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B-SOiD: An Open Source Unsupervised
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Behaviors
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The motivation, control, and selection of actions comprising
naturalistic behaviors remains a tantalizing but difficult field
of study. Detailed and unbiased quantification is critical. In-
terpreting the positions of animals and their limbs can be use-
ful in studying behavior, and significant recent advances have
made this step straightforward (1, 2). However, body position
alone does not provide a grasp of the dynamic range of nat-
uralistic behaviors. Behavioral Segmentation of Open-field In
DeepLabCut, or B-SOiD (''B-side"), is an unsupervised learn-
ing algorithm that serves to discover and classify behaviors that
are not pre-defined by users. Our algorithm segregates sta-
tistically different, sub-second rodent behaviors with a single
bottom-up perspective video camera. Upon DeepLabCut esti-
mating the positions of 6 body parts (snout, the 4 paws, and the
base of the tail), our software performs novel expectation max-
imization fitting of Gaussian mixture models on t-Distributed
Stochastic Neighbor Embedding (t-SNE). The original features
taken from dimensionally-reduced classes are then used build
a multi-class support vector machine classifier that can decode
millions of actions within seconds. We demonstrate that the
highly reproducible, independently-classified behaviors can be
used to extract kinematic parameters of individual actions as
well as broader action sequences. This open-source platform
enables the efficient study of the neural mechanisms of spon-
taneous behavior as well as the performance of disease-related
behaviors that have been difficult to quantify, such as grooming
and stride-length in Obsessive-Compulsive Disorder (OCD) and
stroke research.
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Introduction

The brain has evolved to support generation of action
sequences in animals, particularly for surviving constantly
changing environments. The core of surviving depends on
an animal’s ability to correctly anticipate external events, and
such decisions can be visualized through sequence of actions
that have been adapted to those events for optimal outcome
(3). Comprehensive tracking of behavior permits behav-
ioral scientists to not only to quantify behavioral output (4);
but also to identify unforeseen motions, such as "tap danc-
ing" in songbirds(5). However, processing such data from
recorded behavior is an extremely time and labor intensive
process, even with the limited and expensive commercial op-
tions available (6).

Recent advances in computer vision and machine learn-
ing has accelerated automatic tracking of geometric estimates

of body parts (1, 2). Although establishing the location of
body part can be informative given the right experimental
configuration, the behavioral interpretability is quite low. For
instance, the estimated position of where each paw is in an
Open-field does not capture what the animal is doing. More-
over, the angle criterion ascribed to whether a turning move-
ment has occurred, or the minimum duration of an ambula-
tory bout, are all subjective and could even depend on ani-
mal size and/or video capture technique. This uncertainty in
behavioral outcome only makes dissecting the neural mecha-
nisms underlying the behavior more complicated. The chal-
lenges presented above motivated our investigation into how
partnering dimensionality reduction with pattern recognition
could create a viable tool in automatic classification of an an-
imal’s behavioral repertoire.

In a recent behavioral study, Markowitz and colleagues
were able to automatically identify subgroups of animal’s be-
haviors using depth sensors. Their algorithm, MoSeq, uti-
lized the principal components of "spinograms" to identify
action groups (7). The authors uncovered the striatal neu-
ral correlates of action, consistent with the notion that pop-
ulation of medium spiny neurons (MSNs) encodes certain
behavior, and the organization of (8§-12). In another sem-
inal study, Klaus et al. employed a unique dimensional-
ity reduction method, t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) (13), to visualize clusters behaviors based
on time-varying signals such as speed and acceleration (12).
There, they discovered that the t-SNE clusters are easily in-
terpreted as mouse behaviors and was correlated with distinct
striatal neural ensembles. The powerful rationale behind se-
lecting t-SNE to project high dimensional features onto low-
dimensional space is to preserve the contrast in distributions
of the original features, or so called "local structure". To-
gether, these studies suggest that data-driven algorithms can
provide reasonable clusters of animal behavior that in turn
provide insight into how thoughts generate actions.

Building on this progression, we were motivated to
investigate the low-dimensional clusters of a composite of
high-dimensional features - such as body length, distance
and angle between body parts, occlusion of a body part
from view, and speed. In conjunction with an open source
platform, DeepLabCut, we provide an open-source unsu-
pervised learning algorithm that integrates the three key
layers of understanding (dimensionality reduction, pattern
recognition, and machine learning) to enable autonomous
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multi-dimensional behavioral classification. We found that
behavioral-Segmentation of Open-field in DeepLabCut (B-
SOiD) automatically uncovers reasonable behaviors with ex-
cellent accuracy (tested against both held out data and blind
human observers). It is easily applied across behavioral stud-
ies. Moreover, in testing the power of the tool, we have dis-
covered a broader and dynamic behavioral structure - an or-
ganization of "what to do next" - exists in mice exploring
a novel environment. Finally, we have released our repos-
itory B-SOiD on open-source platform GitHub, and have
included three versions of our work: manual thresholding
of pre-defined behaviors, unsupervised discovery of action
classes, and action class modeling, to suit a variety of behav-
ioral research needs.

Results

A schematic flowchart describing the proposed un-
supervised learning algorithm B-SOiD (Fig.1).  Upon
DeepLabCut estimating the body parts outlining the ani-
mal (snout, 4 paws, and the proximal tail), features such
as body length, speed and angle can be computed. To vi-
sualize high-dimensional feature clusters, we opt to follow
a recent study(12) and use t-SNE, a particular dimensional-
ity reduction algorithm that preserves local structure. These
feature clusters appears to carry topology from the high-
dimensional space; therefore, we hypothesize that the clus-
ters can be grouped using expectation maximization (EM)
algorithm by fitting parameters of Gaussian mixture models
(GMM). High-dimensional features from each GMM class
will then be used to train learners from multi-class support
vector machine (SVM) classifier. To validate our perfor-
mance, we propose to test held-out data against the original
cluster assignments over many iterations.

We provide this as an open source toolbox for the neuro-
science community who uses DeepLabCut to study animal
behavior.
https://github.com/YttriLab/B-S0iD

A. Selection of high dimensional features. An animal
behavior can be parsed into a sequence of changes in physi-
cal features. For feature selection, we performed Hierarchi-
cal clustering analyses on 20 features and identified 3 ma-
jor classes. The classes can be generalized as pose-estimate
speed, angle, and length. We tested multiple different com-
binations and strategically selected a combination of 7 that
will most likely help isolate the different rodent behaviors.
Feature 1 examines the body length of the mouse, dissoci-
ates stationary from ambulatory states, and identifies actions
that consist of elevated body parts (mouse will appear shorter
with rearing, grooming or scrunching with a flat bottom-up
2D perspective) (Eqn.1). Feature 2 subtracts front paws to
base of tail distance from body length, or whether the ani-
mals front paws are further away from base of tail than that
of the snout (Eqn.2). Feature 3 subtracts back paws to base
of tail distance from body length, or how extended/contracted
the snout is from back paws using body length as a reference
(Eqn.3). Feature 4 finds the distance between two front paws,
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as the proximity of the two paws can be an important marker
for various behaviors (Eqn.4). Feature 5 looks at the speed of
snout, or how far the snout has moved per unit time (Eqn.5).
Feature 6 looks at the speed of base of tail, or how far the
base of tail has moved per unit time (Eqn.6). Finally, feature
7 is concerned with body angle, whether the animal is orient-
ing to the right or left, and how big of a angular change there
is (Eqn.7). Upon extracting these 7 features, we visualized
the clusters in a dimsionally-reduced space.

B. t-SNE clustering and visualization of high-dimen-
sional features. To visualize the clusters in a 7-dimensional
feature space, we performed a particular dimensionality re-
duction clustering algorithm, t-SNE, onto a 3-dimensional
space. On this 3-dimensional t-SNE space, we saw distinct
nodes of data clusters that are appear to be interconnected,
albeit much fewer data points (Fig. 2). The spectral nature of
low-dimensional features align with prior work (1, 12). We
further examined this 3-D space and uncovered that each in-
dividual cluster appears to represent an interpretable action,
as opposed to similar snapshots between two very different
actions. This is consistent with the notion that a behavior is
usually inferred by a composite of high dimensional features.
In other words, a rear and groom will both contain elevation
(away from the camera), but only groom would have consis-
tent changes in inter-fore-paw distances. Together, these re-
sults suggest that we conserved the contrast in 7-dimensional
space that are important for behavioral segmentation even in
a lower-dimensional space.

C. Expectation maximization fitting of Gaussian mix-
ture models. Unsupervised grouping will be required to dif-
ferentiate one group from another autonomously. Since t-
SNE utilizes Gaussian kernels for joint distribution, we chose
to classify the clusters using expectation maximization (EM)
algorithms for fitting of Gaussian mixtures models (GMM)
(14). The "E-step" in EM requires a set of parameters to
be initialized, then subsequently updated with the "M-step".
Since we do not have a priori in mouse action classes in a nat-
uralistic setting, we initialized model mean, covariance, and
priors with random values. The danger of randomly initial-
izing GMM parameters is getting a sub-optimal local mini-
mum log-likelihood. To attempt at escaping poor initializa-
tions, we chose to perform this method iteratively over many
times and kept the initialized parameter set that gave rise to
the lowest log-likelihood. Additionally, we allowed the EM
algorithm to identify up to 30 classes, of which 15 unique
classes (colored) were pulled out (Fig.2). Interestingly, a cou-
ple classes (8 and 15), can only be found in a few animals.
These results argue that our algorithm adapts to inter-animal
variability in naturally occurring behaviors if sufficient data
are collected.

D. GMM classes represent distinct actions. The 15
classes identified using GMM was based on data in the low-
dimensional space. This does not warrant a proper segre-
gation of actual behavior. The classes could very well ei-
ther subdivide a sequence of turns, group a whole spectrum

Hsu etal. | B-SOID


https://github.com/YttriLab/B-SOiD
https://doi.org/10.1101/770271
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/770271; this version posted September 16, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.
D GMM classes represent distinct actions

o ~

;A 3
() :
; Features: :
; Speed, angles & length, etc. '
/'/ ‘ | N\ \\\
K | | %
;B | | ;
: | [ :
E | ° o f ° o “ E
E (991 “ .o 7o ‘ | E
: = °© ‘ !
; Sl ST . | E
H . %) | 009¢ !
E t‘SNE & GMM. tq:) | ® O.doo ‘\f_‘- E
; Cluster 7 features in a 3-D space ES ‘ . i i
: & identify groups based on T | ' %\ | ;
; Gaussian distributions. '-'Z-l \ . . \ " i
: 0 | = ;
i = y %; i
: |/ Q.
' |/ e '
} / 2.
‘\ ' M I'
t-SNE dimension 1
“c SVM

Train an action classifier based on multiple features.

Pause

Orient right &

L oD R
.. Sniff

.......................................................................................................

[P
- ~
e

~

Fig. 1. Flow-chart of our proposed algorithm, B-SOIiD. (A) Obtain physical features that pertain to the three different
class (speed, angle and length) that define movement. (B) Cluster high-dimensional input features in a low-dimensional
space utilizing t-distributed stochastic neighbor embedding (t-SNE) and fit Gaussian mixture models (GMM) to segment
behaviors. (C) Train a support vector machine (SVM) classifier based on the distribution of all 7 features.
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of behavior into one, or even both. To answer this, we ran-
domly isolated short videos based on classes (See https:
//github.com/YttriLab/B-S0iD for details). We
found that these 15 classes were very differentiable from one
another. Since we could potentially carry bias in examin-
ing these action classes, we further investigated the distri-
bution of low-dimensional (physical) features. Our results
indicated that the 15 distinct Gaussian mixtures in the high-
dimensional space, were also different in the compiled phys-
ical feature space (p < 0.01, KS-test). Given no two classes
were alike, we can confidently implement an simple Support
Vector Machine (SVM) classifier that deals with learning to
distinguish more than two classes. All seven features will be
used to train the learners 2.

E. SVM classifier design for multi-class actions. So far,
all analyses were done post-hoc (after collecting hours of data
and running dimensionality reduction on close to 1 million
samples). Although this automation can already drastically
improve neurobehavioral correlation, we went a step further
and incorporated machine learning for a more real-time so-
lution. Since we output more than 2 classes that we would
need to differentiate, a simple GLM would not be sufficient
for encoding. Recent computational advances have enabled
SVMs to significantly improve decoding accuracy using er-
ror correcting output codes (ECOC) (15). Based on our uti-
lization of normal distribution with t-SNE and GMM, we hy-
pothesize that using Gaussian kernel functions for classifier
training would supply the most robust and accurate decod-
ing results. To test our hypothesis, we trained our classifier
with three types of kernel tricks: linear, Gaussian, and poly-
nomial. To benchmark model performance, we performed
cross-validation on various partition size of held-out data.
With 100 iterations for each partition size, we found that
SVM with Gaussian kernel function predicts an the classes
most accurately and with least variation given sufficient train-
ing data ( 75,000 frames, or 70 % of 3 hours of video) (Fig.3).
Since our expectation matched our observation, it suggests
that we understand the technique that we chose to parcellate
behavior.

F. SVM classifier generalizes to new dataset. For a
model to be applicable, an essential feature to carry is gener-
alizability across variable datasets. If our behavioral model
truly understands behavior in a high-dimensional space, a
mouse of very different physique shall not impact perfor-
mance. After we trained our model, we used it to predict
the actions of a mouse that is noticeably different. Within a
few seconds, the classifier categorized all 18000 actions (30-
minute video, 10 frames/second (fps)). The randomly sam-
pled predicted classes showed very similar behavior to the
classes in training (Fig.4). Although there is no good mea-
sure to benchmark such similarity, our results do suggest that
the behavioral model we built did not over-fit our training
mice. In the following sections, we provide more evidence
to increase the probability that our data-driven algorithm is
valid for behavioral quantification.
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G. Classifier performance comparable to human ob-
servers. Certainly, we want to exemplify the coherence be-
tween our data-driven technique with human observed be-
haviors. Up to this point, our results have mostly demon-
strated statistical consistency in B-SOiD; However, part of
the motivation was to build a toolbox that discovers user-
defined behaviors for DeepLabCut. Transition probability
matrix is a common method for analyzing similarity between
states based on the predictability of the next states. For ex-
ample, if actions A and B, but not C, have a high probabil-
ity going into action D at the next time-step, we would con-
sider actions A and B are more similar to each other than
them to C. Based on the transition probability matrix, our
15 classes can be categorized into three major groups: sta-
tionary/rear, groom, and non-stationary 6. We ran one 10
minute video at same temporal resolution (10 fps) against 4
blind human observers and found that the inter-grader coher-
ence (80.97 4 3.96%) was similar to machine-grader coher-
ence (72.04 +4.53%). Our findings not only provided evi-
dence that human defined behaviors are typically statistical
inferences of multi-dimensional patterns, but also raised an
awareness for biases in subjective behavioral quantification,
which takes 1000x longer. To further support the validity of
our model, we looked into the 15 individual classes.

H. Unsupervised learning reasonably parses behav-
iors and aligns with expectation. To address the robust-
ness of the 15 classes modeled, we collected a data from 10
different animals with 19 total half-hour sessions (in addition
to a training set of 4 animals comprising a total of 6 ses-
sions). After combining training and prediction data, we can
analyze a few characteristics of individual actions to see if
those match our expectations. First, we examine bout dura-
tions for each individual class. We found that across animals,
the variability in time is allotted per action class was con-
served when exploring a novel open-field (Fig.5). In addition,
when grouped based on the commonly agreed upon states
(rest/pause, sniff/nose-poke, rear, groom, gather/scrunch, lo-
comotion/orientation), the relative distribution of durations
are in alignment with what we have observed. For instance:
rearing against the wall generally will last longer than un-
supported rears that are out in the open; a groom that has
a smaller range of motion may last over 4 seconds, while a
faster and coarser "scratch" may not; orientating movements
are much briefer than locomotion given the size of our open-
field.

Second, we analyzed the transitional probabilities of all
classes. We can test the validity of our model based on
the predictability of the action followed. If the subdivided
grooms are true classes, the three classes that we ascribed
"groom" should be interconnected given the stereotypical se-
quence of grooming in rodents (? ). Indeed, the mean
across-animal transition matrix exhibits an oscillating struc-
ture around the intersection of current and next states of
grooms (Fig.6). We also observed that pause and sniff states
have a higher probability of transitioning into non-stationary
states (locomotion and orientation) than the inverse, consis-
tent with the notion of novelty-seeking behavior, particularly
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Fig. 2. Gaussian mixture models (GMM) classified clusters into unique actions. (A) Expectation maximization for fitting of
GMMs on 3-dimensional t-SNE space identifies 15 classes. (B) All 7 low-dimensional (physical) features per class, each
represent the corresponding colors from (A).
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when first exposed to a new environment. We postulate that
this is also the case for individual animals. We split hour-
long sessions into early versus late exploration blocks for in-
dividual animals (N=9, 30 minutes each block). We discov-
ered that such asymmetry into non-stationary versus station-
ary was present across individual animals in early exploration
(left panels) when compared to that in late exploration (right
panels; Fig.6. Our findings suggest that, aside from defining
individual actions, B-SOiD serves as a useful tool for uncov-
ering the larger structure of action sequences.

|. Exploration versus exploitation. The exploration-
exploitation dilemma is a widely established phenomenon
in which an agent, in this case a mouse, learns about the
environment through series of transitions between obtaining
information by exploring and exploiting previously obtained
knowledge. With the B-SOiD algorithm, we have isolated
potential behavioral strategies going from early to late
exploration and suspect a transition from exploration to
exploitation. We hypothesize that the temporal inter-class
intervals (ICIs) distribution will converge for stationary
versus non-stationary behaviors. The empirical cumula-
tive distribution function (eCDF) for time between the
same actions demonstrates that the difference between
non-stationary and stationary ICIs distributions diminished
during late exploration (Fig.7), consistent with the idea that
exploration-exploitation trade-off depends on experience in
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the environment (16). More surprisingly, we observed that
the our extracted stereotypical grooming sequence appear to
be affected by experience as well. These results suggest that
our algorithm can dissect out a finer behavioral predictor for
exploration-exploitation trade-off.

J. Behavioral organization in naturalistic exploration.
We found it interesting that mice revisit grooming behaviors
more often in the later stages of exploration. We further in-
vestigated the baseline-subtracted history-dependent transi-
tion matrix (HDTM). This measure reveals how likely an ac-
tion is is to occur above and beyond the baseline probabil-
ity of it occurring at all (Fig.8). In the mean across-animal
HDTM, a rhythm for grooming in particular is observable.
For individual animals, we see that the pattern is more pro-
nounced in the late exploration phase (mouse 2 experienced
the open field for an additional 15 minutes prior to the ’early’
block shown). This may be due to many causes, including,
but not limited to, comfort with new surroundings, decreased
benefit in exploration, or even merely energy expenditure.
Although more in-depth analyses are needed, we are encour-
aged by B-SOiD’s ability to capture a full range of behavioral
responses.
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Training Predict

Fig. 4. Classifier predicted actions of a novel animal (brown mouse, right) matched those of the trained animal (black
mouse, left). Plotted locomotion was the beginning 500ms (going from shaded gray to solid colors) of an ambulation bout
that continued on for more than 500ms; whereas grooms and rears were snapshots of 300ms into a continuous behavior

that lasted at least 500ms.
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Fig. 5. Duration mean and standard error for all behavioral bouts from 10 mice, consisting of 19 total 30-minute sessions
(n=2 for mouse 1-9 and n=1 for mouse 10). A-B. Two types of unique pause and sniff were identified, similar bout
durations. C. The two classified rears, either against the wall or without support, show that rearing lasts longer when it is
against the wall. D. The sub-divided grooming sequence shows that the animals make large range of motions (coarse)
for shorter periods of time compared to that of fine grooming or when it is orienting to either side to groom. E. Gathering
or scrunching, has majority of action bouts shorter than 2s. F. Orienting to the right or to the left has very similar bout

duration distribution, all appears to be shorter than locomotion.

Discussion

Naturalistic behavior provides a rich account of an an-
imal’s motor plans and decisions, largely unfettered by ex-
perimental constraints. Until recently, capturing the com-
plexity of these behaviors in the open field has proven pro-
hibitively taxing. Still, new methods are difficult to imple-
ment and/or offer an incomplete account of the movements of
the actual effectors (e.g. limbs, head). Our unsupervised al-
gorithm, B-SOID, offers the opportunity to capture limb and
action dynamics through the use of the popular DeepLabCut
software. This tool also serves as the vital bridge between
knowing the location of body parts (provided by DeepLab-
Cut) and the actions that those body parts perform in concert
with one another. It also demonstrates the utility of artificial
intelligence, specifically the integration of multi-dimensional
embedding, iterative expectation maximization, and a multi-
learner design coding matrix, in classifying behavior. Paired
with the insight that the presence of missing information is
itself information, these algorithms even allow the extraction
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of three-dimensional movements from two-dimensional data.
Finally, our approach has enabled the initial study of action
sets and how transitions between actions change with context
- in this case, something as simple as the passage of time.
The described unsupervised learning algorithm allows users
to automate detection of various classes of actions so as to
understand the dynamics of Open-field, naturalistic behavior
and the neural mechanisms governing their selection and per-
formance.

Also important is the ability to decompose behaviors into
their constituent movements. By using limb position, we can
extract not only whether an animal was walking or grooming,
but also determine the contributing stride length, speed of
arm extension, etc. While we have previously benefited from
access to such performance parameters (17), this may prove
to be a potent advantage in the study of disease models. The
study of obsessive compulsive disorder in particular has long
sought improved identification and quantification of groom-
ing behavior. B-SOIiD enables the detection of grooming, it’s
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Fig. 6. Frame-by-frame transition probabilities, each row describes a current action, corresponding columns represent
the range of upcoming behaviors, and colors indicate the computed probability. A. Average Frame-by-frame transition
matrix from 10 different animals, 19 total 30-minute long sessions, predicts reasonable transitions between stationary
segments, between segregated grooming sequence, and between ambulatory actions. B.-C. Individual mouse’s transition
matrix appears to be slightly variable; however, gross structural change in behavior appears to be similar going from early
exploration (0:00:00.16 to 00:30:00.00, or 0-30 mins, B.) to late exploration (0:30:00.16 to 1:00:00.00, or 0-60 mins, C.).
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Fig. 7. Empirical cumulative distribution function of recurrent behavioral intervals from 10 mice, first 30 minutes versus
last 30 minutes Open-field exploration. A.-C. In the first 30 minutes of Open-field navigation, all animal appears to revert
back to actions that assist in exploration of environment faster, i.e. locomotion, orientation, and perhaps rearing against
the wall. D.-F. In the last 30 minutes of the experiment, the recurrent behavioral intervals appear to shift in majority of the

actions, showing a shorter interval between grooms and pauses, and a longer interval between locomotion.

relation to other behavior, and how vigorously each groom-
ing bout is performed (18). Additionally, neurobehavioral
deficits such as diminished locomotor speed may be the re-
sult of shorter stride length or slower stride — with important
differences between the two causes. Therefore, understand-
ing both the structure and substructure of actions increases
the potential of research.

Though commonly used, and perhaps as a result of its com-
mon usage, the term action has a broad range of applica-
tions ranging from sub-second muscle activations (e.g "snap-
ping your fingers") to a prolonged series of motor commands
(e.g. "going home" or reorienting, walking, and engaging a
different behavioral port). Our approach, while initially fo-
cused on what we believed to be behavioral building blocks
(grooming, rearing, walking, etc) was susceptible to priors
and anthropomorphizing. Based upon the the described di-
mensionality reduction applied to length, distance, change in
position and angle, we discovered that, indeed, we may be
over-simplifying animal behaviors, that may generate unnec-
essary challenges in neurobehavioral correlation. In the soft-
ware package, we preserve the user-defined categories of "ac-
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tions", along with the unsupervised clustering and a hybrid
classifier format. Therefore, B-SOiD provides a unique ad-
vantage. It allows the experimenter to automatically or man-
ually build classifiers of all types of behavior. Given the input
data of control or any disease tetrapod model - which spans
rodents to non-human primates, the algorithm derives classes
of behavior based solely upon what is present in the data.

Methods

Animal and Open-field set-up. 10 C57/BL6 adult mice (5
males and 5 females) were placed in an clear 15x12 inch rect-
angular Open-field for one hour while a 1280x720p video-
camera captured video at 60Hz. Video was acquired from the
bottom-up, 19 inches away from the diagonal midpoint of the
container. The videos were then divided into first and last 30
minutes for analyses purposes.

Low-pass likelihood filter. DeepLabCut estimates the like-
liest position of all body parts for all frames, even when it is
completely occluded. Since we are recording from bottom-
up, it is often the case that the mouse’s snout or forelimbs
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Fig. 8. Surfaced behavioral structure to exploration. A. Average recurrent matrix aligned to end of most recent behavior X
from all sessions revealed that various grooms identified are recurring more often than baseline, whereas other behaviors
do not. B.-C. Individual mouse’s recurrent matrix appears to be slightly variable; however, majority of animals show an
increase in probability of recurring grooms from early exploration (0:00:00.16 to 00:30:00.00, or 0-30 mins, B.) to late
exploration (0:30:00.16 to 1:00:00.00, or 0-60 mins, C.). Note that mouse 2 was pre-exposed to the open-field for 15
minutes prior to recording.
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will not be seen during rearing, grooming, and the likes of
them. To take advantage of this situation, instead of replacing
the estimated position with unworkable variables, we apply a
low-pass filter and convert all sub-threshold estimated posi-
tions as the previous likeliest position, if exceeds our cutoff
(p < 0.2). This particular workaround allows the machine to
treat it as a unique signal (no signal).

Feature extraction. Out of the 20 possible features we stud-
ied, we distilled it down to 7 based on hierarchical clustering
analyses (HCA) and features that capture absence of signals
best. The body length, or distance from snout to base of tail,
or dgr, is formulated as follows,

Z (Sp—Tp)? @D

D=1

ldsrl| =

, where Sp and Tp represent the likeliest position of snout
and base of tail, respectively, and D denoting x or y dimen-
sion.

The front paws to base of tail distance relative to body length,
or dgr, is computed with the equation,

dsr = |ldst||—||dFr|
=D (Sp-Tp)>— | > (Fp—Tp)>
D=1 D=1

, where dp7 is the distance between front paws and base of
tail, F'p is the mean x and y position of the two front paws.
The back paws to base of tail distance relative to body length,
or dgp, is calculated using the formula,

dsp = ||dst|| —|ldBT||
2 2
3)
=X (Sp=Tp)?=,| > (Bp-Tp)?
D=1 D=1

, where dp is the distance between back paws and base of
tail, Bp is the mean x and y position of the two back paws.
The distance between two front paws, d p, is derived from,

2
ldrpll= 4| Y (FRp—FLp)? “)
D=1

, where FRp and F'Lp are the likeliest positions of right
and left front paws, respectively.

The snout speed, vg, or displacement over period of 16 ms,
uses the following equation,

2
> (SH-54) ®)

D=1

sl =

, where Sgrl and S’E refer to the current and past likeliest
snout positions, respectively.
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The base of tail speed, vr, or displacement over period of 16
ms, similar to the formula above, as follows,

2
Z Tt+ 1 Tt (6)

D=1

[lor|| =

, where TBH and TB refer to the current and past likeliest
base of tail positions, respectively.

The snout to base of tail change in angle, AG;}/, is formulated
as follows,

A4 =sign(ALA, — AIA;)($)

AlLA,— AL A, 180

AL A, +A;,Ay)(7)

sign(AL Ay — Ay A}) (1 — sign(Az Al + Ay Ay))
7

, where A and A’ represent body length vector at past (t)
and current (t+1) time steps, respectively, sign equals 1 for
positive, -1 for negative, 0 for 0, and x - ||x|| for complex
numbers. Note that the Cartesian product and dot product are
necessary for four-quadrant inverse tangent and that the sign
is flipped to determine left versus right in terms of animal’s
perspective.

In addition, the features are also smoothed over, or averaged
across, a sliding window of size equivalent to 60 ms (30 ms
prior to and after the frame of interest).

arctan(

Data clustering. With sampling frequency at 60 Hz, 1 frame
every 16 ms, we are capturing fragments of movements. Any
clustering algorithm will have a difficult time teasing apart
the innate spectral nature of action groups. To resolve this
issue, we decided to either take the sum over all fragments
for time-varying features (features 5-7), or the average across
the static measurements (features 1-4) every 6 frames. Due
to our sliding window smoothing prior to this step at about
double the resolution of the bins, we are not concerned with
washing out inter-bin behavioral signals.

Upon t-distributed Stochastic Neighbor Embedding (t-
SNE) was performed on our high-dimensional input data to
minimize the divergence between the distribution of input ob-
jects and the embedded distribution of the low-dimensional
space. This algorithm has been preferred over other dimen-
sionality reduction methods simply due to preservation of
local structures, allowing behavioral data points to be pre-
sented in a continuous fashion. The locations of the embed-
ded points y;; are determined by minimizing the Kullback-
Leibler divergence between joint distributions P and @,
which is formulated using the following equations:

C(e)=KL(P|IQ) =Y _pij log (22) ®
i#£]
oC
o = 4> " (pij — 4ij)9i;*(vi — y5) o)
t g
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In simpler terms, similar objects (think of the object
as a mouse action, high values of p;;) will retain its simi-
larity visualized in the low-dimensional space (high values
of ¢;;), scaled with a normalization constant Z defined as
k(L lye —yil |2)~L. To accelerate the dimensionality
reduction process, we opted to perform Barnes-Hut approxi-
mation (13).

Grouping. Expectation Maximization based on Gaussian
Mixture Models (14) was performed to guarantee conver-
gence to local optimum. We opted to randomly initialize the
Gaussian parameters puy, > and 7, over number of times to
escape a bad local optimum.

First, we evaluate the responsibilities using the initialized pa-
rameter values, or E-step,

TN (T | o, X))
k
Zj:l TN (@15, 25)

Second, we re-estimate the parameters using current respon-
sibilities y(zpk ), or M-step,

(10)

’V(znk) =

N
1
MZM” = N E V(an)xn (€8]
n=1

N
1
N = N Y Ak @n = p ) (@n — p)" (12)
n=1

N,
T = =7 (13)

Finally, we evaluate the log likelihood,

N K
Inp(X|p, 2, m) =Y In{> meN(wn|up, )} (14)
n=1 k=1

to check whether or not the parameters or log likelihood has
converged. If the convergence criterion is not satisfied, then
let pig, Y, mp — pp®?, XL, 2%, and repeat the E and
M-steps.

Classifier design. Since we are dealing with more than two
classes, we performed error correcting output codes (ECOC)
(15, 19) to reduce the problem from multi-class discrimina-
tion into a set of binary classification problems. To build this
SVM classifier, we consider the following exemplar table,

H Classes Learner I Learner2 Learner 3 H

Class 1 1 1 0
Class 2 -1 0 1
Class 3 0 -1 -1

, where learner 1 learns to differentiate class 1 (1) from
class 2 (-1), learner 2 learns that class 1 (1) is different from
class 3 (-1), and learner 3 learns to classify class 2 (1) from
class 3 (-1). Following constructing the coding design matrix
M with elements mpg;, and s; as the predicted classification
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score for positive class of learner [. ECOC algorithm assigns
a new observation to the k%" class that minimizes the aggre-
gate loss for L binary learners.

L

R - l,

k= arg le,llrrszzlg(mk St)
Do Il

, where g is the loss of the decoding scheme.

15)
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