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Abstract 
Motivation: In the analysis of proteomics data from mass spectrometry (MS), normalization is an important preprocessing 
step to correct sample-level variation and make abundance measurements for each specific protein comparable across 
different samples. Under heterogeneous samples such as in the Phase I study of the Enhancing Genotype-Tissue Expres-
sion (eGTEx) project (Jiang, et al., 2019), the samples coming from 32 different tissues, and without prior housekeeping 
protein information or spike-ins, how to robustly correct the bias but keep tissue internal variations becomes a challenging 
question. Majority of previous normalization methods cannot guarantee a robust and tissue adaptive correction. This moti-
vates us to develop a data-driven robust normalization method in MS platform to adapt tissue sample heterogeneities. 
Methods: To robustly estimate the sample effect, we take use of the density power weight to down weigh the outliers and 
extend the one-dimensional robust fitting in (Windham, 1995) and (Fujisawa and Eguchi, 2008) to our structured data. We 
construct our robust criterion and build the algorithm to get our robust normalization (RobNorm). 
Results: We focus our comparison to the PQN a widely used normalization method in MS. In the simulation studies and 
real data application, we conclude that our robust normalization method to estimate the sample effect performs better than 
PQN especially when the regulation magnitude and proportion are large and strong. We also discuss some limitations in our 
method. 
Contact: huatang@stanford.edu  
 

1       Introduction  
Mass Spectrometry (MS) technique has been successfully applied in iden-
tifying and quantifying proteins for the last few decades. MS coupled with 
liquid chromatography (LC) makes it possible to generate large-scale pro-
teomes. In the large-scale MS data analysis, normalization is the first step 
and an important step. Due to pipetting or machine drift, the abundances 
in one sample can be systematically higher or lower than the abundances 
in other samples. Normalization is to correct this bias and to make abun-
dances more comparable from different samples. We call this systematical 
shift on the entire sample as the sample effect, which is the technical error 
we would like to remove. A good normalization method is expected only 
to remove the technical error but maintain the sample internal heterogene-
ities at the same time. 

Currently the Phase I study of Enhancing Genotype-Tissue Expression 
(eGTEx) project (Jiang, et al., 2019) generates large-scale proteomics data 
from a total of 420 samples -- representing 12 donors, 32 tissues sites --  
using tandem mass tag (TMT) labeled LC-MS technique under design. 
Different from previous studies in case-control design or from only a few 
different tissues/conditions, there are 32 different tissues in which the dy-
namic ranges can be quite different. Contrast to the normalization in ge-
nome taking use of the housekeeping genes or spike-ins, in proteomics, 
such stable proteins are unknown, at least in a limited number. How to 
robustly correct the systematic bias without prior information in proteome 
but keep tissue internal variations becomes a challenging question.  

Since the MS and microarray both generate intensity data, the current 
normalization methods for the MS platform are mainly resorted to the 
methods for the microarray analysis, including the total sum normaliza-
tion, the mean normalization, the cyclic loess normalization (Workman, et 
al., 2002), the quantile normalization  (Bolstad, et al., 2003), the ANOVA 

based method (Hill, et al., 2008; Oberg, et al., 2008), and the probabilistic 
quotient normalization (PQN) (Dieterle, et al., 2006). However, the noise 
sources and noise levels between MS platform and microarray are still 
different. Moreover, in the setting of large-scale various tissue samples 
such as in the Phase I study of eGTEx, majority of previous normalization 
methods cannot guarantee a robust and tissue adaptive correction. This 
motivates us to develop a data-driven robust normalization method in MS 
platform especially adaptive to sample heterogeneity. (See our detailed 
comments on these method in Section 3.) 

PQN (Dieterle, et al., 2006) is a commonly used method for normaliza-
tion in MS platform. It normalizes the 𝑗"# sample by subtracting a factor 
𝜈%  from its abundances in logarithm scale, where the factor 𝜈%  obtained 
from 

𝜈% = 𝑚𝑒𝑑𝑖𝑎𝑛-	(𝑋-% − 	𝑥3-), 
 
where 𝑋-% is the logarithm of raw abundance in protein 𝑖 from sample 𝑗 
and 	𝒙𝟎 is a standard sample usually each elements defined from the sam-
ple medians from each protein. Then the normalization factor in PQN is 
determined by the median of the protein differences to the standard sam-
ple. There could be some outlier abundances in tissue specific proteins in 
much higher expressions or from the background noise, while the median 
of the abundance differences is assumed more or less to reflect the sys-
tematic change. Thus, PQN is considered as a robust method. However, 
the following simulated toy example illustrates that the robustness of PQN 
does not extend to situation, in which samples are highly heterogeneous 
such as in the eGTEx project.   
     Consider the protein abundances is structured in a matrix where each 
row is for a protein and each column is from a sample, as illustrated in 
Figure 1. There is an up-regulated block (in red) in the upper left corner 
and a down-regulated block (in blue) in the bottom right corner. To 
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demonstrate sample effect 𝛎(≠ 𝟎), we can see there are clear stripes in 
the columns, i.e., each sample is further either up or down shifted across 
all the proteins (the details to generate the data is in Section 3). Suppose 
there are no sample effects at all, i.e., 𝝂 = 0. We generate a data of 5000 
proteins from 200 samples from the model (7). The box plot in each sam-
ple is shown in supplementary Figure 1 where the red boxes are clearly 
up regulated and the blue ones clearly down regulated. If we apply PQN, 
the adjustment factors (−𝝂) are estimated in red dots in Figure 2. We can 
see PQN over adjusts downward the red boxes and over adjusts upwards 
the blue boxes. However, the underlying sample factors are zeroes. This 
shows that, without considering heterogeneity in the model, PQN may 
wash the true signals and thus leads low discovery rate. 

In our setup, the structured expression data is affected by the sample 
effect (column effect) and protein effect (row effect) at the presence of 
outliers where the outliers can be the tissue specific regulations or the 
background noise. Under heterogeneous samples and (possibly) heavy 
outliers, we need a more robust estimate for the sample effect. The litera-
ture of robust estimation is rich in statistics (Hampel, et al., 2011; Huber, 
2011; Maronna, et al., 2018; Tyler, 2008). In the context of normalization, 
we make use of the density power weight to down weigh the outliers for 
our structured data. The approach of density power weight played im-
portant roles in several robust estimation works including (Basu, et al., 
1998; Fujisawa and Eguchi, 2008; Windham, 1995). Our contribution is 
to extend the one-dimensional robust fitting in (Windham, 1995) and (Fu-
jisawa and Eguchi, 2008) to structured proteomics data in order to robustly 
estimate the sample effect, i.e., the systematical shift on the entire sample. 
It is a novel normalization method taking into account the sample hetero-
geneities but also maintaining biological effects. In the toy example, we 
find the proposed robust normalization procedure estimated the correct 
sample effects, under 𝛾 = 0.5 or 𝛾 = 1 (green and blue points in Figure 
3). 

In notation, the variable in bold represents a vector and the capital letter 
for a matrix based on the context. 

2    Methods 
As we can see in the illustration example in Section 1 that PQN can be 
affected by heavy heterogeneity between tissues. The situation would be 
worse under non-robust normalization methods like the total sum normal-
ization and the mean normalization. Hence, we develop a more robust nor-
malization method, RobNorm, to accommodate sample heterogeneities. In 
this section, we first set up our mixture model to characterize the sample 
effect and the protein effect in the presence of outliers, and then present 
our robust criterion for the structured data with the algorithm to get our 
robust normalization. 

2.1 Mixture model 

Recall that the sample effect is the factor affecting all the abundances 
in one sample, After removing the sample effect, for each protein, the 
abundances are similar across tissues and represent measurements from a 
population distribution, which will be called as inliers. In contrast, there 
may be a portion of abundances that fall significantly above or below the 
population distribution, which are called as outliers. To fix the idea, we 
formulate the distributions of inliers and outliers into a mixture model. 
Then the protein expression has some probability from the population dis-
tribution and some probability from the outlier distribution. To keep pro-
tein heterogeneities, we model each protein has its own distribution. Since 
the data from the MS platform are intensities, as a convention, we take the 
logarithm transformation to make the data more symmetric, more Gauss-
ian distributed. Hence, we take a parametric approach to model the popu-
lation distribution as Gaussian with various means and variances across 
proteins. Suppose we quantify 𝑛 proteins from 𝑚 samples. Let 𝑋 be the 
expression matrix and 𝑋-% is the expression for 𝑖"# protein from 𝑗"# sam-
ple. We build our Gaussian-population mixture model for the structured 
data as follows, 

 
𝑋-%	~	𝜈% + (1 − 𝜋-B)𝑁(𝜇-3, 𝜎-3G ) + 	𝜋-B𝐹-B,         (1) 

 
where 𝜋-B ∈ [0, 0.5). In the mixture model (1), 𝜈% is the sample effect as-
sociated with 𝑗"# sample, which is the effect we need to adjust. For the 
adjusted abundances (𝑋-%	 − 	𝜈%) ’s, in the 𝑖"#  protein from 𝑚  samples, 
there is a fraction of (1 − 𝜋-B) abundances from the protein Gaussian pop-
ulation distribution 𝑁(𝜇-3, 𝜎-3G ) with mean 𝜇-3 and variance 𝜎-3G , while the 
rest about 100𝜋-B% outliers from unknown distribution 𝐹-B. If a protein 

Heatmap of log2(raw abundances)
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Figure 1: An illustration of the data matrix generated from (7) where the pro-
tein number n = 500, the sample number m = 20 and the regulation effect 
|∆𝜇| = 3. There are two regulation blocks. One occurs in the upper left block 
in the first 100 proteins and the first four samples and the other in the bottom 
right block from the last 100 proteins and the last four samples. Each sample 
(the column) is affected by a sample effect 𝝂. Here 𝝂 ≠ 𝟎. 
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Figure 2: The scatter plot of the adjustment (−𝝂O) in each sample from PQN (in 
red dots), the robust normalization under 𝛾 = 0.5 (in green dots), and the robust 
normalization under 𝛾 = 1 (in blue dots) for the same dataset in Figure 2. Here 
the true sample effect 𝝂 = 𝟎. 
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has no outliers, then its 𝜋-B = 0 and the abundances in this protein can be 
written as 
 

𝑋-%	 = 	 𝜈% + 𝜇-3 + 	𝑒-%, 	𝑤ℎ𝑒𝑟𝑒		𝑒-%	~--S	𝑁(0, 𝜎-3G ), 𝑗 = 1, … ,𝑚. 
 
An advantage of this model is that it focuses on estimating the population 
distribution using the inliers, and does not require users to specify the out-
lier distribution, which is unknown. Setting the outlier distribution un-
knowns makes the model more flexible. Here we assume all the expres-
sions are independent. 

2.2 Robust criterion for the structured data 

In our model, we consider the structured dataset affected by the sample 
effect and the protein effect under the presence of outliers. How robustly 
estimate the protein effect influences the estimation of the sample effect 
and vice versa. We take use of the density power weight applied in (Basu, 
et al., 1998; Fujisawa and Eguchi, 2008; Windham, 1995)  to down weigh 
the outliers in our context. Based on the previous works, we extend their 
one-dimensional robust fitting to our structured data to get robust normal-
ization. 

Suppose the sample effects are known then we can work on the adjusted 
abundances 𝑋U-% 's in each protein one by one, where 𝑋U-% = 	𝑋-%	 − 	𝜈%. Then 
the problem become one-dimensional. (Windham, 1995) took an approach 
of weighting the data by the power of the fitted distribution.  In the 𝑖"# 
protein, according to the Windham’s procedure, we attach a weight  

  
                                                                                (2) 
                                                                                                                       

 
where 𝛾 ≥ 0, to the adjusted data 𝑋U-%. Under our Gaussian population as-
sumption, 𝑓-3(𝑥;Y 	𝜃-3): = 		𝜙(𝑥]; 𝜇-3, 𝜎-3G )  denote the normal density with 
mean 𝜇-3 and variance 	𝜎-3G , 𝑓-3,^_`. If {𝑋U-%}%cBd  are from the Gaussian pop-
ulation distribution, then the weighted data {(𝑤-%, 	𝑋e-%)}%cBd  has an asymp-
totic distribution of 𝑁(𝜇-3, 𝜎-3G (1 + 𝛾)⁄ ) . In the distribution of the 
weighted data, the original population variance 𝜎-3G  shrinks to 
𝜎-3G (1 + 𝛾)⁄ , asymptotically. Hence, the outliers, many of which are not 
from the population distribution, do not contribute much for the popula-
tion estimation. In this way, the abundances from the population 

distribution gain more weights while the outliers gain less, which achieves 
the goal of robustness. We illustrate this idea in a simulated example with   
20% outlier abundances (Figure 3). The process of re-weighting the data 
is to fit the population distribution (the blue solid curve) under the pres-
ence of outliers based on the weighted data from the shrunk distribution 
(the blue dashed curve). We can see all the outlier abundances go into the 
tail of the weighted distribution. The robust fitting (the red curve) approx-
imates well population abundances.  

The Windham’s procedure estimated the population parameters by 
solving the estimation equation, 

 
 
 
 

where 𝑢(𝑥, 𝜃) = 	𝜕 log 𝑓-3(𝑥; 		𝜃) 𝜕⁄ 𝜃  is the score function of the log-
likelihood. In the same spirit of down-weighting the outliers, (Fujisawa 
and Eguchi, 2008) found a robust criterion --- 	𝛾-cross entropy, which 
gives the same estimates as from the Windham's procedure, 

                                                                                                               (3) 
where 𝛾 > 0 and 𝑓-̅ is the empirical density of the adjusted abundances in 
the 𝑖"# protein. As 𝛾 approaching to zero, the limit of the 𝛾-cross entropy 
criterion is reduced to the minus of the average joint log-likelihood func-
tion, 
 
 
 
In this case, the weight in (2) is 1 𝑚⁄  in all the abundances. If there are no 
outliers, taking 𝛾 = 0 give the most efficient estimates --- maximum like-
lihood estimation (MLE). In the presence of outliers, large 𝛾 down weighs 
the outliers more aggressively and hence provides more robustness. The 
model parameter 𝛾 balances robustness and efficiency. 

For the structured data such as the proteomics data in the eGTEx pro-
ject, we need to extend the criterion of 𝛾-cross entropy to robustly estimate 
the normalization factor. Considering the estimations for all the proteins, 
we are interested in the summation of individual protein divergences.  
Note 𝑤-% 's are self-standardized for each protein, that is,  ∑ 𝑤-% = 1d

%cB . 
We define the weighted sample size  

 
                                                                       (4) 
 
 

for the weighted data. For example, suppose we have five abundances 
{𝑥B, 𝑥G, … , 𝑥o} . We re-weight 𝑥B  and 𝑥G  each by 1 2⁄  and others by 0. 
Then the weighted sample size 𝑀 = 2. Hence, we construct our robust 
criterion for the structured data as 
 
                                                                                      (5) 
 
where 𝑑r,- is defined in (3) and 𝑀- defined in (4). When 𝛾 = 0,  the struc-
tured data criterion is the minus of the sum of the joint log-likelihood func-
tion in all the abundances under independence assumption.  

 

wij =
f γ
i0(x̃ij; θ )

∑m
j= 1 f γ

i0(x̃ij; θ )
,

m
∑
j= 1

wiju(x̃ij, θ ) = ∫ u(x , θ )
f1+ γ
i0 (x , θ )

∫ f1+ γ
i0 (y ; θ )dy

d x ,

dγ,i( f̄i, fi0,θ ) = 1
1 + γ

log∫ f1+ γ
i0 (x ; θ )d x − 1

γ
log 1

m

m
∑
j= 1

f γ
i0(X̃ij; θ )

= 1
1 + γ

log∫ f1+ γ
i0 (x ; θ )d x − 1

γ
log 1

m

m
∑
j= 1

f γ
i0(Xij − νj; θ ),

d0,i( f̄i, fi0,θ ) = − 1
m

m
∑
j= 1

log fi0(Xij − νj; θ ) .

d(struc)γ ( f̄, f0,θ0) =
n

∑
i= 1

Mi ⋅ dγ,i( f̄i, fi0,θi0),

Mi =
m

∑
j= 1

f γ
i0(x̃ij; θ ),
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Figure 3; Histogram of the abundances mixed with outliers in one protein. 
The abundances are generated from the mixture model 𝑋U-%	~	0.8𝑁(0, 1) +
	0.2𝑁(5, 1), 𝑗 = 1, … , 200. The blue bars are from the abundances from 
the Gaussian population and the yellow ones from the outliers. The blue 
solid curve indicates the underlying standard Gaussian distribution 
𝑁(0, 1), the blue dashed curve indicates the theoretical shrunk Gaussian 
distribution 𝑁(0, 1/(1 + 𝛾)), and the red curve indicates the Gaussian 
density with robust fitted mean (≈ 0.15) and variance  (≈ 1.09) in one 
simulation under 𝛾 = 0.5. 
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2.3 Robust normalization 

Substituting 𝑑r,- in (3) to (5) gives our robust criterion for the structured 
data 𝑑r

(wxyz{). The robust estimate for (𝝂, 𝜽3) where 𝜽3 = (𝝁𝟎, 𝝈𝟎𝟐) is  

 
Since we parameterize 𝑓3 to Gaussian density, we can write 𝑑r

(�"���) ex-
plicitly. Given the weights 𝑤, taking the derivatives of 𝑑r

(�"���) with re-
spect to the parameters, we get  
 
 
  
                                               (6) 
 
 
Based on (𝜇̂-3, 𝜎O-3G , 𝜈̂%), we can update the weight 𝑤� . Iteratively updating 
(𝜇̂-3, 𝜎O-3G , 𝜈̂%) and 𝑤� , the fixed points are the final estimates. The steps are 
summarized in Algorithm 1. Note that there is an unidentifiability in es-
timating 𝜇-3’s and 𝜈%’s. Both (𝜇-3, 𝜈%)’s and (𝜇-3 − 𝑐, 𝜈% + 𝑐)′𝑠	satisfy the 
equations in (6), where 𝑐 is a constant.  To remove this ambiguity, one can 
take 𝑐 to be the mean/median of 𝜈%’s or some element 𝜈%. For the differen-
tial analysis after the normalization step, the constant shifts between com-
parison groups does not influence the results. One can also adjust the sam-
ple effect relative to a standard sample 𝒙3, as PQN does, if the standard 
sample can be assumed as about the underlying 𝝁𝟎 plus a constant, which 
could be obtained from the protein medians across samples. Although our 
estimation does not rely on such a standard sample, we take PQN as the 
initial step to estimate the sample effect and here we still introduce the 
standard sample in our algorithm. More analysis on the comparison to 
PQN is in the supplementary material. 
 

Algorithm 1: Robust normalization 
Input: a combined matrix (𝒙𝟎, 𝑋) with the first column as a standard 
sample and 𝑋  is the data matrix, model parameter 𝛾 , iteration step 
counter 𝑘 = 1, and a small tolerance 𝜖 (= 10�� by default). 
Output: robust normalized data matrix 
1. Initialize �𝝂(3), 𝝁(3), 	(𝝈𝟐)(3)� . 𝝂(3)  is obtained from PQN and 

�	𝝁(3), 	(𝝈𝟐)(3)� are  the MLEs of the normalized data using 𝝂(3). 
2. Calculate 𝒘(�) from �𝝂(��B), 𝝁(��B), 	(𝝈𝟐)(��B)� based on (2). 
3. Update �𝝂(�), 𝝁(�), 	(𝝈𝟐)(�)� given 𝒘(�) based on (6). 
4. Replace 𝝁(�) by (𝝁(�) + 	𝜈B

(�)) and 𝝂(�) by �𝝂(�) − 	𝜈B
(�)�. 

5. Repeat steps 2-4 until ∥ 	𝜽(�) − 	𝜽(��B) 	 ∥B	< 𝜖  where 𝜽 =
(𝝂, 𝝁, 𝝈𝟐) and get robustly normalized data matrix by subtracting 
𝜈̂% from the corresponding column of 𝑋. 

3    Results 
In this section, we first comment on the limitations of some existing nor-
malization methods then compare their performances to our robust nor-
malization method in both simulation studies and real data application. 

3.1   Existing normalization methods 

There are many normalization methods for intensity data from microarray 
and MS platform. In the setting of large-scale heterogeneous tissue sam-
ples from MS platform, majority of previous normalization methods 

cannot guarantee a robust and tissue adaptive correction. We comment on 
a few methods and point out their limitations in the new setting. 
• The total sum normalization: to adjust the total sum of sample 

abundances to be the same. It assumes that the up-regulated expres-
sions are balanced by the down-regulated ones to a certain extent but 
it is greatly influenced by a few extreme abundances and thus not 
robust. Several MS studies show that a few muscle specific genes 
dominate a large proportion of the total abundances. When to correct 
the down bias of a muscle sample, the extra muscle specific over-
expressions influence the total sum normalization and thus it under 
up-corrects the sample.  

• The mean normalization: to adjust the sample means to be the 
same. Similar comments as for the total sum normalization, it is sen-
sitive to the extreme expressions which could over or under esti-
mates the true systematic bias. 

• The quantile normalization: to normalize the densities of the sam-
ples to be exactly the same (Bolstad, et al., 2003). This is one com-
monly used normalization method. It transforms all the samples in 
the same distribution, regardless of sample heterogeneities. And it 
would take the extreme expressions to be the same value. For the 
data from various tissues, this normalization could mask the ex-
tremely high expressions and moderately high expressions, thus di-
minishing the internal tissue differences. 

• ANOVA based method: to estimate the normalization factor along 
with other covariates (Hill, et al., 2008; Oberg, et al., 2008). It took 
the approach of ANOVA for MS data and tried to model the system-
atic bias along with other experimental noise and biological varia-
tions. However, we think due to the complexity of the MS experi-
ment, it is hard to model all the noise sources. Additionally, aiming 
to model all the variations may lead the model overfitting.  There 
always could exist some outliers not obeying the assumed model, 
particularly when the outlier proportion is not small.   

• The probabilistic quotient normalization (PQN): to adjust the me-
dians of the quotients of the samples to a standard sample to be the 
same (Dieterle, et al., 2006). PQN is a widely used method in the 
MS platform. It is robust to a certain extent, but to what extent, it 
maintains robustness is still a question. 

3.2 Simulation studies 

In this subsection, we compare the performances of our robust normaliza-
tion method, RobNorm, to the normalization methods discussed in Section 
3.1 through simulation studies. For the ANOVA based method, we took a 
simple model that only includes the sample effect and the protein effect, 
which corresponds to the RobNorm under 𝛾=0. We first compare the 
method performances by evaluating the ROC curves and AUC in testing 
differential expressions (DE). Then we focus on comparing the estimation 
accuracy of RobNorm under various outlier proportions and different out-
lier magnitudes to the most competitive method PQN.  

Simulated data. In the simulation studies, we consider each sample 
(the column) of the abundance matrix 𝑋 is affected by a sample effect 𝜈% 
and each protein (the row) is from a Gaussian mixture distribution where 
the outliers are up or down regulated by shifting the mean in a factor ∆𝜇. 
We assume independence in all the abundances. The underlying genera-
tive statistical model is as follows, 

 
𝑋-%	~	𝜈% + (1 − 𝜋-B)𝑁(𝜇-3, 𝜎-3G ) + 	𝜋-B𝑁(𝜇-3 + ∆𝜇, 𝜎-3G ),	  (7) 

 

( ̂ν , ̂θ0) = argmin(ν,θ)
n

∑
i= 1

Mi ⋅ ( 1
1 + γ

log∫ f1+ γ
i0 (x ; θ )d x − 1

γ
log 1

m

m
∑
j= 1

f γ
i0(Xij − νj; θ )) .

̂μi0 = ∑m
j= 1 wij(xij −νj),

̂σ 2
i0 = (1 + γ )( ∑m

j= 1 wij(xij −νj)2 − ̂μ2
i0),

̂νj = ∑n
i= 1

wij Mi
̂σ2
i0

(xij − ̂μi0)/ ∑n
i= 1

wij Mi
̂σ2
i0

.
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where 𝑖 = 1, … , 𝑛,	and 𝑗 = 1, … ,𝑚 . We set protein number 𝑛 = 5000  
and sample number 𝑚 = 200. We generate the protein population mean 
𝜇-3's from 𝑁(0,1), the protein variance 𝜎-3G 's from inverse-Gamma distri-
bution with shape parameter 5 and scale parameter 0.5. We get the sample 
effect 𝜈% 's from a Gaussian distribution and take 80% 𝜈% 's from 𝑁(0,1), 
and 20% 𝜈% 's from 𝑁(1,1). For DE, we consider the samples representing 
two conditions, each with a sample size of  𝑚/2=100. The outlier abun-
dance observations concentrate in two regulated blocks: one block is up-
regulated under one condition and the other block is down-regulated under 
the other condition; there is no overlap between the regulated blocks. In 
each regulated block, the regulation rate is 80%, that is, there are about 
80% abundances in the regulated block shifted by ∆𝜇 . The raw abun-
dances in a small scale is illustrated in Figure 1. The distributions of the 
generated parameters are shown in supplementary Figure 3. 

ROC curve and AUC comparisons. To compare the performances of 
the normalization methods, we first apply several normalization methods 
to adjust the abundance matrix then apply two-sample 𝑡-test on the ad-
justed abundances and report the Receiver Operating Characteristic 
(ROC) curve under a sequence of nominal level from 0 to 1 and the Area 
Under the Curve (AUC) for each method. The methods under comparison 
include ones in Section 3.1 and RobNorm: the total sum, mean, quantile 
normalization, PQN, the ANOVA based method (which is the RobNorm 
under 𝛾 = 0), RobNorm under 𝛾 = 0.5 and under 𝛾 = 1. In the simula-
tions, we vary the proportion of differential expressed genes and the mag-
nitude of the differential expression ∆𝜇 in four situations (1) the propor-
tion in both up and down regulated blocks = 0.1 and |∆𝜇| = 1, (2) the 
proportion = 0.1 and |∆𝜇| = 3, (3) the proportion = 0.3 and |∆𝜇| = 1, 
and (4) the proportion = 0.2 and |∆𝜇| = 3. We repeat the procedures 50 
times. Supplementary Figures 2 and Figure 4 summarize the ROC curves 
and AUC for each methods under the four situation. From Figure 4, Rob-
Norm almost always performs at least as well, or better than other meth-
ods, in all the situations considered. In the case of small regulation mag-
nitude, RobNorm under 𝛾 = 1 slightly performs better than under 𝛾 =

0.5, while in the case of large regulation magnitude, they perform very 
similar in terms of AUC.  

Robust estimation comparison. From the previous simulation studies, 
we can see the most competitive method is PQN compared to our 𝛾-cross 
entropy based normalization method. Since both RobNorm and PQN per-
form normalization in linear correction and they compare to the same 
standard sample, we can compare their estimation accuracy on the same 
footing. We set the size of each regulated block as (20%	 × 5000) pro-
teins affected in (20%	 × 200)  samples and the regulation rate in each 
block is 80%. To examine the effect of 𝛾, we investigate the performances 
of our method and compare to PQN in four cases: (1) under small regula-
tion with |∆𝜇| = 1 and 𝛾 = 0.5; (2) under small regulation with |∆𝜇| = 1 
and 𝛾 = 1; (3) under large regulation with |∆𝜇| = 3 and 𝛾 = 0.5; (4) un-
der large regulation with |∆𝜇| = 3 and 𝛾 = 1. In this simulation, we set 
the standard sample as the true protein population mean 𝝁3. In this way, 
the estimates 𝝂O and 𝝁�𝟎 are truly for the underlying 𝝂 and 𝝁𝟎. Here we take 
the Sum of Squared Errors (SSE) to evaluate the accuracy of the estima-
tion. In details, the SSE for 𝜽3 is ∥ 	𝜽�𝟎 −	𝜽3 	 ∥G where the 𝜽3 is for the 
underlying sample effect and population mean and variance. 
     We report the estimation results in supplementary Figure 4 -- 7 for four 
cases respectively. We can see that in each case, our robust estimate for 
the sample effect 𝝂 has lower SSE and has the advantage especially in the 
large regulation cases. To estimate 𝝁3, in the small regulation cases, our 
robust estimates have similar performances under 𝛾 = 0.5, 1. In the large 
regulation cases, our robust estimates for 𝝁3  under 𝛾 = 1 have slightly 
lower bias than the ones under the smaller 𝛾 = 0.5. To estimate 𝝈𝟎𝟐, our 
robust estimate has slightly lower bias under a smaller 𝛾 = 0.5 in the 
small regulation while has much lower bias under a bigger 𝛾 = 1 in the 
large regulation. This gives us a sense that to choose a proper 𝛾 is really 
data-dependent. How to choose an optimal 𝛾 is out of the scope of this 
paper. Our simulations show that 𝛾 = 0.5, 1 does not affect much the ac-
curacy in estimating the sample effects and the protein population means. 
From our experience, in the purpose to do normalization especially focus-
ing on estimating the sample effect, it is not sensitive to the choice of 𝛾 at 
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Figure 4: Boxplots of AUC comparisons on differential expression test after various normalization methods under four situations of 
differential expression proportions (sum of up and down regulation proportions) and differential expression magnitudes 
(2 × 0.1, 1), (2 × 0.1, 3), (2 × 0.2, 1), (2 × 0.2, 3). Each box is the results from 50 independent simulations. 
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least it not small nor too large. More estimation comparisons under various 
sizes and magnitudes of regulated blocks in supplementary Figure 8 -- 9. 

Summary. Overall, from the simulation studies, RobNorm performs 
the best measured by the power of testing DE. In terms of estimation ac-
curacy, RobNorm performs competitively as PQN in situations of mild 
outlier contamination by small block or small magnitude of up- and down-
regulation, but under strong outliers, either due to high proportion of out-
liers or strong magnitude of up- and down-regulation, RobNorm can sub-
stantially outperform PQN.  

3.2 In real data application 

From previous simulation studies, we have seen that our RobNorm and 
PQN perform better than the other normalization methods. Hence, we fo-
cus the comparison on our RobNorm and PQN in the real data application. 
For real data sets, from our experience, setting 𝛾 = 1 may cause the fitting 
locally trapped (variance is extremely small) for some proteins and thus in 
the real practice, we here take 𝛾 = 0.5. 
     Consider the proteomics data in the Phase I study of eGTEx project 
(Jiang, et al., 2019). In the Phase I study, we used tandem mass tag labeled 
liquid chromatography followed by mass spectrometry (TMT-LC/MS) to 
analyze 200 tissue samples collected from 12 donors across 32 different 
tissues. Each tissue was analyzed in two to three replicates. In each of the 
56 multiplexing mass-spectrometry runs, eight samples were assayed 
along with two reference samples, which are a mixture of all the tissues. 
In other channels, tissue samples are processed under random experi-
mental design. Taking the advantage of the labeled multiplexing design, 
our data matrix is the relative abundances of the tissue samples to the av-
erage reference samples in the corresponding run in logarithm scale. In 
this real dataset study, we apply normalization methods on the 7,231 pro-
teins whose missing proportion < 50% from 420 samples.  
    We compare the adjusted sample effect  2−𝝂 from the robust estimation 
to the PQN for each tissue in supplementary Figure 10. We can see that 
the sample effects in the same tissue are in similar ranges from these two 
methods, while in some tissues such as muscle and heart samples, the ro-
bust adjustments correct larger amounts than PQN. 
     We further investigate the differential expression in the muscle sam-
ples. We apply two-sided 𝑡-test on the muscle samples versus the rest sam-
ples on the PQN and our robust adjusted data. Applying the BH procedure 
(Benjamini and Hochberg, 1995) on the adjusted datasets under FDR 
0.01, based on the PQN adjusted data, there are 2703 significantly differ-
entially expressed proteins in muscle and based on RobNorm normalized 
data, there are 2464, in a smaller number. RobNorm aligns more non-dif-
ferentially expressed proteins to make majority protein abundances to be 
more comparable. The histograms of the 𝑝-values are shown in supple-
mentary Figure 10. In the direction of up-regulation in muscle, there are 
1332 commonly detected proteins, and 244 only detected from the nor-
malized data from RobNorm, and 16 only from PQN. In the direction of 
down-regulation in muscle, 860 proteins are commonly detected, and 28 
from the our robust normalized, and 495 only from PQN. The GO anno-
tation for those 244 different muscle up-regulated proteins from our robust 
normalized data to the PQN adjusted data is summarized in Table 1 (BP 
represents biological process and CC represents cellular component). The 
significant GO terms for the extra proteins are related to muscle function  

 
 
 
 
 
 

Table 1: significant GO annotation 
category term -log10(p-value) 

BP mitochondrion organization 7.52 

CC cytoplasm 7.48 

CC mitochondrion 7.41 

CC cytoplasmic part 6.76 

BP cellular protein metabolic process 5.94 

CC mitochondrial part 5.53 

CC mitochondrial matrix 5.18 

CC intracellular 5.12 

CC intracellular part 4.94 

CC membrane-bounded organelle 4.07 

CC proteasome complex 4.06 

4       Discussion and conclusion 
In the data analysis from mass spectrometry (MS), normalization is an im-
portant preprocessing step to correct sample systematic bias and make 
abundances more comparable from different samples. Under the hetero-
geneous samples such as in the Phase I study of eGTEx project (Jiang, et 
al., 2019), the samples coming from 32 different tissues, and without prior 
housekeeping proteins or spike-in information, how to robustly correct the 
bias but keep tissue internal variations becomes a challenging question. 
Majority of previous normalization methods cannot guarantee a robust and 
tissue adaptive correction. Our contribution is we develop a data-driven 
robust normalization method (RobNorm) especially adaptive to sample 
heterogeneities. We focus our comparison on the PQN a widely used nor-
malization method in MS. In the simulation studies and real data applica-
tion, we conclude that our robust normalization method to estimate the 
sample effect performs better than PQN especially when the regulation 
magnitude and proportion are large and strong. However, there are still 
some limitations in our method and future works. 
     On the model assumption. Our robust normalization is based on the 
assumption that the majority of adjusted expressions is from Gaussian dis-
tribution. As a convention, taking the logarithm transformation on the MS 
intensity data, many studies assume Gaussian distribution. Our work takes 
Gaussian population assumption and get explicit formula for estimating 
the sample effects. When the true data distribution has heavier tail such as 
in 𝑡-distribution with small degree of freedom, PQN still works since it is 
nonparametric. To apply our robust framework, we need to adjust the 
weight function relying on the 𝑡-distribution to be more powerful. This 
could be one of the future works. 
    On the covariates. In the context of normalization, we only consider 
the data are affected by the sample effect, the protein effect at the presence 
of outliers. We consider after removing the sample effect, for most pro-
teins, the tissue abundances are more or less balanced and thus the protein 
effect is the main effect. When the data has several dominant effects, we 
need to incorporate them to the population distribution. This is another 
future work. 
     On the choice of 𝜸. Our robust estimation relies on the density power 
weight and the model parameter 𝛾 is the weight exponent, which balances 
estimation efficiency and robustness. From the simulation studies (Figure 
and supplementary Figure 2-3), the choice of 𝛾 affects the accuracy of the 
protein effect estimation to a certain extent. However, for the purpose of 
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normalization, we found estimating the sample effect is not sensitive to 
the choice 𝛾 as long as 𝛾 is not too large nor too small. We suggest taking 
𝛾 as 0.5 or 1 is fine in practice. How to select an optimal 𝛾 is still an open 
and interesting problem. 
      On the sample size. Since our robust estimation for the sample effect 
depends on the estimation of the population parameters, the sample size 
cannot be too small. This is one limitation to apply this methods. In prac-
tice, we suggest the sample size should be at least as 20 and good to be 
greater than 100. 
      On the missing values. In practice, missing values are very common 
in OMICs data. Missing values may come from the instrumental detection 
such that the low abundances are hard to detect, random sampling in MS 
so that the proteins can be measured only in a probability, or the random 
missing. Since our robust normalization is mainly based on the abun-
dances from the populations, random missing and missing in the low val-
ues would not affect the normalization factor much. If the missing values 
happen in the population, one can impute the missing values by the sample 
median or the robust fitted mean then iteratively apply our algorithm until 
the imputation values converge. However, the real data may be more com-
plicated. In the step of normalization, since the sample effect is shared by 
all the proteins in one sample whether some are missing or not, we recom-
mend to use partial proteins with missing proportion < 50% to correct the 
sample effect, then use the estimated sample effect to normalize all pro-
teins. 
      On the extension to other experimental designs. Our method is mo-
tivated by the proteomics data in Phase I study of eGTEx project from LC-
MS under TMT design (Jiang, et al., 2019). However, our method is not 
limited to proteomics under this design. For other OMICs data such as 
metabolomics from MS unlabeled design, when the Gaussian assumption 
is valid for the population abundances, our algorithm can be directly ap-
plied. Data from different designs may require pre-filtering, normaliza-
tion, removing batch effect and other preprocessing steps. Our robust 
method only focuses on the normalization step.  
      Overall, taking the idea of down weighing the outliers by the density 
power weight, we proposed a novel model-based robust normalization 
method taking into account sample heterogeneities. This method provides 
a robust option in the normalization step for OMICs data analysis. 
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