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Attempts to characterize the limits of human working memory have differed on whether

internal representations are discrete or continuous, with models of each type competing

to best capture the errors observers make in delayed reproduction of elementary stimulus

features. Here we show discretization only weakly discriminates between models; the crit-

ical distinction is instead between deterministic (fixed) and stochastic (randomly varying)

limits, with only the latter compatible with observed human performance and the under-

lying biological system. Reconceptualizing existing models in terms of sampling reveals

strong commonalities between seemingly opposing accounts: adding stochasticity to a dis-

crete model brings it into closer correspondence with theories of neural coding, and puts its

quality of fit on a par with continuous models, but also eliminates the stability and depen-

dencies between items implied by a fixed set of “slots”. A probabilistic limit on the number of

items successfully retrieved is an emergent property of stochastic sampling, with no explicit

mechanism required to enforce it. These findings resolve discrepancies between previous

accounts and establish a unified computational framework for further investigating working

memory.

Working memory refers to the nervous system’s ability to form stable internal representations

that can be actively manipulated in the pursuit of behavioral goals. Our understanding of the

structure of working memory has been shaped by the competition between different formal

models that aim to explain behavioral data by implementing different conceptual ideas. A
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classical view of visual working memory (VWM) held that it was organized into a limited number

of memory slots, each capable of holding a single object [1, 2]. This model was subsequently

modified to allow multiple slots to hold the same object and be combined on retrieval to achieve

higher precision [3]. This “slots+averaging” model incorporated aspects of an alternative view,

which holds that VWM is better conceptualized as a continuous resource that can be flexibly

distributed between different objects or visual elements [4, 5], accounting for set size effects

in analogue report tasks [6] (Fig. 1A) and flexibility in prioritizing representations [7]. Variable

precision models [8, 9] additionally proposed that double stochasticity is a key feature of VWM

representations needed to explain human performance. An alternative approach [10] sought to

explain VWM errors from neural principles as decoding variability in population representations

[11], with the limited memory resource equated to the total neural activity dedicated to storage.

Here we show that these influential accounts of VWM can all be interpreted in the common

framework of sampling [12]. This reconceptualization reveals unexpected similarities between

the models, and identifies which of the differences are critical for reproducing experimentally

observed response errors.

We first show how a population coding model [10] can, with some simplifying assumptions,

be reinterpreted in terms of sampling (Fig. 1B–E). We consider a mathematically idealized

population of neurons encoding a one-dimensional stimulus feature, where the amplitude of

each cell’s activity is determined by its individual tuning function. Neurons are assumed to

share the same tuning function, merely shifted so the peak lies at each neuron’s preferred

feature value ϕi:

fi(x) = f(x− ϕi). (1)

Discrete spikes are generated from the cells’ activity via independent Poisson processes. By

associating each spike with a value in stimulus space equal to the preferred feature value of

the neuron that generated it (the principle of population vector decoding [13]), we can interpret

population activity as a set of noisy samples of the true stimulus value. If we pick at random any

spike generated by the neural population in response to a stimulus value θ, we can determine

the probability that it was produced by a neuron with preferred feature value ϕ. If we assume

dense uniform coverage of the underlying feature space by neural tuning curves, this yields a

continuous probability distribution p(ϕ) over the space of preferred feature values (Fig. 1C).
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Figure 1: Working memory methods and models. (A) Analogue single-report task and distri-
butions of response errors for a representative participant at different set sizes [10]. (B–E) A
theoretical account of neural population coding can be re-interpreted as sampling. (B) The
stimulus-invoked response of spiking neurons in an idealized population depends on their in-
dividual tuning (one neuron’s tuning function and preferred value [*] is highlighted). (C) Prob-
ability distribution over stimulus space obtained by associating each spike with the preferred
stimulus of the neuron that generated it. (D) Precision of maximum likelihood estimates based
on spikes emitted in a fixed decoding window. Precision, defined as the width of the likelihood
function (insets), is discretely distributed as a product of the tuning precision (ω1) and the num-
ber of spikes, which varies stochastically. (E) Errors in estimation (here in a circular feature
space) are described by a scale mixture of distributions with precision shown in (D). Assuming
normalization of total activity encoding multiple items, larger set sizes correspond to less mean
activity per item. (F–H) An account based on averaging limited memory slots can also be de-
scribed as sampling. (F) Illustrates allocating a fixed number of samples or slots (here, three)
to memory displays of different sizes. (G) Precision is discretely distributed as a product of the
tuning width, ω1, and the number of samples allocated per item. (H) Corresponding distribution
of estimation errors.
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This distribution has the same shape as the neural tuning curves and is centered on the true

stimulus value:

p(ϕ) ∝ f(θ − ϕ) (2)

Retrieval of a feature value is modeled as decoding of the spikes generated within a fixed time

window. In the idealized case with Gaussian tuning functions, the maximum likelihood (ML)

decoder generates an estimate by simple averaging of the spike values:

x̂ML = 1
n

n∑
j

ϕ(j) (3)

where ϕ(j) is the preferred feature value of the neuron that generated the jth spike.

Due to the superposition property of Poisson processes, the number of spikes – or samples

– generated by the neural population within the decoding window is also a Poisson random

variable. If the total spike rate in the neural population is normalized, or fixed at a population

level γ, it implements a form of limited resource [10]. If distributed equally between items, this

results in a mean number of samples available for decoding each stimulus that is inverse to

the set size N . This has been shown to quantitatively capture the set size effect in analogue

report tasks (Fig. 1A). The actual number of samples available in this model for decoding each

item in a single trial, nk, is independently drawn from a Poisson distribution,

nk ∼ Poiss
(
γ

N

)
. (4)

The neural population model can therefore be interpreted as a stochastic sampling model.

The most prominent discrete model of visual WM, the slots+averaging model [3], can also

readily be interpreted in terms of sampling (Fig. 1F–H). Each slot is postulated to hold a rep-

resentation of a single object with a fixed precision, and thus provides a noisy sample of the

objects’ feature values (note that the slot concept is commonly associated with an object-

rather than feature-based view of WM storage, but this distinction is not our present concern).

Multiple slots, or samples, that correspond to the same object are averaged at retrieval to en-

hance the precision of the estimated stimulus feature. Thus, the format of representation and

the decoding mechanism are identical to the stochastic sampling model. There is one critical

difference, however: The slots+averaging model assumes that the total number of samples
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available for representing multiple items is fixed, i.e.

N∑
k

nk = K (5)

This has also been the most common assumption in previous sampling-based models in the

attentional and memory literature [12, 14, 15] (but see also [16]). We will refer to this as a fixed

sampling model.

Predictions for precision and error distributions

We now consider the distribution of representational precision in these models. For any given

set of samples, the information they provide about the stimulus is described by the likelihood

function, L(x|ϕ) = px(ϕ|x). The width of the likelihood function is a measure of uncertainty in

the estimate: a set of samples with a broad likelihood function (Fig. 1, top inset) is compatible

with many different feature values, whereas a narrow likelihood function (bottom inset) identifies

a value more precisely. While a pattern of samples may have a sharp likelihood function with

a peak far from the true estimate (a kind of “false alarm”), statistically this is unlikely.

If the sample values follow a normal distribution with variance σ2 centered on the true stimulus

value, then the likelihood function is also normal, with a width that depends only on the number

of samples available for decoding,

L(x|ϕ) ∝ φ
(
x; x̂ML,

σ2

nk

)
(6)

Furthermore, for a specified number of samples, the ML estimate is distributed around the true

stimulus value as a normal with the same width as the likelihood,

x̂ML|nk ∼ N
(
x,
σ2

nk

)
. (7)

This correspondence between the likelihood function and trial-to-trial variability is not universal,

but does apply to all the models considered in this study (see SI), and justifies defining the

precision (which we will denote ω) of an individual estimate in terms of the width of the likelihood

function.
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For the stochastic sampling model based on population coding, precision has a Poisson distri-

bution (Fig. 1D), scaled by the precision of a single sample which is determined by the neural

tuning function, ω1 = 1/σ2,
ω

ω1
∼ Poisson

(
γ

N

)
(8)

Example distributions of decoding error are shown in Fig. 1E, where we have made a transition

from 1-D Euclidean to circular stimulus space, corresponding more closely to the feature di-

mensions (e.g. orientation, hue) commonly used experimentally. The distribution of errors can

be described as a scale mixture of normal distributions with precision proportional to the sam-

ple count (due to the circular stimulus space, this is a close approximation rather than exact;

see SI). The dispersion of errors increases with decreasing activity (e.g. as a result of increas-

ing set size; black curve vs red curve in Fig. 1E) and the distribution deviates from normality,

with this effect being particularly evident at lower activity levels (red curve) where long tails are

observed.

For the fixed sampling model, making the common assumption that samples are distributed

as evenly as possible among items [9, 17], we obtain a discrete distribution over at most two

precision values (Fig. 1G), which are multiples of the precision of one sample, ω1. As in the

stochastic model, mean precision is inversely proportional to set size, but because the distribu-

tions over precision differ, the fixed and stochastic models make distinct, testable predictions

for error distributions (Fig. 1H).

Behavioral response errors discriminate between models

We tested the ability of stochastic and fixed sampling models to capture response errors in

analogue report tasks. We fit the models to a large dataset of single-report tasks originating

from different labs (see SI) and also to a set of whole-report experiments [18], in which partici-

pants reported the feature values of all items in a sample array, either in a prescribed random

order or in an order freely chosen by each participant on each trial. While only a single study,

the whole-report results include information regarding correlations in errors between items

represented simultaneously in WM that could differentiate the models. For all models, we as-

sumed that participants gave their responses in order of decreasing precision (corresponding

to decreasing number of samples) on free-choice trials.
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Figure 2: Model comparison based on single- and whole-report data. (A) Mean difference in
log-likelihood of each model from the stochastic sampling model (with independence between
items), for a benchmark data set of single-report experiments. More positive values indicate
better fits to data. Errorbars indicate ±1 SE across participants. (B) The same comparison
for a set of whole-report experiments. (C) Total difference in log-likelihood between models
across single- and whole report experiments. (D) Fano factor (ratio of variance to mean) of
precision distribution. A constant Fano factor is characteristic of the stochastic model and con-
trasts with the varying Fano factor (dependent on set size and number of samples) in fixed
sampling. (E) Mean difference in log-likelihood for differing levels of discretization in the gener-
alized stochastic model. Differences are plotted relative to the maximum discretization (p = 1;
left) corresponding to the standard stochastic model with Poisson-distributed precision. Lower
discretization (p < 1) corresponds to more samples each of lower precision, converging to a
continuous Gamma distribution over precision as p approaches zero (right). All models have
the same number of free parameters and include a fixed per-item probability of swap errors
(see SI).
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Overall, the stochastic model fit data substantially better than the fixed sampling model for both

single-report (Fig. 2A; difference in log likelihood per participant [∆LL] = 16.3 ± 2.37 [M ± SE])

and whole-report tasks (Fig. 2B; ∆LL = 162 ± 13.6), indicating that stochasticity is critical for

capturing behavioral performance. In contrast to previous interpretations [18], we did not find

that the results of the whole report tasks support a slot-like mechanism with a fixed limit on the

number of memorized items.

We tested two additional variants of the stochastic and fixed models set out above. In the

random–fixed model, the total number of samples was fixed but distributed randomly between

items. This model provided an improved fit to data compared to the fixed model with even

allocation (moderately for single-report, ∆LL = 3.07 ± 1.10; strongly for whole-report, ∆LL =

112 ± 11.9), but was still substantially worse than the stochastic model in both cases (single-

report, ∆LL = 13.2 ± 2.24; whole-report, ∆LL = 50.4 ± 7.03). In the even–stochastic model,

the total number of samples was a Poisson random variable, but the samples were distributed

as evenly as possible between items. This model achieved a better fit to single-report data than

the stochastic model with independent sample counts for each item (∆LL = 3.57 ± 0.697), but

provided a substantially worse fit to whole-report data (∆LL = 21.4 ± 4.12). Combining evi-

dence across all participants and tasks, the stochastic model with independent sample counts

was strongly preferred over this and the other alternative models (total ∆LL > 1450; Fig. 2C).

Generalizing the stochastic model

One feature that strongly distinguishes the fixed and stochastic models is the relationship be-

tween mean and variability of the precision distribution. Because of its basis in independent

Poisson events, the stochastic model has a constant Fano factor (the ratio of variance to mean),

equal to the precision of a single sample, V ar[ω]/E[ω] = ω1 (Fig. 2D, green). This is a direct

consequence of the fact that the Poisson distribution itself has a Fano factor of one. In contrast,

the Fano factor for the fixed sampling model is on average lower (mean ∼0.25 of ω1 based on

ML parameters and typical set sizes) and varies in an idiosyncratic manner between set sizes,

due to the varying combinatorial possibilities of allocating a fixed number of samples to a fixed

number of items (Fig. 2D, purple).

Fitted parameters of the stochastic sampling model indicate that estimates are based on a very
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Figure 3: Precision distributions in the generalized stochastic model, for different levels of
discretization, p, and different set sizes. (A) Example of discrete Poisson-distributed precision
values (p = 1). For typical ML parameters, estimates are based on a small mean number
of samples (here, γ = 12) each of moderate precision (ω1 = 1.5). (B & C) With decreasing
discretization (p < 1), estimates are based on larger mean numbers of samples and discrete
precision values are more finely spaced. (D) In the limit as discretization falls to zero, the
mean number of samples becomes infinite and the distribution over precision approaches a
continuous Gamma distribution. The ratio of variance to mean precision (Fano factor) is fixed
(at ω1 = 1.5) across all set sizes and levels of discretization.
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small average number of samples (e.g. mean of ∼13 samples based on fits to single-report

data). From a neural perspective, this is a consequence of the idealized assumptions about

population coding underlying the model, in particular that each spike from each neuron carries

independent information about a stimulus (see Discussion below). The result is that precision

of decoded estimates could take on only a limited set of possible values, and error distributions

reflect a discrete mixture of distributions with different widths. To investigate whether discrete-

ness and/or low numbers of samples are important for reproducing human performance, we

implemented a generalization of the stochastic model in which the number of samples was free

to vary while the Fano factor remained fixed. Specifically the distribution over precision was

obtained as a scaling of the negative binomial distribution,

ω

ω1p
∼ NegBin

(
γ

N

1
1− p, p

)
. (9)

The parameter p controls the discretization of the precision distribution: p = 1 corresponds

to the Poisson model described above and illustrated in Fig. 3A (strictly Eq. 8 is the limit of

Eq. 9 as p → 1), while p < 1 corresponds to a stochastic model with a greater mean number

of samples, n̄ = γ/p, each with a lower individual precision, ω1p. The mean and variance in

precision (E[ω] = ω1γ/N , V ar[ω] = ω2
1γ/N ) are independent of the discretization p, and the

Fano factor is fixed at ω1. Examples of precision distributions with different discretizations are

shown in Fig. 3B & C.

As the discretization parameter becomes very small (p→ 0), the number of samples becomes

very large and the distribution of precision described by Eq. 9 approaches a continuous function

(Fig. 3D; see SI), specifically the Gamma distribution,

ω ∼ Gamma
(
γ

N
, ω1

)
. (10)

Two previous studies [8, 9] independently proposed that a continuous scale mixture of normal

distributions with Gamma-distributed precision provided a good account of VWM data, but

could not motivate this choice of distribution theoretically. In particular [9] proposed distributing

precision as Gamma(J̄1/N
α, τ), with J̄1, τ and α free parameters. With α = 1 this is identical to

Eq. 10 (see SI for results regarding this parameter). We can now explain Gamma-distributed

precision as a limit case of the stochastic sampling model with large numbers of low-precision
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samples.

Fig. 2E (top) shows the results of fitting the generalized stochastic model with different levels

of discretization, p, to the single-report dataset. The best fit was obtained with a discretization

roughly one third that of the Poisson model, p = 0.39. However, varying discretization produced

differences in fit an order of magnitude smaller than those between fixed and stochastic sam-

pling (varying by ∼1.5 versus ∼15 log likelihood points). Fitting the same model with p as a

free parameter that could vary between participants, we found that ML estimates of discretiza-

tion were very broadly distributed (Fig. 2E, bottom), with a majority of participants (72%) best

described by a sampling model with less discreteness than the Poisson, and a minority (18%)

better captured by the continuous limit (p→ 0) than any discrete value of p we tested (as low as

0.0001, corresponding to ∼100,000 samples). Formal model comparison was equivocal with

respect to an advantage of including the discretization parameter in comparison to either the

Poisson model (i.e. p = 1; ∆AIC = –0.61 ± 0.49; ∆BIC = +4.2 ± 0.46; negative values favor the

added parameter) or the continuous Gamma model (i.e. p → 0; ∆AIC = –3.3 ± 0.93; ∆BIC =

+1.5 ± 0.89). Overall, these results do not allow strong conclusions to be drawn regarding the

discreteness of sampling, which has relatively little effect on model predictions or the quality of

fits.

Probabilistic item limits

In the fixed sampling model, at higher set sizes, a meaningful proportion of estimates are ran-

dom “guesses” based on no samples (Fig. 4A & B). Specifically, if an estimate was generated

for every item in the memory array, then as set size N increased, the number of estimates

based on at least one sample, Sω>0, would reach a maximum at the fixed total number of

samples,

lim
N→∞

Sω>0 = K (11)

This is a trivial consequence of sharing out a fixed number of samples evenly between items.

In the stochastic model with Poisson variability (p = 1), the number of samples available for each

item varies probabilistically and independently of the other items. There is again a probability
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Figure 4: Item limits in sampling models. The left panel for each model shows how the prob-
ability distribution of the number of items recovered with greater than zero precision (A & C;
greater than a fixed threshold for E & G) changes with set size (color coded, increasing blue
to red; discrete probability distributions are depicted as line plots for better visualization). The
right panels plot the mean number of items with above-threshold precision as a function of set
size for different threshold values. Thresholds are defined as a proportion of the base precision
ω1. (A, B) In the fixed sampling model the number of items with non-zero precision increases
with set size, then plateaus when the number of items equals the number of samples. (C,
D) The stochastic sampling model with Poisson variability also has a limit on the number of
items with non-zero precision, although this limit is probabilistic and emerges asymptotically
(converging to the distribution shown by the red curve in C for large set sizes, corresponding
to the mean number of items plotted as black curve in D). (E–H) Stochastic models with lower
discretization (E & F) or continuous precision (G & H), display similar probabilistic item limits
for precision exceeding a fixed threshold, but with the expected number of items saturating at
different values depending on threshold (colors in right-hand plots).
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of making an estimate based on zero samples,

Pr(ω = 0) = exp
(
− γ
N

)
, (12)

and the number of non-random retrievals in a set of N items has a Binomial distribution,

Sω>0 ∼ Bin
(
N, 1− exp

(
− γ
N

))
. (13)

As set size increases, the mean number of estimates based on at least one sample reaches

a maximum at the expected total number of samples (Fig. 4C & D). However, unlike the fixed

sampling model, this limit is probabilistic and (as illustrated in Fig. 4C) the actual number will

vary from one set of memory items to the next, converging to a Poisson distribution for large

N ,

lim
N→∞

Sω>0 ∼ Poisson(γ). (14)

As we increase the expected number of samples by reducing the discretization, p, the prob-

ability of zero samples falls to zero: Pr(ω = 0) = pγ/(N(1−p)). However, qualitatively similar

patterns are obtained by setting a threshold precision ωmin and counting the number of items

that exceed this precision (illustrated for p = 0.1 in Fig. 4E & F). For small thresholds (on the

order of the base precision ω1), the expected number of items exceeding this precision sat-

urates with increasing set size, although the specific number at which this function saturates

depends on the threshold (different colors in Fig. 4F correspond to different threshold levels

of precision). This pattern of probabilistic limits is largely unchanged by further decreases of

discretization, up to and including the continuous limit p → 0 corresponding to the Gamma

model (Fig. 4G & H).

Discussion

Taking as a starting point a mathematical idealization of the way neural populations encode

information, we have shown that retrieval of a visual feature from working memory can be

described as estimation based on a stochastically varying number of noisy samples. By recon-

ceptualizing alternative models within this same sampling framework, we were able to identify

this stochasticity, rather than discreteness, as the critical factor determining their differing abil-
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ities to capture behavioral data.

The slots+averaging model, because it modified the original slot model to allow multiple rep-

resentations with independent noise, is equivalent to a sampling model with a fixed number

of samples [14]. We have shown that adding stochasticity to the number of samples and ran-

domizing their allocation to items makes this model’s predictions effectively indistinguishable

from an idealized population coding account, in the process removing the discrepancy in the

models’ ability to fit behavioral data. It should be noted that these modifications also sever

the last remaining connections to the classical account of WM as consisting of a fixed set of

memory slots. Indeed, in the best-fitting models, there is not only variability in the number of

samples from trial-to-trial and item-to-item, but that variability is independent from one item to

another: this is antithetical to the slot concept, whereby if a slot is occupied by one item, fewer

slots are available for other items. In contrast to slots, the stochastic sampling account allows

working memory to be described within the same computational framework as attention, and

has a plausible link to neurophysiology in the form of population coding.

We have shown that variable precision models can also be described within the sampling

framework, as the continuous limit approached as samples are made less precise and more

numerous, while maintaining the fixed proportionality between the variance and mean of pre-

cision in the decoded estimate. The fully continuous model with Gamma-distributed precision

proposed in previous studies provided fits to data that were overall a little worse than the dis-

crete Poisson model, but when we attempted to fit discretization as a free parameter we found

ML estimates varied widely between participants, with many best fit by continuous or near-

continuous versions of the generalized model. We conclude that response error data does not

provide evidence for any particular level of discreteness in representation, or any particular

mean number of samples.

Here we have focused on experiments in which each item in an array is equally likely to be

tested and so has equal priority for representation. However, the view of WM as a limited re-

source has also been motivated by studies showing that prioritized items can be represented

more precisely in WM, at the cost of decreased precision for other items [7, 19–22]. The pop-

ulation coding model has previously been shown to reproduce data from tasks that encourage

unequal allocation of resources (e.g. where a cue indicates that one item in a set has greater
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chance of being tested). To understand how this result translates to a sampling framework

it is necessary to make a distinction between two concepts that have previously been elided:

discreteness of representations and discreteness of resources. In the stochastic sampling ac-

count the number of samples (discrete representations) that will be obtained for each item at

retrieval is unpredictable, so giving an item increased priority at encoding cannot correspond to

allocating more samples to it. Instead, the resource that is distributed between items according

to their priority corresponds to the mean or expected number of samples, which is constant

and continuous (there is no requirement for it to be an integer nor to be distributed in integer

units). This distinction already exists in the population coding account, where the constant

resource (γ in Eq. 4) is the sum of neurons’ continuous-valued firing rates or – more concretely

– membrane potentials, whereas the decoded estimate is based on the expression of this rate

(or potential) in discrete spikes.

The idealized description of population coding on which we based the stochastic sampling

model overlooks a number of important considerations in order to reveal relationships between

cognitive and neural-level accounts of WM. In real neural populations there is considerable

variability between cells in tuning width and maximum and minimum firing rates. Due to this

heterogeneity, neurons differ in the amount of information each spike provides about a stimulus.

From a sampling perspective, this means that estimates are based on samples that vary in

precision, and this has the effect of “smoothing out” the discrete distribution of precision values

predicted by the stochastic model. We found that adding heterogeneity of the kind observed in

neural recordings further improved fits of the stochastic model to data (see SI).

Electrophysiological recordings show that individual neurons and even individual spikes are

remarkably informative about visual stimuli [23, 24], rivalling the whole animal in accuracy of

stimulus discrimination. This would seem to imply that human-level behavioral performance

could be achieved on the basis of very low spike counts, and indeed this would be consistent

with the small numbers of samples obtained in fits of the idealized model with Poisson vari-

ability. In reality, the spikes generated by a neural population are not independent events, but

rather correlated within and between neurons. This will tend to result in deviations from the

simple additivity assumed by sampling, although the exact consequences depend on details

of the correlation structure that are difficult to measure experimentally [25–27], and suboptimal

inference (in the form of a mismatched decoder) is likely to also play a part [28]. Decoding
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properties of populations with these features are in general not amenable to mathematical

analysis, but simulation studies (as in e.g. [10]) indicate that, except for occurring at higher

spike counts, errors obtained from idealized populations may in many cases provide a good

guide.

In keeping with most previous work on visual WM limits, we have not here attempted to repro-

duce the variations in bias and precision that are observed for different feature values, exem-

plified by the finding that cardinal orientations can be reproduced with greater precision than

obliques. However, previous work has shown that these effects can be simply and elegantly

captured within the population coding framework via the principle of efficient coding [29–31].

The idea is that neural tuning functions are adapted to the stimulus statistics of the natural en-

vironment in such a way as to maximally convey information in that environment (effectively by

distributing neural resources preferentially to the most frequently-occurring stimulus features).

Although it should be possible to formulate this model as a modification of stochastic sam-

pling, without reference to neural populations, it seems that the modifications required would

not have a natural explanation within the sampling framework. These observations, and the re-

sults of incorporating heterogeneity described above, illustrate the value of connecting abstract

cognitive models to neural theory.

A recent proposal that WM errors can be explained in terms of a perceptual rescaling of stim-

ulus space can also be expressed in terms of population coding, with some minor differences

from the version presented here (see [32], for details and discussion). In particular, the idea

of retrieval based on normally distributed “memory-match” signals maps exactly onto an ide-

alized population code with continuous-valued activity and constant Gaussian noise [33, 34].

This predicts a continuous distribution over precision, not dissimilar to the Gamma distribution.

Continuousness in representation does not appear a necessary component of this account,

however, and it should be possible to reformulate it with arbitrary levels of discreteness, as in

our generalized stochastic model.

Item limits or ”magic numbers” [2, 35] have previously been considered synonymous with dis-

crete or slot-based accounts, occurring when some items must go unrepresented because

other items have filled the available capacity. The present results show that a probabilistic

item limit, i.e. a maximum on the average number of items successfully retrieved that is not
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exceeded at any set size, can arise even when the probability of success for one item is in-

dependent of each other item. This holds true in the Poisson sampling model if we define

success as obtaining one or more samples, but we have also shown it holds more generally,

even in a continuous model, if we define success as exceeding a threshold level of precision

in estimation.

Acknowledgments
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