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ABSTRACT  
 
Recently developed approaches for highly-multiplexed 2-dimensional (2D) and 3D imaging have 
revealed complex patterns of cellular positioning and cell-cell interactions with important roles in 
both cellular and tissue level physiology. However, robust and accessible tools to quantitatively 
study cellular patterning and tissue architecture are currently lacking. Here, we developed a spatial 
analysis toolbox, Histo-Cytometric Multidimensional Analysis Pipeline (CytoMAP), which 
incorporates neural network based data clustering, positional correlation, dimensionality 
reduction, and 2D/3D region reconstruction to identify localized cellular networks and reveal 
fundamental features of tissue organization. We apply CytoMAP to study the microanatomy of 
innate immune subsets in murine lymph nodes (LNs) and reveal mutually exclusive segregation 
of migratory dendritic cells (DCs), regionalized compartmentalization of SIRPa- dermal DCs, as 
well as preferential association of resident DCs with select LN vasculature. These studies provide 
new insights into the organization of myeloid cells in LNs, and demonstrate that CytoMAP is a 
comprehensive analytics toolbox for revealing fundamental features of tissue organization in 
quantitative imaging datasets. 
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INTRODUCTION 
 
Recent advances in intravital microscopy and multiplexed imaging approaches have revealed that 
the spatial organization of cell populations in tissues is highly complex and intimately involved in 
diverse physiological processes (e.g. cellular differentiation, organ function), as well as in major 
pathological conditions, such as infections, autoimmunity, and cancer. For the immune system in 
particular, cellular positioning is critical for both cell homeostasis and generation of protective 
responses during infection or after vaccination.1–3 Within lymph nodes (LNs) alone, different 
subsets of dendritic cells (DCs), professional antigen presenting cells, are spatially segregated 
within distinct tissue regions in a highly non-uniform fashion, which directly influences the 
sensitivity, kinetics, magnitude, and quality of the downstream adaptive immune response.4–9 
Notably, advanced microscopy techniques have only recently revealed these findings in what were 
previously considered to be relatively well-studied organs, suggesting that further improvements 
in both microscopy and spatial analytics approaches can yield important insights into how complex 
biological systems operate. 

This realization has inspired a number of emerging methods for highly multiplexed in situ 
cellular profiling (e.g. histo-cytometry, CODEX, CycIF, 4i, MIBI, STARMAP, spatial 
transcriptomics, etc).4,10–20 These techniques generate panoptic datasets describing phenotypic, 
transcriptional, functional, and morphologic cellular properties, while retaining information on the 
precise 2-dimensional (2D) or 3D positioning of cells within tissues. Analysis of images generated 
by these methods is complex and requires multiple processing steps, including image pre-
processing, cell segmentation, object classification, and finally spatial analysis.21–24 Existing 
platforms excel at different steps of this pipeline, and much work is aimed at increasing the number 
and types of acquired analytes, enhancing image quality, as well as at improving cell segmentation 
to better define cellular boundaries.21–25 However, currently there is a lack of accessible and simple 
to use analytics tools for studying the complex multi-scale spatial relationships between different 
cell types and their microenvironments, for characterizing global features of tissue structure, as 
well as for understanding the heterogeneity of cellular patterning within and across samples. 
Existing approaches often utilize combinations of tools to reveal distance relationships between 
cells and tissue boundaries or utilize nearest neighbor and other statistical approaches to identify 
preferential interactions among different cell types.10,11,15,22,26–28 Together, the lack of readily 
accessible and easy to use analytics tools has hampered the ability of biologists with access to 
high-dimensional imaging technologies to obtain an in-depth understanding of the spatial 
relationships of cells and their surrounding tissue microenvironments within quantitative imaging 
datasets. 

Here, we developed a user-friendly, spatial analysis method, Histo-Cytometric 
Multidimensional Analysis Pipeline (CytoMAP), which utilizes diverse statistical approaches to 
extract and quantify information about cellular spatial positioning, cell-cell interactions and global 
tissue structure within imaging data. We implemented CytoMAP as a comprehensive toolbox in 
MATLAB, and it is specifically designed to analyze datasets generated with existing quantitative 
approaches, which already incorporate information on cell phenotype, morphology, and location. 
CytoMAP markedly simplifies spatial analysis by grouping cells into local neighborhoods, which 
can then be rapidly analyzed with diverse statistical approaches to reveal complex patterns of 
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cellular composition, region structure and tissue heterogeneity. The CytoMAP platform 
incorporates multiple established and newly-developed statistical and visualization modules for 
analysis, including: machine learning based data clustering, cellular position correlation, distance 
analysis, tissue structure and heterogeneity visualization through dimensionality reduction, region 
network mapping, and 2D or 3D region reconstruction. Analysis with CytoMAP reveals and 
quantitates 2D or 3D tissue architecture, local cell composition and cell-cell spatial networks, as 
well as the interconnectedness of tissue regions. CytoMAP also facilitates robust sample-to-sample 
comparison, allowing exploration of structural and compositional heterogeneity across samples 
and diverse experimental conditions. Furthermore, CytoMAP can, in principle, be utilized for 
analysis of positionally-resolved data generated with diverse methods and across varying length 
scales, allowing integration into various disciplines. 

We validate and demonstrate the capabilities and utility of CytoMAP by investigating 
innate and adaptive cell organization in steady state murine LNs, as well as in disease associated 
tissues, including solid tumors and Mycobacterium tuberculosis (Mtb) infected lung 
granulomas.29–32 Our analyses recapitulate previous descriptions of the cellular microenvironments 
within these tissues, as well as identify novel features of myeloid cell organization in LNs. 
Specifically, we reveal predominant localization of migratory SIRPa- dermal DCs (dDCs) within 
the lower cortical ridge of LNs, as well as preferential association of LN-resident DCs with select 
LN blood vessels in distinct tissue regions.33–36 These findings uncover potential anatomical 
guidance cues that regulate myeloid cell localization, as well as suggest that LN vasculature may 
be heterogeneous based on the local interacting cell partners.37,38 Together, these data indicate that 
CytoMAP is a versatile and powerful tool for in-depth exploration of cellular positioning and tissue 
architecture. 
 

RESULTS 

 

CytoMAP enables analysis of tissue microenvironments, cellular interactions, and tissue 
structure 
 
The conceptual basis for the spatial analysis used in CytoMAP centers on the notion that tissues 
are composed of cells that group together into local neighborhoods (Fig. 1a). These neighborhoods 
incorporate one or several cell types and groups of similar neighborhoods can extend across large 
distances to generate tissue regions. Unique combinations and interactions of regions further form 
the overarching tissue structure. Based on this concept, CytoMAP utilizes cell type and positioning 
information to phenotype neighborhoods and reveal how the distribution of cells and organization 
of neighborhoods leads to the generation of global tissue structure. 

The basic CytoMAP workflow and currently incorporated analytical tools are presented in 
Fig. 1. For the tissues analyzed here, multi-parameter confocal microscopy and histo-cytometry 
were used to quantify the spatial location of immune cell subsets.4,13,39 The acquired phenotypic 
properties and positional information of individual cell objects are first passed to CytoMAP, which 
initiates the analysis process by spatially subdividing the cells into local neighborhoods of user-
defined dimensions (Fig. 1b). The size of the neighborhood depends on the granularity of the 
desired information, with larger neighborhood size revealing more global patterns within the 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 21, 2019. ; https://doi.org/10.1101/769877doi: bioRxiv preprint 

https://doi.org/10.1101/769877


5 
 

tissue, and smaller neighborhoods providing fine-grained information on hyperlocal cellular 
composition and tissue structure. If the dataset provided has no thickness (2D images), or thickness 
less than the user defined radius (thin section 3D data), CytoMAP utilizes a circular or cylindrical 
neighborhood window, respectively. A spherical neighborhood is used for analyzing larger 
volumetric 3D datasets. The generated neighborhoods contain information on the cell composition 
and density, expression of specific molecules, as well as data on any additional structural or 
functional parameters (e.g. local density of collagen fibers as detected by additional probes). These 
parameters are next passed to a self-organizing map (SOM) that clusters the neighborhoods into 
groups. This SOM clustering approach is neural network based, organizing information 
topologically and allowing extraction and quantification of critical features and unique tissue 
regions within highly complex datasets.19,40–42 The clustered neighborhoods represent areas within 
the tissue with similar cellular composition, and are thus defined here as tissue “regions”, which 
are denoted by the different colors in the top of the example heatmap in Fig. 1b. This heatmap 
allows direct visualization of the cellular composition of the neighborhoods (columns on the 
heatmap) in the identified regions, as well as shows the relative prevalence of the different regions 
within the imaged sample, as denoted by the size of the region color bars. Given that the individual 
neighborhoods also contain positional information (x,y,z) from the raster scan, they can be 
spatially remapped, as well as demarcated using the region color code. This allows direct 
visualization of the size and structure of the different regions within the tissue (Fig. 1b), and is 
different from conventional image display, as each region type is specified by a complex 
combination of multiple cell populations (defined in the heatmap), rather than by discrete imaged 
parameters. 

A primary feature of CytoMAP is the incorporation of multiple visualization and 
quantification techniques, all encoded in a user-friendly interface in MATLAB, which collectively 
facilitate a more complete understanding of the spatial properties of cells, neighborhoods, and 
regions within tissues (Fig. 1c). In particular, local cell density within individual neighborhoods 
can be used to correlate the location of different cell types, revealing which cell populations 
preferentially associate with one another, or conversely avoid one another. This correlation 
analysis can be performed across multiple samples, and can be done either over entire tissues or 
within specified tissue regions. This is important, as cells may have distinct associations with one 
another in different tissue compartments. Distances of cells with respect to borders of tissue 
regions can also be easily evaluated (Fig. 1c), which provides information on the relative 
infiltration of cells into specific tissue compartments (e.g. T cell infiltration into tumors). 
Additionally, dimensionality reduction algorithms can be used to visualize tissue structure and 
complexity, as well as for sample-to-sample comparison. In particular, a new visualization 
approach, Pseudo-space, reduces the complexity of cell distribution across tissues into a one-
dimensional plot, helping reveal the fundamental positional relationships of cells with respect to 
one another (Fig. 1c). Furthermore, spatial t-distributed Stochastic Neighbor Embedding (spatial 
t-SNE) analysis reduces the complexity of neighborhoods into a two-dimensional plot, facilitating 
comparison of the neighborhood heterogeneity within or across multiple samples (Fig. 1c).43 These 
dimensionality reduction techniques also help reveal how the tissue neighborhoods are organized 
to generate global tissue structure, which can be further quantified using region interaction network 
mapping (Fig. 1c) that calculates which regions preferentially border one another within the 
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samples. Finally, CytoMAP allows comparison of region prevalence across different replicates or 
treatment conditions, which is a notoriously difficult task for heterogeneous samples with complex 
tissue architecture (Fig. 1c). 
 

CytoMAP quantifies well-defined tissue structure in LNs 
 
We first validated the CytoMAP workflow by analyzing murine LN tissues, which have well-
defined organization of basic immune cell types.2 To accomplish this, a 20m thick section of a 
draining LN from a C57BL/6 immunized mouse was stained with a panel of directly conjugated 
antibodies against distinct innate and adaptive immune populations and imaged using a confocal 
microscope. The image in Fig. 2a shows staining of the tissue with markers for B cells (B220), 
DCs (CD11c), and T cells (CD3), demonstrating pronounced segregation of these cell types to 
previously defined tissue compartments.2 Individual cells within the image were next segmented 
in 3D, and the mean fluorescent intensity (MFI), as well as the (x,y,z) positioning of the resulting 
cell objects were imported into FlowJo for hierarchical gating of three primary cell types: T cells, 
B cells, and CD11c-expressing cells, which are mainly DCs (Fig. 2b), as described 
previously.4,13,39 Next, the positional data on these cell populations were imported into CytoMAP 
for further processing. In CytoMAP the cells were subdivided into 30m radius neighborhoods 
using the Raster Scan Neighborhoods function, which digitally raster scanned a cylindrical 
window with the user-defined radius over the dataset (Fig. 2c). This neighborhood radius size was 
chosen empirically, as it provided an optimal balance of spatial granularity and processing speed 
to reveal fundamental features of cellular organization for this specific sample, and was consistent 
with biological data on the dispersion distances of secreted cytokines.44 A SOM was next used to 
cluster these neighborhoods based on the cellular composition (number of cells of each type in a 
neighborhood divided by the total number of cells in that neighborhood), but not utilizing the 
position of the neighborhoods within tissues. Exclusion of neighborhood positions is important for 
comparison of compositionally similar, but spatially distal neighborhood types. Given that the 
number of regions used for SOM clustering requires user input and thus can be subjected to bias, 
we incorporated statistical tools to determine the optimal number of regions needed to reveal the 
underlying data structure. In this example, the number of regions was determined using the Davies-
Bouldin criterion, which uses the ratio of within-cluster to between-cluster distances.45,46 The 
heatmap in Fig. 2d shows the cell composition (rows) of the individual neighborhoods (columns) 
and which cluster/region they were assigned to (top color bar). This analysis identified different 
tissue regions that were primarily composed of either B cells, T cells, DCs, or those with mixed 
cellular composition. These regions were next visualized by plotting the positions of the color-
coded neighborhoods (Fig. 2e). This plot demonstrates reconstruction of the original image, 
revealing localization of computationally defined B cell follicles (blue), deep T cell zone (red), the 
outer T zone paracortex and the T-B border (orange), as well as the LN medullary and subcapsular 
regions (green). Of note, the red/orange regions at the top of the reconstructed image (Fig. 2e) 
correspond to noise in the original confocal image (Fig. S1a). In computationally heavy image 
processing pipelines, special care must be taken to either accurately remove such artifacts or to 
ensure appropriate interpretation of the results. Together, this indicates that CytoMAP can be used 
for unbiased identification of different tissue regions in a scalable and reproducible manner, 
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eliminating the need for manual image annotation and allowing quantitative evaluation of larger 
sample sets. 

In addition to discreet region definitions, we implemented a data visualization function, 
Pseudo-space, to visualize the continuous region transitions within tissues, and investigate how 
cells are distributed across different tissue compartments (Fig. 2f). Pseudo-space allows the user 
to sort the neighborhoods by the absolute number or composition of different cell types within the 
neighborhoods and plots the neighborhoods in this sorted order on a linear Pseudo-space axis. This 
provides a qualitative picture of how different cell types change in their composition across the 
neighborhoods along this user defined dimension. For the LN analysis, the neighborhoods were 
sorted such that B cell rich neighborhoods fell to the left and T cell rich neighborhoods fell to the 
right along the Pseudo-space axis. Cellular composition of the neighborhoods was then normalized 
and smoothed along the Pseudo-space axis, aiding the visualization of cell populations with 
different tissue abundance and with substantial heterogeneity across the tissue. Pseudo-space 
visualization demonstrated that as the percentage of B cells in the neighborhoods declined, the 
percentage of T cells increased (Fig. 2f), mirroring what was observed in the original image (Fig. 
2a). In the transitional area between the B cell and T cell rich neighborhoods, Pseudo-space 
analysis revealed an increased portion of DCs, which likely corresponds to the increased 
abundance of DCs in the medullary and paracortical regions of the LN. Thus, Pseudo-space 
provides the user with a way to reduce the complexity of tissue structure to a single dimension, 
aiding in visualization of cellular relationships within complex tissues and linearizing complex 
microenvironments. 

In addition to manual dimensionality reduction, we implemented t-SNE dimensionality 
reduction to explore the neighborhood heterogeneity based on cellular composition and biomarker 
expression on a two-dimensional plot (Figs. 2g, 2h, S2b). Instead of individual cells, as is typically 
done, the cellular composition of the neighborhoods, but not their position, was used for the t-SNE 
analysis. This revealed complex structure in the LN dataset with clearly demarcated, but also 
interconnected clusters of neighborhoods within the t-SNE 2D space (Fig. 2g). Color-coding of 
neighborhoods based on region clustering, as defined in Fig. 2d, revealed clear association of the 
distinct regions with the different clusters generated by the t-SNE analysis, suggesting that both 
methods are capable of identifying cellular organization within tissues. This was confirmed using 
manual gating, directly within the t-SNE plot (Fig. 2i), and spatial mapping (Fig. 2j) of the t-SNE 
clusters, which accurately reconstructed the global tissue architecture, as well as clearly identified 
image artifacts (black color-coded gate Fig. 2i-j). t-SNE analysis also demonstrated the inter-
connected nature of the regions, with the neighborhood regions assigned to the B cell follicle and 
T cell zone regions being connected with one another by neighborhoods assigned to the 
paracortical region (orange, Fig. 2g). This is likely due, in part, to smoothing effects from raster 
scanning the neighborhoods in steps of half the defined radius, such that neighborhoods partially 
overlap. However, this t-SNE data structure also captures features of the actual tissue organization, 
identifying the paracortical T-B border regions where T cells and B cells are in sufficient spatial 
proximity to be included in the same neighborhood (Fig. 2c, neighborhood N2). It is likely that 
lowering the radius scan size would reduce but not eliminate the interconnectedness of these 
regions, as even in tissues with extremely sharp compartment boundaries, individual cells would 
still exhibit differential neighboring partners at the border vs. the center of that compartment. Thus, 
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the t-SNE analysis is able to reveal features of tissue organization based on neighborhood cell 
composition without being provided information on the positioning of that neighborhood within 
the sample.  

We next implemented network analysis to interrogate the interconnectedness of the 
different regions with one another by calculating the percentage of the region borders that are 
shared with other regions (Fig. S1c). Mapping of these bordering relationships revealed that the T 
cell zone regions (red) were connected to the B cell regions (blue) via the paracortical regions 
(orange), thus directly recapitulating the t-SNE analysis and the original image (Fig. S1c, 2a, 2g). 
Together, these proof-of-concept data indicate that the CytoMAP analysis tools were capable of 
robustly identifying the key features of cellular organization and tissue structure for relatively 
simple cell types with well-characterized spatial properties. 
 

CytoMAP analysis of the tumor microenvironment 
 
We next tested the capabilities of CytoMAP in exploring the distribution of immune cells in more 
complex tissue types. For this, we imaged a cross section of a whole murine CT26 colorectal tumor 
stained with a panel of markers to detect various innate and adaptive immune populations (Fig. 
3a). Histo-cytometry was used to gate on T effector cells (Teff), T regulatory cells (Treg), B cells, 
tumor associated macrophages (TAMs), activated macrophages (aMacs), DCs, and MHC-II+ 
SIRPaDIM myeloid cells (Fig. S2a). The spatial distribution of the cell populations revealed striking 
compartmentalization of the tumor tissue into areas enriched with different immune cell subsets 
(Fig. 3b). SOM clustering in CytoMAP of 50m raster scanned neighborhoods identified tissue 
regions preferentially associated with specific myeloid cell populations (Fig. 3c, S2b). Spatial 
visualization of these regions further revealed discrete tumor zones composed of relatively 
segregated region types associated with distinct cell subsets (Fig. 3d). As an example, region R6 
was predominantly composed of DCs and Teff cells, and was primarily localized to the outer 
periphery of the tumor (Fig. 3c, 3d), resembling the lymphocytic cuff previously observed in 
colorectal and other cancers.30 In contrast, regions R2 and R3 were dominantly composed of 
TAMs, and these regions were localized within the deeper portions of the tumor (Fig. 3c, 3d). To 
better understand the spatial relationships among these tumor microenvironments, we next utilized 
the Pseudo-space function. For this, smoothed distributions of neighborhoods enriched in DCs 
were sorted to the left and those enriched in TAMs were sorted to the right along the Pseudo-space 
axis. This analysis revealed the underlying distribution of the different immune subsets across the 
tissue, demonstrating increased abundance of TAMs in the neighborhoods more proximal to the 
tumor core, and with increased presence of lymphocytes and DCs in the tumor periphery (Fig. 3e). 
Interestingly, Teff cells were well-represented in both the peripheral immune cuff and the tumor 
core, while the Tregs were predominantly restricted to the outer tumor periphery. This indicates 
that this CT26 sample represents a relatively well-infiltrated ‘hot’ tumor that may be susceptible 
to checkpoint blockade therapy, which is consistent with published observations.47,48 These spatial 
relationships were further quantified using the Pearson correlation coefficients of the number of 
cells per neighborhood (Fig. 3f, S2c). This demonstrated positive correlation of T and B cells with 
DCs and aMacs, and negative correlation with TAMs, thus revealing the local cellular networks 
and the preferential associations of different cell types across distinct intra-tumor 
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microenvironments. Notably, the negative correlation of Teff cells and TAMs indicated that while 
Teff cells were generally capable of infiltrating the tumor tissue, they were not enriched in the 
areas dominantly populated with TAMs, and this was also seen in the Pseudo-Space plot, in which 
the Teff numbers dropped in the TAM-associated neighborhoods (Fig. 3e). This indicates that 
while generally capable of partial tumor infiltration, Teff lack the ability to infiltrate the deep 
tumor nests in this cancer model. Collectively, these data reveal marked segregation of different 
myeloid cell types across the tumor tissue, as well as demonstrate that the different analytical 
modules in CytoMAP can be successfully used to study cellular localization within complex 
tissues. 
  

CytoMAP reveals underlying organization of immune cells in Mtb granulomas 
 
In addition to tumors, previous studies have demonstrated structured organization of immune cells 
within Mtb-infected pulmonary granulomas.29,31,49–51 We thus tested the ability of CytoMAP to 
quantitatively explore such organization in a 20m lung section from a mouse infected with 
aerosolized Mtb. We observed formation of a discrete Mtb-associated lung granuloma and 
complex patterns of cellular distribution within this structure (Fig. 4a). Two regions of interest, 
one of the unaffected lung and one of the Mtb-infected granuloma (Fig. 4a), were imaged at high 
resolution for in depth analysis. As before, histo-cytometry was used to gate on the different cell 
populations, including CD4+ and CD4- T cells, B cells, CD11b+ myeloid cells, alveolar 
macrophages (Alv. Macs.), DCs, and Mtb+ infected cells (Fig. S3a). The positions of these cells 
were next passed into CytoMAP for remapping (Fig. 4b) and analysis. A small number of the Mtb+ 
objects were identified outside the granuloma in the images. These appeared extra-cellular and 
likely represented imaging artifacts; they were not selectively removed from analysis to avoid 
introducing user bias. Heatmap visualization of the clustered, 50m radius raster scanned 
neighborhoods, with automatic region number identification, revealed distinct region types 
composed of different immune cell populations (Fig. 4c, S3b, S3c). Remapping of the region color-
coded neighborhoods demonstrated that the neighborhoods enriched in Mtb-infected myeloid cells 
(R3) were primarily located in the deep center of the granuloma (Fig. 4d), recapitulating visual 
observations. These infected regions were surrounded by neighborhoods containing high 
concentrations of T cells (R4 and R5), and these were further surrounded by regions associated 
with uninfected myeloid cells and Alv. Macs. (R2). We also detected segregated B cell rich 
neighborhoods in region R6 (Fig. 4d), which were reminiscent of B follicles and tertiary lymphoid 
structures. To further visualize these cellular relationships, we performed Pseudo-space analysis 
(Fig. 4e). This plot demonstrated that within the granuloma, T cell and B cell rich neighborhoods 
were concentrated just outside of the core infected Mtb+ cells. The Alv. Macs and DC-rich 
neighborhoods also appeared excluded from the central core of the granuloma, recapitulating the 
image data. These relationships were also quantitatively explored by calculating the Pearson 
correlation coefficients of the numbers of cells in the neighborhoods (Fig. 4f, S3d). In this analysis, 
the left half of the heatmap, representing uninvolved lung tissue, demonstrated no strong 
correlations between the different immune cell types, consistent with qualitative observations (Fig. 
4a, 4b). In contrast, the right half of the heatmap, representing the granuloma, demonstrated 
positive correlation between the Mtb+ infected cells and the CD11b+ myeloid cells, weaker 
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correlation with the surrounding T cells, and negative correlation with Alv. Macs. These findings 
are consistent with previous observations of immune cell organization in Mtb granulomas, 
describing the partial segregation of CD4+ T cells from Mtb-infected cells and the formation of 
tertiary lymphoid structures.49 Collectively, these data indicate that CytoMAP is capable of robust 
analysis of highly complex tissue structures across diverse organ types and disease settings. 

 

Myeloid cell organization in steady state LNs 
 
Finally, to test the performance of CytoMAP on larger datasets with complex cellular organization, 
we turned to investigating the localization of different myeloid cell subsets in a cohort of steady 
state LNs, as these cell populations have been previously shown to display intricate, non-
overlapping distribution patterns within these tissues.2–5 To this end, 20m sections from steady 
state LNs were stained with a 12-plex antibody panel to detect distinct DC and macrophage 
subsets, as well as to visualize T cells, B cells, and different blood and lymphatic stromal cells as 
reference structural markers. As above, tissues were imaged (Fig. 5a) and distinct cell populations 
were identified by histo-cytometry (Fig. 5b, S4a). Positional and MFI data on these cell types were 
next passed to CytoMAP for analysis. Basic spatial remapping of these populations in CytoMAP 
recapitulated the general LN structure, as well as qualitatively validated previous findings on the 
location of different DC and macrophage subsets (Fig. 5c). In particular, we observed that 
subcapsular sinus (SCS) and medullary (Med) macrophages localized to the outer LN periphery 
and medullary regions, respectively. Resident cDC1 and cDC2 populations also exhibited 
previously established spatial patterns, with the resident cDC2s preferentially localizing in 
peripheral LN regions, and the resident cDC1s more evenly distributed across the LN parenchyma 
and within the T cell zone (Fig. 5c, S4b).4,7,52 Similarly, visualization of the migratory DC subsets 
confirmed previous observations, with CD207+ cells (Langerhans cells and migratory cDC1s) 
located within the central T cell zone, and the CD301b+ and SIRPa+ dermal DC (dDC) subsets 
located in regions bordering the B cell follicles and in the lower cortical ridge, respectively (Fig. 
5c, S4b).4,6,7,53,54 In addition, histo-cytometry analysis revealed a recently described population of 
migratory SIRPa- dDCs, although the spatial positioning of this population has not been 
established in these previous studies.33,34 Qualitative visualization of this migratory DC subset 
revealed that these cells were predominantly localized in the lower cortical ridge bordering the LN 
medulla (Fig. 5c, S4b). Visual inspection of the original confocal data confirmed abundant 
presence of SIRPa- migratory dDCs in this LN compartment, with these cells forming a dense cuff-
like cellular aggregate at the border of the T cell zone and the LN medulla (Fig. 5a). 

CytoMAP was next used to quantify features of cellular organization within these steady 
state LNs. To aid in accurate classification of the tissue regions, additional spot objects were 
generated based on different landmark channels demarcating known LN structures (i.e. CD3, 
B220, and Lyve1 for the T cell zone, B cell follicles and lymphatic vessels, respectively), and the 
positional data from these landmark objects were also passed into CytoMAP. In addition, using 
the Generate Random Points function in CytoMAP, a population of randomly distributed points 
(RDP) were defined throughout the LN and were used to compare to the distribution of the imaged 
cells (Fig. S4b). As above, the cells and landmark spots were subdivided into individual 
neighborhoods by digitally raster scanning a 30m radius neighborhood filter using the Raster 
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Scan Neighborhoods function. These neighborhoods were next clustered using a SOM, with the 
number of regions automatically determined by the Davies-Bouldin criterion. This resulted in 
generation of 10 distinct regions (color bar at the top of Fig. 5d) that were enriched with different 
cell types, suggesting a relatively discrete distribution of cells within the LNs. Positional 
remapping of the neighborhoods, color-coded by region, directly recapitulated the spatial 
boundaries and the general architectural features seen qualitatively in the original image, 
suggesting robust digital tissue reconstruction (Fig. 5e, S5a, S5b). This analysis also demonstrated 
that the different DC and macrophages subsets appeared relatively segregated from one another 
within distinct spatial compartments, corroborating previous observations.4 Region visualization 
also established the predominant localization of the SIRPa- migratory dDC population (R4 region) 
in the lower cortical ridge bordering the LN medulla (Fig. 5e, S5a, S4b). 

To further delineate the distribution of different cell types across physiologically defined 
LN compartments, we used CytoMAP to manually annotate the regions based on landmark spot 
clustering (Fig. 5d, S4b, S5c). This resulted in new composite regions, color annotated at the 
bottom of the heatmap in Fig. 5d, with region R1 corresponding to B cell follicles, region R2 to 
the sub-capsular sinus (SCS), regions R3-R7 to the T cell zone and Interfollicular zones (TZ+IFZ), 
region R8 to the sinus, and regions R9 and R10 to the cortico-medullary cords (CMC) (Fig. 5d, 
5e, S5c). Next, using the Make Surface function in CytoMAP, we built surfaces around the 
neighborhoods belonging to these annotated groups (Fig. 5f), then calculated the distances of the 
myeloid cells to the borders of these surfaces (Fig. 5g, S5e). The distance to each region border 
for all cells in a single sample (Fig. 5g, S5e) or averaged over all cells for multiple samples (Fig. 
5h-j, S5f), corroborated the qualitative observation that most DCs were distributed within the 
TZ+IFZ, while the macrophages were positioned in either the SCS or CMC. This analysis also 
confirmed preferential localization of resident cDC2s in closer proximity to the CMC and B cell 
follicles, compared to the more heterogeneous distribution of resident cDC1s within the LN (Fig. 
5i, 5j). Additionally, distance analysis revealed that CD301b+ DCs were primarily distributed in 
close proximity to the B cell follicles, as previously described,53 while the SIRPa- migratory dDCs 
were located distally from the B follicles and in close proximity to the CMC (Fig. 5i, 5j, S5f).  

The discrete clustering and segregation of different myeloid cell types (Fig. 5d, 5e) also 
indicated that the DC subsets were distributed in spatially non-overlapping patterns. To explore 
this further we calculated the Pearson correlation coefficients of the number of cells per 
neighborhood, averaged over all of the samples, for either the whole samples or only the 
neighborhoods within the TZ+IFZ regions (Fig. 5k, S5g). Whole tissue correlation analysis 
demonstrated that all DC populations were positively correlated with CD3 spots and negatively 
correlated with Lyve1 spots and medullary macrophages (Macs), indicating that on average, most 
DCs are positioned in the T cell zone and not in the LN medulla (Fig. 5k left). SCS Macs were 
also positively correlated with B220 spots, in line with their enhanced prevalence lining the B cell 
follicles. Correlation analysis of the TZ+IFZ compartment, enriched in most DC populations, 
revealed that migratory DC populations (i.e. CD207+ DCs, CD301b+ dDCs, SIRPa+/- dDCs) were 
in general negatively correlated with one another or displayed little spatial correlation (Fig. 5d, 5k 
right). This provides quantitative support to the observation of spatial segregation of DC subsets 
in LNs. Together, these analyses highlight the ability of CytoMAP to delineate complex patterns 
of cellular organization into quantitative metrics. Biologically, these observations reveal strong 
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spatial exclusivity for different DC populations, as well as identify the distribution profile of 
migratory SIRPa- dDCs. 

 

Spatially organized myeloid cell associations with LN blood vessels 
 
In addition, qualitative examination of imaged LN sections revealed that some DC populations 
appeared to be highly proximal to LN blood vessels. Given the established role of DCs in 
homeostatic maintenance of LN vasculature, we next examined the relative distribution of DC 
subsets with respect to LN blood vessels.35,36 To account for the sampling error associated with 
thin section imaging, in which critical tissue landmarks may lie just above or below the sectioning 
plane, we turned to volumetric microscopy of stained and Ce3D optically-cleared 500 m thick 
slices of steady state murine LNs.13,39 This resulted in robust visualization of complex patterns of 
DC subsets in 3D tissue space (Fig. 6a). Qualitative examination of the imaged LNs revealed close 
association of the Clec9a+ resident cDC1s with CD31+ vascular endothelial cells, and many of 
these DCs appeared to encapsulate large segments of the neighboring blood vessels (Fig. 6a and 
Video S1). In contrast, CD207+ migratory DCs (Langerhans cells and migratory cDC1s) appeared 
less associated with the LN vasculature. To quantitate these observations, we performed histo-
cytometry to identify various DC and macrophage populations and passed the positional data of 
these cells to CytoMAP (Fig. S6a, S6b).13,39 To provide positional information on CD31+ blood 
vessels, we generated segmented surface objects on the CD31 channel and imported these objects’ 
data into CytoMAP. As above, positional information of B220+ B cell and Lyve1+ lymphatic sinus 
landmark spots were also included in the analysis. In addition, RDPs were defined throughout the 
3D LNs for comparison. The distances for the different myeloid cell subsets, or RDPs, to the 
nearest blood vessel object were next calculated in CytoMAP (Fig. 6b). Visualization of the 
individual cell distances to the closest blood vessel demonstrated that, while there was substantial 
heterogeneity within a given cell population, both resident cDC1 and cDC2 populations were on 
average located in close proximity to blood vessels (Fig. 6a-d). This was in contrast to more distal 
relationships for most migratory CD207+ DCs, Macs, or RDPs. To further explore these 
relationships, we calculated the Pearson correlation coefficients for the number of cells per 50m 
radius neighborhood. This analysis demonstrated that in contrast to migratory DCs, resident cDC1 
and cDC2 subsets were both positively correlated with blood vessels (Fig. 6e, S6c). These data 
indicate that resident DCs are spatially associated with LN vasculature, suggesting that blood 
vessels may provide guidance cues to guide the localization of these myeloid cell types in LNs. 

The spatial segregation of resident cDC1 and cDC2 subsets into distinct regions of the LN 
(Fig. 5c, S5b) also suggested that blood vessels may be differentially associated with specific DC 
populations across the distinct tissue compartments. To explore the cellular microenvironments 
associated with the complex vascular networks in LNs (Fig. 7a), we utilized the Cell Centered 
Neighborhoods function in CytoMAP, which instead of raster scanning neighborhoods, generates 
neighborhoods centered on the positions of the selected objects. This analysis approach provides 
a more focused interrogation of the cellular relationships for the selected population of interest. 
Here, 20 m radius spherical neighborhoods were centered on the CD31+ vascular objects to 
selectively identify vascular-associated myeloid cell populations (Fig. 7b). This Cell Centered 
approach is demonstrated in Fig. 7b, in which white dots demarcate the centers of all blood vessel 
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objects within the zoom image, and with the example 2D projections of the spherical 
neighborhoods shown to surround several distinct vascular objects (yellow dots). Once generated, 
these neighborhoods were clustered as before using the SOM algorithm, with the number of 
regions determined using the Davies-Bouldin criterion (Fig. S7a). This clustering separated the 
vascular neighborhoods into several distinct region types (Fig. 7c, top color bar, S7b), which were 
next manually grouped into four major blood vessel phenotypes based on the local DC subset 
composition (Fig. 7c, bottom color bar). This clustering revealed that, while many neighborhoods 
were not closely associated with any given myeloid cell type (unassociated), large portions of the 
vascular neighborhoods were preferentially associated with either the resident cDC1 or the cDC2 
subset. A smaller number of neighborhoods were also associated with CD207+ migratory cells 
(Fig. 7c, S7c). Importantly, 3D spatial remapping of the different vascular subtypes in CytoMAP 
revealed that large segments of the vascular branches were almost exclusively associated with 
either the resident cDC1 or cDC2 subset, with little local spatial intermixing (Fig. 7d, Video S2). 
This indicates that the spatial segregation of LN-resident DC subsets leads to the generation of 
discrete segments of vascular branches defined by local myeloid cell partners. Thus, in addition to 
providing potential mechanisms of cDC1 and cDC2 positioning within LNs (based on vascular 
guidance cues), these data also reveal possible mechanisms for the heterogeneity of LN blood 
endothelial cells, as recently described.37,38 
 

DISCUSSION 
 
The importance of quantitative imaging and spatial analysis has emerged across a diverse spectrum 
of biological disciplines at different length scales; from the localization of single molecules within 
individual cells to the organization of cells across whole organs. Various technologies now allow 
spatially resolved high-content detection of diverse probe types, from protein and oligonucleotide 
imaging to mass spectroscopy enabled lipid visualization. These approaches are providing an 
unprecedented level of detail into biological processes, and as the imaging area and number of 
analytes increases, the development of tools for analyzing these increasingly complex and 
voluminous datasets is critical.4,10,13,14,19,26,30,39,55–57 Here we developed and described a 
comprehensive analysis platform, CytoMAP, capable of robust spatial analysis of cellular 
organization within tissues. CytoMAP harnesses the power of unsupervised clustering, 
dimensionality reduction, and advanced data visualization to expand the utility of spatially 
resolved cellular profiling. CytoMAP integrates data on cellular phenotypes and positioning to 
identify unique neighborhoods and regions within tissues and organs, which provides the ability 
to interrogate complex spatial patterns across heterogeneous samples. While our technology is 
demonstrated here using histo-cytometry generated data on cell positioning, CytoMAP in principle 
can be utilized with datasets generated by diverse approaches and for analysis of various target 
structures at different length scales. Here we utilized CytoMAP to explore and quantify the 
organization of immune cells and microenvironments within lymphoid tissues, as well as in tumor 
and Mtb-infected lung samples. Our results indicate a robust ability of CytoMAP to reveal well-
established and previously unappreciated cellular organization within these tissues. In particular, 
our studies identified the localization of SIRPa- migratory dDCs within the lower cortical ridge of 
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the T cell zone bordering the LN medulla, as well as reveal preferential associations of LN-resident 
DC populations with blood vessel networks in distinct LN compartments. 

In contrast to other approaches, CytoMAP substantially reduces data complexity in two 
major ways. First, CytoMAP treats complex cell objects as individual points, each possessing 
information on the positional, morphological and phenotypic cellular characteristics averaged over 
their respective 3D segmented cellular bodies. Second, CytoMAP defines raster scanned, or cell-
centered, local neighborhoods across the tissue, effectively binning data on many similarly 
positioned cells into single data points. Biologically, such neighborhood binning is equivalent to 
the concept that, much like urban environments, tissues are subdivided into local neighborhoods 
containing specific interacting cell populations. Computationally, both steps dramatically reduce 
the data size (~ 3 orders of magnitude), allowing rapid comparative analysis of cellular 
composition within the neighborhoods and investigation of how these tissue building blocks are 
spatially patterned across large 2D and 3D samples. The ability to manipulate the size of the 
neighborhoods also facilitates exploration of overarching tissue structure or detailed investigation 
of the hyperlocal cellular microenvironments and cell-cell interactions. Using SOM data 
clustering, similar neighborhoods are grouped together via topological analysis, which 
computationally defines unique tissue regions within highly complex datasets with minimal user 
input. Once clustered, CytoMAP provides tools for exploring the cellular composition and relative 
prevalence of the tissue regions within and across samples, as well as for visualizing these regions 
in 2D or 3D space. Interaction network maps provide additional detail into how the regions are 
spatially interconnected with one another to generate global tissue structure. Additional 
dimensionality reduction tools allow the user to reveal cellular patterning across the tissues, as 
well as examine the heterogeneity of individual or multiple samples. Finally, neighborhood based 
correlation analysis facilitates exploration of how different cell populations are spatially correlated 
with one another, revealing local cellular interactions, or mutual exclusivity of different cell types 
with one another. Together, the combination of comprehensive and flexible analytical approaches 
built into a user-friendly interface makes CytoMAP a powerful toolbox for exploration of complex 
cellular spatial relationships within large multiplexed imaging datasets. 

One area where new spatial analysis tools may provide substantial benefit is in cancer 
research, in which isolated tumor biopsies have poorly understood cellular organization but still 
possess substantial prognostic value. To test CytoMAP with such heterogeneous tissues, we 
explored the organization of immune cells in a CT26 tumor sample. This analysis identified several 
hallmark features of tumor architecture, including a lymphocytic cuff, as well as centralized 
positioning of TAMs, which corroborates previous histological studies.30 CytoMAP also revealed 
moderate-to-high baseline infiltration of CT26 tumors by effector T cells, suggesting that this 
cancer model should be susceptible to checkpoint blockade therapy, which is in line with published 
data.47,48 Interestingly, we found that different myeloid cell types lie in distinct regions within the 
tumor, suggesting additional layers of cellular organization that should be explored in future 
studies. Visualizing these relationships across whole tumor cross-sections also revealed substantial 
intra-tumoral heterogeneity with respect to the local composition of myeloid cells and 
lymphocytes. This suggests that accurate risk/prognostic assessment of neoplastic tissues may 
benefit from access to larger tissue samples in addition to punch core biopsies.  
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As an additional test of CytoMAP, we analyzed cellular organization within granuloma 
structures in a murine Mtb-infected lung sample. We observed partial segregation of infiltrating 
CD4+ T cells from Mtb-infected myeloid cells, and formation of B cell aggregates. Presence of 
these distinct tissue regions as identified by CytoMAP’s clustering algorithm largely agrees with 
previous studies describing immune cell organization in Mtb granulomas, suggesting that 
CytoMAP presents a promising avenue for investigating the spatial organization of cells in 
inflamed and infected tissues.32  

As a final test of CytoMAP, we analyzed the organization of myeloid cells in steady state 
murine LNs. Consistent with previous observations, we found extensive spatial segregation and a 
high degree of mutual exclusivity for many of the DC subsets within the LN. In addition, we 
identified the spatial distribution of a recently described SIRPa- migratory dDC population, which, 
to our knowledge, has not been positionally mapped previously.33,34 We found that these migratory 
dDCs are predominantly localized within the lower cortical ridge bordering the LN medulla, and 
together with the locally positioned SIRPa+ dDCs generate a prominent cuff-like cellular 
aggregate. In addition, analysis of resident cDC1 and cDC2 organization recapitulated previous 
findings, with preferential localization of resident cDC2 in the LN periphery and more 
heterogeneous distribution of resident cDC1s across the T cell zone and reduced presence in the 
LN medulla.4,5,7–9,52,58 Importantly, we found that both resident cDC1 and cDC2 subsets were 
highly associated with LN blood vessels, albeit preferentially associating with distinct vascular 
trees, with little local intermixing. Although previous studies have shown that DCs can associate 
with blood vessels during inflammation,59,60 our findings reveal that this normally occurs in the 
steady state, and may thereby promote homeostatic maintenance of LN blood vessels.35,36 Our 
studies also suggest that blood vessels could provide positional cues to guide resident cDC1 and 
cDC2 distribution in LNs. While previous studies have identified a role for the G-protein coupled 
receptor 183 in guiding resident cDC2 positioning and survival in lymphoid tissues,61,62 little is 
known about the regulation of resident cDC1 localization in LNs. Our study provides hints to a 
potential mechanism regulating cDC1 distribution, and will require further study. Finally, our 
studies suggest that DC subset spatial patterning and exclusive interactions with distinct vascular 
branches may also influence blood endothelial cell biology, potentially promoting the recently 
described heterogeneity of LN blood endothelial cells.37  

In sum, here we develop a user-friendly, comprehensive, and broadly applicable spatial 
analysis toolbox for analysis of 2D or 3D quantitative imaging datasets, which excels at utilizing 
high-dimensional imaging data to reveal complex tissue features based on cellular phenotypic 
heterogeneity and spatial patterning. Our technology allows robust cross-sample interrogation of 
spatial cellular relationships, tissue architecture, and reveals intra- as well as inter-sample 
heterogeneity. In this early implementation, CytoMAP has already provided new insights into the 
organization of myeloid cells in lymphoid tissues, revealing the localization of SIRPa- migratory 
dDC, as well as identifying preferential associations of resident DCs with select LN vasculature. 
Phenotyping neighborhoods with unsupervised clustering revealed distinct regions which were 
both biologically relevant and consistent across multiple samples. Together, this indicates that 
CytoMAP is a valuable tool for the rapid identification of key cellular networks and tissue 
structure, revealing the fundamental building blocks of tissue organization.  
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and other code used for histo-cytometry analysis is available for download at: 
https://gitlab.com/gernerlab/imarisxt_histocytometry. All data are available upon request. 
 

Materials and Methods 
 

Mice 
For the experiments described in Fig. 2, 5-7, 6-10 week old male and female B6.SJL and C57BL/6J mice 
were obtained from The Jackson Laboratory and kept in specific pathogen–free conditions at an Association 
for Assessment and Accreditation of Laboratory Animal Care–accredited animal facility at the University 
of Washington, South Lake Union campus. All procedures were approved by the University of Washington 
Institutional Animal Care and Use Committee. 

For the data presented in Fig. 3, Balb/c mice were obtained from Charles River (Sulzfeld, Germany) 
and were housed in specific pathogen-free conditions. The animal facility was accredited by the Association 
for Assessment and Accreditation of Laboratory Animal Care (AAALAC) and all animal studies were 
performed in accordance with the guidelines outlined by the Federation for Laboratory Animal Science 
Association (FELASA) and the German Animal Welfare law. The animal study was approved by and done 
under license obtained from the Government of Upper Bavaria (Regierung von Oberbayern; license 
number: ROB-55.2-2532.Vet_03-15-41).  

For the experiment described in Fig. 4, C57BL/6J mice were obtained from The Jackson Laboratory 
and housed in specific pathogen-free conditions at Seattle Children’s Research Institute (SCRI). 
Experiments were performed in compliance with the SCRI Animal Care and Use Committee. An 8 week 
old female mouse was used for the presented study.  
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LN studies 
For the experiment shown in Fig. 2, a C57BL/6 mouse was adoptively transferred with 10^6 naïve OT-II 
CD4+ T cells and one day later immunized in the footpad with OVA plus Alum; 4.5 days later the draining 
popliteal LN was harvested and used for analysis. For the experiments shown in Fig. 5, non-draining steady 
state skin LNs were harvested from C57BL/6 mice which were previously injected in the contralateral distal 
footpad with Alum 2 days before harvest. For the experiments shown in Fig. 6 and 7, skin LNs were 
harvested from naïve C57BL/6 mice. 

 

Tumor studies 
Balb/C mice were injected subcutaneously with 5x10^6 CT26.WT cells and 9 days later, the tumor was 
harvested for fixation and imaging. 
 

Mtb studies 
All infections were done with a stock of Mtb H37Rv, as previously described.63 To perform aerosol 
infections, C57BL/6 mice were enclosed in a Glas-Col aerosol infection chamber, and Mtb bacilli were 
deposited directly into their lungs. Lungs were removed 34 days post infection. 

 
Tissue preparation – thin sections 
All thin tissue sections were fixed with Cytofix (BD Biosciences) buffer diluted 1:3 with PBS for 12h at 
4o C and then dehydrated with 30% sucrose in PBS for 12-24h at 4o C. Tissues were next embedded in 
O.C.T. compound (Tissue-Tek) and stored at -80o C. LNs were sectioned on a Thermo Scientific Microm 
HM550 cryostat into 20m sections and were then prepared and imaged as previously described.4 Briefly, 
sections were stained with panels of fluorescently conjugated antibodies, shown in table S5, cover-slipped 
with Fluoromount G mounting media (SouthernBiotech), and imaged on a Leica SP8 microscope.  
 
Tissue preparation – thick slices 
Volumetric imaging using Ce3D tissue clearing (thick sections) was performed as previously described.13,39 
In brief, LNs were fixed with Cytofix (BD Biosciences) buffer diluted 1:3 with PBS for 12-20h at 4o C. 
Excess fat was carefully removed using a dissection microscope, and the samples were embedded in 2% 
Agarose. 500um thick cross-sectional slices were generated using a Vibratome (Leica VT1000S, Speed: 
215 Frequency: 8). Slices were next placed in blocking buffer (1%NMS, 1%BSA, 0.3%Triton, in 0.1MTris) 
for 24h at 24o C on a rocker. After blocking, LN slices were stained with a panel of directly conjugated 
antibodies (table S5) for 3 days at 34o C on a shaker, then washed in blocking buffer for one day at 24o C. 
Next, slices were placed in Ce3D clearing solution (13.75ml 40% [vol/vol diluted with PBS] N-
methylacetylamide; 20g Histodenz; 25uL Triton X-100; 125ul Thioglycerol) at 24o C for at least 24h. 
Finally, slices were cover-slipped using Ce3D as the mounting media and imaged on a Leica SP8 
microscope. 

 
Imaging 
All samples were imaged using a Leica confocal SP8 microscope, with either a 40X 1.3NA (HC PL APO 
40x/1.3 Oil CS2, for 20m sections) or a 20X 0.75NA (HC PL APO 20x/0.75 IMM CORR CS2, free 
working distance = 0.68 mm, for thick cleared slices) oil objective with type F immersion liquid (Leica, 
refractive index ne = 1.5180). After acquisition, stitched images were compensated for spectral overlap 
between channels using the Leica Channel Dye Separation module in the Leica LASX software. For single 
stained controls, UltraComp beads (Affymetrix) were incubated with fluorescently conjugated antibodies, 
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mounted on slides, and imaged with the same microscope settings used in the image they were being used 
to compensate.  
 

Image analysis and histo-cytometry 
Image analysis and Histo-cytometry was performed as described previously, with minor modifications.4,13,39 
A detailed description is available in the supplemental information.  
 

Statistical analysis 
No statistical method was used to predetermine sample size. The statistical significance of Pearson's 
correlation was calculated using a Student's t distribution for a transformation of the correlation. 
 

CytoMAP spatial analysis 
CytoMAP was written using MATLAB version 2018b (Mathworks). A detailed description of the workflow 
and functions built into CytoMAP is available in the online user manual. A brief discussion of the analyses 
used in this manuscript is described in the supplemental information.  

DATA AND CODE AVAILABILITY  
 
Imaris extensions and other scripts used for histo-cytometry analysis are available for download at: 
https://gitlab.com/gernerlab/imarisxt_histocytometry 
 
CytoMAP software is available for download at: 
https://gitlab.com/gernerlab/cytomap 
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Figure Titles and legends 
 

 
Figure 1. Workflow and features of CytoMAP. a, Conceptually, tissues are comprised of 
microenvironments defined by the local composition of different cell populations. CytoMAP is designed to 
extract quantitative information on cellular localization and composition within these regions, revealing 
how local cell microenvironments form global tissue structure, as well as allowing robust comparison of 
intra- and inter-sample tissue heterogeneity. b, The workflow starts with multi-parameter imaging of either 
thin sections or large 3D tissue volumes. Next, hierarchical gating of cell objects generated with existing 
pipelines is used to annotate distinct cell subsets, which are passed into CytoMAP for analysis. CytoMAP 
segments these spatial datasets into individual neighborhoods and uses clustering algorithms to define 
similar groups of neighborhoods, or tissue ‘regions’, which can be quantitatively explored and spatially 
reconstructed in 2D or 3D space. c, CytoMAP contains multiple tools to quantify and visualize the tissue 
architecture across length scales, ranging from analysis of spatial correlations between different cell types, 
investigation of distance relationships of cells with architectural landmarks, analysis of neighborhood 
heterogeneity within individual tissues or across multiple samples, as well as quantitative visualization of 
tissue architecture. 
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Figure 2. CytoMAP automatically identifies major features of LN tissue structure. a, Multi-parameter 
confocal microscopy image, and zoom-in, of a LN section from an immunized C57BL/6 mouse 
demonstrating highly compartmentalized staining for B220 (B cells), CD11c (DCs) and CD3 (T cells). 
Overview image scale bar = 200m; zoom-in scale bar = 30m. b, Cell objects within the image were 
segmented and analyzed using histo-cytometry. Plots demonstrate gating used for identification of the 
indicated immune cell populations. Here, cells with high CD11c MFI are referred to as DCs, albeit this gate 
may include additional CD11c-expressing cell types. c, Cell data from panel b were passed into CytoMAP 
and positionally plotted (shown area matches panel a zoom-in). CytoMAP was used to raster scan the cells 
into 30m radius neighborhoods based on their spatial position, as denoted by the arrow. d, Heatmap of the 
neighborhood cellular composition (percentage of each cell phenotype per neighborhood) after SOM 
clustering. Individual clusters, ‘regions’, are denoted by the color bar at the top of the graph. Arrowheads 
at the bottom highlight the specific neighborhoods also shown in panel c. e, Region color-coded positional 
plot of the neighborhoods from panel d demonstrating general reconstruction of LN architecture. f, Pseudo-
space plot with the neighborhoods sorted based on B cell composition (sorted to the left) and T cell 
composition (sorted to the right) on the Pseudo-space axis. This plot demonstrates an abstracted 
representation of cellular distribution across different LN compartments. g, t-SNE plot of the 
neighborhoods, in which the numbers of cells and total MFI of all channels, but not positional information, 
were used for the dimensionality reduction. Neighborhoods were color-coded based on region type, as 
identified in panel d. h, Same t-SNE plot as in panel g, but with the neighborhoods color-coded as a heatmap 
reflecting the number of the indicated cell types per neighborhood. i, The t-SNE plot was manually gated 
based on the cell composition visualized in panel h. j, Gated neighborhoods were positionally remapped 
using the color code definitions from panel i. For this experiment, an imaging volume of 0.03 mm3, 139,399 
cells, and 11328 neighborhoods were analyzed.   
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Figure 3. CytoMAP analysis of a murine colorectal tumor sample. a, Multiplex confocal image of a 
20μm thick CT26 tumor section isolated 9 days after subcutaneous inoculation and stained with the 
indicated markers. Zoom in demonstrates the immune cell cuff surrounding the tumor. Main image scale 
bar = 500μm; zoom-in scale bar = 50μm. b, Positional plot of the lymphocyte (top) and myeloid cell 
(bottom) populations as defined by histo-cytometry gating presented in Fig. S2a. c, Heatmap of the 
normalized immune cell composition of regions defined by SOM clustering of 50μm radius neighborhoods. 
d, Positional plot visualizing the CT26 color-coded regions defined in panel c. e, Pseudo-space plot with 
the number of the indicated cell types per neighborhood after pre-sorting for TAM (sorted to the left) and 
DCs (sorted to the right) along the pseudo-space linear axis. Neighborhoods were also smoothed, and y-
axis normalized to allow qualitative comparison of cell type localization. f, Heatmap of the Pearson 
correlation coefficients of the number of cells per neighborhood across the imaged tumor sample. For this 
experiment, an imaging volume of 0.3 mm3, 34,013 myeloid cells, 22,035 lymphocytes, and 58,608 
neighborhoods were analyzed. 
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Figure 4. CytoMAP analysis of Mtb-infected lung granuloma. a, Multiplex confocal image of a 20μm 
thick section from a Mtb-infected murine lung sample stained with the indicated antibodies. The left image 
shows multiple imaged channels overlaid in white to visualize the overall lung structure. Scale bar = 500μm. 
Zoom in images demonstrate separately acquired regions of interest centered on a representative uninvolved 
lung area and the Mtb granuloma. Zoom-in scale bar = 100μm. b, Positional plots of the immune cell subsets 
in the uninvolved (top) versus granuloma-containing (bottom) lung areas shown in panel a, with the cell 
populations defined by the histo-cytometry gating scheme presented in Fig. S3a. c, Heatmap of SOM-
clustered, 50m radius neighborhoods demonstrating the distinction between uninvolved lung regions (R1) 
versus those within the granuloma (R2-R6). d, Positional plots of the neighborhoods, color-coded by region 
defined in panel c, within the uninvolved (top) versus granuloma-containing (bottom) lung areas. e, Pseudo-
space plots visualizing the number of the indicated cell types per neighborhood within the uninvolved (left) 
versus granuloma-containing (right) lung areas after sorting for Alv. Macs (sorted to the left) and Mtb+ cells 
(sorted to the right) along the pseudo-space axis. Neighborhoods were also smoothed, and y-axis 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 21, 2019. ; https://doi.org/10.1101/769877doi: bioRxiv preprint 

https://doi.org/10.1101/769877


26 
 

normalized to allow qualitative comparison of cellular associations. f, Rotated half-heatmaps demonstrating 
the Pearson correlation coefficient of the number of cells within the neighborhoods across either the 
uninvolved lung (left) or the granuloma (right). For the uninvolved lung region, an imaging volume of 0.05 
mm3, 36,194 cells, and 4725 neighborhoods were analyzed. For the granuloma lung region, an imaging 
volume of 0.07 mm3, 140,453 cells, and 7,350 neighborhoods were analyzed. 
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Figure 5. CytoMAP reveals diverse patterns of myeloid cell organization in LNs. a, Multi-parameter 
confocal microscopy image of a representative steady state non-draining LN section from an immunized 
C57BL/6 mouse. Images demonstrate staining for the indicated myeloid cell markers, with the image on 
the left also showing B220 (B cells), Lyve1 (lymphatics) and CD31 (blood vessels) staining. Scale bar = 
200m. The right zoom-in demonstrates a cellular aggregate of SIRPa- dDC in the lower T cell zone 
paracortex proximal to the LN medulla. Scale bar = 50m. b, Histo-cytometry gating scheme used to 
annotate the myeloid cell subsets within the imaging data. c, Cellular positions plotted in CytoMAP 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 21, 2019. ; https://doi.org/10.1101/769877doi: bioRxiv preprint 

https://doi.org/10.1101/769877


28 
 

showing the distinct localization patterns of the indicated immune cell subsets. d, The heatmap of SOM 
clustered, 30m radius neighborhoods demonstrates different LN regions (top color bar) as defined by the 
distinct composition of myeloid cells. Regions were also manually annotated (bottom color bar) reflecting 
the association with B220, CD3 or Lyve1 landmark spots. Annotated gating shown in Fig. S5c. e, Positional 
plot of the LN neighborhoods as color-coded by the region type (panel d - top color bar). f, Positional plot 
of surfaces generated on the manually annotated regions (panel d - bottom color bar). g, Violin plot showing 
the number of cells as a function of distance to the border of the TZ+IFZ annotated region for the 
representative LN sample. Distances to the left of zero represent cells inside the region; distances to the 
right of zero represent cells outside the region. h, Plot of the distances of cells to the TZ+IFZ region, in 
which each dot represents the mean distance of the indicated cell population in an individual LN sample 
(n=5). i, Mean distances of indicated cells to the CMC region. j, Mean distances of indicated cells to the B 
Follicle region. k, Correlation plot demonstrating the Pearson correlation coefficients between the number 
of indicated cells per neighborhood using either all tissue neighborhoods (left) or only the TZ+IFZ region 
neighborhoods (right). Correlations were averaged over the sample cohort (n=5) from one experiment. For 
this experiment, an average imaging volume of 0.023 mm3, and an average of 6,611 myeloid cells, 84,347 
spots, and 12,708 neighborhoods were analyzed per sample. Data are representative of at least two 
independent experiments. 
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Figure 6. CytoMAP analysis of 3D LNs reveals preferential interactions of DCs with vasculature. a, 
Representative confocal image of a 500μm thick, Ce3D cleared steady state LN slice. Zoom-in images 
demonstrate association of Clec9a+ cDC1 cells with CD31+ blood vessels. Main image scale bar = 200μm; 
zoom-in scale bar = 50μm. b, Violin plot comparing the distances of the indicated cells to nearest blood 
vessels within a representative LN sample. c, Mean distances of cell populations to the nearest blood vessel, 
with each symbol representing an individual LN sample. Circles and squares represent samples from two 
independent experiments. Cells below the dotted line at 20μm were considered proximal to vasculature. d, 
Percentage of proximal cells for the LN samples shown in c. e, Heatmap showing the Pearson correlation 
coefficients, averaged across all imaged samples, between the number of different cell or landmark object 
types per 50m radius neighborhood. Data represent four samples from two independent experiments. For 
these experiments, an average imaging volume of 0.93 mm3, and an average of 39,139 myeloid cells, 36,048 
blood vessel objects, 98,279 spots, and 133,446 neighborhoods were analyzed per sample. 
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Figure 7. Individual blood vessel branches in LNs demonstrate selective interactions within specific 
DC subsets. a, Confocal image demonstrating the CD31-labeled vascular networks in the same 
representative LN sample as presented in Fig. 6a. Scale bar = 200μm. b, Zoom-in of the region in panel a 
(denoted with a rectangle), demonstrating the centers of CD31+ blood vessel objects (white dots). The 
circles with yellow dots represent spherical object-centered neighborhoods with a radius of 20μm. Scale 
bar is 20μm. c, Heatmap of the myeloid cell composition for the vessel-centered neighborhoods after SOM 
clustering. The top color bar shows color-coded regions of neighborhoods. The bottom color bar shows 
manually annotated regions composed of different DC subsets. d, Positional plot of the vascular 
neighborhoods in a 200μm thick virtual Z section, also color-coded based on the annotations in panel c. 
Data represent four samples from two independent experiments.  
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