix X€ e M x Niotqr Which contains rows as genes and
columns as cells, where M and Ny,:,; represent the total
number of genes and cells correspondingly. The dropout val-
ues are replaced by zero counts.

Then, normalization, dimension reduction, and outlier re-
moval are conducted the same as in scImpute (18). Fi-
nally, we obtained outlier removed matrix X € M x N and
7 € K x N, where K is the reduced dimensionality of meta-
genes, IV is the number of remained cells.

Affinity matrix constructing. Based on the outlier removed Z
matrix, cell affinity matrix A € N x N can be computed with
Euclidean distance and Gaussian Kernel:

Dist(i,j) = |2 - Z}'[[& M
i = Dist(i, k) )
Ajj={ exp 207 Dist(i,j) < o3, A3)

0, Dist(z,7) > 0;.

Where ¢, j represent two different cell indices, Zi—r and ZJ—-r
indicate the principle components of i-th and j-th cell re-
spectively. For i-th cell, the kernel width will be set to the
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distance between it and its n-nearest neighbor, cell k, which
stands for the cell whose distance to cell ¢ is n-th smallest in
all other cells, where n is a hyper-parameter.

Identification of dropout values and calculating dropout rate.
With transformed gene expression matrix X, we utilize a sta-
tistical model to infer which entries are influenced by the
dropout effects. Instead of treating all zero values as missing
entries, we use the Gamma-Normal mixture model to learn
whether a zero observation originates from dropout or not.
We use the Normal distribution to present the actual gene ex-
pression level and Gamma distribution to take into account
for dropout events. Since the transformed matrix X contains
no longer integers, we cannot adopt zero-inflated negative bi-
nomial (ZINB) distribution.

For ¢-th gene and its observed value x in prepossessed gene
profiling X;, the Gamma-Normal mixture model will be:

fGamma—Normal(an i, O, By [ Ui)

=m;Gamma(x; «;, 5;) + (1 — m; )Normal(z; i1, 05)

C))

Where 7; is the dropout rate of gene i, «; and f; is the
shape and rate parameter of Gamma distribution respectively,
i and o; are the mean and standard deviation of Normal
distribution. The estimated model parameters 7, &, B it
and & are obtained by Expectation-Maximization (EM) algo-
rithm. Then, we can calculate the dropout probability matrix
DeMxN.

m;Gamma(X;;; o, ;)

fGamma-Normal (X’Lj 1T, 0, Bis Hi, U’Z)

D;; = 5)
The purpose of this mixture model is to identify the observed
value is a dropout value or not, since zero can be caused by
a technical error or may the actual value of its expression.
If a gene has high expression and low variation in most its
similar cells, a zero count will have high dropout probability
and more likely to be a dropout value; otherwise, the zero
value may exhibit real biological variability (18).

Imputation of dropout values. To impute the gene expression
levels, we define hyper-parameter ¢ as the threshold to deter-
mine X;; is a dropout event or not. For entry whose dropout
probability is less than ¢, we consider it as a real observa-
tion, its original value will remain. Otherwise, we conduct
the imputation with the aid of information from similar cells
utilizing non-negative least squares lasso regression. Please
notice that we will not borrow any information from any other
dropout events. For j-th cell, the objective is:

N

. T T
%1%1 |(1=Dj)oX;

i =1
T _ TVinT|2
_[(1_D3 )O(AijXj )}Bj Iz (6)
+Al1B] I,
subject to B]‘_I' >0

where D;r and X JT is the j-th column of D and X . o operator
is the Hadamard product which follows (P o Q);; = P;;Q;;.
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7 denotes all indices except index j, thus D;.'— and X de-

notes the sub-matrix of D and X which contains all cells
except the j-th cell, respectively. Aﬁ stores the pairwise
affinity between j-th cell and all other cells; X;.T is a sub-
matrix of X which contains all cells except the j-th cell. ©
operator represents the vector and matrix multiplication, e.g.
(p©®Q)i; = piQij. Leveraging (1 — D]T) o X;-r as target in-
dicates that genes with high dropout probability in j-th cell
will not contribute to optimization. Furthermore, the multi-
plication of (1 — D; ) and A= ensures that the information is
only borrowed from the trusted genes with low dropout prob-
abilities in the similar cells. Non-negative weights BjT are
extra contributions of all other cells learned from regression.
Finally, £1 is applied to avoid over-fitting and further ensure
the imputation borrow information from the cell’s most sim-
ilar neighbors.

After obtained the estimated 5B , the imputed matrix X can be
calculated. Count values that have dropout probability lower
than threshold ¢ will remain the same, and values that have
dropout probability higher than ¢ will be replaced by imputa-
tion result.

Xij = Xij7Diir< g TV RT @)
9= (1=D])o(4;0XT)B] Dy >t

I-impute. I-Impute is a ‘“self-consistent” tool to impute
scRNA-seq data. As illustrated in Figure 1B, it utilizing C-
Impute to iteratively refine the SAVER processed data. With
n times of iterations, the final imputed result remains self-
consistent (< 0.1).

We define self-consistency of a functional mapping f:x — x
given by input data X € M x N:

Xoutput = f(X)

_ ||Xoutput - f(Xoutput)H%' (8)
M x N
self-consistency(f; X) < 0.1 — f is self-consistent

self-consistency( f; X)

Evaluation metrics.

Adjusted Rand index and normalized mutual information.
The adjusted Rand index (ARI) (29) and normalized mutual
information (NMI) (30) are adopted as clustering accuracy,
which measures the similarity between predicted clustering
results and actual clustering labels. A value close to 0 indi-
cates random labelling or no mutual information, and a value
of 1 demonstrates 100% accuracy of clustering or perfect cor-
relation.

Silhouette width. The silhouette width (SW) measures the
similarity of a sample to its class compared to other cate-
gories (31). It ranges from -1 to 1. A higher silhouette value
suggests a more appropriate clustering, a silhouette value
near 0 intimates overlapping clusters and a negative value be-
tokens that the clustering has been performed incorrectly. We
adopted the silhouette width to evaluate the model’s imputa-
tion power. We used the ground-truth subtype classes as the
input cluster labels.
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Simulation and benchmark settings. Splatter are used to
generate simulated scRNA-seq data. The parameters used
for our simlation dataset are nGroups=3, nGenes=2000,
batchCells=150, seeds=42, dropout.type="“experiment",
dropout.shape=-1 and droupout.mid=2, 3, 5 for three
different dropout rate data.

SAVER and scImpute are adopted as the competing tools.
For SAVER R package, we used the “saver" function with
the parameters ncores=12 and estimates.only=TRUE to per-
form the imputation tasks. The parameters for sclmpute are

Conclusions

It is essential to impute the missing values in scRNA-seq be-
fore the downstream analysis. We conceived an imputation
metric “self-consistency” and proposed an iterative imputa-
tion tool, I-Impute. Experiments on simulation data and real
data sets established I-Impute feasibility in imputation and
discovering the underlying cell subpopulation.

List of abbreviations

drop_thre=0.5, ncores=10, Kclusters=(number of true cluscRNA-seq Single-cell RNA-sequencing

ters in input data).

On synthetic data, I-Impute configuration is n=40, normal-
ize=False, and iteration=True. On real data sets, I-Impute
configuration is n=40, and iteration=True for mouse Bladder
cell dataset and ES cell dataset and n=20, and iteration=True
for mouse Aortic Leukocyte cell dataset.

Data availability. The real scRNA-seq data used in this
study are all publicly available. = The mouse ES cell
dataset (32) was downloaded from the Gene Expression Om-
nibus (GEO) with the accession code GSE65525. The mouse
Bladder cell dataset and Aortic Leukocyte cell dataset were
downloaded from the PanglaoDB (33) with the accession
code SRS3044239 and SRS2747908 respectively.

Code availability. The Python package I-Impute is freely
available at https://github.com/xikanfeng2/
I-Impute.

Discussion

In this paper, we introduced I-Impute, which is designed to
impute scRNA missing entries iteratively. Experiments using
synthetic and real data demonstrated I-Impute to be particu-
larly suited for cell subpopulation discovery.

There are some advantages of I-Impute compared with scIm-
pute and SAVER. Firstly, I-Impute groups SAVER and C-
Impute together, and iteratively imputes the missing values
until convergence. Adding iteration makes the imputed ma-
trix holds self-consistency and a tighter hierarchical structure.
Secondly, scImpute ask the user to decide the cell groups
number k and assign cells in the same group equal weights
during imputation. Here I-Impute gets rid of hyper-parameter
k and builds a continuous affinity matrix leveraging Gaussian
kernel. Last but not least, Lasso regression makes unimpor-
tant weights zero, which can help to filter the distant cells for
the regression.

The current implementation of I-Impute still has several is-
sues. Firstly, the current regression formula is unable to
model the underlying non-linear relationship. We are con-
sidering to add deep learning architectures into the I-Impute
architecture. Secondly, with the increase of cell and gene
numbers, the running time of I-Impute overgrows. We intend
to fasten I-Impute running efficiency with the aid of PyTorch
tensor parallel computing.
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ARI Adjusted Rand Index
NMI Normalized Mutual Information
SW Silhouette Width

RMSE Root Mean Square Error
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Figures
Tables

Table 1. Self-consistency on synthetic data. NA denotes not applicable.

SAVER  sclmpute I-Impute
88.45% dropout 0.5613 7.3460 0.0936
Self-consistent (<0.1) X X v
63.29% dropout 1.0245 0.2392 0.0806
Self-consistent (<0.1) X X v
45.16% dropout 1.3561 0.2677 0.0381
Self-consistent (<0.1) X X v

Supplementary Tables

Table S1. Imputation performance on synthenic data (88.45% dropout)

Method ARI NMI Sw
Raw 0.5161 0.5787 0.2627
88.45% Dropout  0.4363 0.5467 0.0862
SAVER 0.7473  0.7145 0.1075
scImpute 0.0531 0.0989 0.0742
C-Impute 0.6860 0.7512 0.1705
[-Impute 0.8721 0.8521 0.2429

Table S2. Imputation performance on synthenic data (63.29% dropout)

Method ARI NMI Sw
Raw 0.5161 0.5787 0.2627
63.29% Dropout  0.3105 0.4115 0.1910
SAVER 0.9784 0.9700 0.2739
scImpute 0.2033  0.3904 0.2054
C-Impute 0.9644 0.9509 0.2496
I-Impute 1.0 1.0 0.3908

Table S3. Imputation performance on synthenic data (45.16% dropout)

Method ARI NMI SW
Raw 0.5161 0.5787 0.2627
45.16% Dropout  0.6000 0.6306 0.2137
SAVER 0.9801 0.9710 0.3292
scImpute 0.3596 0.4962 0.2365
C-Impute 0.4727 0.5551 0.2566
I-Impute 0.9801 0.9710 0.4123

Table S4. Pearson correlation result on synthenic data

Method  88.45% Dropout  63.29% Dropout  45.16% Dropout
SAVER 0.5836 0.7915 0.8764
scImpute 0.6451 0.8582 0.9263
C-Impute 0.7611 0.8873 0.9305
I-Impute 0.7812 0.8993 0.9357
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Fig. 1. lllustration of I-Impute architecture
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Fig. 2. Imputation performance on synthetic data
(A-F) Heatmap plots. Blue, green, and red tiles represent different cell groups (C-J) Scatter plots, Pearson correlation between ground-truth entries and imputed values are
calculated.

Table S5. Imputation performance on mouse Bladder cells data

Method ARI NMI SW
Raw 0.1937 0.4500 0.0737

SAVER  0.5253 0.7085 0.0621 Table S7. Imputation performance on mouse Aortic Leukocyte cells data
scImpute  0.1937 0.4500 0.0686
C-Impute  0.1664 0.4317 0.0741 Method ARl  NMI  SW
I-Impute  0.6054 0.7892 0.1758 Raw 0.3463  0.6352  0.0290
Table S6. Imputation performance on mouse ES cells data SAVER 0.3605 0.6837 0.1075
sclmpute  0.3377 0.6237 0.0358
Method ~ ARI ~ NMI SW C-Impute  0.3427 0.6398  0.0206
Raw 0.2410 0.5160 0.0353 I-Impute  0.5220 0.7728 0.0711

SAVER  0.6920 0.7329 0.2235
scImpute  0.3574 0.5258 0.0418
C-Impute 0.2410 0.5160 0.0411
I-Impute  0.7047 0.7444 0.2275
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Fig. 3. Imputation performance on synthetic data
(A-F) t-SNE plots (G) evaluation metrics.

Feng et al.


https://doi.org/10.1101/772723
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/772723,; this version posted September 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

SAVER scimpute

NMI

sclmpute

=5 0 5 10 15 -15 -0 -5 0 5 10 15

C-lmpute I-impute

-60 -40 =20 o 20 40 -40 =20 o 20 40 60 ~40 =20 o 20 40 60
C-Impute 08 Evaluation Metrics
“ta a3 )
R ]
40 ) ';3::..&.-" 40 07
06
0 % 20
o - \ 0.5
D% '
of R, i
o I 04
v
-20 Syreen o \' 03
.o -2 pt 02|
-a0 ey el b <
e
‘: e 01

Fig. 4. Imputation performance on real datasets

(A-C) t-SNE plots and evaluation metrics for mouse bladder cells, embryonicstem cells, and aortic leukocyte cells, respectively
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