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*Corresponding author: Antonio Vicent, vicent antciv@gva.es

September 2019

Abstract1

Circular leaf spot (CLS), caused by Plurivorosphaerella nawae, is a serious disease of persimmon2

(Diospyros kaki) inducing necrotic lesions on leaves, defoliation and fruit drop. Under Mediter-3

ranean conditions, P. nawae forms pseudothecia in the leaf litter during winter and ascospores are4

released in spring infecting susceptible leaves. Persimmon growers are advised to apply fungicides5

for CLS control during the period of inoculum availability, which was defined based on ascospore6

counts under the microscope. A model of inoculum availability of P. nawae was developed and eval-7

uated as an alternative to ascospore counts. Leaf litter samples were collected weekly in L’Alcúdia8

from 2010 to 2015. Leaves were soaked, placed in a wind tunnel, and released ascospores of P.9

nawae were counted. Hierarchical Bayesian beta regression methods were used to fit the dynamics10

of ascospore production in the leaf litter. The selected model, having the lowest values of DIC,11

WAIC and LCPO, included accumulated degree days (ADD) and ADD taking into account the12

vapor pressure deficit (ADDvpd) as fixed effects, and year as a random effect. This model had13

a MAE of 0.042 and RMSE of 0.062. The beta regression model was evaluated in four orchards14

for different years from 2010 to 2015. Higher accuracy was obtained at the beginning and the end15

of the ascospore production period, which are the events of interest to schedule fungicide sprays16

for CLS control in Spain. This same modelling framework can be extended to other fungal plant17

pathogens whose inoculum dynamics are expressed as proportion data.18
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1 Introduction21

Circular leaf spot (CLS) disease of persimmon (Diospyros kaki Thunb.), caused by Plurivo-22

rosphaerella nawae (Hiura & Ikata) O. Hassan & T. Chang (= Mycosphaerella nawae), induces23

necrotic lesions on leaves, chlorosis and defoliation. The presence of foliar lesions and prema-24

ture leaf drop induce early fruit maturation and abscission, resulting in serious economic losses25

(Bassimba et al., 2017). The disease was first described in humid areas in Japan and Korea (Ikata26

and Hitomi, 1929; Kang et al., 1993). The detection of CLS in Eastern Spain was the first report27

of the disease in a semi-arid area (Vicent et al., 2012).28

The fungus forms pseudothecia in leaf litter during winter and ascospores are produced as29

temperatures increase in spring (Kang et al., 1993). Ascospores are wind-dispersed and infect30

persimmon leaves in the presence of a film of water and adequate temperatures. The main infection31

period in Korea was from mid-May to the end of July (Kang et al., 1993; Kwon and Park, 2004)32

and from the beginning of April to early July in Spain (Vicent et al., 2012). The asexual stage33

of P. nawae was identified in Korea as belonging to the genus Ramularia, but its role in field34

epidemics is not fully understood (Kwon et al., 1998; Kwon and Park, 2004). In Spain, this35

secondary inoculum has not been observed (Vicent et al., 2012). The disease is characterised by a36

long incubation period of about 4 months (Kwon and Park, 2004; Vicent et al., 2012).37

Fungicide schedules for the control of CLS in Korea consist of three to four foliar applications38

during the infection period. Although the efficacy of fungicide programs may differ depending on39

the year, good disease control was obtained under experimental conditions (Kwon et al., 1998;40

Kwon and Park, 2004). In Spain, two to four fungicide applications during the infection period41

in spring showed also good efficacy for the control of CLS, whereas post-infection sprays were42

ineffective (Bassimba et al., 2017; Berbegal et al., 2013). Cultural practices, such as leaf litter43

removal and moving from flood to drip irrigation systems, are also recommended to growers, but44

their efficacy has not been quantified so far (Vicent et al., 2011, 2012).45

Fungicide programs are effective for CLS control only when spray applications coincide with46

the infection period, defined by the presence of ascospores, adequate environmental conditions47

and susceptible leaves. The presence of airborne ascospores is typically monitored using spore48

traps, either active volumetric or passive (West and Kimber, 2015). Nevertheless, the predictive49

ability of spore traps is somehow limited because they only detect the ascospores when already50

released in the orchard air. In the case of P. nawae in Spain, monitoring inoculum production51

in the leaf litter allowed to predict ascospore release 1–2 weeks in advance, so this method is52

routinely used by the advisory services to schedule fungicide sprays for CLS control (Vicent et al.,53

2012). Samples of leaf litter are collected weekly in affected persimmon orchards and soaked in54

distilled water. Immediately after soaking, leaves are placed in a wind tunnel until they dry.55

Ascospores released from the leaf litter are collected on glass microscope slides and counted under56

the microscope (Vicent et al., 2011). Although this method proved to be useful, it is time and57

resource consuming, requires specific laboratory equipment and qualified personnel. Consequently,58

the extent of the monitored area and the density of the sampling network are rather limited.59
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Models for inoculum maturation in the leaf litter have been developed for several ascomycetes,60

as a more efficient alternative to ascospore counts (De Wolf and Isard, 2007). Most of these61

models rely on transformations of the response variable and then fitted as a linear regression62

(Luley and McNabb Jr, 1991; Spotts et al., 1994). For instance, Gadoury et al. (1982) used a63

linear regression with a probit transformation to the proportion of ascospore discharge. Villalta64

et al. (2001) depicted a linear regression with a logit transformation. Rossi et al. (2009) and Eikemo65

et al. (2011) compared linear regressions with asymptotic, monomolecular, logistic and Gompertz66

transformations. In other cases, nonlinear regression was used (Navas-Cortés et al., 1998b; Rossi67

et al., 1999; Cooley et al., 2007; Legler et al., 2014). Nevertheless, as the proportion of ascospores68

is the variable being modeled, there are other methods available such as the beta regression model,69

firstly introduced by Ferrari and Cribari-Neto (2004). Basically, this methodology consists on70

assuming that the response variable conditioned to the linear predictor follows a beta distribution71

which is depending on two parameters, a mean and a precision.72

On the other hand, Bayesian hierarchical methods are becoming popular in many fields as they73

better address the intrinsic complexity typical in many natural systems (Clark, 2005). In Bayesian74

inference, parameters are treated as random variables and data are related to model parameters us-75

ing a likelihood function, getting the posterior distribution by combining the prior distribution and76

the likelihood function. However, getting the posterior distribution is not always straightforward77

and numerical algorithms are usually required. Markov Chain Monte Carlo (MCMC) methods78

(Gilks et al., 1996) are widely used to obtain posterior distributions but they involve computa-79

tionally and time intensive simulations. The Integrated Nested Laplace Approximation (INLA)80

approach was developed as a computationally efficient alternative to MCMC in latent Gaussian81

models (Tierney and Kadane, 1986; Rue et al., 2009).82

In this work, we used hierarchical Bayesian beta regression models with fixed and random83

effects to estimate the production P. nawae ascospores in persimmon leaf litter with the INLA84

methodology. The resulting model will assist to predict the dynamics of P. nawae inoculum in the85

leaf litter based on environmental covariates, without the direct quantification of ascospores in the86

leaf litter. This will facilitate a wider implementation of a decision support system to optimize the87

fungicide programs for CLS control in Spain.88

2 Materials and Methods89

2.1 Field data90

The model was developed from 2010 to 2015 in a persimmon cv. Rojo Brillante orchard of 0.8391

ha severely affected by CLS at L’Alcúdia in Valencia Province, Spain. Trees were 11 yr old at the92

beginning of the study and were grafted on D. lotus L. rootstock. The orchard was drip irrigated93

and had a north-south row orientation with a 5 m across-row spacing and 4 m in-row spacing.94

Orchards of similar characteristics were selected in Valencia Province at Benimodo, Villanueva de95

Castellón and Guadassuar (2010 and 2011) and Moncada (2012 to 2015) for model evaluation (i.e.96

validation). In all cases, an experimental area of 0.2 hectares (10× 10 trees) in the center of each97

orchard remained without fungicide applications during the period of study.98

Environmental data were monitored hourly in each orchard with an automated meteorological99

station (Hobo U30, Onset Computer Corp.) including sensors for temperature and relative hu-100

midity (Hobo S-THB, accuracies ± 0.2°C, ± 2.5%), and rainfall (7852, Davis Instruments Corp,101
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resolution 0.2 mm). Environmental monitors were located at 1.5 m above the soil surface within102

the row in the center of the experimental area.103

Following Rossi et al. (2009) time was expressed in physiological units calculated by three104

different methods, all of them based on sums of the daily mean air temperatures exceeding 0°C.105

In particular, accumulated degree days (ADD) were calculated as:106

ADDi =

N(i)∑
j=biofix

Tj , (1)107

where i and j are the subscripts for observations and days, respectively, with j = biofix to N(i),108

while Tj is the air temperature in each day (calculated as the mean of 24 hourly values) if Tj > 0,109

elsewhere Tj = 0. The biofix was set at 1 January.110

In second place, ADD considering vapor pressure deficit (ADDvpd) were calculated:111

ADDvpdi =

N(i)∑
j=biofix

Tj · V PDj , (2)112

being i the observation and j the subscript for days, with j = biofix to N(i), and Tj is the air113

temperature in each day (calculated as the mean of 24 hourly values) if Tj > 0, elsewhere Tj = 0.114

V PDj is a dichotomic variable calculated as follows: when vapor pressure deficit (vpd)j ≤ 4hPa,115

V PDj = 1, elsewhere V PDj = 0, being vpd calculated from temperature an relative humidity116

(rh, %) as follows:117

(vpd)j =

(
1− rhj

100

)
· 6.11 · exp

(
17.47 · Tj
239 + Tj

)
. (3)118

Finally, a variable that incorporates information about rainfall was also considered. In partic-119

ular, it was denoted as ADDwet and corresponds to the accumulated degree days but taking into120

account both the vpd and rainfall (R):121

ADDweti =

N(i)∑
j=biofix

Tj ·WETj , (4)122

being i the observation and j the subscript with j = biofix to N(i), and Tj is the air temperature123

in each day (calculated as the mean of 24 hourly values) if Tj > 0, elsewhere Tj = 0. WETj is124

a dichotomic variable calculated as follows: when Rj ≥ 0.2mm and vpdj ≤ 4hPa, WETj = 1,125

elsewhere WETj = 0.126

The dynamics of P. nawae ascospore production in the leaf litter was studied in the orchards127

and years indicated above. Dry leaves on the orchard floor were covered with a plastic mesh (2×2128

m2, 5-by-5-mm openings) fixed with four stainless-steel pins. Plastic nets were located in the129

center of the experimental area in each orchard without overlying the soil area wetted by the drip130

irrigation system. Leaf litter density under the plastic nets was adjusted to 350 g of dry leaves m2
131

(Vicent et al., 2011). A pooled sample of 20 dry leaves was collected weekly in each orchard, but132

four samples of 20 dry leaves were collected at L’Alcúdia from 2013 to 2015. Leaf litter samples133

were soaked for 15 min in distilled water. Immediately after soaking, leaves were placed with the134
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abaxial surface facing upward in a wind tunnel for 30 min until they were visibly dry (Whiteside,135

1974; Vicent et al., 2011). During the process, air and water temperature was maintained at about136

21°C.137

Discharged ascospores were collected on a glass microscope slide (26 × 76 mm) coated with138

silicone oil (Merck). Spores were stained with lactophenol-acid cotton blue and examined at 400X139

magnification. All ascospores showing the morphological characteristics of P. nawae; spindle-140

shaped, 10 − 13 × 3 − 4 µm, hyaline, 2-celled with a medium or slightly supramedian septum141

(Kwon et al., 1998), were counted in four microscope field transects. Isolations were arbitrarily142

performed each year using additional leaf litter samples and collecting the ejected ascospores in143

potato dextrose agar (PDA) amended with 0.5 g L−1 of streptomycin sulphate (PDAS). Identifica-144

tion of the resulting fungal colonies was confirmed using a specific molecular method for P. nawae145

(Berbegal et al., 2013). For each week, the cumulative proportion of ascospores discharged was146

calculated based on the total collected in each orchard and year.147

2.2 Beta regression148

Beta regression is commonly used for variables that assume values in the unit interval (0,1) (Ferrari149

and Cribari-Neto, 2004). Beta distribution depends on two scaling parameters Be(p, q) and it can150

also be parametrized in terms of its mean p
p+q , a dispersion parameter p + q, and the variance151

σ2 = µ(1−µ)
1+φ . This reparametrization supports the truncated nature of the beta distribution,152

where the variance depends on the mean and maximum variance is observed at the centre of the153

distribution whereas it is minimum at the edges. In addition, the dispersion of the distribution,154

for fixed µ, decreases as φ. The density function is155

π(y | µ, φ) =
Γ(φ)

Γ(µφ)Γ(φ(1− µ)
yµφ−1(1− y)(1−µ)φ−1 , 0 < y < 1 , (5)156

where Γ is the gamma function.157

Let y1, . . . , yn be independent beta variables, where each yi, i = 1, . . . , n, with mean µ and158

unknown precision φ. These variables, representing proportions (in our particular case, cumulative159

proportion of ascospores discharged), can be linked to the linear predictor using a similar approach160

to the generalized linear models (GLM) with the logit function:161

ηi = g(µi) = β0 +

Nβ∑
j=1

βjxji +

Nf∑
k=1

fk(zki) + vi , i = 1, . . . , n , (6)162

where ηi enters the likelihood through a logit link, β0 is the intercept of the model, βj are the163

fixed effects of the model, fk denote any smooth effects, and vi represents unstructured error terms164

(random variables). The models which we deal with in this work include only fixed effects and in165

some cases an unstructured term corresponding to independent random effect year, but they could166

also incorporate spatial or spatio-temporal effects (Paradinas et al., 2018).167

In this study we used the approach by Smithson and Verkuilen (2006), who proposed a trans-168

formation which compresses the data symmetrically around 0.5. In particular, the transformed169

values were obtained as170

y∗i =
yi · (n− 1) + 1

2

n
. (7)171

5

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2019. ; https://doi.org/10.1101/771667doi: bioRxiv preprint 

https://doi.org/10.1101/771667
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.3 Bayesian inference with INLA172

A Bayesian hierarchical approach was used to approximate the variation in the proportion of dis-173

charged ascospores with INLA (Rue et al., 2009). This methodology uses Laplace approximations174

(Tierney and Kadane, 1986) to get the posterior distributions in latent Gaussian models (LGMs)175

(Rue et al., 2009). LGMs are a particular case of the structured additive regression (STAR) mod-176

els, where the mean of the response variable is linked to a structured predictor that accounts for177

the effects of various covariates in an additive way. The prior knowledge of the additive predictor178

is expressed using Gaussian prior distributions. In this context, all the latent Gaussian variables179

can be seen as components of a vector known as the latent Gaussian field.180

Vague Gaussian distributions βj ∼ N (0, τ = 10−3) were used here for the parameters involved181

in the fixed effects (i.e. ADD, ADDvpd and ADDwet) and a multivariate independent Gaussian182

distribution for the random effect year, depending of a precision parameter vi ∼ N (0,Q(τ)).183

Precision of the beta distribution (φ) was reparametrized as φ = exp(α) to assure that φ was a184

positive parameter. We assumed, following Simpson et al. (2017), pc-priors on the logprecision for185

both parameters.186

The computational implementation R-INLA for R was used to perform approximate Bayesian187

inference (R Core Team, 2018). Pearson’s correlation coefficients among ADD, ADDvpd and188

ADDwet were previously calculated to assist in variable selection and minimize potential prob-189

lems of multicollinearity. Model selection was conducted based on choosing the best subset of190

covariates. This method evaluates all 2k (where k represents the number of components of the191

model: covariates and the random effect in our case) possible models and choose the best model192

according to information criteria (Heinze et al., 2018). In this work we used the deviance informa-193

tion criterion (DIC), which is a generalization of the Akaike information criterion (AIC) developed194

for Bayesian model comparison (Spiegelhalter et al., 2002), and the Watanable-Akaike information195

criteria (WAIC) (Watanabe, 2010). The DIC and WAIC are the sum of two components, one196

quantifying model fit and other evaluating model complexity. The predictive ability of the models197

was evaluated by cross validation using the logarithmic conditional predictive ordinate (LCPO)198

(Roos et al., 2011). Models with the lowest values of DIC, WAIC and LCPO were selected.199

Lastly, the marginal posterior densities for the parameters and predictive distributions for new200

observations were obtained with the best model at L’Alcúdia. Median values of the posterior201

predictive distribution were linearly regressed against the observed values and R2 was computed.202

The mean absolute error (MAE), mean square error (MSE) and root mean square error (RMSE)203

were also calculated. The best model at L’Alcúdia was evaluted at Villanueva de Castellón and204

Guadassuar (2010 and 2011) and Moncada (2012 to 2015). Likewise, linear regression of predicted205

vs. observed, MAE, MSE and RMSE were calculated in each case.206

3 Results207

During the period of study at L’Alcúdia, annual mean temperature ranged from 16.51ºC in 2010208

to 18.24ºC in 2014 (Figure 1a). The lowest daily mean temperature ranged from 1.32ºC in 2009209

to 5.38ºC in 2013 and the highest daily mean temperature from 27.79ºC in 2013 to 32.23ºC in210

2010. Annual mean relative humidity ranged from 66.49% in 2012 to 72.63% in 2015. The lowest211

daily mean relative humidity was 28.58 in 2012 and the highest daily mean relative humidity was212

98.80% in 2015. The number of days with vpd ≤ 4hPa ranged from 62 in 2013 to 133 in 2015.213
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Annual rainfall ranged from 208.3 mm in 2014 to 698.8 mm in 2009. The number of days with214

rainfall ≥ 0.2mm ranged from 63 in 2013 to 117 in 2010 and 2011. Annual ADD ranged from215

6027.95 in 2010 to 6659.18 in 2014 (Figure 1b). Annual ADDvpd ranged from 704.73 in 2013 to216

1764.47 in 2015 and ADDwet from 382.00 in 2013 to 883.51 in 2015.217

The best models for the cumulative proportion of P. nawae ascospores discharged from per-218

simmon leaf litter are displayed in Table 1. Most of them included the random effect year (v) and219

those not including the fixed effect ADD were ranked very low based on their DIC, WAIC and220

LCPO values. Two of the five best models included all three fixed effects, ADD, ADDvpd and221

ADDwet, but were not further considered because the Pearson’s correlation coefficient between222

ADDvpd and ADDwet was 0.85, indicating potential problems of multicollinearity. The selected223

model, having the lowest values of DIC, WAIC and LCPO, included the fixed effects ADD and224

ADDvpd, and the random effect year (v). Linear regression of the median posterior predictive dis-225

tribution against observed values accounted for more than 95% of the total variance (R2 = 0.98),226

with an intercept of 0.025 and a slope of 0.950, respectively (Figure 3). The MAE for this model227

was 0.042, the MSE was 0.004 and the RMSE 0.062.228

In the selected model, both ADD and ADDvpd were relevant. The parameter for the fixed229

effect ADD had a mean posterior distribution of 0.293 with a 95% credible interval [0.278, 0.308],230

not overlapping with zero (Table 2). The parameter for the fixed effect ADDvpd had a mean231

posterior distribution of 0.443 with a 95% credible interval [0.313, 0.575], not overlapping with232

zero either. The posterior distribution of the two hyperparameters was also computed (Table 2),233

showing that the random effect had low precision and it was relevant in our model. The two234

fixed effects, ADD and ADDvpd, had positive effects on the expected cumulative proportion of235

P. nawae ascospores discharged from the leaf litter, so the cumulative proportion of ascospores236

increased when ADD and ADDvpd incremented. Considering the median posterior predictive237

distribution, 5% of P. nawae ascospores were discharged from 995 to 1520 ADD and 190 to 545238

ADDvpd (Figure 2). These thermal times corresponded to 4 April and 25 April. At the other239

extreme, 95% of P. nawae ascospores were discharged from 2585 to 3260 ADD and 300 to 740240

ADDvpd (Figure 2). These thermal times corresponded to 28 June and 30 July. For the 0.025241

quantile of the posterior predictive distribution, 5% of ascospores were discharged from 1250 to242

1930 ADD and 270 to 720 ADDvpd, and 95% of ascospores discharged from 3320 to 4180 ADD243

and 300 to 750 ADDvpd. For the 0.0975 quantile, 5% of ascospores discharged from 610 to 830244

ADD and 155 to 250 ADDvpd, and 95% of ascospores discharged from 2040 to 2745 ADD and245

300 to 745 ADDvpd.246

When the selected model was applied to the evaluation dataset (Table 3), values of MAE > 0.1247

were obtained at Moncada in 2012 (0.311), 2014 (0.128) and 2015 (0.275) as well as at Benimodo248

in 2010 (0.109). A MAE < 0.05 was obtained at Guadassuar in 2010 (0.042) and at Moncada in249

2013 (0.042). For the RMSE (i.e.
√

MSE), values > 0.3 were obtained only at Moncada in 2012250

(0.371) and 2015 (0.334). Values of RMSE < 0.1 were obtained at Moncada in 2013 (0.058), at251

Guadassuar in 2010 (0.062) and at Benimodo in 2011 (0.097). When the median of the posterior252

predictive distribution was linearly regressed against the observed values, R2 > 0.90 were obtained253

but at Moncada in 2012 (0.720) and 2015 (0.700), at Benimodo in 2010 (0.849) and Guadassuar in254

2011 (0.892). When plotting observed vs. predicted values, these four location/year combinations255

also showed the poorest graphical fit (Figure 4). In general, residuals were greater during the256

exponential phase and lower at the beginning and end of the ascospore production period (Figure257

4). Considering all the orchards and years of the evaluation dataset, the model predicted 5% and258
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95% ascospore discharge from 4 April to 24 April and from 27 June to 18 July, respectively.259

4 Discussion260

In the present study we propose a Bayesian beta regression framework to model the dynamics261

of inoculum production when dealing with proportion data. Beta regression overcomes all the262

drawbacks of the traditional data transformations (Ferrari and Cribari-Neto, 2004). First, it263

allows a direct interpretation of model parameters in terms of the original data; second, the264

analysis is not sensitive to the sample size; and lastly, posterior distributions are expected to265

concentrate well within the bounded range of proportions. Beta regression is widely applied in266

many scientific disciplines, but in plant pathology it has been used only to a limited extent. Busby267

et al. (2013) used beta regression to evaluate the effects of fungal endophytes and Populus genotypes268

on the proportion of leaf area affected by Drepanopeziza populi. Yellareddygari et al. (2016)269

developed a beta regression model to predict the incidence of pink rot, caused by Phytophthora270

erythroseptica, on potato tubers during storage based on disease incidence at harvest. Burman271

et al. (2017) estimated the potential geographic distribution of Austropuccinia psidii in Puerto272

Rico with beta regression. More recently, Xu et al. (2019) related the proportion of wheat plants273

carrying overwintered Puccinia striiformis f. sp. tritici with temperature-derived variables using274

beta regression.275

One of the known drawbacks of the beta distribution is its incapability to provide a satisfactory276

description of the data at the extremes, i.e. 0 and 1 (Ferrari and Cribari-Neto, 2004). Several277

solutions have been presented in the literature, like adding a small error value to the observations278

to satisfy this criterion (Warton and Hui, 2011) or using zero and one inflated models (Liu and279

Kong, 2015). In our study we adopted the approach by Smithson and Verkuilen (2006), who280

proposed a transformation which compresses the data symmetrically around 0.5, and so, extreme281

values are affected more than values lying close to 0.5.282

Previous studies with beta regression in the context of plant pathology used frequentist infer-283

ence and did not include random effects (Busby et al., 2013; Yellareddygari et al., 2016; Burman284

et al., 2017; Xu et al., 2019). In contrast to frequentist inference, where point estimates and con-285

fidence intervals are obtained for model parameters, results of Bayesian inference are presented by286

their posterior distributions. By means of the Bayes theorem, these posterior distributions combine287

the prior knowledge about the parameters as well as the information gathered from experiments288

expressed via the likelihood. In frequentist inference, the 100(1−α)% confident interval is defined289

such that, if the data collection process is repeated again and again, then 100(1−α)% of the con-290

fidence intervals formed would contain the unknown parameter value (Fisher, 1956). However, in291

Bayesian inference, uncertainty of the parameters is typically displayed by their credible intervals.292

The interpretation of the Bayesian 100 (1 − α)% credible interval is that this interval contains293

100(1−α)% of the posterior distribution of the parameter, so the probability for the parameter of294

interest to be in that interval is 1− α (Gelman et al., 2013).295

Although the Bayesian approach allows to incorporate prior information of the parameters,296

as no information was available for P. nawae, we used vague priors with large variance reflecting297

great uncertainty (Carlin and Louis, 2008). The hierarchical structure enabled for a more natural298

specification of the model, particularly when, as in our case, random effects are included. These299

complex models can be difficult to solve with frequentist inference. However, they can be readily300
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approached from a Bayesian perspective. Posterior distributions in complex models do not have a301

closed form and numerical approaches such as MCMC are generally needed to approximate them302

(Gilks et al., 1996). The INLA approach was used here instead of MCMC because of its higher303

computation efficiency and speed of calculation, as well as its good behaviour for beta regression304

models (Rue et al., 2009; Paradinas et al., 2018). Despite its advantages over MCMC, particularly305

when dealing with large datasets, only a few studies using INLA are available in plant disease306

epidemiology (Marcais et al., 2016; Mart́ınez-Minaya et al., 2018; Denis et al., 2018).307

In the model selected for P. nawae, ADD and ADDvpd were the covariates driving the matura-308

tion of ascospores (Table 2). It was described that P. nawae overwinters in the leaf litter as mycelia309

or pseudothecial primordia, which mature and form ascospores as temperatures raise in spring.310

Ascospores are then released when pseudothecia absorbe enough moisture (Kwon and Park, 2004;311

Vicent et al., 2011, 2012). Nevertheless, quantitative relationships between ascospore production312

and environmental variables were not available for P. nawae. There are, however, many examples313

in the literature for other ascomycetes indicating that models for ascospore maturation should be314

corrected for dry periods, by accumulating degree-days only when enough moisture was available315

in leaf litter. Navas-Cortés et al. (1998b) considered only ADD on rainy days (≥ 1mm) to predict316

the maturation of Mycosphaerella rabiei pseudothecia in chickpea in Spain. This study indicated317

that rain was essential for the synchronization between M. rabiei ascospore availability and the318

vegetative growth of the host. In Norway, Stensvand et al. (2005) improved model accuracy for V.319

inaequalis ascospore maturity in dry years by halting degree-day accumulation if seven consecutive320

days without rain occurred. When comparing models for V. inaequalis ascospore maturation in321

different areas, Eikemo et al. (2011) indicated that those adjusted for dry periods were consistently322

the most accurate predictors of ascospore depletion.323

Interestingly, ADDvpd based on rh was more relevant in the model for P. nawae than ADDwet,324

which included also the effect of rain (≥0.2 mm) (Table 1). During the period of study, dew result-325

ing from high rh was much more frequent than rain (Figure 1a). In the case of P. nawae, wetness326

induced by dew was not sufficient for substantial ascospore discharge (Vicent et al., 2011), but327

in absence of rain it may favor pseudothecial development and subsequent ascospore maturation.328

This was described by Rossi et al. (1999) for V. inaequalis in Italy, where models accounting for329

leaf litter wetness significantly improved estimates of airborne ascospores. Furthermore, Mondal330

and Timmer (2002) demonstrated that alternate wetting and drying of the leaf litter was necessary331

for the formation of pseudothecia of Zasmidium citri-griseum.332

The selection of the date from when degree-days are accumulated (i.e. biofix), has been pointed333

out as a critical factor in the models for ascospore maturation and release. In some cases, a date334

was chosen based on a specific phenological stage of the host, such as bud break or green tip335

(MacHardy and Gadoury, 1985; Eikemo et al., 2011). However, the synchrony between host336

and fungal phenology may differ among regions. Often, the date of detection of the first mature337

pseudothecia or the first ascospore trapped has been used as the biofix (Spotts et al., 1994; Eikemo338

et al., 2011). Nevertheless, this approach relies upon the sensitivity of the detection methods used339

and, more importantly, requires leaf litter sampling or deployment of spore traps. Both methods340

are time and resource consuming, limiting the extent and density of the monitoring network. The341

most convenient approach to set the biofix is using a fixed calendar date (James and Sutton,342

1982a), but it was argued that it does not take into account the climatic differences between343

regions (Llorente and Montesinos, 2004). Roubal and Nicot (2016) used numerical optimization to344

define a single calendar date (1 January) as the biofix for V. inaequalis. In our case, 1 January was345
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also chosen as the biofix for P. nawae because, in our conditions, persimmon trees attain complete346

leaf fall around this date and so all the leaves are on the orchard floor still with undifferentiated347

ascocarps.348

Like for other ascomycetes, our model for P. nawae considered temperature and moisture349

covariates as having a continuous positive effect on ascospore development (Figure 2). However,350

the process resulting in ascospore formation in the leaf litter can be divided in different phases,351

which may have distinct temperature and moisture requirements. For M. rabiei, Gamliel-Atinsky352

et al. (2005) defined pseudothecium ontogeny followed by initiation of asci and ascospores, and353

finally ascospore maturation. Navas-Cortés et al. (1998a) indicated that moisture was essential for354

pseudothecium ontogeny in M. rabiei whereas cool temperatures were required for the initiation355

of asci and ascospores. Actually, low temperatures are generally needed for the onset of sexual356

reproduction in many ascomycetes (Trapero-Casas et al., 1992; Scherm et al., 2001). James and357

Sutton (1982b) indicated that the development of asci and ascospores in V. inaequalis was initiated358

in spring, after a dormant period which was not influenced by temperature or moisture levels. Then,359

rapid maturation of ascospores was favored by moisture and increasing temperatures. Gadoury360

and MacHardy (1982) indicated that the productivity of V. inequalis pseudothecia and the rate of361

asci maturation were inversely proportional to temperatures from 4 to 20ºC. However, the rate of362

ascospore maturation was directly proportional to temperature within this range.363

Roubal and Nicot (2016) related temperature to ascospore production of V. inaequalis, ob-364

taining better results when using a nonlinear unimodal function of thermal time compared with365

ADD. This unimodal function accounted for reduced effects of low and high temperatures on366

ascospore production. Actually, this type of unimodal response to temperature was reported for367

some ascomycetes and ectotherms in general (Naseri et al., 2008; Trudgill et al., 2005). Neverthe-368

less, the relationship between the rate of development and temperature is often linear over much369

of the range up to the thermal optimum, and thus ADD are usually considered for thermal time370

calculations (Trudgill et al., 2005). In any case, knowledge about the temperature and moisture371

requirements for each phase of ascospore formation in P. nawae may help to develop models with372

improved performance and better extrapolation to other areas.373

Our models also corroborated previous studies in Spain indicating that P. nawae adapted to374

semi-arid conditions by advancing the period of ascospore production to escape from the typi-375

cal Mediterranean rain-less summer. Consequently, ascospore production coincides with rains in376

spring, from March to June, under more favorable conditions for infection. On the other hand, low377

winter temperatures in Korea delayed ascospore release to June-August, then synchronized with378

the abundant summer rains typical in this area (Kang et al., 1993; Kwon et al., 1995; Kwon and379

Park, 2004).380

In previous studies, discharge tests allowed detection of mature ascospores of P. nawae in the381

leaf litter before they were released to air in the orchard (Vicent et al., 2012). Similar results were382

reported for Sphaerulina musiva in poplar, where peak ascospore production in leaf litter measured383

with discharge tests occurred 7 days earlier than peak airborne ascospores (Luley and McNabb Jr,384

1991). However, when comparing different methods to estimate the maturity and release of V.385

inaequalis ascospores, Gadoury et al. (2004) found that cumulative ascospore release in discharge386

tests from the leaf litter lagged behind that measured in the orchard air by spore traps. This was387

mainly attributed to litter decay, which progressively reduced the leaf litter area on the orchard388

floor and subsequently the overall ascospore population in the air (Gadoury and MacHardy, 1982;389

Gadoury et al., 2004). This time lag may be even larger when a fixed leaf area sample instead390
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of a number of leaves is used in discharge tests. In contrast to apple leaves, persimmon leaves391

are typically coriaceous and no substantial degradation of the leaf litter was observed under the392

conditions of our study. Indeed, discharge tests from the leaf litter are effectively used by advisory393

services in Spain to predict airborne inoculum availability and schedule fungicide sprays for P.394

nawae management.395

Models for ascospore maturation are mainly aimed to predict the duration of the period for396

primary inoculum, when fungicide applications need to be intensified. Thus, practical performance397

of these models relies on their ability to accurately predict ascospore onset and depletion more398

that the exponential phase of ascospore production (Gadoury et al., 2004; Eikemo et al., 2011).399

In the case of P. nawae in Spain, no secondary conidia have been observed and infections were400

caused by ascospores formed in the leaf litter (Vicent et al., 2012). Therefore, accurate predictions401

of the beginning and end of the ascospore production period are paramount for designing efficient402

fungicide spray programs. Interestingly, when the beta regression model for P. nawae was evalu-403

ated in different orchards, higher accuracy was obtained at the onset and depletion of ascospore404

production compared with the exponential phase (Figure 4). Based on our results, we proposed405

the operating thresholds 5% and 95% of ascospores discharged in a decision support system to406

schedule fungicide sprays. In the P. nawae model, these corresponded with 995-1520 ADD and407

190-545 ADDvpd for the 5%, and 2585-3260 ADD and 300-740 ADDvpd for the 95% (Figure408

2). A test version of the decision support system for CLS control was implemented in the online409

platform ’gipcaqui’ from IVIA at http://gipcaqui.ivia.es/avisos-mycosphaerella.410

Here a hierarchical Bayesian beta regression was used to model the cumulative proportion of411

P. nawae ascospores produced in persimmon leaf litter. Operating thresholds were proposed for a412

decision support system to assist advisory services and persimmon growers in optimizing fungicide413

sprays programs for CLS control in Spain. This same modelling framework can be extended414

to other ascocmycetes and fungal plant pathogens in general as long as inoculum dynamics are415

expressed as proportion data.416
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Paradinas, I., Pennino, M. G., López-Qúılez, A., Maŕın, M., Bellido, J. M., and Conesa, D. (2018).516

Modelling spatially sampled proportion processes. RevStat, 16(1):71–86.517

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foundation518

for Statistical Computing, Vienna, Austria.519

Roos, M., Held, L., et al. (2011). Sensitivity analysis in bayesian generalized linear mixed models520

for binary data. Bayesian Analysis, 6(2):259–278.521

Rossi, V., Ponti, I., Marinelli, M., Giosue, S., and Bugiani, R. (1999). Field evaluation of some522

models estimating the seasonal pattern of airborne ascospores of Venturia inaequalis. Journal523

of Phytopathology, 147(10):567–575.524
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Figure 1: Environmental conditions in the study orchard at L’Alcúdia from 2009 to 2015 a: Rain-
fall, relative humidity and mean temperature. b: Accumulated degree days (ADD), ADD consid-
ering vapor pressure deficit (ADDvpd) and ADD considering vapor pressure deficit and rainfall
(ADDwet).
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Figure 2: Model for the cumulative proportion of Plurivorosphaerella nawae ascospores discharged
from persimmon leaf litter at L’Alcúdia based on accumulated degree days (ADD) and ADD
considering vapor pressure deficit (ADDvpd). a: data, b: median posterior predictive distribution,
c and d 95% credible interval.
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Figure 3: Linear regression between observed values and the median of the posterior predictive
distribution for the model of the cumulative proportion of Plurivorosphaerella nawae ascospores
discharged from persimmon leaf litter (black dots) at L’Alcúdia. Blue line is the regression line.
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Figure 4: Linear regression between observed values and the median of the posterior predictive
distribution for the model of the cumulative proportion of Plurivorosphaerella nawae ascospores
discharged from persimmon leaf litter (black dots) at Benimodo, Villanueva de Castellón, Guadas-
suar and Moncada. Blue line is the regression line.
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Table 1: Models for the cumulative proportion of Plurivorosphaerella nawae ascospores discharged
from persimmon leaf litter based on accumulated degree-days (ADD), ADD taking into ac-
count vapor pressure deficit (ADDvpd), ADD taking into account vapor pressure deficit and
rain (ADDwet), and the random effect year (v).

MODEL1 DIC2 WAIC3 LCPO4

1 +ADD +ADDvpd+ v -1185.39 -1183.49 -1.88
1 +ADD +ADDwet+ADDvpd+ v -1184.84 -1183.22 -1.88
1 +ADD +ADDwet+ v -1165.41 -1163.80 -1.85
1 +ADD + v -1155.80 -1153.73 -1.83
1 +ADD +ADDvpd -1117.62 -1115.66 -1.77
1 +ADD +ADDwet+ADDvpd -1115.70 -1113.80 -1.77
1 +ADD +ADDwet -1033.69 -1032.96 -1.64
1 +ADD -970.37 -970.11 -1.54
1 +ADDwet+ADDvpd+ v -619.42 -621.50 -0.99
1 +ADDvpd+ v -609.87 -611.25 -0.97
1 +ADDwet+ v -575.94 -578.17 -0.92
1 +ADDwet+ADDvpd -470.71 -472.11 -0.75
1 +ADDvpd -469.37 -470.37 -0.75
1 +ADDwet -455.96 -456.94 -0.72
1 + v -393.96 -395.46 -0.63
1 -375.73 -376.37 -0.60

1biofix = 1 January, Tbase = 0ºC.
2Deviance information criterion.
3Watanabe-Akaike information criteria.
4Logarithmic conditional predictive ordinate.
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Table 2: Model for the cumulative proportion of Plurivorosphaerella nawae ascospores discharged
from persimmon leaf litter including the fixed effects accumulated degree-days (ADD) and ADD
taking into account vapor pressure deficit (ADDvpd), and the random effect year. Mean, standard
deviation (sd), quantiles (Q) and mode for the parameters and hyperparameters (φ, τ).

Parameters1 Mean sd Q0.025 Q0.5 Q0.975 mode

intercept -8.099 0.351 -8.800 -8.096 -7.410 -8.092
ADD 0.293 0.007 0.278 0.293 0.308 0.293
ADDvpd 0.443 0.066 0.313 0.442 0.575 0.442

Hyperparameters mean sd Q0.025 Q0.5 Q0.975 mode

φ 26.196 2.481 21.601 26.100 31.361 25.936
τ 9.383 7.312 1.538 7.487 28.384 4.170

1 φ is the precision parameter of the likelihood and τ the precision of the
random effect year.

Table 3: Mean absolute error (MAE), mean square error (MSE) and root mean square error
(RMSE) for the model of the cumulative proportion of Plurivorosphaerella nawae ascospores dis-
charged from persimmon leaf litter at Benimodo, Villanueva de Castellón, Guadassuar and Mon-
cada. Values of R2 for the linear regression between observed values and the median posterior
predictive distribution.

Location Year MAE MSE RMSE R2

Benimodo 2010 0.109 0.036 0.189 0.849
2011 0.073 0.009 0.097 0.946

V. Castellón 2010 0.072 0.014 0.119 0.934
2011 0.070 0.013 0.114 0.972

Guadassuar 2010 0.042 0.004 0.062 0.981
2011 0.094 0.024 0.156 0.892

Moncada 2012 0.311 0.138 0.371 0.720
2013 0.042 0.003 0.058 0.979
2014 0.128 0.027 0.165 0.917
2015 0.275 0.112 0.334 0.700
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