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Abstract

Circular leaf spot (CLS), caused by Plurivorosphaerella nawae, is a serious disease of persimmon
(Diospyros kaki) inducing necrotic lesions on leaves, defoliation and fruit drop. Under Mediter-
ranean conditions, P. nawae forms pseudothecia in the leaf litter during winter and ascospores are
released in spring infecting susceptible leaves. Persimmon growers are advised to apply fungicides
for CLS control during the period of inoculum availability, which was defined based on ascospore
counts under the microscope. A model of inoculum availability of P. nawae was developed and eval-
uated as an alternative to ascospore counts. Leaf litter samples were collected weekly in L’Alcudia
from 2010 to 2015. Leaves were soaked, placed in a wind tunnel, and released ascospores of P.
nawae were counted. Hierarchical Bayesian beta regression methods were used to fit the dynamics
of ascospore production in the leaf litter. The selected model, having the lowest values of DIC,
WAIC and LCPO, included accumulated degree days (ADD) and ADD taking into account the
vapor pressure deficit (ADDuvpd) as fixed effects, and year as a random effect. This model had
a MAE of 0.042 and RMSE of 0.062. The beta regression model was evaluated in four orchards
for different years from 2010 to 2015. Higher accuracy was obtained at the beginning and the end
of the ascospore production period, which are the events of interest to schedule fungicide sprays
for CLS control in Spain. This same modelling framework can be extended to other fungal plant
pathogens whose inoculum dynamics are expressed as proportion data.
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2 1 Introduction

» Circular leaf spot (CLS) disease of persimmon (Diospyros kaki Thunb.), caused by Plurivo-
s rosphaerella nawae (Hiura & Tkata) O. Hassan & T. Chang (= Mycosphaerella nawae), induces
2 necrotic lesions on leaves, chlorosis and defoliation. The presence of foliar lesions and prema-
5 ture leaf drop induce early fruit maturation and abscission, resulting in serious economic losses
% (Bassimba et al.} [2017)). The disease was first described in humid areas in Japan and Korea (Ikata
s |and Hitomil, [1929; |[Kang et al., [1993). The detection of CLS in Eastern Spain was the first report
s of the disease in a semi-arid area (Vicent et al., [2012).

2 The fungus forms pseudothecia in leaf litter during winter and ascospores are produced as
s temperatures increase in spring (Kang et al., |1993). Ascospores are wind-dispersed and infect
s persimmon leaves in the presence of a film of water and adequate temperatures. The main infection
» period in Korea was from mid-May to the end of July (Kang et al., [1993; [Kwon and Parkl 2004)
s and from the beginning of April to early July in Spain (Vicent et al.l |2012). The asexual stage
u of P. nawae was identified in Korea as belonging to the genus Ramularia, but its role in field
s epidemics is not fully understood (Kwon et al.) 1998 [Kwon and Park, 2004). In Spain, this
s secondary inoculum has not been observed (Vicent et al.l |2012)). The disease is characterised by a
s long incubation period of about 4 months (Kwon and Park, 2004} [Vicent et al., [2012).

3 Fungicide schedules for the control of CLS in Korea consist of three to four foliar applications
3 during the infection period. Although the efficacy of fungicide programs may differ depending on
w the year, good disease control was obtained under experimental conditions (Kwon et al.; (1998}
an |Kwon and Parkl 2004)). In Spain, two to four fungicide applications during the infection period
« in spring showed also good efficacy for the control of CLS, whereas post-infection sprays were
. ineffective (Bassimba et all 2017; Berbegal et al.l |2013)). Cultural practices, such as leaf litter
a removal and moving from flood to drip irrigation systems, are also recommended to growers, but
s their efficacy has not been quantified so far (Vicent et al., 2011} [2012]).

a6 Fungicide programs are effective for CLS control only when spray applications coincide with
«  the infection period, defined by the presence of ascospores, adequate environmental conditions
s and susceptible leaves. The presence of airborne ascospores is typically monitored using spore
w0 traps, either active volumetric or passive (West and Kimber, 2015). Nevertheless, the predictive
s ability of spore traps is somehow limited because they only detect the ascospores when already
s released in the orchard air. In the case of P. nawae in Spain, monitoring inoculum production
52 in the leaf litter allowed to predict ascospore release 1-2 weeks in advance, so this method is
53 routinely used by the advisory services to schedule fungicide sprays for CLS control (Vicent et al.,
sa [2012). Samples of leaf litter are collected weekly in affected persimmon orchards and soaked in
55 distilled water. Immediately after soaking, leaves are placed in a wind tunnel until they dry.
s Ascospores released from the leaf litter are collected on glass microscope slides and counted under
57 the microscope (Vicent et all |2011). Although this method proved to be useful, it is time and
ss  resource consuming, requires specific laboratory equipment and qualified personnel. Consequently,
s the extent of the monitored area and the density of the sampling network are rather limited.
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60 Models for inoculum maturation in the leaf litter have been developed for several ascomycetes,
s as a more efficient alternative to ascospore counts (De Wolf and Isard, [2007). Most of these
62 models rely on transformations of the response variable and then fitted as a linear regression
e (Luley and McNabb Jr 1991} [Spotts et al. [1994)). For instance, |(Gadoury et al.| (1982)) used a
e linear regression with a probit transformation to the proportion of ascospore discharge. [Villalta
s et al.[(2001) depicted a linear regression with a logit transformation. [Rossi et al.| (2009) and Eikemo
e |et al.| (2011) compared linear regressions with asymptotic, monomolecular, logistic and Gompertz
o transformations. In other cases, nonlinear regression was used (Navas-Cortés et al.l [1998b; Rossi
e (et al., [1999; [Cooley et all 2007} Legler et al.,|2014). Nevertheless, as the proportion of ascospores
6 is the variable being modeled, there are other methods available such as the beta regression model,
7w firstly introduced by |[Ferrari and Cribari-Neto| (2004)). Basically, this methodology consists on
n  assuming that the response variable conditioned to the linear predictor follows a beta distribution
7= which is depending on two parameters, a mean and a precision.

7 On the other hand, Bayesian hierarchical methods are becoming popular in many fields as they
u  better address the intrinsic complexity typical in many natural systems (Clark, |2005). In Bayesian
7 inference, parameters are treated as random variables and data are related to model parameters us-
7 ing a likelihood function, getting the posterior distribution by combining the prior distribution and
77 the likelihood function. However, getting the posterior distribution is not always straightforward
7 and numerical algorithms are usually required. Markov Chain Monte Carlo (MCMC) methods
7 (Gilks et al., [1996) are widely used to obtain posterior distributions but they involve computa-
w tionally and time intensive simulations. The Integrated Nested Laplace Approximation (INLA)
a1 approach was developed as a computationally efficient alternative to MCMC in latent Gaussian
&2 models (Tierney and Kadane, [1986; Rue et al., 2009).

83 In this work, we used hierarchical Bayesian beta regression models with fixed and random
e effects to estimate the production P. nawae ascospores in persimmon leaf litter with the INLA
s methodology. The resulting model will assist to predict the dynamics of P. newae inoculum in the
s leaf litter based on environmental covariates, without the direct quantification of ascospores in the
a7 leaf litter. This will facilitate a wider implementation of a decision support system to optimize the
s fungicide programs for CLS control in Spain.

» 2 Materials and Methods

o 2.1 Field data

o1 The model was developed from 2010 to 2015 in a persimmon cv. Rojo Brillante orchard of 0.83
oo ha severely affected by CLS at L’Alcidia in Valencia Province, Spain. Trees were 11 yr old at the
o3 beginning of the study and were grafted on D. lotus L. rootstock. The orchard was drip irrigated
o and had a north-south row orientation with a 5 m across-row spacing and 4 m in-row spacing.
s Orchards of similar characteristics were selected in Valencia Province at Benimodo, Villanueva de
s Castelléon and Guadassuar (2010 and 2011) and Moncada (2012 to 2015) for model evaluation (i.e.
o validation). In all cases, an experimental area of 0.2 hectares (10 x 10 trees) in the center of each
e orchard remained without fungicide applications during the period of study.

99 Environmental data were monitored hourly in each orchard with an automated meteorological
o station (Hobo U30, Onset Computer Corp.) including sensors for temperature and relative hu-
o1 midity (Hobo S-THB, accuracies + 0.2°C, + 2.5%), and rainfall (7852, Davis Instruments Corp,
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102 resolution 0.2 mm). Environmental monitors were located at 1.5 m above the soil surface within
103 the row in the center of the experimental area.

104 Following [Rossi et al.| (2009) time was expressed in physiological units calculated by three
s different methods, all of them based on sums of the daily mean air temperatures exceeding 0°C.
s In particular, accumulated degree days (ADD) were calculated as:

N (i)
ADD; = > Ty, (1)

j=biofix

s where 7 and j are the subscripts for observations and days, respectively, with j = biofiz to N (i),
ws while T} is the air temperature in each day (calculated as the mean of 24 hourly values) if T; > 0,
uo elsewhere T; = 0. The biofix was set at 1 January.

m In second place, ADD considering vapor pressure deficit (ADDvpd) were calculated:
N(3)
1 ADDvpd; = Y T;-VPD;, (2)
j=biofix

us  being ¢ the observation and j the subscript for days, with j = biofiz to N (i), and T} is the air
us  temperature in each day (calculated as the mean of 24 hourly values) if T; > 0, elsewhere T} = 0.
us  VPDj is a dichotomic variable calculated as follows: when vapor pressure deficit (vpd); < 4hPa,
us VPD; =1, elsewhere VPD; = 0, being vpd calculated from temperature an relative humidity
ur  (rh, %) as follows:

'I"hj 17.47 - Tj

ot = (1 780) o (1471 "

119 Finally, a variable that incorporates information about rainfall was also considered. In partic-
120 ular, it was denoted as ADDwet and corresponds to the accumulated degree days but taking into
21 account both the vpd and rainfall (R):

N(4)
12 ADDwet; = > T;-WET;, (4)

j=biofix

13 being i the observation and j the subscript with j = biofiz to N (i), and T} is the air temperature
1 in each day (calculated as the mean of 24 hourly values) if T; > 0, elsewhere T; = 0. WET; is
s a dichotomic variable calculated as follows: when R; > 0.2mm and vpd; < 4hPa, WET; = 1,
16 elsewhere WET; = 0.

127 The dynamics of P. nawae ascospore production in the leaf litter was studied in the orchards
s and years indicated above. Dry leaves on the orchard floor were covered with a plastic mesh (2 x 2
e m?, 5-by-5-mm openings) fixed with four stainless-steel pins. Plastic nets were located in the
10 center of the experimental area in each orchard without overlying the soil area wetted by the drip
1 irrigation system. Leaf litter density under the plastic nets was adjusted to 350 g of dry leaves m?
12 ([Vicent et al. |2011). A pooled sample of 20 dry leaves was collected weekly in each orchard, but
133 four samples of 20 dry leaves were collected at L’Alcidia from 2013 to 2015. Leaf litter samples
13« were soaked for 15 min in distilled water. Immediately after soaking, leaves were placed with the
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135 abaxial surface facing upward in a wind tunnel for 30 min until they were visibly dry (Whiteside,
136 |1974; [Vicent et al.| [2011)). During the process, air and water temperature was maintained at about
137 21°C.

138 Discharged ascospores were collected on a glass microscope slide (26 x 76 mm) coated with
ue  silicone oil (Merck). Spores were stained with lactophenol-acid cotton blue and examined at 400X
1o magnification. All ascospores showing the morphological characteristics of P. nawae; spindle-
1w shaped, 10 — 13 x 3 — 4 pm, hyaline, 2-celled with a medium or slightly supramedian septum
w2 (Kwon et al [1998]), were counted in four microscope field transects. Isolations were arbitrarily
w3 performed each year using additional leaf litter samples and collecting the ejected ascospores in
s potato dextrose agar (PDA) amended with 0.5 g L= of streptomycin sulphate (PDAS). Identifica-
us  tion of the resulting fungal colonies was confirmed using a specific molecular method for P. nawae
us  (Berbegal et al., |2013). For each week, the cumulative proportion of ascospores discharged was
w7 calculated based on the total collected in each orchard and year.

ws 2.2 Beta regression

1 Beta regression is commonly used for variables that assume values in the unit interval (0,1) (Ferrari
s jand Cribari-Netol [2004). Beta distribution depends on two scaling parameters Be(p, ¢) and it can

151 also be parametrized in terms of its mean ﬁ, a dispersion parameter p + ¢, and the variance
12 02 = % This reparametrization supports the truncated nature of the beta distribution,

153 where the variance depends on the mean and maximum variance is observed at the centre of the
s distribution whereas it is minimum at the edges. In addition, the dispersion of the distribution,
15 for fixed p, decreases as ¢. The density function is

I'(¢)
np) (o1 — p)

156 m(y 1 6) = 5 g L= y) T o<y <1 (5)
157 where I' is the gamma function.

158 Let y1,...,yn be independent beta variables, where each y;, ¢ = 1,...,n, with mean p and
10 unknown precision ¢. These variables, representing proportions (in our particular case, cumulative
10 proportion of ascospores discharged), can be linked to the linear predictor using a similar approach
161 to the generalized linear models (GLM) with the logit function:

N N
162 mi=g(wi) = PBo+ > Biwji+ Y felzwi) +vi, i=1,...,m, (6)
j=1 k=1

s where 71; enters the likelihood through a logit link, By is the intercept of the model, 3; are the
164 fixed effects of the model, fi denote any smooth effects, and v; represents unstructured error terms
15 (random variables). The models which we deal with in this work include only fixed effects and in
166 some cases an unstructured term corresponding to independent random effect year, but they could
167 also incorporate spatial or spatio-temporal effects (Paradinas et al., |2018]).

168 In this study we used the approach by |Smithson and Verkuilen| (2006), who proposed a trans-
169 formation which compresses the data symmetrically around 0.5. In particular, the transformed

1w values were obtained as .
Yi - (TL - 1) + 2

171 yf = T . (7)
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» 2.3 Bayesian inference with INLA

13 A Bayesian hierarchical approach was used to approximate the variation in the proportion of dis-
e charged ascospores with INLA (Rue et al., [2009). This methodology uses Laplace approximations
s (Tierney and Kadane) [1986)) to get the posterior distributions in latent Gaussian models (LGMs)
ws  (Rue et al., 2009). LGMs are a particular case of the structured additive regression (STAR) mod-
7 els, where the mean of the response variable is linked to a structured predictor that accounts for
s the effects of various covariates in an additive way. The prior knowledge of the additive predictor
79 is expressed using Gaussian prior distributions. In this context, all the latent Gaussian variables
180 can be seen as components of a vector known as the latent Gaussian field.

181 Vague Gaussian distributions 8; ~ A (0,7 = 1073) were used here for the parameters involved
12 in the fixed effects (i.e. ADD, ADDuvpd and ADDwet) and a multivariate independent Gaussian
s distribution for the random effect year, depending of a precision parameter v; ~ N(0,Q(7)).
e Precision of the beta distribution (¢) was reparametrized as ¢ = exp(«) to assure that ¢ was a
185 positive parameter. We assumed, following |Simpson et al.| (2017)), pc-priors on the logprecision for
16 both parameters.

187 The computational implementation R-INLA for R was used to perform approximate Bayesian
188 inference (R Core Team| 2018). Pearson’s correlation coefficients among ADD, ADDuvpd and
189 ADDwet were previously calculated to assist in variable selection and minimize potential prob-
10 lems of multicollinearity. Model selection was conducted based on choosing the best subset of
11 covariates. This method evaluates all 2% (where k represents the number of components of the
12 model: covariates and the random effect in our case) possible models and choose the best model
103 according to information criteria (Heinze et al., |2018). In this work we used the deviance informa-
e tion criterion (DIC), which is a generalization of the Akaike information criterion (AIC) developed
15 for Bayesian model comparison (Spiegelhalter et al., [2002), and the Watanable-Akaike information
we  criteria (WAIC) (Watanabe, 2010). The DIC and WAIC are the sum of two components, one
w7 quantifying model fit and other evaluating model complexity. The predictive ability of the models
105 was evaluated by cross validation using the logarithmic conditional predictive ordinate (LCPO)
190 (Roos et al., [2011). Models with the lowest values of DIC, WAIC and LCPO were selected.

200 Lastly, the marginal posterior densities for the parameters and predictive distributions for new
20 observations were obtained with the best model at L’Alctidia. Median values of the posterior
22 predictive distribution were linearly regressed against the observed values and R? was computed.
23 The mean absolute error (MAE), mean square error (MSE) and root mean square error (RMSE)
204 were also calculated. The best model at I’Alctidia was evaluted at Villanueva de Castellén and
25 Guadassuar (2010 and 2011) and Moncada (2012 to 2015). Likewise, linear regression of predicted
206 vs. observed, MAE, MSE and RMSE were calculated in each case.

» 3 Results

28 During the period of study at L’Alcidia, annual mean temperature ranged from 16.51°C in 2010
20 to 18.24°C in 2014 (Figure [Th). The lowest daily mean temperature ranged from 1.32°C in 2009
a0 to 5.38°C in 2013 and the highest daily mean temperature from 27.79°C in 2013 to 32.23°C in
an 2010. Annual mean relative humidity ranged from 66.49% in 2012 to 72.63% in 2015. The lowest
a2 daily mean relative humidity was 28.58 in 2012 and the highest daily mean relative humidity was
23 98.80% in 2015. The number of days with vpd < 4hPa ranged from 62 in 2013 to 133 in 2015.
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24 Annual rainfall ranged from 208.3 mm in 2014 to 698.8 mm in 2009. The number of days with
25 rainfall > 0.2mm ranged from 63 in 2013 to 117 in 2010 and 2011. Annual ADD ranged from
26 6027.95 in 2010 to 6659.18 in 2014 (Figure ) Annual ADDvpd ranged from 704.73 in 2013 to
a7 1764.47 in 2015 and AD Dwet from 382.00 in 2013 to 883.51 in 2015.

218 The best models for the cumulative proportion of P. nawae ascospores discharged from per-
20 simmon leaf litter are displayed in Table I} Most of them included the random effect year (v) and
20 those not including the fixed effect ADD were ranked very low based on their DIC, WAIC and
21 LCPO values. Two of the five best models included all three fixed effects, ADD, ADDuvpd and
2 ADDwet, but were not further considered because the Pearson’s correlation coefficient between
23 ADDvpd and ADDwet was 0.85, indicating potential problems of multicollinearity. The selected
24 model, having the lowest values of DIC, WAIC and LCPO, included the fixed effects ADD and
25 ADDwpd, and the random effect year (v). Linear regression of the median posterior predictive dis-
2 tribution against observed values accounted for more than 95% of the total variance (R? = 0.98),
27 with an intercept of 0.025 and a slope of 0.950, respectively (Figure [3)). The MAE for this model
28 was 0.042, the MSE was 0.004 and the RMSE 0.062.

20 In the selected model, both ADD and ADDuvpd were relevant. The parameter for the fixed
a0 effect ADD had a mean posterior distribution of 0.293 with a 95% credible interval [0.278,0.308],
2 not overlapping with zero (Table . The parameter for the fixed effect ADDvpd had a mean
a»  posterior distribution of 0.443 with a 95% credible interval [0.313,0.575], not overlapping with
a3 zero either. The posterior distribution of the two hyperparameters was also computed (Table ,
2u showing that the random effect had low precision and it was relevant in our model. The two
25 fixed effects, ADD and ADDwvpd, had positive effects on the expected cumulative proportion of
26 P. nawae ascospores discharged from the leaf litter, so the cumulative proportion of ascospores
2 increased when ADD and ADDwpd incremented. Considering the median posterior predictive
2 distribution, 5% of P. nawae ascospores were discharged from 995 to 1520 ADD and 190 to 545
20 ADDvpd (Figure [2). These thermal times corresponded to 4 April and 25 April. At the other
w0 extreme, 95% of P. nawae ascospores were discharged from 2585 to 3260 ADD and 300 to 740
1 ADDwpd (Figure |2). These thermal times corresponded to 28 June and 30 July. For the 0.025
a2 quantile of the posterior predictive distribution, 5% of ascospores were discharged from 1250 to
a3 1930 ADD and 270 to 720 ADDwpd, and 95% of ascospores discharged from 3320 to 4180 ADD
a4 and 300 to 750 ADDwpd. For the 0.0975 quantile, 5% of ascospores discharged from 610 to 830
us  ADD and 155 to 250 ADDuvpd, and 95% of ascospores discharged from 2040 to 2745 ADD and
26 300 to 745 AD Dupd.

207 When the selected model was applied to the evaluation dataset (Table3)), values of MAE > 0.1
28 were obtained at Moncada in 2012 (0.311), 2014 (0.128) and 2015 (0.275) as well as at Benimodo
20 in 2010 (0.109). A MAE < 0.05 was obtained at Guadassuar in 2010 (0.042) and at Moncada in
0 2013 (0.042). For the RMSE (i.e. vVMSE), values > 0.3 were obtained only at Moncada in 2012
s (0.371) and 2015 (0.334). Values of RMSE < 0.1 were obtained at Moncada in 2013 (0.058), at
2 Guadassuar in 2010 (0.062) and at Benimodo in 2011 (0.097). When the median of the posterior
s predictive distribution was linearly regressed against the observed values, R? > 0.90 were obtained
¢ but at Moncada in 2012 (0.720) and 2015 (0.700), at Benimodo in 2010 (0.849) and Guadassuar in
5 2011 (0.892). When plotting observed wvs. predicted values, these four location/year combinations
»6  also showed the poorest graphical fit (Figure [4). In general, residuals were greater during the
»7  exponential phase and lower at the beginning and end of the ascospore production period (Figure
258 . Considering all the orchards and years of the evaluation dataset, the model predicted 5% and
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»0  95% ascospore discharge from 4 April to 24 April and from 27 June to 18 July, respectively.

w» 4 Discussion

% In the present study we propose a Bayesian beta regression framework to model the dynamics
s of inoculum production when dealing with proportion data. Beta regression overcomes all the
3 drawbacks of the traditional data transformations (Ferrari and Cribari-Netol |2004). First, it
% allows a direct interpretation of model parameters in terms of the original data; second, the
265 analysis is not sensitive to the sample size; and lastly, posterior distributions are expected to
26 concentrate well within the bounded range of proportions. Beta regression is widely applied in
»7 many scientific disciplines, but in plant pathology it has been used only to a limited extent. [Busby
s let al.| (2013)) used beta regression to evaluate the effects of fungal endophytes and Populus genotypes
%0 on the proportion of leaf area affected by Drepanopeziza populi. [Yellareddygari et al.| (2016)
a0 developed a beta regression model to predict the incidence of pink rot, caused by Phytophthora
o erythroseptica, on potato tubers during storage based on disease incidence at harvest. [Burman
o let al. (2017) estimated the potential geographic distribution of Austropuccinia psidii in Puerto
a3 Rico with beta regression. More recently, |Xu et al.| (2019) related the proportion of wheat plants
onn - carrying overwintered Puccinia striiformis f. sp. tritici with temperature-derived variables using
a5 beta regression.

276 One of the known drawbacks of the beta distribution is its incapability to provide a satisfactory
a7 description of the data at the extremes, i.e. 0 and 1 (Ferrari and Cribari-Neto, [2004). Several
as solutions have been presented in the literature, like adding a small error value to the observations
29 o satisfy this criterion (Warton and Huil [2011) or using zero and one inflated models (Liu and
0 |[Kong, 2015). In our study we adopted the approach by [Smithson and Verkuilen| (2006), who
s proposed a transformation which compresses the data symmetrically around 0.5, and so, extreme
2 values are affected more than values lying close to 0.5.

283 Previous studies with beta regression in the context of plant pathology used frequentist infer-
s ence and did not include random effects (Busby et al.| 2013; |Yellareddygari et al., 2016; |Burman
s et al., |2017; [Xu et al., [2019). In contrast to frequentist inference, where point estimates and con-
2 fidence intervals are obtained for model parameters, results of Bayesian inference are presented by
257 their posterior distributions. By means of the Bayes theorem, these posterior distributions combine
2 the prior knowledge about the parameters as well as the information gathered from experiments
20 expressed via the likelihood. In frequentist inference, the 100(1 — «)% confident interval is defined
20 such that, if the data collection process is repeated again and again, then 100(1 — «)% of the con-
s fidence intervals formed would contain the unknown parameter value (Fisher, [1956). However, in
22 Bayesian inference, uncertainty of the parameters is typically displayed by their credible intervals.
23 The interpretation of the Bayesian 100 (1 — «)% credible interval is that this interval contains
20¢ 100(1 — )% of the posterior distribution of the parameter, so the probability for the parameter of
25 interest to be in that interval is 1 — o (Gelman et al.l [2013]).

206 Although the Bayesian approach allows to incorporate prior information of the parameters,
27 as no information was available for P. nawae, we used vague priors with large variance reflecting
28 great uncertainty (Carlin and Louis|, 2008]). The hierarchical structure enabled for a more natural
200 specification of the model, particularly when, as in our case, random effects are included. These
0 complex models can be difficult to solve with frequentist inference. However, they can be readily
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sn  approached from a Bayesian perspective. Posterior distributions in complex models do not have a
sz closed form and numerical approaches such as MCMC are generally needed to approximate them
3 (Gilks et all 1996). The INLA approach was used here instead of MCMC because of its higher
s computation efficiency and speed of calculation, as well as its good behaviour for beta regression
w05 models (Rue et al.l 2009; Paradinas et al., [2018). Despite its advantages over MCMC, particularly
s when dealing with large datasets, only a few studies using INLA are available in plant disease
57 epidemiology (Marcais et al., 2016; Martinez-Minaya et al., 2018; Denis et al., 2018).

308 In the model selected for P. nawae, ADD and AD Duvpd were the covariates driving the matura-
30 tion of ascospores (Table. It was described that P. nawae overwinters in the leaf litter as mycelia
a0 or pseudothecial primordia, which mature and form ascospores as temperatures raise in spring.
su  Ascospores are then released when pseudothecia absorbe enough moisture (Kwon and Parkl 2004;
sz [Vicent et all 2011] 2012). Nevertheless, quantitative relationships between ascospore production
sz and environmental variables were not available for P. nawae. There are, however, many examples
s in the literature for other ascomycetes indicating that models for ascospore maturation should be
a5 corrected for dry periods, by accumulating degree-days only when enough moisture was available
a6 in leaf litter. Navas-Cortés et al.| (1998b) considered only ADD on rainy days (> 1mm) to predict
a7 the maturation of Mycosphaerella rabiei pseudothecia in chickpea in Spain. This study indicated
sis that rain was essential for the synchronization between M. rabiei ascospore availability and the
a0 vegetative growth of the host. In Norway, |Stensvand et al.| (2005) improved model accuracy for V.
20 inaequalis ascospore maturity in dry years by halting degree-day accumulation if seven consecutive
21 days without rain occurred. When comparing models for V. inaequalis ascospore maturation in
2 different areas, [Eikemo et al|(2011]) indicated that those adjusted for dry periods were consistently
33 the most accurate predictors of ascospore depletion.

32 Interestingly, AD Dwvpd based on rh was more relevant in the model for P. nawae than AD Dwet,
2 which included also the effect of rain (>0.2 mm) (Table[l). During the period of study, dew result-
26 ing from high rh was much more frequent than rain (Figure ) In the case of P. nawae, wetness
27 induced by dew was not sufficient for substantial ascospore discharge (Vicent et all [2011)), but
s in absence of rain it may favor pseudothecial development and subsequent ascospore maturation.
20 This was described by Rossi et al. (1999) for V. inaequalis in Italy, where models accounting for
a0 Jeaf litter wetness significantly improved estimates of airborne ascospores. Furthermore,
s |and Timmer| (2002)) demonstrated that alternate wetting and drying of the leaf litter was necessary
s for the formation of pseudothecia of Zasmidium citri-griseum.

333 The selection of the date from when degree-days are accumulated (i.e. biofix), has been pointed
s out as a critical factor in the models for ascospore maturation and release. In some cases, a date
3 was chosen based on a specific phenological stage of the host, such as bud break or green tip
s (MacHardy and Gadoury, [1985; [Eikemo et al. 2011). However, the synchrony between host
;7 and fungal phenology may differ among regions. Often, the date of detection of the first mature
ue  pseudothecia or the first ascospore trapped has been used as the biofix (Spotts et al.,|1994; Eikemo|
330 . Nevertheless, this approach relies upon the sensitivity of the detection methods used
uo  and, more importantly, requires leaf litter sampling or deployment of spore traps. Both methods
s are time and resource consuming, limiting the extent and density of the monitoring network. The
s most convenient approach to set the biofix is using a fixed calendar date (James and Sutton,
3 , but it was argued that it does not take into account the climatic differences between
s regions (Llorente and Montesinos, [2004). [Roubal and Nicot| (2016) used numerical optimization to
us  define a single calendar date (1 January) as the biofix for V. inaequalis. In our case, 1 January was
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s also chosen as the biofix for P. nawae because, in our conditions, persimmon trees attain complete
s leaf fall around this date and so all the leaves are on the orchard floor still with undifferentiated
g ascocarps.

349 Like for other ascomycetes, our model for P. nawae considered temperature and moisture
0 covariates as having a continuous positive effect on ascospore development (Figure . However,
1 the process resulting in ascospore formation in the leaf litter can be divided in different phases,
2 which may have distinct temperature and moisture requirements. For M. rabiei, (Gamliel-Atinsky|
353 defined pseudothecium ontogeny followed by initiation of asci and ascospores, and
s finally ascospore maturation. Navas-Cortés et al|(1998al)) indicated that moisture was essential for
s pseudothecium ontogeny in M. rabiei whereas cool temperatures were required for the initiation
6 of asci and ascospores. Actually, low temperatures are generally needed for the onset of sexual
w7 reproduction in many ascomycetes (Trapero-Casas et al. |1992; [Scherm et al., 2001). [James and
358 indicated that the development of asci and ascospores in V. inaequalis was initiated
0 in spring, after a dormant period which was not influenced by temperature or moisture levels. Then,
w0 rapid maturation of ascospores was favored by moisture and increasing temperatures.
se jand MacHardy] (1982)) indicated that the productivity of V. inequalis pseudothecia and the rate of
2 asci maturation were inversely proportional to temperatures from 4 to 20°C. However, the rate of
33 ascospore maturation was directly proportional to temperature within this range.

364 Roubal and Nicot| (2016) related temperature to ascospore production of V. inaequalis, ob-
s taining better results when using a nonlinear unimodal function of thermal time compared with
s ADD. This unimodal function accounted for reduced effects of low and high temperatures on
7 ascospore production. Actually, this type of unimodal response to temperature was reported for
s some ascomycetes and ectotherms in general (Naseri et al., 2008; Trudgill et al., |2005]). Neverthe-
w0 less, the relationship between the rate of development and temperature is often linear over much
s of the range up to the thermal optimum, and thus ADD are usually considered for thermal time
sn calculations (Trudgill et al., [2005). In any case, knowledge about the temperature and moisture
sz requirements for each phase of ascospore formation in P. nawae may help to develop models with
sz improved performance and better extrapolation to other areas.

374 Our models also corroborated previous studies in Spain indicating that P. nawae adapted to
s semi-arid conditions by advancing the period of ascospore production to escape from the typi-
s cal Mediterranean rain-less summer. Consequently, ascospore production coincides with rains in
a7 spring, from March to June, under more favorable conditions for infection. On the other hand, low
s winter temperatures in Korea delayed ascospore release to June-August, then synchronized with
w9 the abundant summer rains typical in this area (Kang et al., 1993; Kwon et al., [1995; Kwon and|
381 In previous studies, discharge tests allowed detection of mature ascospores of P. nawae in the
sz leaf litter before they were released to air in the orchard (Vicent et al.,[2012). Similar results were
3 reported for Sphaerulina musiva in poplar, where peak ascospore production in leaf litter measured
s with discharge tests occurred 7 days earlier than peak airborne ascospores (Luley and McNabb Jt}
385 . However, when comparing different methods to estimate the maturity and release of V.
s inaequalis ascospores, Gadoury et al.| (2004) found that cumulative ascospore release in discharge
w7 tests from the leaf litter lagged behind that measured in the orchard air by spore traps. This was
s mainly attributed to litter decay, which progressively reduced the leaf litter area on the orchard
s floor and subsequently the overall ascospore population in the air (Gadoury and MacHardyl, 1982}
w |Gadoury et all 2004). This time lag may be even larger when a fixed leaf area sample instead
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a1 of a number of leaves is used in discharge tests. In contrast to apple leaves, persimmon leaves
32 are typically coriaceous and no substantial degradation of the leaf litter was observed under the
33 conditions of our study. Indeed, discharge tests from the leaf litter are effectively used by advisory
s services in Spain to predict airborne inoculum availability and schedule fungicide sprays for P.
395 nawae management.

396 Models for ascospore maturation are mainly aimed to predict the duration of the period for
a7 primary inoculum, when fungicide applications need to be intensified. Thus, practical performance
s of these models relies on their ability to accurately predict ascospore onset and depletion more
30 that the exponential phase of ascospore production (Gadoury et al., 2004} |[Eikemo et al., 2011]).
wo In the case of P. nawae in Spain, no secondary conidia have been observed and infections were
w1 caused by ascospores formed in the leaf litter (Vicent et al.,[2012). Therefore, accurate predictions
w2 of the beginning and end of the ascospore production period are paramount for designing efficient
w3 fungicide spray programs. Interestingly, when the beta regression model for P. nawae was evalu-
ws  ated in different orchards, higher accuracy was obtained at the onset and depletion of ascospore
ws production compared with the exponential phase (Figure [4)). Based on our results, we proposed
ws the operating thresholds 5% and 95% of ascospores discharged in a decision support system to
w7 schedule fungicide sprays. In the P. nawae model, these corresponded with 995-1520 ADD and
ws  190-545 ADDupd for the 5%, and 2585-3260 ADD and 300-740 ADDupd for the 95% (Figure
400 . A test version of the decision support system for CLS control was implemented in the online
a0 platform ’gipcaqui’ from IVIA at http://gipcaqui.ivia.es/avisos-mycosphaerella.

an Here a hierarchical Bayesian beta regression was used to model the cumulative proportion of
a2 P. nawae ascospores produced in persimmon leaf litter. Operating thresholds were proposed for a
a3 decision support system to assist advisory services and persimmon growers in optimizing fungicide
as  sprays programs for CLS control in Spain. This same modelling framework can be extended
a5 to other ascocmycetes and fungal plant pathogens in general as long as inoculum dynamics are
a6 expressed as proportion data.
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Figure 1: Environmental conditions in the study orchard at L’Alcidia from 2009 to 2015 a: Rain-
fall, relative humidity and mean temperature. b: Accumulated degree days (ADD), ADD consid-
ering vapor pressure deficit (ADDvpd) and ADD considering vapor pressure deficit and rainfall
(ADDuwet).
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Figure 2: Model for the cumulative proportion of Plurivorosphaerella nawae ascospores discharged

from persimmon leaf litter at L’Alcidia based on accumulated degree days (ADD) and ADD
considering vapor pressure deficit (ADDuvpd). a: data, b: median posterior predictive distribution,
¢ and d 95% credible interval.
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Figure 3: Linear regression between observed values and the median of the posterior predictive
distribution for the model of the cumulative proportion of Plurivorosphaerella nawae ascospores
discharged from persimmon leaf litter (black dots) at L’Alcidia. Blue line is the regression line.
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Figure 4: Linear regression between observed values and the median of the posterior predictive
distribution for the model of the cumulative proportion of Plurivorosphaerella nawae ascospores
discharged from persimmon leaf litter (black dots) at Benimodo, Villanueva de Castellén, Guadas-

suar and Moncada. Blue line is the regression line.
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Table 1: Models for the cumulative proportion of Plurivorosphaerella nawae ascospores discharged
from persimmon leaf litter based on accumulated degree-days (ADD), ADD taking into ac-
count vapor pressure deficit (ADDuvpd), ADD taking into account vapor pressure deficit and
rain (ADDwet), and the random effect year (v).

MODEL! DIC?  WAIC?® LCPO*
14+ ADD + ADDvpd + v -1185.39 -1183.49 -1.88
14+ ADD + ADDwet + ADDvpd +v -1184.84 -1183.22 -1.88
14+ ADD + ADDwet + v -1165.41 -1163.80 -1.85
1+ADD +wv -1155.80 -1153.73 -1.83
14+ ADD + ADDwvpd -1117.62  -1115.66 -1.77
14+ ADD + ADDwet + AD Duvpd -1115.70  -1113.80 -1.77
14+ ADD + ADDwet -1033.69  -1032.96 -1.64
14+ ADD -970.37  -970.11 -1.54
1+ ADDwet + ADDuvpd + v -619.42  -621.50 -0.99
14+ ADDvpd + v -609.87  -611.25 -0.97
1+ ADDwet +v -575.94  -578.17 -0.92
14+ ADDwet + ADDupd -470.71  -472.11 -0.75
1+ ADDuvpd -469.37  -470.37 -0.75
1+ ADDuwet -455.96  -456.94 -0.72
1+ -393.96  -395.46 -0.63
1 -375.73  -376.37 -0.60

Ybiofiz = 1 January, Thase = 0°C.
2Deviance information criterion.
3Watanabe-Akaike information criteria.
4Logarithmic conditional predictive ordinate.
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Table 2: Model for the cumulative proportion of Plurivorosphaerella nawae ascospores discharged
from persimmon leaf litter including the fixed effects accumulated degree-days (ADD) and ADD
taking into account vapor pressure deficit (ADDuvpd), and the random effect year. Mean, standard
deviation (sd), quantiles (@) and mode for the parameters and hyperparameters (¢, 7).

Parameters! Mean sd  Qo.025 Qos  Qo.ors mode
intercept -8.099 0.351 -8.800 -8.096 -7.410 -8.092
ADD 0.293 0.007  0.278 0.293 0.308  0.293
ADDuvpd 0.443 0.066  0.313 0.442 0.575  0.442
Hyperparameters  mean sd  Qo.025 Qos Qoors mode
¢ 26.196 2.481 21.601 26.100 31.361 25.936
T 9.383 7.312 1.538 7.487 28.384  4.170

! ¢ is the precision parameter of the likelihood and 7 the precision of the
random effect year.

Table 3: Mean absolute error (MAE), mean square error (MSE) and root mean square error
(RMSE) for the model of the cumulative proportion of Plurivorosphaerella nawae ascospores dis-
charged from persimmon leaf litter at Benimodo, Villanueva de Castellon, Guadassuar and Mon-
cada. Values of R? for the linear regression between observed values and the median posterior
predictive distribution.

Location Year MAE MSE RMSE R?

Benimodo 2010 0.109 0.036 0.189 0.849
2011  0.073 0.009 0.097 0.946
V. Castellon 2010 0.072 0.014 0.119 0.934
2011  0.070 0.013 0.114 0.972
Guadassuar 2010 0.042 0.004 0.062 0.981
2011  0.094 0.024 0.156 0.892
Moncada 2012 0.311 0.138 0.371 0.720
2013 0.042 0.003 0.058 0.979
2014  0.128 0.027 0.165 0.917
2015 0.275 0.112 0.334 0.700
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